CS 240 — Data Structures and Data Management

Module 8: Range-Searching in Dictionaries for Points

T. Biedl E. Schost O. Veksler

Based on lecture notes by many previous ¢s240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2021

References: Goodrich & Tamassia 21.1, 21.3

version 2021-03-07 21:28

C5240 — Module 8 Winter 2021 1/38

Outline

@ Range-Searching in Dictionaries for Points
® Range Searches /
e Multi-Dimensional Data /
@ Quadtrees
@ kd-Trees

@ Range Trees
@ Conclusion

Biedl, Schost, CS, /) C5240 — Module 8 Winter 2021

Qutline

@ Range-Searching in Dictionaries for Points
@ Range Searches

C5240 — Module 8

Range searches

e So far: search(g) looks for one specific item.
@ New operation RangeSearch: look for all items that fall within a
given range.
» Input: A range, ie., an interval | = (x, x')
It may be open or closed at the ends.™ =
» Want: Report all KVPs in the dictionary whose key k satisfies k € /

—

Example: [5[10[11[17[19[33[45[51[55] 59 |

RangeSearch((18,45]) should return {19, 33, 45}

—

Biedl, Scho \ C5240 — Module 8 Winter 2021 2 /38

Range searches

e So far: search(k) looks for one specific item.
@ New operation RangeSearch: look for all items that fall within a
given range.
» Input: A range, ie., an interval | = (x, x')
It may be open or closed at the ends.
» Want: Report all KVPs in the dictionary whose key k satisfies k € /

Example: |5[10[11]17 [19334551 55] 59 |

RangeSearch((18,45]) should return {19, 33, 45}

O(S + f(\-\), #u\ € o(w)
o Let s be the output-size, i.e., the number of items in the range.

® We need Q(s) time simply to report the items.

@ Note that sometimes s = 0 and sometimes s = n; we therefore keep it
as a separate parameter when analyzing the run-time.

Biedl, Schost, M) C5240 — Module 8 Winter 2021 2/38

Range searches in existing dictionary realizations

Unsorted list/array/hash table: Range search requires Q(n) time:
We have to check for each item explicitly whether it is in the range.

(Sorted array: Range search in A can be done in O(log n+ s) time:

RangeSearch((18, 45] |5][10[11]17 [19 |33 [45|51 |55 |59 |

!

i Tr

'n. o
@ Using binary search, find i such that x is at (or would be at) A[1].
(9 Using binary search, find .f’ such that x" is at (or would be at) A[i’]
o Report all items A[i+1...i'=1] 9 v 5t AC1=2)

sk. T ’ '
o Report A[] and A[."'] if they are in range AT'1¢ 2 & ATV H)
= ¢ 4+

BST: Range searches can similarly be done in time O(height+s) time.
We will see this in detail later. —_—

Bied|, Schost, Veksler (SCS, UW) C5240 — Module 8 Winter 2021 3/38

w =
2 -
Y
P s
.w ﬂ.\._. =
ML (3 o
3 o
\ 4 4
VDA e
rEBEE
3
. -
i’
L4

Qutline

@ Range-Searching in Dictionaries for Points

@ Multi-Dimensional Data

C5240 — Module 8

Multi-Dimensional Data

Range searches are of special interest for multi-dimensional data.
Example: flights that leave between 9am and noon, and cost $300-$500

price

s700f
$650f
$600f
§550f
$500f
§450f
sagol . .
§350f
$300f
§250f

200510 500 1000 12000 14700 1600 departure time

®y)
e Each item has d aspects (coordinates): (xg, X1, ,Xd—-1)
@ Aspect values (x;) are numbers
@ Each item corresponds to a point in d-dimensional space
@ We concentrate on d = 2, i.e., points in Euclidean plane

Bied|, Schost, ! (5CS, UW) C5240 — Module 8 Winter 2021 4 /38

Multi-dimensional Range Search)¢
. 2:.¢ 1,

(Orthogonal) d-dimensional range search: Given a ql'fery rectangle A,

find all points that lie within A.

The time for range searches depends on how the points are stored.
Could store a 1-dimensional dictionary (where the key is some
combination of the aspects.)

Problem: Range search on one aspect is not straightforward
(o Could use one dictionary for each aspect
Problem: inefficient, wastes space

o Better idea: Design new data structures specifically for points.
» Quadtrees

» kd-trees ?
» range-trees ———
@ Assumption: Point are in general position: ?’ Y

“ No two x-coordinates or y-coordinates are the same.
» Simplifies presentation; data structures can be generalized.

Bied|, Schost M) C5240 — Module 8 Winter 2021 5 /38

Qutline

@ Range-Searching in Dictionaries for Points

@ Quadtrees

C5240 — Module 8

Quadtrees

We have n points S = {(x0.)0),(x1,51), -+ .(Xn—1,¥n-1)} in the plane.
= - —
We need a bounding box R: a square containing all points.

@ Can find R by computing minimum and maximum x and y values in S
@ The width/height of R should be a power of 2

Structure (and also how to build the quadtree that stores S):

° Root/;of the quadtree is associated with region R&

e If B contains 0 or 1 points, then root r is a leaf that stores point.

Else split: Partition R into four equal subsquares (quadrants
Rne. Rvw, Rsw, Rse

Partition S into sets SNET.._S_WTSSWTSSE of points in these rdgions.*®
l[» Convention: Points on split lines belong to right/top side

Recursively build tree T; for points S; in region R; and make them
children of the root.

Bied|, Schost, Veksler (SCS, UW) €5240 — Module 8 Winter 2021 6/ 38

Quadtrees example

e Dg

C

S:

2

40 — Module 8

10, 16) %[0, 16)

Quadtrees example

N Vg
P3 ‘39 . Pa
. el - bd
D 3
po p.ﬁ Ps
. =
Pty

Biedl, Schost, V

10, 16) %[0, 16)

{

el
fo, 8) %[5, 16)

C5240 — Module 8 Winter 2021 7/38

Quadtrees example

\ \
,U3 . t . P4
(,[11]
r——
po ke Ps
P2 ' :07 {0, 16) % [0, 16)

fo, 8) %[5, 16)

C5240 — Module 8 Winter 2021 7/38

Quadtrees example

Pyl . Py
,[11’]
: —
po p.ﬁ Ps
. »
P2 p7 [0, 16) % [0, 16)

fo, 8) %[5, 16)

Bied|, Schost, Veksler (SCS, UW) C5240 — Module 8 Winter 2021 7/38

Quadtrees example

,[13 . e Dg
P . P Easier for humans: omit empty sub-
. trees, label edges
Po p.ﬁ Ps
>
P2 p7 [0, 16) % [0, 16)

Sw SE

fo, 8) %[5, 16)

[ms)

NE NW SW s

S e & ®

o/"" ®

er (SCS, UW) C5240 — Module 8 Winter 2021 7/38

Quadtree Dictionary Operations

@ search: Analogous to binary search trees and tries
@ insert:

» Search for the point
» Split the leaf while there are two points in one region
o delete:
» Search for the point
» Remove the point
» |If its parent has only one point left: delete parent
(and recursively all ancestors that have only one point left)

Bied|, Schost, V CS, /) C5240 — Module 8 Winter 2021

Quadtree Insert example

p3 ":" o Py

,21 . 5

. P1o)
Po p.ﬁ . Ps

- 5
P2 1pr
{0, 16) %[0, 16)
insert(p1o) \

Biedl, Schost, Veksler (SCS, UW)

0.8)x[0.8)

W

C5240 — Module 8

Winter 2021

Quadtree Insert example

ps ’:9 . P4

Pio

o

10,16) %[0, 16)

insert(p1o)

Bied|, Schost, SCS, UW) C5240 — Module 8 Winter 2021 9 /38

Quadtree Range Search + T\
QTree::RangeSearch(r + root, A) nside L‘a’
r: The root of a quadtree, A: Query-rectangle
1. R # region associated with node r
2. if (R C A) then // inside node &~
3. report all points below r; return
4. if (RN A is empty) then // outside nodeé&
5. return

// The node is a boundary node, recurse

6. ~» if (ris a leaf) then '\

7. p + point stored at r

8. if pisin A return p - A
9. else return

10.~¢ for each child v of r do [

11. QTree::RangeSearch(v, A)

Note: We assume here that each node of the quadtree stores the
associated square. Alternatively, these could be re-computed during the
search (space-time tradeofF)

C5240 — Module 8 Winter 2021 10 / 38

Quadtree range search example

7 - s
p1 < Pe
P10
Po P Ps
(2] : p7 [0, 16)x [0, 16)

0

_B) %8, 16

0.8)x[0,8)

Biedl, Schost, Veksler (SCS, UW) C5240 — Module 8 Winter 2021 11 /38

Quadtree range search example

|

L] o p -
| *) @ Red: Search s opééﬁtdue to RNA=(.
L1 - @ Green: Search st-(')'ﬂl%éﬁ’due to RC A
B 510 @ Blue: Must continue search in children
Et] N / evaluate.
p2

@©.2)x[0. 8)

C5240 — Module 8 Winter 2021 11 /38

Quadtree Analysis

@ Crucial for analysis: what is the height of a quadtree?
» Can have very large height for bad distributions of points

P3
us/\su P

[} '. F-----
(2 / :
> spread factor of points S: ! o

/ —s
n N sidelength of R

minimum distance between points in S

B(S) =

» Can show: height h of quadtree is in ©(log 3(S))
o Complexity to build initial tree: ©(nh) worst-case
o Complexity of range search: ©(nh) worst-case even if the answer is ()

@ But in practice much faster.

Biedl, Schost, Ve M) C5240 — Module 8 Winter 2021 12 /38

L

,m(,..?pu

dis

—

‘&e<[1¢a()

"a
= ¥
&7
T §
v M
PLI&U m R
> < ..m Fa
.M < 145
o ! b
PR BERN
v £ R = s’
m|0 <) !

o

(7 p).

»._J “ @\U
\
E -
S
4 £
= Jfe= 1
RS) g
©
L - °
17 B
17 o
§ .'DI ~
W pll =
. ﬂ ,§
AY/
.h— “ [3 D
b
4z £
Sox s —

Quadtrees in other dimensions

@ Quad-tree of 1-dimensional points:

“Points:"” 0 9 12 14 24 26 28

C5240 — Module 8

Quadtrees in other dimensions

@ Quad-tree of 1-dimensional points:

“Points:" 0 9 12 14
(in base-2) 00000 01001 01100 01110

C5240 — Module 8

24
11000

26
11010

28
11100

Quadtrees in other dimensions

@ Quad-tree of 1-dimensional points:

“Points:” 0 9 12 14 24 26 28
(in base-2) 00000 01001 01100 01110 11000 11010 11100

C5240 — Module 8

Quadtrees in other dimensions

@ Quad-tree of 1-dimensional points:

“Points:"” 0 9 12 14 24 26 28
(in base-2) 00000 01001 01100 01110 11000 11010 11100
0 (032)) 1
[16.32]

C5240 — Module 8

W n, . .
Quadtrees in other dimensions

@ Quad-tree of 1-dimensional points:

“Points:"” 0 9 12 14 24 26 28
i - 00000 01001 01100 01110 11000 11010 11100
(in base-2) / e /,=:_./ - o .
0,32
0 0.2) 1

.
~L

0
00000

Same as a trie (with splitting stopped once key is unique)

C5240 — Module 8 Winter 2021 13 /38

Quadtrees in other dimensions

@ Quad-tree of 1-dimensional points:

“Points:" 0 9 12 14 24 26 28
(in base-2) 00000 01001 01100 01110 11000 11010 11100
0,32
0 0.2) 1

1
™~

0
00000

Same as a trie (with splitting stopped once key is unique)

o Quadtrees also easily generalize to higher dimensions (octrees, etc.)
but are rarely used beyond dimension 3.

C5240 — Module 8 Winter 2021 13 /38

Quadtree summary

Very easy to compute and handle

No complicated arithmetic, only divisions by 2 (bit-shift!) if the
width /height of R is a power of 2

Space potentially wasteful, but good if points are well-distributed

Variation: We could stop splitting earlier and allow up to S points in
a leaf (for some fixed bound S).

@ Variation: Store pixelated images by splitting until each region has
the same color.

Biedl, Schost, C5240 — Module 8 Winter 2021 14 / 38

Qutline

@ Range-Searching in Dictionaries for Points

o kd-Trees 0 (S-l- \,;s)

C5240 — Module 8

kd-trees

We have n points S = {(xo0,y0). (x1,¥1). -, (Xn—1, ¥n—1)}
Quadtrees split square into quadrants regardless of where points are

(Point-based) kd-tree idea: Split the region such that (roughly) half
the point are in each subtree

Each node of the kd-tree keeps track of a splitting line in one
dimension (2D: either vertical or horizontal)

Convention: Points on split lines belong to right/top side

Continue splitting, switching between vertical and horizontal lines,
until every point is in a separate region

(There are alternatives, e.g., split by the dimension that has better aspect
ratios for the resulting regions. No details.)

Bied|, Schost, (5CS, UW) C5240 — Module 8 Winter 2021 15 / 38

kd-tree example

Py -p4
*P3 Ps
P1
opﬂ p5.
P2 “ps
P7

C5240 — Module 8

kd-tree example

P9 -p4
*P3 Ps
pr |
o P
.
P2 "ps
.PY

C5240 — Module 8

kd-tree example

P9 -p4
*P3 Ps
pr |
J Pé
.
.P2 Ds Y N
_P7 {(x,y) : x<pg.x} {(x,¥) : x=pg.x}

Bied|, Schost, V S, UW) C5240 — Module 8 Winter 2021 16 / 38

kd-tree example

Pa .P4
*P3 Ps
Ps
DPs Y N
.P'i 10, y) : x<pg.x} 1(x.¥): x=pg.x}
Y <oy
Y N

/) . .
T E EES

For ease of drawing, we will usually not show the associated regions.

Bied|, Schost, V (SCS, UW) C5240 — Module 8 Winter 2021 16 / 38

kd-tree example

Pa ‘P4
*P3 Ps
pr |
N Pe
P2 Ps % N
.P'i 10, y) : x<pg.x} 1(x.¥): x=pg.x}
Y N
(=00, pg-x)x (o0, p1.y) - X -
{ x<pg x? _1 LX<PQ x7? J Lx(pa x7? J Lx{pﬁ x? J

8 b &8 uq
® &

For ease of drawing, we will usually not show the associated regions.

Bied|, Schost, Veksle S, UW) C5240 — Module 8 Winter 2021 16 / 38

Constructing kd-trees

Build kd-tree with initial split by x on points S:

o If |S| < 1 create a leaf and return.

- Else X := quick-select(S, [5]) (select by x-coordinate)
@ Partition S by x-coordinate inti Syex and S;=x

»(|5] Noints on one side ang points on the other.
all: Points in general postfion.)

o Create left subtree recursively (splitting by y) for points S, x.
o Create right subtree recursively (splitting by y) for points S~ x.

Building with initial y-split symmetric.

Biedl, Scho e \ C5240 — Module 8 Winter 2021 17 / 38

Constructing kd-trees

Blu) rpecked .
Run—time:/ "‘f &)

e Find X and partition S in ©(n) expected time using
randomized-quick-select.

@ Both subtrees have ~ n/2 points.

Tcxp(n) _ 2Tcxp(n/2) + Q(n) (Sloppy recurrenCE)

This resolves to ©(nlog n) expected time.
@ This can be reduced to ©(nlog n) worst-case time by pre-sorting (no

details). AR .Q,\(_:) ¥l '\=Z"
Height: h(1) = 0, h(n) < h([n/2]) + L K(M= W2 K
@ This resolves to O(log n) (specifically [log n]). :&()}"’)‘-’L
MY \aid R RSN N E PY S

Bied|, Schost, Veksler (SCS, UW) C5240 — Module 8 Winter 2021 18 / 38

kd-tree Dictionary Operations

@ search (for single point): as in binary search tree using indicated
coordinate

@ insert: search, insert as new leaf.

@ delete: search, remove leaf.

Problem: After insert or delete, the split might no longer be at exact
median and the height is no longer guaranteed to be [log, n].

We can maintain O(log n) height by occasionally re-building entire
subtrees. (No details.) But rangeSearch will be slower.

kd-trees do not handle insertion /deletion well.

C5240 — Module 8 Winter 2021 19 / 38

kd-tree Range Search

@ Range search is exactly as for quad-trees, except that there are only

two children. wale.

b
O(‘r)
S = P

N pam|
deree;;RangeSearch[é 4 root, F(
r: The root of a kd-tree, A: Query-rectangle
1. R + region associated with node r
2. & if (R C A) then report all points below r; return
3.4 if (RN Ais empty) then return
4. % if (ris a leaf) then
5. p + point stored at r
6. if pisin A return p
7. else return
8. for each child v of r do
9. Il kdTree::RangeSearch(v, A)

bl

@ We assume again that each node stores its associated region.
@ To save space, we could instead pass the region as a parameter and
compute the region for each child using the splitting line.

Biedl, Schost, Veksler (SCS, UW) C5240 — Module 8

Winter 2021

20/ 38

kd-tree: Range Search Example

C5240 — Module 8

kd-tree: Range Search Example

Red: Search stopped due to RM A = (). Green: Search stopped due to R C A.
baand ™

C5240 — Module 8 Winter 2021 21 /38

kd-tree: Range Search Complexity

0(#-‘-‘.»& we el Congy G
o The complexity is O(s + Q(n)ﬁre +hkd @ 4, oll dlep 2)
» s is the output-size —

» @(n) is the number of “boundary” nodes (blue): 0(s)

* kdTree::RangeSearch was callede.
* Neither RC Anor RNA=1)

Nompmery, T ———

e Can show: Q(n) satisfies the following recurrence relation (no
details):
Q(n) <2Q(n/4) +0O(1) *

e This solves to Q(n) € O(y/n) #*¥
@ Therefore, the complexity of range search in kd-trees is O(s + /n)

Gln CLGUvY) > nelb GL4S) ¢ 2G(45Y) T
G (F) LG (L) - ¢ LG = ¢2¥ et

Bied|, Schost, Veksler (SCS, UW) C5240 — Module 8 Winter 2021 22 /38

kg—tree: Higher Dimensions

@ kd-trees for d-dimensional space:
» At the root the point set is partitioned based on the first coordinate
» At the subtrees of the root the partition is based on the second
coordinate
» At depth d — 1 the partition is based on the last coordinate
» At depth d we start all over again, partitioning on first coordinate
e Storage: O(n)
e Height: O(log n)
e Construction time: O(nlog n) O(4dnw .Qoa ")
S 1-1/d
© Range search time: O(s+ n) - 0(““3 R

This assumes that d is a constante

C5240 — Module 8 Winter 2021 23 /38

Qutline

@ Range-Searching in Dictionaries for Points

@ Range Trees

C5240 — Module 8

Towards Range Trees

@ Both Quadtrees and kd-trees are intuitive and simple.
@ But: both may be very slow for range searches.

@ Quadtrees are also potentially wasteful in space.

New idea: Range trees r

Tiv)

P(v)

P(v)
o Somewhat wasteful in space, but much faster range search.

o Tree of trees (a multi-level data structure)

Biedl, Schost, V (C5240 — Module 8 Winter 2021 24 /38

2-dimensional Range Trees

Primary structure:

Balanced binary search tree
T that stores P and uses
x-coordinates as keys.

k._v_..)
P(v)

Each node v of T stores an associate structure T (v):
o Let P(v) be all points in subtree of v in T (including point at v)

@ T(v) stores P(v) in a balanced binary search tree, using the
y-coordinates as key

e Note: v is not necessarily the root of T(v)

Bied|, Schost, Veksle S, UW) C5240 — Module 8 Winter 2021 25 /38

Range tree example

(15.18)
[6.15) .
(12.14)
[5.13)
{10.12)
[7.11)
{8.10)
(14.9)
{11.8)
(2.7
[9.6)
(L3
* {4.4)

(13.2)

3.1

C5240 — Module 8 Winter 2021 26 /38

Range tree example

w)primary tree T

*[15 18)

(12{14)

.13)

3,10)
o
(14.9)
L]

{11.8)
L]

)

{4.4)
L]

(13.2)
L]
3.1

C5240 — Module 8 Winter 2021 26 /38

Range tree example

W primary tree T

I
. $[15 16) ‘\
1) 5)
\ 15 [\
\ = 12 {14]
T(6) kg oL G
(10{12)
L)
7.11)
11
{a.10)
10,
(14.9)
]
LN
29 |\
/ é =
[9.6)
6 L]
(L3
»

Q,}.Z]
3.1
" 4

Not all associate
trees are shown.

C5240 — Module 8 Winter 2021 26 /38

Range Tree Space Analysis

o Primary tree uses O(n) space. i | Pt

@ Associate tree T(H uses O(|P(v)|) space
(where P(v) are the points at descendants of v in T)

o Key insight: w € P(v) means that v is an ancestor of w in T %

» Every node w has O(log n) ancestors in T
(Recall that we assume T to be balanced.)
» Every node w belongs to O(log n) sets P(v)
» So), |P(v)| <3, #{ancestors of w} € O(nlog n)

Therefore: A range-tree with n points uses O(nlog n) space.

L] = zw Sou = <?|-.g weten V5 - 4w

O oReuise
:Z{Wﬂhw&sﬂ-w

Bied|, Scho (SCS, UW) C5240 — Module 8 Winter 2021 27 /38

Range Trees Operations

@ search: search by x-coordinate in T

@ insert: First, insert point by x-coordinate into T.
Then, walk back up to the root and insert the point by y-coordinate
in all associate trees T(v) of nodes v on path to the root.

@ delete: analogous to insertion

@ Problem: We want the binary search trees to be balanced.
» This makes insert/delete very slow if we use AVL-trees.

(A rotation at v changes P(v) and hence requires a re-build of T(v)})
» Solution: Completely rebuild highly unbalanced subtrees (no derar

Bied|, Schost, Veksler (SCS, UW) C5240 — Module 8 Winter 2021 28 /38

Range Trees Operations

Bied|, Schost, Veksle

search: search by x-coordinate in T

insert: First, insert point by x-coordinate into T.
Then, walk back up to the root and insert the point by y-coordinate
in all associate trees T(v) of nodes v on path to the root.

delete: analogous to insertion

Problem: We want the binary search trees to be balanced.

» This makes insert/delete very slow if we use AVL-trees.
(A rotation at v changes P(v) and hence requires a re-build of T(v).)
» Solution: Completely rebuild highly unbalanced subtrees (no details)

range-search: search by x-range in Tv~
Among found points, search by y-range in some associated trees.

Must understand first: How to do (1-dimensional) range search in
binary search tree?

C5240 — Module 8 Winter 2021 28 /38

BST Range Search

BST::RangeSearch(r < root, x1,x2)
r: root of a binary search tre€, xi x> search keys
Returns keys in subtree at r that are in range [x1, x|
if r = NIL then return v~
if x1 < r.key < x» then
L + BST:RangeSearch(r.left, x1, xo) —
R « BST::RangeSearch(r.right, x1, x2)~
return LU r.{key} UR
if r.key < x; then 7
return BST::RangeSearch(r.right, x;, x,)—
if r.key > xo then
return BST::RangeSearch(r.left, x1, xp) =

Lo NE R W

Keys are reported in in-order, i.e., in sorted order.

C5240 — Module 8 Winter 2021 29 /38

BST Range Search example
BST::RangeSearch(T,28,43)

BST Range Search example
BST::RangeSearch(T,28,43)

BST Range Search example
BST::RangeSearch(T,28,43)

BST Range Search example
BST::RangeSearch(T,28,43)

C5240 — Module 8

BST Range Search example
BST::RangeSearch(T,28,43)

Note: Search from 39 was unnecessary: all its descendants are in range.

B er) C5240 — Module 8

BST Range Search re-phrased

@ Search for left boundary x;: this gives path Py
o,
@ Search for right boundary x: this gives path P>
@ This partitions T into three groups: outside, on, or between the
A~

paths.

host, Veksler (SCS, UW) C5240 — Module 8 Winter 2021 31 /38

BST Range Search re-phrased

@ boundary nodes: nodes in P; or P

» For each boundary node, test whether it is in the range.
@ outside nodes: nodes that are left of Py or right of P>

» These are not in the range, we stop the search at the topmost.
@ inside nodes: nodes that are right of Py and left of P>

» We stop the search at the topmost inside node.
» All descendants of such a node are in the range.
For a 1d range search, report them.

Bied|, Schost, Veksle S, UW) C5240 — Module 8 Winter 2021 32 /38

BST Range Search analysis

Assume that the binary search tree is balanced:
e Search for path P;: O(logn)
@ Search for path Py: O(logn), @
@ O(log n) poundary nodes

e We spend O(l)‘}ime on each.

host, Veksler (SCS, UW) C5240 — Module 8 Winter 2021 33 /38

BST Range Search analysis

Assume that the binary search tree is balanced:
e Search for path P;: O(logn)

@ Search for path Py: O(logn)
O(log n) boundary nodes

L]
™
w
o
1]
=]
jo R
O
—_—
=
—
—+
3
™
o
=]
™
o
0
=

We spend O(1) time per topmost outside node.
» They are children of boundary nodes, so this takes O(log n) time.

We spend O(1) time per topmost inside node v.
» They are children of boundary nodes, so this takes O(log n) time.

For 1d range search, also report the descendants of v.
» We haVE’Zv topmost inside 7+ 1descendants of v} < s since subtrees of
topmost inside nodes are disjoint. So this takes time (2[;3) overall.

Run-time for 1d range search: O(logn + s). This is no faster overall, but
topmost inside nodes will be important for 2d range search.

Bied|, Scho (SCS, UW) C5240 — Module 8 Winter 2021 33/38

Range Trees: Range Search

Range search for A = [x1,x2] X [y1,y2] is a two stage process:

e Perform a range search (on the x-coordinates) for the interval [xq, x;]
in primary tree T (BST::RangeSearch(T,x1,xz))

o Get boundary, topmost outsid?and topmost inside nodes as before.

@ For every boundary no% test to see if the corresponding point is
within the region A.

@ For every topmost inside node,v:

Let P(v) be the points in the subtree of vin T.

We know that all x-coordinates of points in P(v) are within range.
Recall: P(v) is stored in T(v).

To find points in £{y) where the y-cordinates are within range as well]
perform a range search in l{v/): BST::RangeSearch(T(v),y1, y»)

Al

¥y vy

Biedl, Scho e \ C5240 — Module 8 Winter 2021 34 /38

Range tree range sea

rch example

(2.7
L]

(L5

(15.18)
[6.15)
(12.14)
[5.13)
{10.12)
ans:
{8.10) A
(14.9
{8
[9.6)
L]
{4.4)
(16
(13.2)
3.1

C5240 — Module 8

Winter 2021

35 /38

Range tree range search example

w) primary tree T

(10412)

H

(14.9
L]

(9.6)
L]

{a.4)

[16]3)

(13.2)
J

(3.1)

C5240 — Module 8

Range tree range search example

W) primary tree T

4 14
[16,
2 5 8 11 13 15
7 9
(] *{15 186)
{6,15)
(12]14)
(5.13)
(10]12)
711y ‘l
o |
(8. 10)
. .
14.9
»
f1r4y
2.9
L]
(9.6)
.
135
]
4.4)
1
CIEN
(13,2)
]
3.1)

C5240 — Module & Winter 2021 35 /38

Range tree range search example

(18

Range tree range search example

Range tree range search example

W) primary tree T

14

(14,9
>

{163}

C5240 — Module 8

Range Trees: Range Search Run-time

@ O(logn) time to find boundary and topmost inside nodes in primary
tree.
@ There are O(log n) such nodes.

(o O(log n + sy) time for each topmost inside node v,
where s, is the number of points in T(v) that are reported

@ Two topmost inside nodes have no common point in their trees
= every point is reported in at most one associate structure

= Zv topmost inside Sy S _5_ x
w =

Time for range search in range-tree is proportional to

> (log n+s,) € O(log” n + s)
v topmost inside { g ! "t

(There are ways to make this even faster. No details.)

Z’DSS

\'g

o Joyft)

eksler (SCS, UW) C5240 — Module 8 Winter 2021 36 /38

Range Trees: Higher Dimensions

@ Range trees can be generalized to d-dimensional space.

Space O(n (log n)4—1)
Construction time O(n (log n)9)
Range search time O(s + (log n)9)

(Note: d is considered to be a constant.)

C5240 — Module & Winter 2021 37 /38

Range Trees: Higher Dimensions

@ Range trees can be generalized to d-dimensional space.

Space O(n(log n)4~1) kd-trees: O(n)
Construction time O(n (log n)9) kd-trees: O(nlogn)
Range search time O(s + (logn)9) kd-trees: O(s + n*~1/)

. . v
(Note: d is considered to be a constant.)

@ Space/time trade-off compared to kd-trees.

C5240 — Module 8 Winter 2021 37 /38

Qutline

@ Range-Searching in Dictionaries for Points

@ Conclusion

C5240 — Module 8

Range search data structures summary

@ Quadtrees PIT. - Pa
T
» simple (also for dynamic set of points) = -
» work well only if points evenly distributed P s
» wastes space for higher dimensions ol

@ kd-trees

» linear space

» range search time O(y/n + s)

» inserts/deletes destroy balance and range
search time (no simple fix)

@ range-trees
> range search time O(log” n + s)
> wastes some space

> inserts/deletes destroy balance (can fix this
with occasional rebuilt)

Plo}

Convention: Points on split lines belong to right/top side.
Bied|, Schost, V (SCS, UW) C5240 — Module 8 Winter 2021 38 /38

Range search data structures summary

@ Quadtrees PIT. - Pa
T
» simple (also for dynamic set of points) = -
» work well only if points evenly distributed P s
» wastes space for higher dimensions ol

@ kd-trees

» linear space

» range search time O(y/n + s)

» inserts/deletes destroy balance and range
search time (no simple fix)

@ range-trees
> range search time O(log” n + s)
> wastes some space

> inserts/deletes destroy balance (can fix this
with occasional rebuilt)

Plo}

Convention: Points on split lines belong to right/top side.
Bied|, Schost, V (SCS, UW) C5240 — Module 8 Winter 2021 38 /38

Range search data structures summary

@ Quadtrees PIT. - Pa
T
» simple (also for dynamic set of points) = -
» work well only if points evenly distributed P s
» wastes space for higher dimensions ol

@ kd-trees

» linear space

» range search time O(y/n + s)

» inserts/deletes destroy balance and range
search time (no simple fix)

@ range-trees
> range search time O(log” n + s)
> wastes some space

> inserts/deletes destroy balance (can fix this
with occasional rebuilt)

Plo}

Convention: Points on split lines belong to right/top side.
Bied|, Schost, V (SCS, UW) C5240 — Module 8 Winter 2021 38 /38

