CS 240 – Data Structures and Data Management

Module 9: String Matching

T. Biedl E. Schost O. Veksler

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2021

Outline

- String Matching
 - Introduction
 - Karp-Rabin Algorithm
 - Knuth-Morris-Pratt algorithm
 - Boyer-Moore Algorithm
 - Suffix Trees
 - Suffix Arrays
 - Conclusion

Pattern Matching Definitions [1]

- Search for a string (pattern) in a large body of text
- T[0...n-1] text (or haystack) being searched
- P[0...m-1] pattern (or needle) being searched for
- Strings over alphabet Σ
- Return the first occurrence of P in T, that is return smallest i such that

$$P[j] = T[i+j]$$
 for $0 \le j \le m-1$

Example

$$T=$$
 Little piglets cooked for mother pig $P=$ pig $P=$ pig $P=$ pig $P=$ 1. Little piglets cooked for mother pig $P=$ pig $P=$ 1. Little piglets cooked for mother pig $P=$ 1. Little piglets cooked for mother pig $P=$ 1. Little piglets cooked for mother pig $P=$ 2. Little pig $P=$ 2. Little piglets cooked for mother pig $P=$ 2. Little pig $P=$ 2. Little pig $P=$ 2. Little pig

- If P does not occur in T, return FAIL
- Applications
 - information retrieval (text editors, search engines)
 - bioinformatics, data mining

More Definitions [2]

antidisestablishmentarianism

- Substring T[i...j] $0 \le i \le j < n$ is a string consisting of characters T[i], T[i+1], ..., T[j]
 - length is j i + 1
- Prefix of T is a substring T[0...i] of T for some $0 \le i < n$
- Suffix of T is a substring T $[i \dots n-1]$ of T for some $0 \le i \le n-1$

General Idea of Algorithms

```
guess at i=0 guess at i=1 ... guess at i=6 guess at i=7 abbbababbab abbab abbab
```

- Pattern matching algorithms consist of guesses and checks
 - a guess or shift is a position i such that P might start at T[i]
 - valid guesses (initially) are $0 \le i \le n m$
 - a **check** of a guess is a single position j with $0 \le j < m$ where we compare T[i + j] to P[j]
 - lacktriangle must perform m checks of a single correct guess
 - may make fewer checks of an incorrect guess

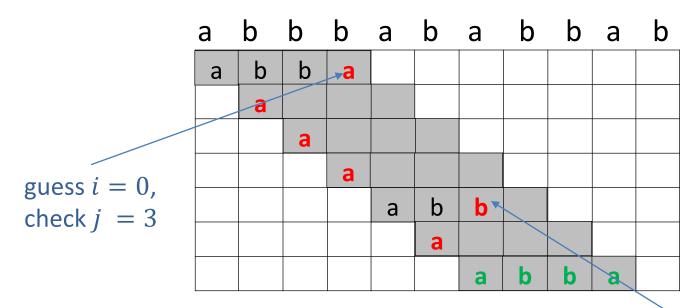
Diagrams for Matching

- Diagram single run of pattern matching algorithm by matrix of checks
 - each row represents a single guess

а	b	b	b	а	b	a	b	b	a	b
а	b	b	а							

Brute-Force Example

Example: T = abbbababbab, P = abba



Worst possible input

$$P = \underbrace{a \dots ab}_{m-1 \text{ times}}, T = \underbrace{aaaaaaaaa \dots aaaaaaa}_{n \text{ times}}$$

guess i = 4, check j = 2

- Have to perform (n-m+1)m checks, which is $\Theta(nm)$ running time
 - very inefficient if m is large, i.e. m = n/2

Brute-force Algorithm

Idea: Check every possible guess

```
Bruteforce::PatternMatching(T [0..n-1], P[0..m-1])

T: String of length n (text), P: String of length m (pattern)

for i \leftarrow 0 to n-m do

if strcmp(T [i ... i+m-1], P) = 0

return "found at guess i"

return FAIL
```

• Note: *strcmp* takes $\Theta(m)$ time

```
 \begin{aligned} &\textit{strcmp}(T \ [i \ ... \ i+m-1], P[0...m-1]) \\ &\textit{for } j \leftarrow 0 \ \textit{to } m-1 \ \textit{do} \\ &\textit{if } T \ [i+j] \ \text{is before } P[j] \ \text{in } \Sigma \ \textit{then return } -1 \\ &\textit{if } T \ [i+j] \ \text{is after } P[j] \ \text{in } \Sigma \ \textit{then return } 1 \\ &\textit{return } 0 \end{aligned}
```


How to improve?

- More sophisticated algorithms
 - Extra preprocessing on pattern P
 - Karp-Rabin
 - Boyer-Moore
 - KMP
 - Eliminate guesses based on completed matches and mismatches
 - Do extra preprocessing on the text T
 - Suffix-trees
 - Suffix-arrays
 - Create a data structure to find matches easily

Outline

- String Matching
 - Introduction
 - Karp-Rabin Algorithm
 - Knuth-Morris-Pratt algorithm
 - Boyer-Moore Algorithm
 - Suffix Trees
 - Suffix Arrays
 - Conclusion

Karp-Rabin Fingerprint Algorithm: Idea

- Idea: use hashing to eliminate guesses faster
 - compute hash function for each guess, compare with pattern hash
 - if values are unequal, then the guess cannot be an occurrence
 - if values are equal, verify that pattern actually matches text
 - equal hash value does not guarantee equal keys
 - although if hash function is good, most likely keys are equal
 - O(m) time to verify, but happens rarely, and most likely only for true match
 - example P = 5 9 2 6 5, T = 31415926535
 - standard hash function: flattening + modular (radix R = 10):

$$h(P) = 59265 \mod 97 = 95$$

3 1 4 1 5 9 2 6 5 3 5

ha	sh-ν	/alue	e 84					
	ha	ısh-ν	alue 94					
		hash-value 76						
			hash-value 18					
			hash-value 95					

$$h(31415) = 84$$

$$h(14159) = 94$$

$$h(41592) = 76$$

$$h(15926) = 18$$

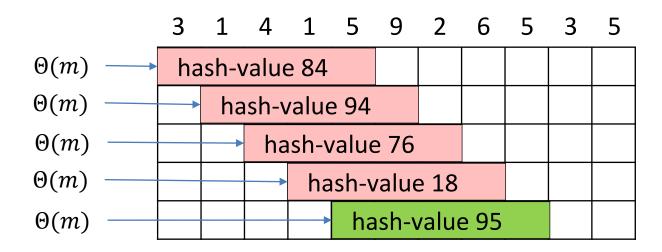
$$h(59265) = 95$$

Karp-Rabin Fingerprint Algorithm – First Attempt

```
Karp	ext{-}Rabin	ext{-}Simple::patternMatching}(T,P)
h_P \leftarrow h(P[0..m-1)])
for \ i \leftarrow 0 \ to \ n-m
h_T \leftarrow h(T[i...i+m-1])
if \ h_T = h_P
if \ strcmp(T[i...i+m-1],P) = 0
return \ "found at guess i"
```

- Algorithm correctness: match is not missed
 - $h(T[i...i+m-1]) \neq h(P) \Rightarrow \text{guess } i \text{ is not } P$
- What about running time?

Karp-Rabin Fingerprint Algorithm: First Attempt



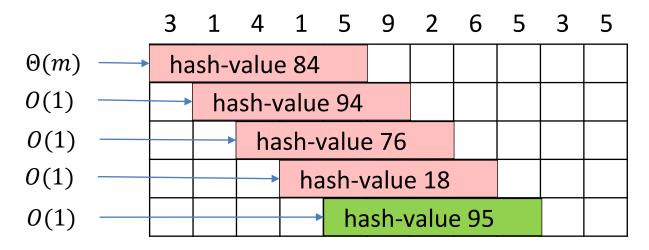
- for each shift, $\Theta(m)$ time to compute hash value
 - worse than brute-force,
 - brute force can use less than $\Theta(m)$ per shift, it stops at the first mismatched character
- n-m+1 shifts in text to check
- total time is $\Theta(mn)$ if pattern not in text

Karp-Rabin Fingerprint Algorithm – First Attempt

```
Karp	ext{-}Rabin	ext{-}Simple::patternMatching}(T,P)
h_P \leftarrow h(P[0..m-1)])
for \ i \leftarrow 0 \ to \ n-m
h_T \leftarrow h(T[i...i+m-1])
if \ h_T = h_P
if \ strcmp(T[i...i+m-1],P) = 0
return \ "found at guess i"
```

- Algorithm correctness: match is not missed
 - $h(T[i..i+m-1]) \neq h(P) \Rightarrow \text{guess } i \text{ is not } P$
- h(T[i...i + m 1]) depends on m characters
 - naive computation takes $\Theta(m)$ time per guess
- Running time is $\Theta(mn)$ if P not in T
- How can we improve this?

Karp-Rabin Fingerprint Algorithm: Idea



- Idea: compute next hash from previous one in O(1) time
- n-m+1 shifts in text to check
- $\Theta(m)$ to compute the first hash value
- O(1) to compute all other hash values
- $\Theta(n+m)$ expected time
 - recall that we still need to check if the pattern actually matches text whenever hash value of text is equal to the hash value of pattern
 - assuming a good hash function
 - if hash values are equal, pattern most likely matches

Karp-Rabin Fingerprint Algorithm – Fast Rehash

- Hashes are called fingerprints
- Insight: can update a fingerprint from previous fingerprint in constant time
 - O(1) time per hash, except first one
- Example

$$T = 415926535$$
, $P = 59265$

- At the start of the algorithm, compute
 - $h(41592) = 41592 \mod 97 = 76$
 - the first hash (fingerprint), $\Theta(m)$ time
 - $10000 \mod 97 = 9$, precomputed one time, $\Theta(m)$ time
- How to compute 15926 *mod* 97 from 41592 *mod* 97?
 - to get from 41592 to 15926, need to get rid of the old first digit and add new last digit

$$41592 \xrightarrow{-4 \cdot 10000} 1592 \xrightarrow{\times 10} 15920 \xrightarrow{+6} 15926$$

Algebraically,

$$(41592 - (4 \cdot 10000)) \cdot 10 + 6 = 15926$$

Karp-Rabin Fingerprint Algorithm – Fast Rehash

- Hashes are called fingerprints
- Insight: can update a fingerprint from previous fingerprint in constant time
 - O(1) time per hash, except first one
- Example

$$T = 415926535$$
, $P = 59265$

- At the start of the algorithm, compute
 - $h(41592) = 41592 \mod 97 = 76$
 - the first hash (fingerprint), $\Theta(m)$ time
 - $10000 \mod 97 = 9$, precomputed one time, $\Theta(m)$ time
- How to compute 15926 *mod* 97 from 41592 *mod* 97?

$$(41592 - (4 \cdot 10000)) \cdot 10 + 6 = 15926$$

$$((41592 - (4 \cdot 10000)) \cdot 10 + 6) \mod 97 = 15926 \mod 97$$

$$((41592 \mod 97 - (4 \cdot 10000 \mod 97)) \cdot 10 + 6) \mod 97 = 15926 \mod 97$$

$$((76 - (4 \cdot 9)) \cdot 10 + 6) \mod 97 = 15926 \mod 97$$

Karp-Rabin Fingerprint Algorithm – Conclusion

```
Karp-Rabin-RollingHash::PatternMatching(T, P)
       M \leftarrow suitable prime number
       h_P \leftarrow h(P[0...m-1)])
       h_T \leftarrow h(T [0..m-1)])
       s \leftarrow 10^{m-1} \mod M
       for i \leftarrow 0 to n-m
           if h_T = h_P
               if strcmp(T [i ... i + m - 1], P) = 0
                      return "found at guess i"
           if i < n - m // compute hash-value for next guess
               h_T \leftarrow ((h_T - T[i] \cdot s) \cdot 10 + T[i + m]) \mod M
       return FAIL
```

- Choose "table size" M at random to be a large prime
- Expected running time is O(m+n)
- ullet $\Theta(mn)$ worst-case, but this is (unbelievably) unlikely

Outline

- String Matching
 - Introduction
 - Karp-Rabin Algorithm
 - Knuth-Morris-Pratt algorithm
 - Boyer-Moore Algorithm
 - Suffix Trees
 - Suffix Arrays
 - Conclusion

Knuth-Morris-Pratt (KMP) Derivation

$$P = ababaca$$

- KMP starts similar to brute force pattern matching
 - maintain variables i and j
 - *j* is the position in the pattern
 - *i* is the position in the text
 - check if T[i] = P[j]
 - note brute force checks if T[i+j] = P[j], different usage of i
- Begin matching with i = 0, j = 0
- If $T[i] \neq P[j]$ and j = 0, shift pattern by 1, the same action as in brute-force
 - i = i + 1
 - j is unchanged

$$P = ababaca$$

$$j=0$$
 $j=0$ $j=1$ $j=2$ $j=3$ $j=4$ $j=5$ $i=0$ $i=1$ $i=2$ $i=3$ $i=4$ $i=5$ $i=6$

7

С	а	р	а	b	а	а	b	а	b
а									
	a	р	а	b	a	C			

- When T[i] = P[j], the action is to check the next letter, as in brute-force
 - i = i + 1
 - j = j + 1
- Failure at text position i = 6, pattern position j = 5
- When failure is at pattern position j > 0, do something smarter than brute force

$$P = ababaca$$

$$j=0$$
 $j=0$ $j=1$ $j=2$ $j=3$ $j=4$ $j=5$ $i=0$ $i=1$ $i=2$ $i=3$ $i=4$ $i=5$ $i=6$

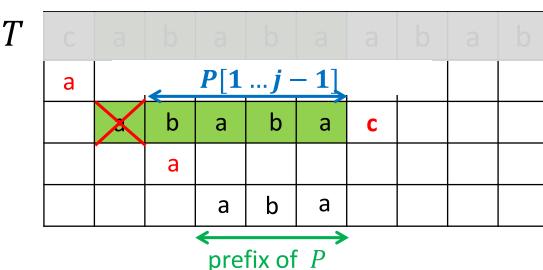
T	С	a	b	a	b	a	a	b	a	b
	a									
		а	b	а	b	а	С			
			а							
				а	b	а				

shift by 1 does not work shift by 2 could work

- When failure is at pattern position j > 0, do something smarter than brute force
- Prior to j = 5, pattern and text are equal
 - find how to shift pattern looking only at pattern
 - can precompute the shift before matching even begins
- If failure at j = 5, shift pattern by 2 **and** start matching with j = 3
 - equivalently: i stays the same, new j = 3
 - skipped one shift, and also 3 character checks at the next shift

$$P = ababaca$$

$$j=0$$
 $j=0$ $j=1$ $j=2$ $j=3$ $j=4$ $j=5$ $i=0$ $i=1$ $i=2$ $i=3$ $i=4$ $i=5$ $i=6$

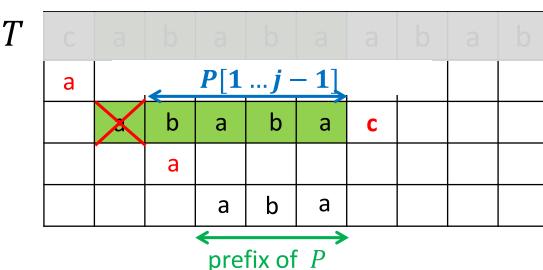


shift by 1 does not work shift by 2 could work

- If failure at j = 5: continue matching with the same i and new j = 3
 - precomputed from pattern before matching begins
- Brief rule for determining new j
 - find longest suffix of P[1 ... j 1] which is also prefix of P
 - call a suffix valid if it is a prefix of P
 - new j =the length of the longest valid suffix of P[1 ... j 1]

$$P = ababaca$$

$$j=0$$
 $j=0$ $j=1$ $j=2$ $j=3$ $j=4$ $j=5$ $i=0$ $i=1$ $i=2$ $i=3$ $i=4$ $i=5$ $i=6$



shift by 1 does not work shift by 2 could work

- If failure at j = 5: continue matching with the same i and new j = 3
 - precomputed from pattern before matching begins
- Brief rule for determining new j
 - find longest suffix of P[1 ... j 1] which is also prefix of P
 - call a suffix valid if it is a prefix of P
 - new j =the length of the longest valid suffix of P[1 ... j 1]

KMP Failure Array Computation: Slow

- Rule: if failure at pattern index j > 0, continue matching with the same i and new j = the length of the longest valid suffix of P[1 ... j 1]
- Computed previously for j = 5, but need to compute for all j
- Store this information in array F[0...m-1], called failure-function
 - F[j] is length of the longest valid suffix of P[1...j]
 - if failure at pattern index j > 0, new j = F[j-1]
- P = ababaca

F	0	1	2	3	4	5	6
I	0	0	1	2			

- j = 0
 - P[1...0] = "", P = ababaca, longest valid suffix is ""
 - note that F[0] = 0 for any pattern
- j = 1
 - P[1...1] = b, P = ababaca, longest valid suffix is ""
 - P[1...2] = ba, P = ababaca, longest valid suffix is a
- *j* = 3
 - P[1...3] = bab, P = ababaca, longest valid suffix is ab

KMP Failure Array Computation: Slow

- Store this information in array F[0...m-1], called failure-function
 - F[j] is length of the longest valid suffix of P[1...j]
 - if failure at pattern index j > 0, new j = F[j-1]

 0
 1
 2
 3
 4
 5
 6

 0
 0
 1
 2
 3
 0
 1

•
$$j = 4$$

- P[1...4] = baba, P = ababaca, longest valid suffix is aba
- *j* = 5
 - P[1...5] = babac, P = ababaca, longest valid suffix is ""
- *j* = 6
 - P[1...6] = babaca, P = ababaca, longest valid suffix is a
- Failure array is precomputed before matching starts
- Straightforward computation of failure array F is $O(m^3)$ time

for
$$j=1$$
 to m
for $i=0$ to j // go over all suffixes of $P[1...j]$
for $k=0$ to i // compare next suffix to prefix of P

String matching with KMP: Example

0	1	2	3	4	5	6
0	0	1	2	3	0	1

i=0j=0

F

P:

							1
							1

rule 1

if T[i] = P[j]

- i = i + 1
- j = j + 1

rule 2

- *i* unchanged
- j = F[j-1]

rule 3

if $T[i] \neq P[j]$ and j > 0 if $T[i] \neq P[j]$ and j = 0

- *j* is unchanged

String matching with KMP: Example

T = cabababcababaca, P = ababaca

new j = 3

new j = 2

new j=0

match!

F

$$j=0$$
 $j=0$ $j=1$ $j=2$ $j=3$ $j=4$ $j=5$ $j=4$ $j=0$ $j=1$ $j=2$ $j=3$ $j=4$ $j=5$ $j=6$ $j=7$ $i=0$ $i=1$ $i=2$ $i=3$ $i=4$ $i=5$ $i=6$ $i=7$ $i=8$ $i=9$ $i=10$ $i=11$ $i=12$ $i=13$ $i=14$

	a	
P: a		

								-						
a														
	a	b	а	b	а	С								
			(a)	(b)	(a)	b	a							
					(a)	(b)	а							
							а							
								а	b	а	b	а	С	a
m [']			•		· c <i>m</i> [ר ז ת		,			Г/1 .	D [/	1

if T[i] = P[j]

if $T[i] \neq P[j]$ and j > 0

if $T[i] \neq P[j]$ and j = 0

• i = i + 1

• j = j + 1

- - j = F[j-1]

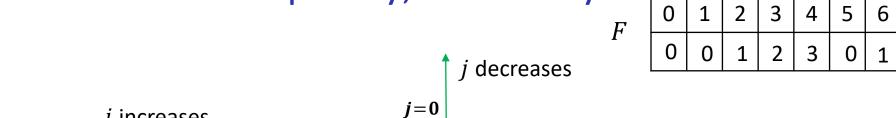
i unchanged

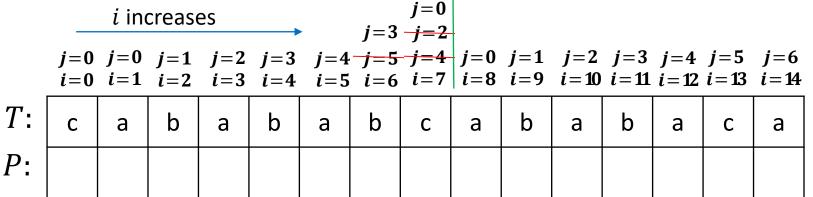
• i = i + 1■ *j* is unchanged

Knuth-Morris-Pratt Algorithm

```
KMP(T, P)
      F \leftarrow failureArray(P)
      i \leftarrow 0 // current character of T
      j \leftarrow 0 // current character of P
      while i < n do
            if P[j] = T[i]
                   if j = m - 1
                       return "found at guess i - m + 1"
                      // location i in T is the end of matched P in text
                    else // rule 1
                       i \leftarrow i + 1
                       j \leftarrow j + 1
            else // P[j] \neq T[i]
                   if j > 0
                          j \leftarrow F[j-1] // rule 2
                    else // rule 3
                          i \leftarrow i + 1
       return FAIL
```

KMP: Time Complexity, informally





if
$$T[i] = P[j]$$

if
$$T[i] \neq P[j]$$
 and $j > 0$

if
$$T[i] \neq P[j]$$
 and $j = 0$

•
$$i = i + 1$$

•
$$i = i + 1$$

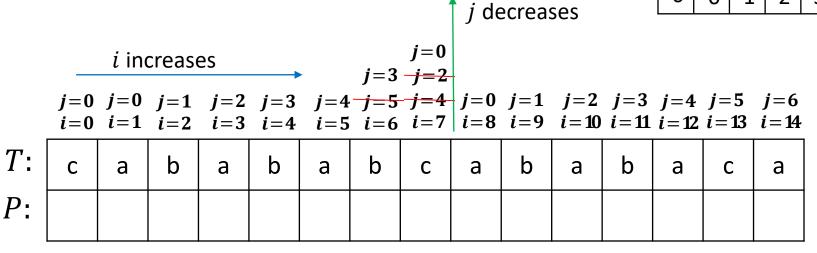
•
$$j = j + 1$$

•
$$j = F[j-1]$$

■ *j* is unchanged

- For now, ignore the cost of computing failure array
- Total time = 'horizontal iterations' + 'vertical iterations'
- *i* can increase at most *n* times
- number of decreases of $j \le$ number of increases of $j \le n$
- O(n) total iterations, more formal analysis later

KMP: Running Time, informally



if
$$T[i] = P[j]$$

$$i = i + 1$$

•
$$j = j + 1$$

if
$$T[i] \neq P[j]$$
 and $j > 0$

•
$$j = F[j-1]$$

if
$$T[i] \neq P[j]$$
 and $j = 0$

•
$$i = i + 1$$

j is unchanged

- For now, ignore the cost of computing failure array
- Total time = 'horizontal iterations' + 'vertical iterations'
- i can increase at most n times
- number of decreases of $j \le$ number of increases of $j \le n$
- O(n) total iterations, more formal analysis later

Fast Computation of *F*

P = ababaca

$$j=0$$
 $j=0$ $j=1$ $j=2$ $j=3$ $j=4$ $j=5$ $i=0$ $i=1$ $i=2$ $i=3$ $i=4$ $i=5$ $i=6$

T:	С	а	b	а	b	а
P:	a					
		а	b	а	b	а

- After processing T, the final value of j is longest suffix of T equal to prefix of P
 - or, using our terminology, the final value of j is the longest valid suffix of T
- Useful for failure array computation
 - but first, let us rename variable j as l (only for failure array computation)
 - otherwise things get confusing
 - lacktriangle already have j when talking about failure array

Fast Computation of *F*

P = ababaca

l=0 l=0 l=1 l=2 l=3 l=4 l=5 i=0 i=1 i=2 i=3 i=4 i=5 i=6

T: c a b a b a

P: a a b a b a

- After processing T, the final value of l is longest suffix of T equal to prefix of P
 - lacktriangle or, using our terminology, the final value of l is the longest valid suffix of T
- F[j] = length of the longest valid suffix of P[1...j]
 - need to compute F[j] for 0 < j < m
 - F[0] = 0, no need to compute
- Big idea

$$T = P[1 \dots 1] \longrightarrow \text{KMP} \xrightarrow{\text{final } l} F[1] = l$$

$$T = P[1 \dots 2] \longrightarrow \text{KMP} \xrightarrow{\text{final } l} F[2] = l$$

$$\vdots$$

$$T = P[1 \dots m - 1] \longrightarrow \text{KMP} \xrightarrow{\text{final } l} F[m - 1] = l$$

'chicken and egg' problem with big idea: need F to put text through KMP

Fast Computation of F: Big Idea Saved

- j = 1 $T = P[1 \dots 1] \longrightarrow \text{KMP} \xrightarrow{\text{final } l} F[1] = l$
 - text has one letter, can reach at most l=1

 - need at most F[0], and already have it

- start with l=0
- text has two letters, can reach at most l=2
- need at most F[0], F[1], and already have it

■ j = m - 1

$$T = P[1 ... m - 1] \longrightarrow \text{KMP} \xrightarrow{\text{final } l} F[m - 1] = l$$

• start with l=0

start with l=0

- text has m-1 letters, can reach at most l=m-1
- need at most F[0], F[1], ..., F[m-2], and already have it

Fast Computation of F: Big Idea Made Bigger

$$T = P[1 \dots 1] \longrightarrow \text{KMP} \xrightarrow{\text{final } l} F[1] = l$$

$$T = P[1 \dots 2] \longrightarrow \text{KMP} \xrightarrow{\text{final } l} F[2] = l \qquad \text{do not start from where } P[1 \dots 1] \text{ finished}$$

$$T = P[1 \dots 3] \longrightarrow \text{KMP} \xrightarrow{\text{final } l} F[3] = l \qquad \text{scratch, start from where } P[1 \dots 2] \text{ finished}$$

$$\vdots$$

$$T = P[1 \dots m-1] \longrightarrow \text{KMP} \xrightarrow{\text{final } l} F[m-1] = l \qquad \text{do not start from where } P[1 \dots m-2] \text{ finished}$$

• Cost of passing P[1 ... 1], P[1 ... 2], ..., P[1 ... m - 1] through KMP is equal to the cost of passing just P[1 ... m - 1] through KMP

Fast Computation of *F*

- Process T = P[1 ... j], F[j] = final l
- P = ababaca
- Initialize F[0] = 0

F	0	1	2	3	4	5	6
1	0						

- Process T = P[1 ... j], F[j] = final l
- P = ababaca
- j = 1, T = P[1 ... j] = b

$$\begin{array}{ll}
l=0 & l=0 \\
i=0 & i=1
\end{array}$$

T:	b					
<i>P</i> :	a					

if
$$T[i] = P[l]$$

- i = i + 1
- l = l + 1

- if $T[i] \neq P[l]$ and l > 0
 - i unchanged
 - l = F[l-1]

if $T[i] \neq P[l]$ and l = 0

- i = i + 1
- lacktriangleright l is unchanged

3

- Process T = P[1 ... j], F[j] = final l
- P = ababaca
- j = 2, T = P[1 ... j] = ba

$$l=0$$
 $l=0$ $l=1$ $i=0$ $i=1$ $i=2$

T:	р	а					
<i>P</i> :	a						
		а					

if T[i] = P[l]

$$\bullet \quad i = i + 1$$

•
$$l = l + 1$$

if
$$T[i] \neq P[l]$$
 and $l > 0$

i unchanged

•
$$l = F[l-1]$$

if $T[i] \neq P[l]$ and l = 0

•
$$i = i + 1$$

3

- Process T = P[1 ... j], F[j] = final l
- P = ababaca
- j = 3, T = P[1 ... j] = bab

$$l=0$$
 $l=0$ $l=1$ $l=2$ $i=0$ $i=1$ $i=2$ $i=3$

р	а	b								
a										
	а	b								
		a	a	a	a	a	a	a	a	a

if
$$T[i] = P[l]$$

- i = i + 1
- l = l + 1

- if $T[i] \neq P[l]$ and l > 0
 - i unchanged
 - l = F[l-1]

if $T[i] \neq P[l]$ and l = 0

- i = i + 1
- l is unchanged

3

- Process T = P[1 ... j], F[j] = final l
- P = ababaca
- j = 4, T = P[1 ... j] = baba

$$l=0$$
 $l=0$ $l=1$ $l=2$ $l=3$ $i=0$ $i=1$ $i=2$ $i=3$ $i=4$

T:	b	а	b	а				
<i>P</i> :	a							
		а	b	а				

$$if T[i] = P[l]$$

•
$$i = i + 1$$

•
$$l = l + 1$$

if
$$T[i] \neq P[l]$$
 and $l > 0$

- *i* unchanged
- l = F[l-1]

if
$$T[i] \neq P[l]$$
 and $l = 0$

- i = i + 1
- l is unchanged

3

- Process T = P[1 ... j], F[j] = final l
- P = ababaca
- j = 5, T = P[1 ... j] = babac

$$l=0$$
 $l=0$ $l=1$ $l=2$ $l=3$ $l=0$ $l=1$ $l=2$ $l=3$ $l=0$ $l=1$ $l=2$ $l=3$ $l=4$ $l=5$

T:	b	а	b	а	С				
P:	a								
		а	b	а	b				$new\ l=1$
				(a)	b				new l = 0
					a				

if
$$T[i] = P[l]$$

$$i = i + 1$$

•
$$l = l + 1$$

if
$$T[i] \neq P[l]$$
 and $l > 0$

i unchanged

•
$$l = F[l-1]$$

if $T[i] \neq P[l]$ and l = 0

•
$$i = i + 1$$

• l is unchanged

3

5 |

- Process T = P[1 ... j], F[j] = final l
- \blacksquare P = ababaca
- j = 6, T = P[1 ... j] = babaca

T:	b	а	b	а	С	a			
<i>P</i> :	a								
		а	b	а	b				\int new $l=1$
				(a)	b				$ new \ l = 0 $
					а				
						а	 	 	

if T[i] = P[l]• i = i + 1

• l = l + 1

if $T[i] \neq P[l]$ and l > 0

i unchanged

• l = F[l-1]

if $T[i] \neq P[l]$ and l = 0

• i = i + 1

• l is unchanged

3

5 |

KMP: Computing Failure Array

- Pseudocode is almost identical to KMP(T, P)
 - main difference: F[j] gets both used and updated
- More formal analysis
 - consider how 2j l changes in each iteration of while loop
 - one of the three case below applies
 - 1) j and l both increase by 1
 - 2j l increases by 1
 - 2) l decreases (F[l-1] < l)
 - 2j l increases by 1 or more
 - 1) *j* increases by 1
 - 2j l increases by 2
 - initially $2j l = 2 \ge 0$
 - at the end $2j l \le 2m$
 - $j = m, l \ge 0$
 - no more than 2m iterations of while loop
 - time is $\Theta(m)$

```
failureArray(P)
P: String of length m (pattern)
       F[0] \leftarrow 0
       j \leftarrow 1 // \text{ parsing } P[1 ... j]
       l \leftarrow 0
       while j < m do
            if P[i] = P[l]
                 l \leftarrow l + 1
                 F[j] \leftarrow l
                 j \leftarrow j + 1
            else if l > 0
               l \leftarrow F[l-1]
            else
                F[j] \leftarrow 0
               j \leftarrow j + 1
```


KMP: main function runtime

```
KMP(T, P)
     F \leftarrow failureArray(P)
     i \leftarrow 0
     i \leftarrow 0
     while i < n do
            if P[j] = T[i]
                if j = m - 1
                     return "found at guess i - m + 1"
                else
                    i \leftarrow i + 1
                    j \leftarrow j + 1
            else // P[j] \neq T[i]
                if j > 0
                    j \leftarrow F[j-1]
                else
                    i \leftarrow i + 1
      return FAIL
```

KMP main function

- failureArray can be computed $in \Theta(m)$ time
- Same analysis gives at most 2n iterations of while loop since $2i j \le 2n$
- Running time KMP altogether: $\Theta(n+m)$

Outline

- String Matching
 - Introduction
 - Karp-Rabin Algorithm
 - Knuth-Morris-Pratt algorithm
 - Boyer-Moore Algorithm
 - Suffix Trees
 - Suffix Arrays
 - Conclusion

Boyer-Moore Algorithm Motivation

- Fastest pattern matching on English Text
- Important components
 - Reverse-order searching
 - compare P with a guess moving backwards
 - When a mismatch occurs choose the better option among the two below
 - 1. Bad character heuristic
 - eliminate shifts based on mismatched character of T
 - Good suffix heuristic
 - eliminate shifts based on the matched part (i.e.) suffix of P

Reverse Searching vs.

T= whereiswaldo, P = aldo

W	h	е	r	е	i	S	w	а		d	0
			0								
							0				
								а	1	d	0
1											

whereisswaldo
allo

Forward Searching

- r does not occur in P = aldo
- shift pattern past r
- w does not occur in P = aldo
- shift pattern past w
- this bad character heuristic works well with reverse searching

- w does not occur in P = aldo
- move pattern past w
- the first shift moves pattern past w
- no shifts are ruled out
- bad character heuristic does not work well with forward searching

Bad Character Heuristic: Full Version

Extends to the case when mismatched text character occurs in P

$$T$$
= acranapple, P = aaron

а	С	r	а	n	a	р	р	е
			0	n				
		а	а	r	О	n		

- Mismatched character in the text is a
- Find last occurrence of a in P
- Shift the pattern to the left until last a in P aligns with a in text

Bad Character Heuristic: Full Version

Extends to the case when mismatched text character does occur in P

T= acranapple, P = aaron

а	С	r	a	n	а	р	р	е
			0	n				
			[a]					

- Mismatched character in the text is a
- Find last occurrence of a in P
- Shift the pattern to the left until last a in P aligns with a in text
- This is the next possible shift of pattern to explore, skipped shifts are impossible because they do not match a
 - start matching at the end

Bad Character Heuristic: The Shifting Formula

T= acranapple, P = aaron

$$j=3$$
 $j=4$ $i=6$

а	С	r	a	n	а	р	р	е
			0	n				

- Let L(c) be the last occurrence of character c in P
 - $L(\mathbf{a}) = 1$ in our example
 - define L(c) = -1 if character c does not occur in P
- When mismatch occurs at text position i, pattern position j, update

•
$$j = m - 1$$

- start matching at the end of the pattern
- i = i + m 1 L(c)
 - bad character heuristic can be used only if L(c) < j

Bad Character Heuristic: Last Occurrence Array

- Compute the last occurrence array L(c) of any character in the alphabet
 - L(c) = -1 if character c does not occur in P, otherwise
 - L(c) = largest index i such that P[i] = c
- Example: P = aaron
 - initialization

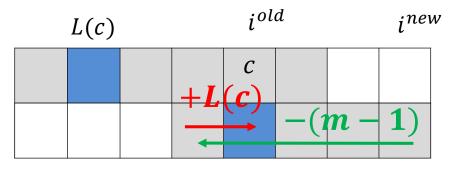
char	а	n	0	r	all others
L(c)	-1	-1	-1	-1	-1

computation

char	а	n	0	r	all others
L(c)	1	4	3	2	-1

• $O(m + |\Sigma|)$ time

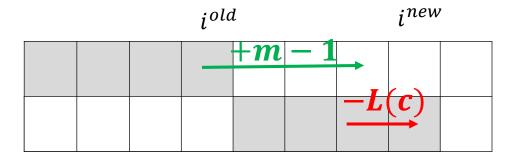
Bad Character Heuristic: Shifting Formula Explained



$$i^{new} - (m-1) + L(c) = i^{old}$$

 $i^{new} = i^{old} + m - 1 - L(c)$
 $i = i + m - 1 - L(c)$

- recall L(c) = -1 for any character c that does not occur in P
- formula also works when mismatched character c does not occur in P



Bad Character Heuristic, Last detail

- Can use bad character heuristic **only** if L(c) < j
- Example when L(c) > j

$$T$$
= acraaapple, P = aaroa j =3 i =3

а	C	r	a	а	а	р	р	ı	е
			0	а					

- $\bullet \quad i = i + m 1 L(c)$
 - L(a) = 4 > j = 3
 - i = 3 + 4 4 = 3
- shifts the pattern in the wrong direction!
- If L(c) > j, do brute-force step
 - i = i j + m
 - j = m 1
- Unified formula that works in all cases : $i = i + m 1 \min\{L(c), j 1\}$

Boyer-Moore Algorithm

```
BoyerMoore(T, P)
     L \leftarrow \text{last occurrence array computed from } P
     j \leftarrow m-1
     i \leftarrow m-1
     while i < n and j \ge 0 do
            if T[i] = P[j] then
                   i \leftarrow i - 1
                   j \leftarrow j-1
           else
                   i \leftarrow i + m - 1 - \min\{L(c), j - 1\}
                   j \leftarrow m-1
    if j = -1 return i + 1
     else return FAIL
```

Good Suffix Heuristic

• Idea is similar to KMP, but applied to the suffix, since matching backwards

$$P = onobobo$$

				j=3 $i=3$					j=6 $i=8$	3									
T	0	n	0	0	0	b	0	0	О	i	b	b	0	u	n	d	а	r	у
				b	0	b	0												
			0	n	0	b	0	b	0										

- Text has letters obo
- Do the smallest shift so that obo fits
- Can precompute this from the pattern itself, before matching starts
 - 'if failure at j = 3, shift pattern by 2'
- Continue matching from the end of the new shift
- Will not study the precise way to do it

Boyer-Moore Summary

- Boyer-Moore performs very well, even when using only bad character heuristic
- Worst case run time is O(nm) with bad character heuristic, but in practice much faster
- On typical English text, Boyer-Moore looks only at \approx 25% of text
- With good suffix heuristic, can ensure $O(n+m+|\Sigma|)$ run time
 - no details

Outline

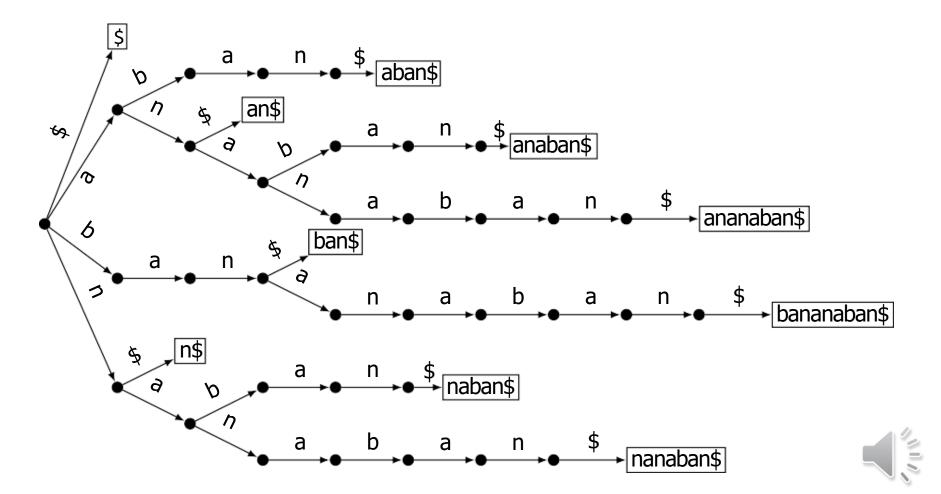
- String Matching
 - Introduction
 - Karp-Rabin Algorithm
 - Knuth-Morris-Pratt algorithm
 - Boyer-Moore Algorithm
 - Suffix Trees
 - Suffix Arrays
 - Conclusion

Suffix Tree: trie of Suffixes

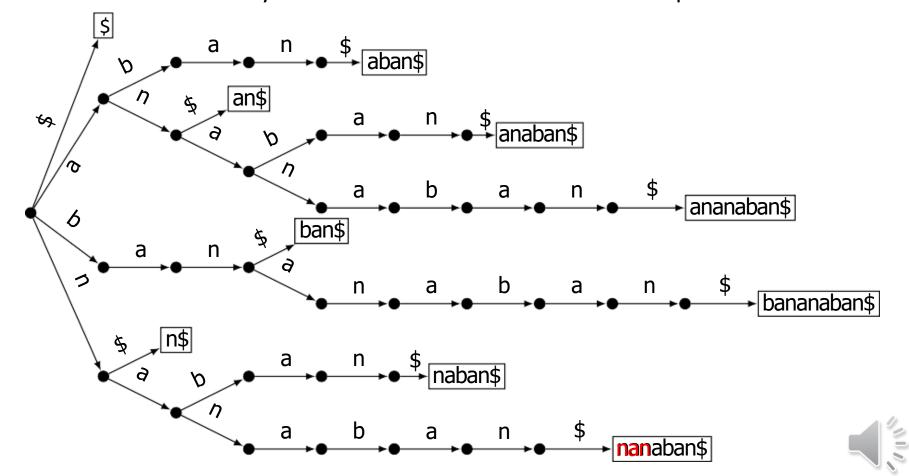
- What if we search for many patterns P within the same fixed text T?
- Idea: peprocess the text T rather than pattern P
- Observation: P is a substring of T if and only if P is a prefix of some suffix of T

- Store all suffixes of T in a trie
 - generalize search to prefixes of stored strings
- To save space
 - use compressed trie
 - store suffixes implicitly via indices into T
- This is called a suffix tree

T = bananaban

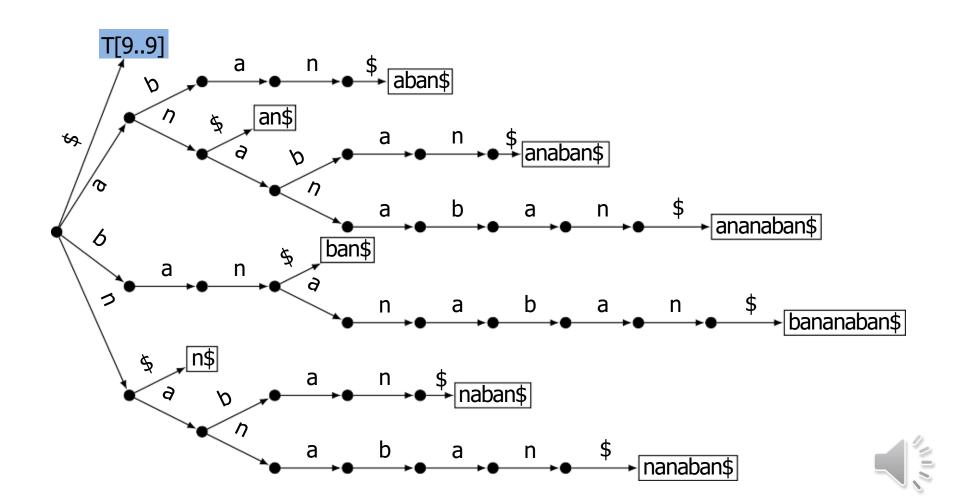


- T = bananaban
- If P occurs in the text, it is a prefix of one (or more) strings stored in the trie
- Will have to modify search in a trie to allow search for a prefix



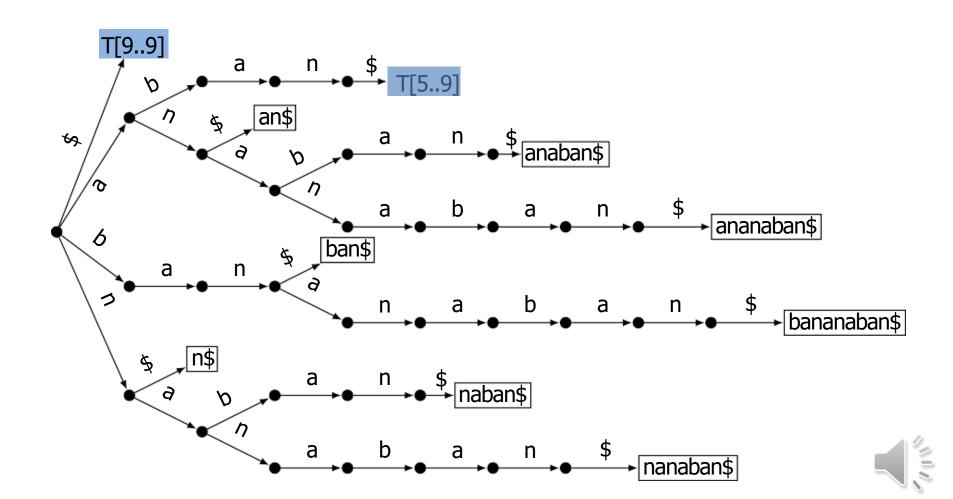
T = b a n a n a b a n \$

Store suffixes via indices



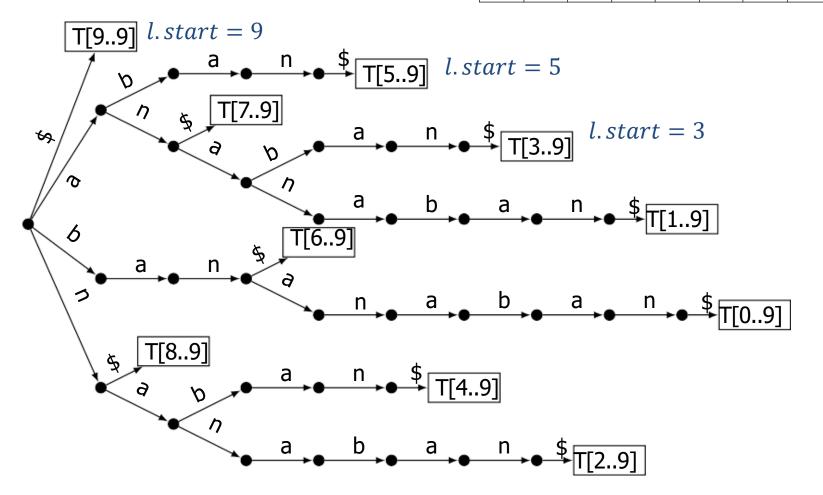
T = b a n a n a b a n \$

Store suffixes via indices



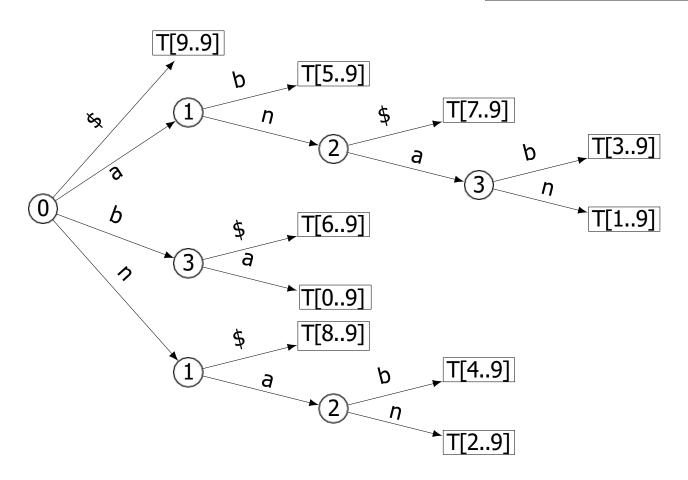
Tries of suffixes

each leaf l stores the start of its suffix in variable l. start



Suffix tree

Suffix tree: compressed trie of suffixes



Building Suffix Tree

- Building
 - text T has n characters and n+1 suffixes
 - \blacksquare can build suffix tree by inserting each suffix of T into compressed trie
 - takes $\Theta(|\Sigma|n^2)$ time
 - there is a way to build a suffix tree of T in $\Theta(|\Sigma|n)$ time
 - beyond the course scope
- Pattern Matching
 - essentially search for P in compressed trie
 - some changes needed, since P may only be prefix of stored word
 - run-time is $O(|\Sigma|m)$
- Summary
 - theoretically good, but construction is slow or complicated and lots of space-overhead
 - rarely used in practice

Outline

- String Matching
 - Introduction
 - Karp-Rabin Algorithm
 - Knuth-Morris-Pratt algorithm
 - Boyer-Moore Algorithm
 - Suffix Trees
 - Suffix Arrays
 - Conclusion

Suffix Arrays

- Relatively recent development (popularized in the 1990s)
- Sacrifice some performance for simplicity
 - slightly slower (by a log-factor) than suffix trees
 - much easier to build
 - much simpler pattern matching
 - very little space, only one array
- Idea
 - store suffixes implicitly, by storing start indices
 - store sorting permutation of the suffixes in T

Suffix Array Example

										9	
<i>T</i> =	b	а	n	а	n	а	b	а	n	\$	

i	suffix T[in]			
0	bananaban\$			
1	ananaban\$			
2	nanaban\$			
3	anaban\$			
4	naban\$			
5	aban\$			
6	ban\$			
7	an\$			
8	n\$			
9	\$			

sort lexicographically

j	$A^{s}[j]$	
0	9	\$
1	5	aban\$
2	7	an\$
3	3	anaban\$
4	1	ananaban\$
5	6	ban\$
6	0	bananaban\$
7	8	n\$
8	4	naban\$
9	2	nanaban\$

 O
 1
 2
 3
 4
 5
 6
 7
 8
 9

 Suffix Array =
 9
 5
 7
 3
 1
 6
 0
 8
 4
 2

Suffix Array Example

										9	
<i>T</i> =	b	а	n	а	n	а	b	а	n	\$	

i	suffix T[in]			
0	bananaban\$			
1	ananaban\$			
2	nanaban\$			
3	anaban\$			
4	naban\$			
5	aban\$			
6	ban\$			
7	an\$			
8	n\$			
9	\$			

sort lexicographically

j	$A^{s}[j]$	
0	9	\$
1	5	aban\$
2	7	an\$
3	3	anaban\$
4	1	ananaban\$
5	6	ban\$
6	0	bananaban\$
7	8	n\$
8	4	naban\$
9	2	nanaban\$

 O
 1
 2
 3
 4
 5
 6
 7
 8
 9

 Suffix Array =
 9
 5
 7
 3
 1
 6
 0
 8
 4
 2

Suffix Array Construction

	U	1	2	3	4	5	6		8	9
<i>T</i> =	b	a	n	a	n	a	b	a	n	\$

Easy to construct using MSD-Radix-Sort (pad with any character to get the same length)

	round 1	round 2	\dots round n
bananaban\$	\$*****	\$ *****	\$****
ananaban\$*	ananaban\$	aban\$***	aban\$***
nanaban\$**	anaban\$***	ananaban\$	an\$*****
anaban\$***	aban\$****	anaban\$**	anaban\$***
naban\$***	an\$*****	an\$****	ananaban\$*
aban\$****	bananaban\$	bananaban\$	ban\$****
ban\$*****	ban\$*****	ban\$****	bananaban\$
an\$*****	nanaban\$**	nanaban\$**	n\$*****
n\$******	naban\$***	naban\$***	naban\$***
\$*****	n\$******	n\$*****	nanaban\$**

- Fast in practice, suffixes are unlikely to share many leading characters
- But worst case run-time is $\Theta(n^2)$
 - n rounds of recursion, each round takes $\Theta(n)$ time (bucket sort)

Suffix Array Construction

- Idea: we do not need n rounds
 - $\Theta(\log n)$ rounds enough $\to \Theta(n \log n)$ run time
- Construction-algorithm
 - MSD-radix sort plus some bookkeeping
 - needs only one extra array
 - easy to implement
 - details are covered in an algorithms course

- Suffix array stores suffixes (implicitly) in sorted order
- Idea: apply binary search

P = ban

	j	$A^{s}[j]$	
$l \rightarrow$	0	9	\$
	1	5	aban\$
	2	7	an\$
	3	3	anaban\$
$v \rightarrow$	4	1	ananaban\$
	5	6	ban\$
	6	0	bananaban\$
	7	8	n\$
	8	4	naban\$
$r \rightarrow$	9	2	nanaban\$

Suffix array stores suffixes (implicitly) in sorted order

Idea: apply binary search

P = ban

	j	$A^{s}[j]$	
	0	9	\$
	1	5	aban\$
	2	7	an\$
	3	3	anaban\$
	4	1	ananaban\$
$l \rightarrow$	5	6	ban\$
	6	0	bananaban\$
$v \rightarrow$	7	8	n\$
	8	4	naban\$
$r \rightarrow$	9	2	nanaban\$

- Suffix array stores suffixes (implicitly) in sorted order
- Idea: apply binary search

$$P = ban$$

υ	=	$l \rightarrow$
		$r \rightarrow$

j	$A^{s}[j]$			
0	9	\$		
1	5	aban\$		
2	7	an\$		
3	3	anaban\$		
4	1	ananaban\$		
5	6	ban\$ found!		
6	0	bananaban\$		
7	8	n\$		
8	4	naban\$		
9	2	nanaban\$		

- $\Theta(\log n)$ comparisons
- Each comparison is $strcmp(P, T[A^s[v] ... A^s[v+m-1]])$
- $\Theta(m)$ per comparison \Rightarrow run-time is $\Theta(m \log n)$


```
SuffixArray-Search(A^{s}[j], P[0...m-1], T)
A^{S}: suffix array of T, P: pattern
     l \leftarrow 0, r \leftarrow n-1
     while l < r
            v \leftarrow \left| \frac{l+r}{2} \right|
             i \leftarrow A^s[v]
            // assume strcmp handles out of bounds suitably
            s \leftarrow strcmp(T[i...i+m-1], P)
            if (s < 0) do l \leftarrow v + 1
            else (s > 0) do r \leftarrow v - 1
            else return 'found at guess T[i ... i + m - 1]'
      if strcmp(P, T[A^{s}[l], A^{s}[l] + m - 1])
            return 'found at guess T[l ... l + m - 1]'
     return FAIL
```

Outline

- String Matching
 - Introduction
 - Karp-Rabin Algorithm
 - Knuth-Morris-Pratt algorithm
 - Boyer-Moore Algorithm
 - Suffix Trees
 - Suffix Arrays
 - Conclusion

String Matching Conclusion

	Brute Force	KR	ВМ	КМР	Suffix Trees	Suffix Array
preproc.		O(m)	$O(m + \Sigma)$	0 (m)	$O(\Sigma n^2) \to O(\Sigma n)$	$O(nlogn)$ $\rightarrow O(n)$
search time (preproc excluded)	O(nm)	O(n+m) expected	O(n) often better	O(n)	O(m)	O(mlogn)
extra space	_	0(1)	$O(m + \Sigma)$	0 (m)	0(n)	O(n)

- Algorithms stop once they found one occurrence
- Most of them can be adapted to find all occurrences within the same worst-case run-time

