CS 240 — Data Structures and Data Management

Module 9: String Matching

T. Biedl E. Schost O. Veksler

Based on lecture notes by many previous ¢s240 instructors
David R. Cheriton School of Computer Science, University of Waterloo

Winter 2021

Outline

= String Matching

Introduction

Karp-Rabin Algorithm
Knuth-Morris-Pratt algorithm
Boyer-Moore Algorithm
Suffix Trees

Suffix Arrays

Conclusion

Pattern Matching Definitions [1]

Search for a string (pattern) in a large body of text

T[0...n — 1] text (or haystack) being searched

P[0..m — 1] pattern (or needle) being searched for

Strings over alphabet 2

Return the first occurrence of P in T, that is return smallest i such that
Pljl=T[i+]j] for0 <j<m-—1

Example
T = Little piglets cooked for mother pig
= pig

n=36, m=3,1i=7

If P does not occurin T, return FAIL

Applications
= information retrieval (text editors, search engines)
= bioinformatics, data mining

More Definitions [2]

antidisestablishmentarianism

= Substring T[i...j] 0 <i <j < nisa string consisting of characters
T[], T [i+1],...,T[j]
" lengthis j—i+1

= Prefix of T is a substring T [0...i] of T forsome 0 <i < n

= Suffixof T isasubstring T [i...n — 1]of T forsome0 <i<n-—1

General Idea of Algorithms

guessati =10 guessati=1 ... guessati =06 guessati =7
abbbababbab abbbababbab abbbababbab abbbababbab
abba abba abba abba

checkatj = 0 checkatj =1

= Pattern matching algorithms consist of guesses and checks
= aguess or shift is a position i such that P might start at T[{]
= valid guesses (initially) are0 < i <n—m
" acheck of a guess is a single position j with 0 < j < m where we
compare T [i + j]to P[j]
"= must perform m checks of a single correct guess
" may make fewer checks of an incorrect guess

Diagrams for Matching

= Diagram single run of pattern matching algorithm by matrix of checks
= each row represents a single guess

a b b b ab a b b ab
a |/ b|b]|a

Brute-Force Example

Example: T = abbbababbab, P = abba

a b b b a b a b bab
a|b|bl.a
_a |
/ a
guessi =0, d
checkj =3 b | b™
a
a|b|b | a

= Worst possible input
= P =q..ab, T = \aaaaaaaa ...aaaaaaa}

m — 1 times

|
n times

guess i = 4,
checkj =2

* Have to perform (n —m + 1)m checks, which is ®(nm) running time

= very inefficient if m is large, i.e. m

= n/2

Brute-force Algorithm

= |dea: Check every possible guess

Bruteforce::PatternMatching(T [0..n — 1], P[0..m — 1])
T : String of length n (text), P: String of length m (pattern)
fori « Oton—mdo
if strcemp(T [i ... i+m—1], P)=0
return “found at guess i”
return FAIL

= Note: strcmp takes ®(m) time

stremp(T [i ... i +m—1],P[0...m —1])
forj <« Otom —1do
if T [i + j] is before P[j] in ¥ then return -1
if T [i + j] is after P[j] in X then return 1
return 0

How to improve?

= More sophisticated algorithms
= Extra preprocessing on pattern P
= Karp-Rabin
= Boyer-Moore
= KMP
= Eliminate guesses based on completed matches and mismatches
= Do extra preprocessing on the text T
= Suffix-trees
= Suffix-arrays
= Create a data structure to find matches easily

Outline

= String Matching

= Karp-Rabin Algorithm

Karp-Rabin Fingerprint Algorithm: Idea

= |dea: use hashing to eliminate guesses faster
= compute hash function for each guess, compare with pattern hash
= jf values are unequal, then the guess cannot be an occurrence

= jf values are equal, verify that pattern actually matches text
= equal hash value does not guarantee equal keys
= although if hash function is good, most likely keys are equal
= 0(m) time to verify, but happens rarely, and most likely only for true match

= example P=59265 T=31415926535

= standard hash function: flattening + modular (radix R = 10):
h(P) = 59265 mod 97 = 95

31 4 1 5 9 2 6 5 3 5

hash-value 84 h(31415) = 84
hash-value 94 h(14159) = 94
hash-value 76 h(41592) = 76
hash-value 18 h(15926) = 18

hash-value 95 h(59265) = 95

Karp-Rabin Fingerprint Algorithm —First Attempt

Karp-Rabin-Simple::patternMatching(T, P)
hp < h(P[0..m —1)])
fori <« Oton — m
hr < h(T [i...i + m —1])
if hr = hp
if stremp(T [i...i+m—1],P) =0
return “found at guess i”

return FAIL

= Algorithm correctness: match is not missed
* hA(T[i..i+m—1]) # h(P) = guessiisnotP
= What about running time?

Karp-Rabin Fingerprint Algorithm: First Attempt

31 4 1 5 9 2 6 5 3 5

®(m) — hash-value 84

O(m) *hash-value 94

O(m) I hash-value 76

O(m) »hash-value 18
O(m) hash-value 95

= for each shift, ®(m) time to compute hash value
= worse than brute-force,

= brute force can use less than ©(m) per shift, it stops at the first
mismatched character

* n—m+ 1 shifts in text to check
= total timeis O®(mn) if pattern not in text

Karp-Rabin Fingerprint Algorithm —First Attempt

Karp-Rabin-Simple::patternMatching(T, P)

hp < h(P[0..m —1)])
fori « Oton — m

hr < h(T [i...i + m — 1])

if hr = hp

if stremp(T [i...i+m—1],P) =0
return “found at guess i”

return FAIL

= Algorithm correctness: match is not missed

* hA(T[i..i+m—1]) # h(P) = guessiisnotP
= Ah(T[i...i + m — 1]) depends on m characters

" naive computation takes ®(m) time per guess
= Runningtimeis ®©(mn) if P notin T
= How can we improve this?

Karp-Rabin Fingerprint Algorithm: Idea

31 4 1 5 9 2 6 5 3 5

®(m) — hash-value 84

0(1) *hash-value 94

0(1) I hash-value 76

0(1) *hash-value 18
0(1) 1 hash-value 95

* |dea: compute next hash from previous one in O(1) time
* n—m+ 1 shifts in text to check

= O(m) to compute the first hash value

= (0(1) to compute all other hash values

= O(n+ m) expected time

= recall that we still need to check if the pattern actually matches text whenever hash
value of text is equal to the hash value of pattern

= assuming a good hash function

= if hash values are equal, pattern most likely matches

Karp-Rabin Fingerprint Algorithm — Fast Rehash

= Hashes are called fingerprints

Insight: can update a fingerprint from previous fingerprint in constant time
= (0(1) time per hash, except first one
= Example
T=415926535, P=59265
= At the start of the algorithm, compute
= h(41592) = 41592 mod 97 = 76
= the first hash (fingerprint), @(m) time
= 10000 mod 97 = 9, precomputed one time, O(m) time
= How to compute 15926 mod 97 from 41592 mod 97 ?

= togetfrom41592to 15926, need to get rid of the old first digit and add
new last digit

41597 —210000 yegy X190 45920-F0 , 15926

= Algebraically,
(41592 —(4- 10000)) 104+ 6 = 15926

Karp-Rabin Fingerprint Algorithm — Fast Rehash

= Hashes are called fingerprints
* |nsight: can update a fingerprint from previous fingerprint in constant time
= (0(1) time per hash, except first one
= Example
T=415926535, P=59265
= At the start of the algorithm, compute
= h(41592) = 41592 mod 97 = 76
= the first hash (fingerprint), @(m) time
= 10000 mod 97 = 9, precomputed one time, O(m) time
= How to compute 15926 mod 97 from 41592 mod 97 ?

(41592 — (4 - 10000)) - 10 + 6 = 15926
((41592 — (4 -10000)) - 10 + 6) mod 97 = 15926 mod 97

((41592 mod 97 — (4 - 10000 mod 97)) - 10 + 6) mod 97 = 15926 mod 97
((76 — (4-9)-10 + 6)mod 97 = 15926 mod 97
\

J

|
constant number of operations, independent of m

Karp-Rabin Fingerprint Algorithm — Conclusion

Karp-Rabin-RollingHash::PatternMatching(T , P)
M « suitable prime number
hp < h(P[0...m —1)])
hr < h(T [0..m —1)])
s« 10™ 1tmod M
fori <« O0Oton—m
if hr = hp
if strcemp(T [i...i+m—1], P) = 0
return “found at guess i”

if i <n—m//compute hash-value for next guess
hr < ((hr — T[i] - s) - 10 + T [i + m])mod M
return FAIL

" Choose “table size” M at random to be a large prime
* Expected running time is O(m + n)
= O(mn) worst-case, but this is (unbelievably) unlikely

Outline

= String Matching

= Knuth-Morris-Pratt algorithm

Knuth-Morris-Pratt (KMP) Derivation

P = ababaca

j=0
i=0

T |clalblalblalalblalb
d

= KMP starts similar to brute force pattern matching
" maintain variables i and j
= jisthe position in the pattern
= [isthe position in the text
= check if T[i] = P][j]
= note brute force checks if T[i + j| = P[j], different usage of i

" Begin matchingwithi =0, j =0

= IfT[i] # P[j] and j = 0, shift pattern by 1, the same action as in brute-force
s i=i+1
= jisunchanged

Knuth-Morris-Pratt Motivation

P = ababaca

J=0 j=0 j=

T |clalblalblalalblalb

= When T[i] = PJ[j], the action is to check the next letter, as in brute-force
= =i4+1
= j=j4+1
= Failure at text position i = 6, pattern position j =5
= When failure is at pattern position j > 0, do something smarter than brute force

Knuth-Morris-Pratt Motivation

P = ababaca

j=0 j
i=0 i

0 j
1

J
i

2
3 i

1
- W
o~
il
vl
o~
[l
()34

1
2

T

a shift by 1 does not work

al b a shift by 2 could work

= When failure is at pattern position j > 0, do something smarter than brute force

" Priortoj =5, pattern and text are equal
= find how to shift pattern looking only at pattern
= can precompute the shift before matching even begins
* If failure at j = 5, shift pattern by 2 and start matching with j = 3
= equivalently: i stays the same, new j =3
= skipped one shift, and also 3 character checks at the next shift

Knuth-Morris-Pratt Motivation

P = ababaca

J=0 j=0 j=1 j=2 j=3 j=4 j=5
i=0 i=1 i=2 i=3 i=4 i=5 i=6
T
Pl1..j—-1
a |l o Pll.j_1l
blal| b| a|c
a shift by 1 does not work
al|l b | a shift by 2 could work
<€ >
prefix of P

= |f failure at j = 5: continue matching with the same i and new j = 3
= precomputed from pattern before matching begins

" Brief rule for determining new j
= find longest suffix of P[1...j — 1] which is also prefix of P

= call a suffix valid if it is a prefix of P
= new j = the length of the longest valid suffix of P[1...j — 1]

Knuth-Morris-Pratt Motivation

P = ababaca

J=0 j=0 j=1 j=2 j=3 j=4 j=5
i=0 i=1 i=2 i=3 i=4 i=5 i=6
T
Pl1..j—-1
a |l o Pll.j_1l
blal| b| a|c
a shift by 1 does not work
al|l b | a shift by 2 could work
<€ >
prefix of P

= |f failure at j = 5: continue matching with the same i and new j = 3
= precomputed from pattern before matching begins

" Brief rule for determining new j
= find longest suffix of P[1...j — 1] which is also prefix of P

= call a suffix valid if it is a prefix of P
= new j = the length of the longest valid suffix of P[1...j — 1]

KMP Failure Array Computation: Slow

= Rule: if failure at pattern index j > 0, continue matching with the same i and
new j = the length of the longest valid suffix of P[1 ...j — 1]

= Computed previously for j = 5, but need to compute for all j

= Store this information in array F[0...m — 1], called failure-function
= F[j]is length of the longest valid suffix of P[1...]

= if failure at patternindexj > 0, new j = F[j — 1] 0]1]2(3]4]|5

= P = ababaca F

n]:0

an

= P[1..0] =", P =ababaca, longest valid suffix is
= note that F[0] = 0 for any pattern

= P[1..1] =b, P = ababaca, longest valid suffix is “”

» P[1..2] =ba, P = ababaca, longest valid suffix is a

= P[1..3] =bab, P = ababaca, longest valid suffix is ab

KMP Failure Array Computation: Slow

= Store this information in array F[0...m — 1], called failure-function
= F[j]is length of the longest valid suffix of P[1.../]

= if failure at pattern indexj > 0, new j = F[j — 1] ol1121314
F

0|0(1(2]|3

u] = 4
= P[1..4] = baba, P = ababaca, longest valid suffix is aba

an

= P[1..5] = babac, P = ababaca, longest valid suffix is

= P[1..6] = babaca, P = ababaca, longest valid suffix is a

Failure array is precomputed before matching starts

Straightforward computation of failure array F is O (m3) time
forj =1tom
fori = O0to j //goover all suffixes of P[1 ...]]
fork = 0to i //compare next suffix to prefix of P

String matching with KM P: Example

» T = cabababcababaca, P = ababaca F

rule 1 rule 2 cule 3
if T[i] = P[J] if T[i] # P[j] and j >0 ifT[i] # P[j] and j =0
" i=i+1 = i unchanged s i=i41

s j=j+1 = j=F[j—1] = jisunchanged

String matching with KM P: Example

112(3|4|5]|6
» T = cabababcababaca, P = ababaca F
o 0| 1(2]|3]0]1
j=3 G=2-
j=0 j=0 j=1 j=2 j=3 j=475=57=4j=0 j=1 j=2 j=3 j=4 j=5 j=6 j=7
i=0 i=1 =2 i=3 i=4 i=5 i=6 i=7 =8 i=9 i=10i=1i=12i=13 i=4
T:-|c|lalblalblalb|lclal|lblal|bl|lal|c]|a
P:|,
a|l b| a| b| a| ¢ newj =3
(@) |(b)|(d)| b | a newj = 2
(a) | (b)| a newj =0
a
a|lb|al|lb|a]c 3 | match!
if T[i] = P[j] if T[i] # P[j] and j >0 if T[i] #+ P[j] and j =0
" i=i+1 = i unchanged s i=i41
s j=j+1 = j=F[j—1] = jisunchanged

Knuth-Morris-Pratt Algorithm

KMP(T, P)
F « failureArray (P)
i « 0 //currentcharacterof T
j < 0 //current character of P
whilei < ndo
if P[j] = TJi]
ifj=m-—1
return “found at guessi —m + 1”
// location i in T is the end of matched P in text
else // rule 1
l<1+1
jej+1
else // P|j| # T [i]
ifj >0
je<F[j—1] //rule2
else // rule 3
I < i+1
return FAIL

KMP: Time Complexity, informally

1123|415
F
s, 0O|112(3|0
J decreases
[increases =0
>]:3—7%—-
j=0 j=0 j=1 j=2 j=3 j=4—j=5j=41j=0 j=1 j=2 j=3 j=4 j=5 j=6
i=0 i=1 i=2 i=3 i=4 i=5 i=6 i=7|i=8 i=9 i=10i=N =R i=13 i=H4

ﬂ
@)
Q
(on
Q
(on
Q
(on
@)
Q
(on
Q
(on
Q
@)
Q

if T[i] = P[j] if T[i] # P[j] and j >0 ifT[i] # P[j] and j =0
= i=i+1 " i unchanged s j=i41
. j=j+1 = j=F[j—1] = jisunchanged

= For now, ignore the cost of computing failure array

= Total time = ‘horizontal iterations’ + ‘vertical iterations’

= [canincrease at most n times

= number of decreases of j < number of increases of j <n

= (O(n) total iterations, more formal analysis later

KMP: Running Time, informally

1123|415
F
s, 0O|112(3|0
J decreases
[increases =0
>]:3—7%—-
j=0 j=0 j=1 j=2 j=3 j=4—j=5j=41j=0 j=1 j=2 j=3 j=4 j=5 j=6
i=0 i=1 i=2 i=3 i=4 i=5 i=6 i=7|i=8 i=9 i=10i=N =R i=13 i=H4

ﬂ
@)
Q
(on
Q
(on
Q
(on
@)
Q
(on
Q
(on
Q
@)
Q

if T[i] = P[j] if T[i] # P[j] and j >0 ifT[i] # P[j] and j =0
= i=i+1 " i unchanged s j=i41
. j=j+1 = j=F[j—1] = jisunchanged

= For now, ignore the cost of computing failure array

= Total time = ‘horizontal iterations’ + ‘vertical iterations’

= [canincrease at most n times

= number of decreases of j < number of increases of j <n

= (O(n) total iterations, more formal analysis later

Fast Computation of F

j=0 j=0j=1 j=2 j=3 j=4 j=5
= P = qgbabaca i=0 i=1 i=2 i=3 i=4 i=5 i=6
T:|c|lal|lb|a|b]|a
P: |a
a|b|la]|b]|a

= After processing T, the final value of j is longest suffix of T equal to prefix of P
= or, using our terminology, the final value of j is the longest valid suffix of T

= Useful for failure array computation
= but first, let us rename variable j as [(only for failure array computation)

= otherwise things get confusing
= already have j when talking about failure array

Fast Computation of F

P = ababaca

(=) W) |

O
Q

b | a

After processing T, the final value of [is longest suffix of T equal to prefix of P

= or, using our terminology, the final value of [is the longest valid suffix of T

F[j] = length of the longest valid suffix of P[1.../]
= needtocompute F[j] for 0 <j<m

= F[0] =0, noneed to compute

Big idea
T=P[l..1]—

T =P[1..2]—

T=P[l..m—1]—>

KMP

KMP

KMP

final [

— F[1] =1

final [

‘chicken and egg’
problem with big idea:
need F to put text
through KMP

Fast Computation of F: Big Idea Saved

|] j — 1 .
T=P[1..1] — KMP —ﬁn—a|>lp[1] =]

= startwithl =0
= text has one letter, can reach at most [= 1
* need at most F[0], and already have it

final [
T =P[1..2]— KMP _finat F[2] =1

= startwithl =0
= text has two letters, can reach at most [= 2
* need at most F[0], F[1], and already have it

= j=m-—-1

final [
T=P[1.m-1] — KMP _finat Flm—-1] =

= startwithl =0
= text hasm — 1 letters, canreachatmostl =m — 1
= needat most F[0], F[1], ..., F[m — 2], and already have it

Fast Computation of F: Big Idea Made Bigger

final I
r=rpr1..1]— KMP —E>F[1]=l

do not start from

final [
T = P[1..2 , _ scratch, start from where
[| KMP Fl2] =1 P[1...1] finished

final 1 do not start from
T=P[1..3]— KMP — F[3] =1 scratch, start from where
P[1 ... 2] finished

final 1 do not start from
T=P[1l.m-1] — KMP ——— F[m —1] =1 scratch, start from
where P[1...m — 2]
finished

= Cost of passing P[1...1], P[1...2], ..., P[1 ...m — 1] through KMP is equal to
the cost of passing just P[1...m — 1] through KMP

Fast Computation of F

= ProcessT = P[1...j], F[j] = final [
= P =ababaca
= |nitialize F[0] =0

Fast Computation of F NOREE
= ProcessT = P[1...j], F[j] = final [0]0
= P =ababaca
= j=1,T=P[1..j]=b
1=0 =0
i=0 i=1
T:| b
P:| a
if T[i] = P[] if T[i] # P[l] and L > 0 if T[i]# P[l] and I =0
= i=i+1 = i unchanged n i=i41

= [=1+1 = [=F[l-1] = [isunchanged

Fast Computation of F NOREE
= ProcessT = P[1...j], F[j] = final [0]0]1
= P =ababaca
= j=2,T=P[1../]=ha
1=0 =0 =1
i=0 i=1 i=2
T:| b a
P:| a
a
if T[i] = P[] if T[i] # P[l] and L > 0 if T[i]# P[l] and I =0
= i=i+1 = i unchanged n i=i41

= [=1+1 = [=F[l-1] = [isunchanged

Fast Computation of F NOREE
= ProcessT = P[1...j], F[j] = final [0j0J1]2
* P =ababaca
= j=3,T=P[l..j]=bhab
=0 I1=0 I=1 [=2
i=0 i=1 i=2 i=3
T:| b | a | b
P:| a
a b
if T[i] = P[] if T[i] # P[l] and L > 0 if T[i]# P[l] and I =0
= i=i+1 = i unchanged n i=i41

= [=1+1 = [=F[l-1] = [isunchanged

Fast Computation of F o[1]2[3

= Process T = P[1...j], F[j] = final I 0j0]1]2

= P = ababaca
= j=4,T=P|1..j]=baba

[=0 [=0 =1 =2 =3
i=0 i=1 i=2 i=3 i=4
T: b a b 3
P:| a
a b a
if T[i] = P[l] if T[i] # P[l] and L > 0 if T[i] # P[] and 1 =0
= i=i+1 * [unchanged n i=i41

= [=1+1 = [=F[l-1] = [isunchanged

Fast Computation of F ol1[2[3[4[s5]6

= Process T = P[1...j], F[j] = final I 0]0]1]2]3]0

= P = ababaca
= j=5,T=P[l1..j]=babac

[=0
1=1-
=0 =0 I=1 =2 —1=3- 1=0
i=0 i=1 i=2 i=3 i=4 i=5
T: b a b a C
P:| a
a b a b newl =1
(a) | b newl=0
a
if T[i] = P[l] if T[i] # P[l] and L > 0 if T[i] # P[] and 1 =0
= i=i+1 * [unchanged n i=i41

= [=1+1 = [=F[l-1] = [isunchanged

Fast Computation of F

Process T = P[1...j], F[j] = final [
P = ababaca
j=6,T=P|l..j]l=babaca

=0
1=1
=0 =0 I=1 =2 1=3 1=0 I=1
i=0 i=1 i=2 i=3 i=4 i=5 1i=6
b a b a C a
a
a b a b new!l =1
(a) | b new [= 0
a
a
if T[i] = P[l] if T[i] # P[l] and L > 0 if T[i] # P[] and 1 =0
= i=i+1 * [unchanged n i=i41

l=1+1

| =F[l-1]

= [isunchanged

KMP: Computing Failure Array

Pseudocode is almost identical to KMP(T, P)
= main difference: F[j] gets both used and updated

More formal analysis
= consider how 2j — [changes in each iteration of

while loop
one of the three case below applies
1) j and [both increase by 1
= 2j —lincreases by1
2) ldecreases (F[l—1] <)
= 2j —lincreases by 1 or more
1) jincreases byl
= 2j —lincreases by 2

initially 2j —1=22> 0
attheend 2j —1 < 2m
m j=m, =0
no more than 2m iterations of while loop
time is ©(m)

failureArray(P)
P: String of length m (pattern)
F[0] <O
j < 1//parsing P[1...]]
[<0
whilej <mdo
if P[j] = P[]
l<1+1
F[j] < 1
jej+1
elseif] > 0
l < F[l —1]
else
Flj]< 0
jej+1

KMP: main KMP(T, P)
F « failureArray (P)

function runtime i <0
j <0
whilei < ndo
if P[j] = T[i]
ifj=m-—1
return “found at guessi —m + 1”
else
l<i+1
jej+1
else // P|j| # T |i]
ifj >0
je F[j—1]
else
[< i+1
return FAIL

= KMP main function
= failureArray can be computed in ©(m) time
= Same analysis gives at most 2n iterations of while loop since 2i —j < 2n

= Running time KMP altogether: O(n + m)

Outline

= String Matching

= Boyer-Moore Algorithm

Boyer-Moore Algorithm Motivation

" Fastest pattern matching on English Text
=" |mportant components
= Reverse-order searching
= compare P with a guess moving backwards
= When a mismatch occurs choose the better option among the two below
1. Bad character heuristic
= eliminate shifts based on mismatched character of T
2. Good suffix heuristic
= eliminate shifts based on the matched part (i.e.) suffix of P

Reverse Searching vs. Forward Searching

T= whereiswaldo, P =aldo

w hlelr|leli|s|w|a|l|d|o W hlelrjelils|w|al|l|d|o

* rdoesnotoccurin P =aldo = wdoes not occurin P = aldo

= shift pattern pastr "

move pattern past w
m w does not occur in P = aldo n

the first shift moves pattern past w
= shift pattern past w = no shifts are ruled out

= this bad character heuristic works = bad character heuristic does not
well with reverse searching work well with forward searching

Bad Character Heuristic: Full Version

= Extends to the case when mismatched text character occurs in P

T=acranapple, P =aaron

alclrlan|jalplp|l|e
o|n
a riofn

= Mismatched character in the text is a
= Find last occurrence ofain P
= Shift the pattern to the left until last a in P aligns with a in text

Bad Character Heuristic: Full Version

= Extends to the case when mismatched text character does occur in P

T=acranapple, P =aaron

[a]

Mismatched character in the text is a
Find last occurrence of ain P
Shift the pattern to the left until last a in P aligns with a in text

This is the next possible shift of pattern to explore, skipped shifts are impossible

because they do not match a
= start matching at the end

Bad Character Heuristic: The Shifting Formula

T=acranapple, P =aaron

Let L(c) be the last occurrence of character c in P
= L(a) = 1inourexample

= define L(c) = —1 if character ¢ does not occur in P
= When mismatch occurs at text position i, pattern position j, update
= j=m-1

= start matching at the end of the pattern
= [=i+m—1-L(c)

bad character heuristic can be used only if L(c) <j

Bad Character Heuristic: Last Occurrence Array

Compute the last occurrence array L(c) of any character in the alphabet
= L(c) = —1 if character ¢ does not occur in P, otherwise

L(c) = largest index i such that P[i] = ¢

= Example: P =aaron

= jnitialization

char | a|n|o|r | all others
L(c) [-1]-1]-1]-1] -1

= computation

char | a|n|o|r | all others
L(c) |[1]43]2]

= O(m+ |Z|) time

Bad Character Heuristic: Shifting Formula Explained
L(c)

jold :ew

l

C

—(m—1)

i"W—(m —1) + L(c) = i°“
"W = j°ld + m—1—L(c)
I =i+m—1-L(c)

= recall L(c) = —1 for any character ¢ that does not occur in P
= formula also works when mismatched character ¢ does not occur in P

iold jnew
Fm[— 1
) 4 A
—L\C
—

Bad Character Heuristic, Last detail

= Can use bad character heuristiconly if L(c) <j
= Example when L(c) > j

T=acraaapple, P =aaroa
j=3
i=3

alc|ir|alalalp|p]|l]e
o|a

" [=i+m—1-L(c)
= L@)=4>j=3
n [=34+4—-4=3
= shifts the pattern in the wrong direction!

= |fL(c) >j,do brute-force step
" i=i—j+m
" j=m-—-1

= Unified formula that works in all cases:i =i+ m — 1 —min{L(c),j — i}

Boyer-Moore Algorithm

BoyerMoore(T, P)
L < last occurrence array computed from P
jJem—1
I «m—1
whilei <nandj = 0do
if T[i] = P[j] then
I «<i—1
jej—1
else
i «i+m—1-—min{L(c),j — 1}
jem—1
ifj=—1returni + 1
else return FAIL

Good Suffix Heuristic

= |deais similar to KMP, but applied to the suffix, since matching backwards

P = onobobo

o~
il
w W
o~
i
[oclie)

@)
(on
@)
@)
@)
(on
(on
@)
c
)
o
Q
-
<

S5 |o|O
O

= Text has letters obo
= Do the smallest shift so that obo fits

= Can precompute this from the pattern itself, before matching starts
= fif failure at j = 3, shift pattern by 2’

= Continue matching from the end of the new shift

= Will not study the precise way to do it

Boyer-Moore Summary

= Boyer-Moore performs very well, even when using only bad character
heuristic

= Worst case run time is O(nm) with bad character heuristic, but in practice
much faster

= Ontypical English text, Boyer-Moore looks only at 25% of text
= With good suffix heuristic, can ensure O(n + m + |Z|) run time
= nodetails

Outline

= String Matching

= Suffix Trees

Suffix Tree: trie of Suffixes

= What if we search for many patterns P within the same fixed text T?
= |dea: peprocess the text T rather than pattern P

= Observation: P is a substring of T if and only if P is a prefix of some
suffixof T

establishment

suffix

= Store all suffixes of T in a trie

= generalize search to prefixes of stored strings
= To save space

= use compressed trie

= store suffixes implicitly via indices into T

= This is called a suffix tree

Trie of suffixes: Example

= T =bananaban
Suffixes = {bananaban, ananaban, nanaban, anaban, naban, aban, ban, an, n, A}

S = {bananaban$, ananaban$, nanaban$, anaban$,nabans,..., bans, nS, S}

° -® ~e—|aban$

e——e——eo—>{anaban$

P *——0—0—@ -9 ~ ananaban$
& ban$
a n
>0 Q
2 n a b a n $
——— —0——+0—>0—0 -@ ~ bananaban$
§ %

» -® ~® -® -® » Nnanaban$

Trie of suffixes: Example

= T =Dbananaban

= |f P occursin the text, it is a prefix of one (or more) strings stored in the trie

= Will have to modify search in a trie to allow search for a prefix

® @ ~o—»|aban$

e——e——eo—>{anaban$

P *—>0—+0——0 @ ~{ananaban$
& ban$
a n
o——o———0 &
2 n a b a n $
——— —0——+0—>0—0 -@ ~ bananaban$
n
3 ? a n $

® @ -® -® -0 | nanaban$

Trie of suffixes: Example

o 1 2 3 4 5 6 7 8 9
IT'=lblaln|aln|lal/blal/n|$S
= Store suffixes via indices
T[9..9]
a n $
0 .0 @ e— aban$
n an
5. < & : a n $
ci:Eii © .e——e——e>anaban$
Y n
a b a n $
P *——0—0—@ -9 ~ ananaban$
& ban$
a n
° @ ro Q
2 .::iiﬁk n a b a n $
*——>0——>0—>0—0 -® ~ bananaban$

a n
-————+¢————+-§~nabans

a b a n $
@ . [] =i g

» nanaban$

Trie of suffixes: Example

0O 1 2 3 4 6 7 8 9
IT'=Iblal/n|aln bla|n|$S
= Store suffixes via indices
T[9..9]
a n $
v .® @ ~o— [5..9]
N an
. < 3 : a n $
<. v ,e— e e +anaban$
Y n
a b a n $
6 e 000 -® ~{ananaban$
ban$
a n
b a n
i—--—-l—nl—-- -@ ~ bananaban$
n
f<$ IR
g v ,——e——e—naban$
<. :
» a=- ° a=+l n=- » Nnanaban$

Tries of suffixes

= each leaf [stores the start of its

suffix in variable [.start

O o

T[9..9] l-start =9

o - .
n T[7.9]
. < 2 - a n $ [.start = 3

-—r-—rt—brl—ri—n*i—*T[O.S]

5 1[8..9]
3 \)<- % oo [T4.]
n
-—aFQ—br-—ah-—n~I—$¢T[2..9]

Suffix tree

Suffix tree: compressed trie of suffixes

T[2..9]

o 1 2 3 4 5
T = blal|n|a|n|a
T79..9]
/T[S..9]
& @ % T[7..9]
\@/a' b T[3.9]
2 \@/n'
\
b T[6..9] T[1..9]
, @
\T[O..9]
s TB)
o 14..9]
CE
\

Building Suffix Tree

= Building
= text T has n characters and n + 1 suffixes
= can build suffix tree by inserting each suffix of T into compressed trie
= takes O(]Z|n?) time
= thereis a way to build a suffix tree of T in ©(|2|n) time
= beyond the course scope
= Pattern Matching
= essentially search for P in compressed trie
= some changes needed, since P may only be prefix of stored word
= run-timeis O(|Z|m)
= Summary

= theoretically good, but construction is slow or complicated and lots of
space-overhead

= rarely used in practice

Outline

= String Matching

= Suffix Arrays

Suffix Arrays

= Relatively recent development (popularized in the 1990s)

= Sacrifice some performance for simplicity

slightly slower (by a log-factor) than suffix trees
much easier to build

much simpler pattern matching

very little space, only one array

store suffixes implicitly, by storing start indices
store sorting permutation of the suffixesin T

Suffix Array Example

o 4 6 7 8 9
T'=|b n bla|ln|S$S
i | suffix T[i..n] i| A°lj]
0 | bananaban$ 0 9 S
1 | ananaban$ 1 5 aban$
2 | nanaban$ 2 7 anS
3 | anaban sort Iexicographically 3 3 anaban3
4 | naban$; 4 1 ananaban$
5 | aban$ 5 6 ban$
6 | ban$ 6 0 bananaban$
7 | anS 7 8 n$
8 [nS 8 4 naban$
9(S 9 2 nanaban$
0 2 3 4 5 6 7 8 9
Suffix Array = | 9 713/1/6/0/8|4]2

Suffix Array Example

o 4 6 7 8 9
T'=|b n bla|ln|S$S
i | suffix T[i..n] i| A°lj]
0 | bananaban$ 0 9 S
1 | ananaban$ 1 5 aban$
2 | nanaban$ 2 7 anS
3 | anaban sort Iexicographically 3 3 anaban3
4 | naban$; 4 1 ananaban$
5 | aban$ 5 6 ban$
6 | ban$ 6 0 bananaban$
7 | anS 7 8 n$
8 [nS 8 4 naban$
9(S 9 2 nanaban$
0 2 3 4 5 6 7 8 9
Suffix Array = | 9 713/1/6/0/8|4]2

Suffix Array Construction 4

Easy to construct using MSD-Radix-Sort (pad with any character to get the same length)

bananaban$
ananabanS*
nanabanS**
anabanS***
nabanS****
aban$*****

ban$******

ans*******
ns********

S*********

Fast in practice, suffixes are unlikely to share many leading characters

round 1
s********

ananaban$
anabanS***
abans*****

ans*******

bananaban$
ban$******

nanabanS**

nabanS****

ns********

But worst case run-time is ©(n?2)

. n rounds of recursion, each round takes ©(n) time (bucket sort)

2 3 4 5 6 7 8 9
IT'=blal/n|aln|jalbla|n|sS
round 2 . round n
s******** S********
abanS**** abanS****
ananabanS ans*******
%k k
anabanS anabanS***
3k 5k %k 3k sk k
ans ananabanS*
bananabanS banS******
Kk %k k 5k k
ban$ bananaban$
nanabanS** G HH ke k
X %k %k 3k
nabanS nabanS****
3k 5k %k 3k 5k 5k %k 3k
ns nanaban$**

Suffix Array Construction

Idea: we do not need n rounds
= 0O(ogn) rounds enough —» O(nlogn) run time
Construction-algorithm
= MSD-radix sort plus some bookkeeping
= needs only one extra array
= easytoimplement
= details are covered in an algorithms course

Pattern Matching in Suffix Arrays

Suffix array stores suffixes (implicitly) in sorted order

Idea: apply binary search

P = ban

—

A [Jj]

S

aban$

anS

anaban$

ananaban$

bansS

bananaban$

nS

naban$

Ol | N[OV | PBH[WIN|FP|[O|w.

NPl |FRLR|IWIN|IOU] O

nanaban$S

Pattern Matching in Suffix Arrays

Suffix array stores suffixes (implicitly) in sorted order

Idea: apply binary search

P = ban

—

A°[Jj]

S

aban$

anS

anaban$

ananaban$

ban$S

bananaban$

nsS

naban$

Ol N[O | B [WIN|FP|O |«

N | PO |OC|O0O|FL,|IW|IN|[OUVG| O

nanaban$S

Pattern Matching in Suffix Arrays

= Suffix array stores suffixes (implicitly) in sorted order
= |dea: apply binary search

A°[Jj]

S

P = ban aban$

anS

anaban$

ananaban$

v=I[- ban$ found!

r o bananaban$

nS

naban$

O ([0 | N[]| B [WIN|FP|O |«
NP || |RL|IW|IN|[UI O

nanaban$S

O®(logn) comparisons
Each comparison is strcmp(P, T[A®[v] ...A[v + m — 1]])
O®(m) per comparison = run-time is @(mlogn)

Pattern Matching in Suffix Arrays

SuffixArray-Search(A®[j], P|0..m —1], T)
A®: suffix array of T, P: pattern
[«0ren—-—1
whilel <7
l+r
2
i « AS[v]
// assume strcmp handles out of bounds suitably
s « stremp(T[i...i + m — 1], P)
if(s<0)dol<v+1
else(s>0)dor<v-—1
else return ‘found at guess T'[i ...i + m — 1]’
if stremp(P, T[A%[l], A®[l] + m — 1]])
return ‘found at guess T[l ...l + m — 1]’
return FAIL

ve|

Outline

= String Matching

= Conclusion

String Matching Conclusion

Brute KR BM KMP | Suffix Trees | Suffix Array
Force
0 (|>|n? 0 (nlogn
preproc. — O(m) o(m+)] O(m) —’(|02(||Z|)") _>(0 (ng))
e, O(n+m) O(n) 0(n) 0(m) 0(mlogn)
0 (nm) often g
(preproc expected
better
excluded)
extra space — 0(1) o(m+) 0(m) 0(n) 0(n)

= Algorithms stop once they found one occurrence

= Most of them can be adapted to find all occurrences within the same
worst-case run-time

