CS 240 – Data Structures and Data Management

Module 9: String Matching

T. Biedl E. Schost O. Veksler

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2021
Outline

- String Matching
 - Introduction
 - Karp-Rabin Algorithm
 - Knuth-Morris-Pratt algorithm
 - Boyer-Moore Algorithm
 - Suffix Trees
 - Suffix Arrays
 - Conclusion
Pattern Matching Definitions [1]

- Search for a string (pattern) in a large body of text
- $T[0...n-1]$ text (or haystack) being searched
- $P[0...m-1]$ pattern (or needle) being searched for
- Strings over alphabet Σ
- Return the first occurrence of P in T, that is return smallest i such that
 \[P[j] = T[i+j] \text{ for } 0 \leq j \leq m-1 \]

- Example
 \[T = \text{Little piglets cooked for mother pig} \]
 \[P = \text{pig} \]
 \[n = 36, \: m = 3, \: i = 7 \]

- If P does not occur in T, return FAIL

- Applications
 - information retrieval (text editors, search engines)
 - bioinformatics, data mining
More Definitions [2]

antidisestablishmentarianism

- **Substring** $T[i...j]$ $0 \leq i \leq j < n$ is a string consisting of characters $T[i], T[i+1], ..., T[j]$
 - length is $j - i + 1$

- **Prefix** of T is a substring $T[0...i]$ of T for some $0 \leq i < n$

- **Suffix** of T is a substring $T[i...n-1]$ of T for some $0 \leq i \leq n - 1$
Pattern matching algorithms consist of guesses and checks

- a **guess** or **shift** is a position i such that P might start at $T[i]$
- valid guesses (initially) are $0 \leq i \leq n - m$
- a **check** of a guess is a single position j with $0 \leq j < m$ where we compare $T[i + j]$ to $P[j]$
- must perform m checks of a single **correct** guess
- may make fewer checks of an **incorrect** guess
Diagrams for Matching

- Diagram single run of pattern matching algorithm by matrix of checks
 - each row represents a single guess
Brute-Force Example

Example: \(T = \text{abbbababbab}, \ P = \text{abba} \)

- Worst possible input
 - \(P = a \ldots ab, \ T = aaaaaaaa \ldots aaaaaa \)

- Have to perform \((n - m + 1)m\) checks, which is \(\Theta(nm)\) running time
 - very inefficient if \(m\) is large, i.e. \(m = n/2\)
Brute-force Algorithm

- Idea: Check every possible guess

```c
Bruteforce::PatternMatching(T[0..n-1], P[0..m-1])
T : String of length n (text), P: String of length m (pattern)
for i ← 0 to n - m do
    if strcmp(T[i ... i + m - 1], P) = 0
        return “found at guess i”
return FAIL
```

- Note: `strcmp` takes $\Theta(m)$ time

```c
strcmp(T[i ... i + m - 1], P[0...m - 1])
for j ← 0 to m - 1 do
    if T[i + j] is before P[j] in $\Sigma$ then return -1
    if T[i + j] is after P[j] in $\Sigma$ then return 1
return 0
```
How to improve?

- More sophisticated algorithms
 - Extra preprocessing on pattern P
 - Karp-Rabin
 - Boyer-Moore
 - KMP
 - Eliminate guesses based on completed matches and mismatches
 - Do extra preprocessing on the text T
 - Suffix-trees
 - Suffix-arrays
 - Create a data structure to find matches easily
Outline

- String Matching
 - Introduction
 - Karp-Rabin Algorithm
 - Knuth-Morris-Pratt algorithm
 - Boyer-Moore Algorithm
 - Suffix Trees
 - Suffix Arrays
 - Conclusion
Karp-Rabin Fingerprint Algorithm: Idea

- **Idea:** use hashing to eliminate guesses faster
 - compute hash function for each guess, compare with pattern hash
 - if values are unequal, then the guess cannot be an occurrence
 - if values are equal, **verify** that pattern actually matches text
 - equal hash value does not guarantee equal keys
 - although if hash function is good, most likely keys are equal
 - $O(m)$ time to verify, but happens rarely, and most likely only for true match

- **example** $P = 5\ 9\ 2\ 6\ 5$, $T = 3\ 1\ 4\ 1\ 5\ 9\ 2\ 6\ 5\ 3\ 5$
 - standard hash function: flattening + modular (radix $R = 10$):
 $$h(P) = 59265 \mod 97 = 95$$

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>1</th>
<th>4</th>
<th>1</th>
<th>5</th>
<th>9</th>
<th>2</th>
<th>6</th>
<th>5</th>
<th>3</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>hash-value 84</td>
<td></td>
</tr>
<tr>
<td>hash-value 94</td>
<td></td>
</tr>
<tr>
<td>hash-value 76</td>
<td></td>
</tr>
<tr>
<td>hash-value 18</td>
<td></td>
</tr>
<tr>
<td>hash-value 95</td>
<td></td>
</tr>
</tbody>
</table>

$h(31415) = 84$
$h(14159) = 94$
$h(41592) = 76$
$h(15926) = 18$
$h(59265) = 95$
Karp-Rabin Fingerprint Algorithm – First Attempt

<table>
<thead>
<tr>
<th>Karp-Rabin-Simple::patternMatching(T, P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h_P \leftarrow h(P[0..m-1])$</td>
</tr>
<tr>
<td>for $i \leftarrow 0$ to $n - m$</td>
</tr>
<tr>
<td>$h_T \leftarrow h(T[i...i+m-1])$</td>
</tr>
<tr>
<td>if $h_T = h_P$</td>
</tr>
<tr>
<td>if strcmp($T[i...i+m-1], P$) = 0</td>
</tr>
<tr>
<td>return “found at guess i”</td>
</tr>
<tr>
<td>return FAIL</td>
</tr>
</tbody>
</table>

- Algorithm correctness: match is not missed
 - $h(T[i...i+m-1]) \neq h(P) \Rightarrow \text{guess } i \text{ is not } P$
- What about running time?
Karp-Rabin Fingerprint Algorithm: First Attempt

<table>
<thead>
<tr>
<th>3</th>
<th>1</th>
<th>4</th>
<th>1</th>
<th>5</th>
<th>9</th>
<th>2</th>
<th>6</th>
<th>5</th>
<th>3</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Theta(m)$</td>
<td></td>
</tr>
<tr>
<td>$\Theta(m)$</td>
<td>hash-value 84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Theta(m)$</td>
<td>hash-value 94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Theta(m)$</td>
<td></td>
<td>hash-value 76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Theta(m)$</td>
<td></td>
<td></td>
<td>hash-value 18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Theta(m)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>hash-value 95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- For each shift, $\Theta(m)$ time to compute hash value
 - Worse than brute-force,
 - Brute force can use less than $\Theta(m)$ per shift, it stops at the first mismatched character
- $n - m + 1$ shifts in text to check
- Total time is $\Theta(mn)$ if pattern not in text
Karp-Rabin Fingerprint Algorithm – First Attempt

Karp-Rabin-Simple::patternMatching(\(T, P\))

\[
\begin{align*}
 h_P & \leftarrow h(P[0..m-1]) \\
 \text{for } i & \leftarrow 0 \text{ to } n - m \\
 h_T & \leftarrow h(T[i...i+m-1]) \\
 \text{if } h_T = h_P \\
 & \text{if } 	ext{strcmp}(T[i...i+m-1], P) = 0 \\
 & \quad \text{return } \text{“found at guess } i\text{“} \\
\end{align*}
\]

return FAIL

- Algorithm correctness: match is not missed
 - \(h(T[i...i+m-1]) \neq h(P) \Rightarrow \text{guess } i \text{ is not } P\)
 - \(h(T[i...i+m-1])\) depends on \(m\) characters
 - naive computation takes \(\Theta(m)\) time per guess
- Running time is \(\Theta(mn)\) if \(P\) not in \(T\)
- How can we improve this?
Karp-Rabin Fingerprint Algorithm: Idea

- Idea: compute next hash from previous one in $O(1)$ time
- $n - m + 1$ shifts in text to check
- $\Theta(m)$ to compute the first hash value
- $O(1)$ to compute all other hash values
- $\Theta(n + m)$ expected time
 - recall that we still need to check if the pattern actually matches text whenever hash value of text is equal to the hash value of pattern
 - assuming a good hash function
 - if hash values are equal, pattern most likely matches
Karp-Rabin Fingerprint Algorithm – Fast Rehash

- Hashes are called **fingerprints**
- Insight: can update a fingerprint from previous fingerprint in constant time
 - $O(1)$ time per hash, except first one
- **Example**

 $T = 415926535, \quad P = 5\ 9\ 2\ 6\ 5$

- At the start of the algorithm, compute
 - $h(41592) = 41592 \ mod \ 97 = 76$
 - the first hash (fingerprint), $\Theta(m)$ time
 - $10000 \ mod \ 97 = 9$, precomputed one time, $\Theta(m)$ time
- How to compute $15926 \ mod \ 97$ from $41592 \ mod \ 97$?
 - to get from 41592 to 15926, need to get rid of the old first digit and add new last digit

 \[
 41592 \quad \rightarrow \quad 1592 \quad \rightarrow \quad 15920 \quad \rightarrow \quad 15926
 \]

- Algebraically,

 \[
 (41592 - (4 \cdot 10000)) \cdot 10 + 6 = 15926
 \]
Karp-Rabin Fingerprint Algorithm – Fast Rehash

- Hashes are called **fingerprints**
- Insight: can update a fingerprint from previous fingerprint in constant time
 - $O(1)$ time per hash, except first one
- **Example**

 $T = 415926535$, $P = 59265$

 - At the start of the algorithm, compute
 - $h(41592) = 41592 \mod 97 = 76$
 - the first hash (fingerprint), $\Theta(m)$ time
 - $10000 \mod 97 = 9$, precomputed one time, $\Theta(m)$ time
 - How to compute $15926 \mod 97$ from $41592 \mod 97$?

 $$
 \left(41592 - (4 \cdot 10000)\right) \cdot 10 + 6 = 15926
 \left(\left(41592 - (4 \cdot 10000)\right) \cdot 10 + 6\right) \mod 97 = 15926 \mod 97
 \left(\left(41592 \mod 97 - (4 \cdot 10000 \mod 97)\right) \cdot 10 + 6\right) \mod 97 = 15926 \mod 97
 \left(\left(76 - (4 \cdot 9)\right) \cdot 10 + 6\right) \mod 97 = 15926 \mod 97
 $$

 constant number of operations, independent of m
Karp-Rabin Fingerprint Algorithm – Conclusion

Karp-Rabin-RollingHash::PatternMatching\((T, P)\)

- \(M \leftarrow \text{suitable prime number}\)
- \(h_P \leftarrow h(P[0\ldots m - 1])\)
- \(h_T \leftarrow h(T[0.. m - 1])\)
- \(s \leftarrow 10^{m-1} \mod M\)

```cpp
for \(i \leftarrow 0\) to \(n - m\)
    if \(h_T = h_P\)
        if `strcmp`(\(T[i \ldots i + m - 1]\), \(P\)) = 0
            return "found at guess \(i\)"
        if \(i < n - m\) // compute hash-value for next guess
            \(h_T \leftarrow ((h_T - T[i] \cdot s) \cdot 10 + T[i + m]) \mod M\)
    return FAIL
```

- Choose “table size” \(M\) at **random** to be a large prime
- Expected running time is \(O(m + n)\)
- \(\Theta(mn)\) worst-case, but this is (unbelievably) unlikely
Outline

- String Matching
 - Introduction
 - Karp-Rabin Algorithm
 - Knuth-Morris-Pratt algorithm
 - Boyer-Moore Algorithm
 - Suffix Trees
 - Suffix Arrays
 - Conclusion
Knuth-Morris-Pratt (KMP) Derivation

\[P = ababaca \]

- KMP starts similar to brute force pattern matching
 - maintain variables \(i \) and \(j \)
 - \(j \) is the position in the pattern
 - \(i \) is the position in the text
 - check if \(T[i] = P[j] \)
 - note brute force checks if \(T[i + j] = P[j] \), different usage of \(i \)
- Begin matching with \(i = 0, j = 0 \)
- If \(T[i] \neq P[j] \) and \(j = 0 \), shift pattern by 1, the same action as in brute-force
 - \(i = i + 1 \)
 - \(j \) is unchanged
Knuth-Morris-Pratt Motivation

\[P = ababaca \]

\[
\begin{array}{cccccccc}
 j=0 & j=0 & j=1 & j=2 & j=3 & j=4 & j=5 \\
 i=0 & i=1 & i=2 & i=3 & i=4 & i=5 & i=6 \\
\end{array}
\]

\[T \]
\[
\begin{array}{cccccccc}
 c & a & b & a & b & a & a & b & a & b \\
 a & & & & & & & & & \\
 a & b & a & b & a & c & & & & \\
\end{array}
\]

- When \(T[i] = P[j] \), the action is to check the next letter, as in brute-force
 - \(i = i + 1 \)
 - \(j = j + 1 \)
- Failure at text position \(i = 6 \), pattern position \(j = 5 \)
- When failure is at pattern position \(j > 0 \), do something smarter than brute force
Knuth-Morris-Pratt Motivation

$P = \text{ababaca}$

When failure is at pattern position $j > 0$, do something smarter than brute force

Prior to $j = 5$, pattern and text are equal

- find how to shift pattern looking only at pattern
- can precompute the shift before matching even begins

If failure at $j = 5$, shift pattern by 2 and start matching with $j = 3$

- equivalently: i stays the same, new $j = 3$
- skipped one shift, and also 3 character checks at the next shift
Knuth-Morris-Pratt Motivation

\(P = \text{ababaca} \)

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(i=0)</td>
<td>(i=1)</td>
<td>(i=2)</td>
<td>(i=3)</td>
<td>(i=4)</td>
<td>(i=5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(j=0)</td>
<td>(j=1)</td>
<td>(j=2)</td>
<td>(j=3)</td>
<td>(j=4)</td>
<td>(j=5)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(T \)

\[
\begin{array}{cccccccc}
 & c & a & b & a & b & a & a & b & a \\
\hline
 a & & & & & & & & & \\
 & & & & & & & & & \\
 a & & b & a & b & a & c & & & \\
 a & & & & & & & & & \\
 a & b & a & & & & & & & \\
\end{array}
\]

- If failure at \(j = 5 \): continue matching with the same \(i \) and new \(j = 3 \)
 - precomputed from pattern before matching begins
- Brief rule for determining new \(j \)
 - find longest suffix of \(P[1...j-1] \) which is also prefix of \(P \)
 - call a suffix valid if it is a prefix of \(P \)
 - new \(j = \) the length of the longest valid suffix of \(P[1...j-1] \)
Knuth-Morris-Pratt Motivation

$P = ababaca$

<table>
<thead>
<tr>
<th>$j=0$</th>
<th>$j=1$</th>
<th>$j=2$</th>
<th>$j=3$</th>
<th>$j=4$</th>
<th>$j=5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i=0$</td>
<td>$i=1$</td>
<td>$i=2$</td>
<td>$i=3$</td>
<td>$i=4$</td>
<td>$i=5$</td>
</tr>
</tbody>
</table>

\[\begin{array}{cccccccc}
T & c & a & b & a & b & a & a & b \\
\hline
a & & & & & & & & \\
\hline
a & b & a & b & a & c & & & \\
\hline
| & a & b & a & & & & & \\
\hline
\end{array} \]

- If failure at $j = 5$: continue matching with the same i and new $j = 3$
 - precomputed from pattern before matching begins
- Brief rule for determining new j
 - find longest suffix of $P[1 \ldots j - 1]$ which is also prefix of P
 - call a suffix valid if it is a prefix of P
 - new $j = \text{the length of the longest valid suffix of } P[1 \ldots j - 1]$
KMP Failure Array Computation: Slow

- **Rule**: if failure at pattern index $j > 0$, continue matching with the same i and new $j = \text{the length of the longest valid suffix of } P[1 \ldots j-1]$
- Computed previously for $j = 5$, but need to compute for all j
- Store this information in array $F[0 \ldots m-1]$, called **failure-function**
 - $F[j]$ is length of the longest valid suffix of $P[1 \ldots j]$
 - if failure at pattern index $j > 0$, new $j = F[j-1]$
- $P = ababaca$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- $j = 0$
 - $P[1 \ldots 0] = "", P = ababaca$, longest valid suffix is ""
 - note that $F[0] = 0$ for any pattern
- $j = 1$
 - $P[1 \ldots 1] = b$, $P = ababaca$, longest valid suffix is ""
- $j = 2$
 - $P[1 \ldots 2] = ba$, $P = ababaca$, longest valid suffix is a
- $j = 3$
 - $P[1 \ldots 3] = bab$, $P = ababaca$, longest valid suffix is ab
KMP Failure Array Computation: Slow

- Store this information in array $F[0...m-1]$, called **failure-function**
 - $F[j]$ is length of the longest valid suffix of $P[1...j]$
 - if failure at pattern index $j > 0$, new $j = F[j-1]$

<table>
<thead>
<tr>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3 4 5 6</td>
</tr>
<tr>
<td>0 0 1 2 3 0 1</td>
</tr>
</tbody>
</table>

- $j = 4$
 - $P[1...4] = baba$, $P = ababaca$, longest valid suffix is *aba*

- $j = 5$
 - $P[1...5] = babac$, $P = ababaca$, longest valid suffix is “”

- $j = 6$
 - $P[1...6] = babaca$, $P = ababaca$, longest valid suffix is *a*

- Failure array is precomputed before matching starts
- Straightforward computation of failure array F is $O(m^3)$ time

 for $j = 1$ to m

 for $i = 0$ to j // go over all suffixes of $P[1...j]$

 for $k = 0$ to i // compare next suffix to prefix of P
String matching with KMP: Example

- \(T = \text{cabababcababaca}, P = \text{ababaca} \)

\[\begin{array}{cccccccccccccccc}
T: & c & a & b & a & b & a & b & c & a & b & a & b & a & c & a \\
i=0 & j=0 & F & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 0 & 0 & 1 & 2 & 3 & 0 & 1 \\
\end{array} \]

rule 1

if \(T[i] = P[j] \)
- \(i = i + 1 \)
- \(j = j + 1 \)

rule 2

if \(T[i] \neq P[j] \) and \(j > 0 \)
- \(i \) unchanged
- \(j = F[j - 1] \)

rule 3

if \(T[i] \neq P[j] \) and \(j = 0 \)
- \(i = i + 1 \)
- \(j \) is unchanged
String matching with KMP: Example

- \(T = cabababcababaca, P = ababaca \)

<table>
<thead>
<tr>
<th>(T)</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>a</th>
<th>b</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>a</th>
<th>b</th>
<th>a</th>
<th>c</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P)</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

\(j = 3 \quad j = 2 \)

\(j = 0 \quad j = 1 \quad j = 2 \quad j = 3 \quad j = 4 \quad j = 5 \quad j = 6 \quad j = 10 \quad j = 11 \quad j = 12 \quad j = 13 \quad j = 14 \)

- \(T[i] = P[j] \):
 - \(i = i + 1 \)
 - \(j = j + 1 \)
- \(T[i] \neq P[j] \) and \(j > 0 \):
 - \(i \) unchanged
 - \(j = F[j - 1] \)
- \(T[i] \neq P[j] \) and \(j = 0 \):
 - \(i = i + 1 \)
 - \(j \) is unchanged

\[
F = \begin{pmatrix}
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
0 & 0 & 1 & 2 & 3 & 0 & 1 \\
\end{pmatrix}
\]
Knuth-Morris-Pratt Algorithm

\[\text{KMP}(T, P) \]

\[
F \leftarrow \text{failureArray}(P) \\
i \leftarrow 0 \quad // \text{current character of } T \\
j \leftarrow 0 \quad // \text{current character of } P \\
\text{while } i < n \text{ do} \\
\quad \text{if } P[j] = T[i] \\
\quad \quad \text{if } j = m - 1 \\
\quad \quad \quad \text{return} \text{ “found at guess } i - m + 1\text{”} \\
\quad \quad \quad \text{// location } i \text{ in } T \text{ is the end of matched } P \text{ in text} \\
\quad \quad \text{else // rule 1} \\
\quad \quad i \leftarrow i + 1 \\
\quad \quad j \leftarrow j + 1 \\
\quad \text{else // } P[j] \neq T[i] \\
\quad \quad \text{if } j > 0 \\
\quad \quad \quad j \leftarrow F[j - 1] \quad // \text{rule 2} \\
\quad \quad \text{else // rule 3} \\
\quad \quad \quad i \leftarrow i + 1 \\
\text{return } FAIL\]
KMP: Time Complexity, informally

- For now, ignore the cost of computing failure array
- Total time = ‘horizontal iterations’ + ‘vertical iterations’
- i can increase at most n times
- number of decreases of $j \leq$ number of increases of $j \leq n$
- $O(n)$ total iterations, more formal analysis later

\[
\begin{array}{cccccccccc}
T: & c & a & b & a & b & a & b & c & a & b & a & b & a & c & a \\
\hline
\end{array}
\]

- if $T[i] = P[j]$
 - $i = i + 1$
 - $j = j + 1$

- if $T[i] \neq P[j]$ and $j > 0$
 - i unchanged
 - $j = F[j - 1]$

- if $T[i] \neq P[j]$ and $j = 0$
 - $i = i + 1$
 - j is unchanged
KMP: Running Time, informally

For now, ignore the cost of computing failure array

Total time = ‘horizontal iterations’ + ‘vertical iterations’

\(i \) can increase at most \(n \) times

number of decreases of \(j \) \(\leq \) number of increases of \(j \) \(\leq n \)

\(O(n) \) total iterations, more formal analysis later
Fast Computation of F

- $P = ababaca$

<table>
<thead>
<tr>
<th>$j=0$</th>
<th>$j=1$</th>
<th>$j=2$</th>
<th>$j=3$</th>
<th>$j=4$</th>
<th>$j=5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i=0$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$i=1$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$i=2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$i=3$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$i=4$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$i=5$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$i=6$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- After processing T, the final value of j is longest suffix of T equal to prefix of P
 - or, using our terminology, the final value of j is the longest valid suffix of T

- Useful for failure array computation
 - but first, let us rename variable j as l (only for failure array computation)
 - otherwise things get confusing
 - already have j when talking about failure array
Fast Computation of F

- $P = ababaca$

- After processing T, the final value of l is longest suffix of T equal to prefix of P
 - or, using our terminology, the final value of l is the longest valid suffix of T

- $F[j] = \text{length of the longest valid suffix of } P[1\ldots j]$
 - need to compute $F[j]$ for $0 < j < m$
 - $F[0] = 0$, no need to compute

- Big idea:
 - $T = P[1\ldots 1] \xrightarrow{\text{KMP}} F[1] = l$
 - $T = P[1\ldots 2] \xrightarrow{\text{KMP}} F[2] = l$
 - \vdots
 - $T = P[1\ldots m-1] \xrightarrow{\text{KMP}} F[m-1] = l$

 "chicken and egg" problem with big idea: need F to put text through KMP
Fast Computation of F: Big Idea Saved

- $j = 1$
 \[T = P[1 \ldots 1] \rightarrow \text{KMP} \rightarrow \text{final } l \quad F[1] = l \]
 - start with $l = 0$
 - text has one letter, can reach at most $l = 1$
 - need at most $F[0]$, and already have it

- $j = 2$
 \[T = P[1 \ldots 2] \rightarrow \text{KMP} \rightarrow \text{final } l \quad F[2] = l \]
 - start with $l = 0$
 - text has two letters, can reach at most $l = 2$
 - need at most $F[0], F[1]$, and already have it

- \vdots

- $j = m - 1$
 \[T = P[1 \ldots m - 1] \rightarrow \text{KMP} \rightarrow \text{final } l \quad F[m - 1] = l \]
 - start with $l = 0$
 - text has $m - 1$ letters, can reach at most $l = m - 1$
 - need at most $F[0], F[1], \ldots, F[m - 2]$, and already have it
Fast Computation of F: Big Idea Made Bigger

- Cost of passing $P[1 \ldots 1]$, $P[1 \ldots 2]$, ..., $P[1 \ldots m-1]$ through KMP is equal to the cost of passing just $P[1 \ldots m-1]$ through KMP.
Fast Computation of F

- Process $T = P[1 \ldots j]$, $F[j] = \text{final } l$
- $P = ababaca$
- Initialize $F[0] = 0$
Fast Computation of F

- Process $T = P[1 \ldots j]$, $F[j] = \text{final } l$
- $P = ababaca$
- $j = 1$, $T = P[1 \ldots j] = b$

<table>
<thead>
<tr>
<th>l</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T:</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P:</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- if $T[i] = P[l]$
 - $i = i + 1$
 - $l = l + 1$
- if $T[i] \neq P[l]$ and $l > 0$
 - i unchanged
 - $l = F[l - 1]$
- if $T[i] \neq P[l]$ and $l = 0$
 - $i = i + 1$
 - l is unchanged
Fast Computation of F

- Process $T = P[1 \ldots j]$, $F[j] =$ final l
- $P = ababaca$
- $j = 2, T = P[1 \ldots j] = ba$

<table>
<thead>
<tr>
<th>l</th>
<th>i</th>
<th>a_l</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>a</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>a</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>if $T[i] = P[l]$</th>
<th>if $T[i] \neq P[l]$ and $l > 0$</th>
<th>if $T[i] \neq P[l]$ and $l = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i = i + 1$</td>
<td>i unchanged</td>
<td>$i = i + 1$</td>
</tr>
<tr>
<td>$l = l + 1$</td>
<td>$l = F[l - 1]$</td>
<td>l is unchanged</td>
</tr>
</tbody>
</table>
Fast Computation of F

- Process $T = P[1 \ldots j]$, $F[j] = \text{final } l$
- $P = ababaca$
- $j = 3, T = P[1 \ldots j] = bab$

<table>
<thead>
<tr>
<th>$l=0$</th>
<th>$l=0$</th>
<th>$l=1$</th>
<th>$l=2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i=0$</td>
<td>$i=1$</td>
<td>$i=2$</td>
<td>$i=3$</td>
</tr>
</tbody>
</table>

T: b a b

P: a

P: a b

<table>
<thead>
<tr>
<th>i if $T[i] = P[l]$</th>
<th>i if $T[i] \neq P[l]$ and $l > 0$</th>
<th>i if $T[i] \neq P[l]$ and $l = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i = i + 1$</td>
<td>i unchanged</td>
<td>$i = i + 1$</td>
</tr>
<tr>
<td>$l = l + 1$</td>
<td>$l = F[l - 1]$</td>
<td>l is unchanged</td>
</tr>
</tbody>
</table>
Fast Computation of F

- Process $T = P[1 \ldots j]$, $F[j] = \text{final } l$
- $P = ababaca$
- $j = 4$, $T = P[1 \ldots j] = baba$

<table>
<thead>
<tr>
<th></th>
<th>$l=0$</th>
<th>$l=1$</th>
<th>$l=2$</th>
<th>$l=3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i=0$</td>
<td>T: b a b a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$i=1$</td>
<td>P: a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$i=2$</td>
<td>a b a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$i=3$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$i=4$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If $T[i] = P[l]$
- $i = i + 1$
- $l = l + 1$

If $T[i] \neq P[l]$ and $l > 0$
- i unchanged
- $l = F[l - 1]$

If $T[i] \neq P[l]$ and $l = 0$
- $i = i + 1$
- l is unchanged

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>F:</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fast Computation of F

- Process $T = P[1 \ldots j]$, $F[j] = \text{final } l$
- $P = a babaca$
- $j = 5$, $T = P[1 \ldots j] = babac$

<table>
<thead>
<tr>
<th>T</th>
<th>b</th>
<th>a</th>
<th>b</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$l=0$</th>
<th>$l=1$</th>
<th>$l=2$</th>
<th>$l=3$</th>
<th>$l=0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i=0$</td>
<td>$i=1$</td>
<td>$i=2$</td>
<td>$i=3$</td>
<td>$i=4$</td>
</tr>
</tbody>
</table>

- F:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

New $l = 1$

New $l = 0$

- if $T[i] = P[l]$
 - $i = i + 1$
 - $l = l + 1$
- if $T[i] \neq P[l]$ and $l > 0$
 - i unchanged
 - $l = F[l - 1]$
- if $T[i] \neq P[l]$ and $l = 0$
 - $i = i + 1$
 - l is unchanged
Fast Computation of F

- Process $T = P[1 \ldots j]$, $F[j] = \text{final } l$
- $P = ababaca$
- $j = 6$, $T = P[1 \ldots j] = babaca$

<table>
<thead>
<tr>
<th>$l=0$</th>
<th>$l=1$</th>
<th>$l=2$</th>
<th>$l=3$</th>
<th>$l=4$</th>
<th>$l=5$</th>
<th>$l=6$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i=0$</td>
<td>$i=1$</td>
<td>$i=2$</td>
<td>$i=3$</td>
<td>$i=4$</td>
<td>$i=5$</td>
<td>$i=6$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T:</th>
<th>b</th>
<th>a</th>
<th>b</th>
<th>a</th>
<th>c</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>P:</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- if $T[i] = P[l]$
 - $i = i + 1$
 - $l = l + 1$
- if $T[i] \neq P[l]$ and $l > 0$
 - i unchanged
 - $l = F[l - 1]$
- if $T[i] \neq P[l]$ and $l = 0$
 - $i = i + 1$
 - l is unchanged

<table>
<thead>
<tr>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>
KMP: Computing Failure Array

- Pseudocode is almost identical to KMP\((T, P)\)
 - main difference: \(F[j]\) gets both used and updated
- More formal analysis
 - consider how \(2j - l\) changes in each iteration of while loop
 - one of the three case below applies
 1) \(j\) and \(l\) both increase by 1
 - \(2j - l\) increases by 1
 2) \(l\) decreases (\(F[l - 1] < l\))
 - \(2j - l\) increases by 1 or more
 1) \(j\) increases by 1
 - \(2j - l\) increases by 2
- initially \(2j - l = 2 \geq 0\)
- at the end \(2j - l \leq 2m\)
 - \(j = m, l \geq 0\)
- no more than \(2m\) iterations of while loop
- time is \(\Theta(m)\)

```
failureArray(P)
P: String of length m (pattern)
  \(F[0] \leftarrow 0\)
  \(j \leftarrow 1 // parsing P[1 ... j]\)
  \(l \leftarrow 0\)
  \(\textbf{while } j < m \textbf{ do}\)
  \(\text{if } P[j] = P[l]\)
  \(\quad l \leftarrow l + 1\)
  \(\quad F[j] \leftarrow l\)
  \(\quad j \leftarrow j + 1\)
  \(\text{else if } l > 0\)
  \(\quad l \leftarrow F[l - 1]\)
  \(\text{else}\)
  \(\quad F[j] \leftarrow 0\)
  \(\quad j \leftarrow j + 1\)
```
KMP: main function runtime

- **KMP main function**
 - `failureArray` can be computed in $\Theta(m)$ time
 - Same analysis gives at most $2n$ iterations of while loop since $2i - j \leq 2n$
 - Running time KMP altogether: $\Theta(n + m)$

```
KMP(T, P)
    F ← failureArray (P)
    i ← 0
    j ← 0
    while i < n do
        if P[j] = T[i]
            if j = m − 1
                return “found at guess i − m + 1”
            else
                i ← i + 1
                j ← j + 1
        else // P[j] ≠ T[i]
            if j > 0
                j ← F[j − 1]
            else
                i ← i + 1
    return FAIL
```
Outline

- **String Matching**
 - Introduction
 - Karp-Rabin Algorithm
 - Knuth-Morris-Pratt algorithm
 - **Boyer-Moore Algorithm**
 - Suffix Trees
 - Suffix Arrays
 - Conclusion
Boyer-Moore Algorithm Motivation

- Fastest pattern matching on English Text
- Important components
 - Reverse-order searching
 - compare P with a guess moving *backwards*
 - When a mismatch occurs choose the better option among the two below
 1. Bad character heuristic
 - eliminate shifts based on mismatched character of T
 2. Good suffix heuristic
 - eliminate shifts based on the matched part (i.e.) suffix of P
Reverse Searching vs. Forward Searching

$T = \text{whereiswaldo}$, $P = \text{aldo}$

- r does not occur in $P = \text{aldo}$
- shift pattern past r
- w does not occur in $P = \text{aldo}$
- shift pattern past w
- this bad character heuristic works well with reverse searching

- w does not occur in $P = \text{aldo}$
- move pattern past w
- the first shift moves pattern past w
- no shifts are ruled out
- bad character heuristic does not work well with forward searching
Bad Character Heuristic: Full Version

- Extends to the case when mismatched text character occurs in P

\[T = \text{acranapple}, \quad P = \text{aaron} \]

- Mismatched character in the text is a
- Find last occurrence of a in P
- Shift the pattern to the left until last a in P aligns with a in text
Bad Character Heuristic: Full Version

- Extends to the case when mismatched text character does occur in P

$$T = \text{acranapple}, \ P = \text{aaron}$$

- Mismatched character in the text is a
- Find last occurrence of a in P
- Shift the pattern to the left until last a in P aligns with a in text
- This is the next possible shift of pattern to explore, skipped shifts are impossible because they do not match a
 - start matching at the end
Bad Character Heuristic: The Shifting Formula

\(?T\) = acranapple, \(?P\) = aaron

\(j=3\)
\(i=3\)

\(j=4\)
\(i=6\)

<table>
<thead>
<tr>
<th>a</th>
<th>c</th>
<th>r</th>
<th>a</th>
<th>n</th>
<th>a</th>
<th>p</th>
<th>p</th>
<th>l</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>o</td>
<td>n</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Let \(L(c)\) be the last occurrence of character \(c\) in \(P\)
 - \(L(a) = 1\) in our example
 - define \(L(c) = -1\) if character \(c\) does not occur in \(P\)
- When mismatch occurs at text position \(i\), pattern position \(j\), update
 - \(j = m - 1\)
 - start matching at the end of the pattern
 - \(i = i + m - 1 - L(c)\)
 - bad character heuristic can be used only if \(L(c) < j\)
Bad Character Heuristic: Last Occurrence Array

- Compute the last occurrence array $L(c)$ of any character in the alphabet
 - $L(c) = -1$ if character c does not occur in P, otherwise
 - $L(c) = $ largest index i such that $P[i] = c$

- Example: $P = aaron$
 - initialization

char	a	n	o	r	all others
$L(c)$	-1	-1	-1	-1	-1
 - computation

char	a	n	o	r	all others
$L(c)$	1	4	3	2	-1

- $O(m + |\Sigma|)$ time
Bad Character Heuristic: Shifting Formula Explained

-recall \(L(c) = -1 \) for any character \(c \) that does not occur in \(P \)
- formula also works when mismatched character \(c \) does not occur in \(P \)

\[
i^{\text{new}} - (m - 1) + L(c) = i^{\text{old}}
\]

\[
i^{\text{new}} = i^{\text{old}} + m - 1 - L(c)
\]

\[
i = i + m - 1 - L(c)
\]
Bad Character Heuristic, Last detail

- Can use bad character heuristic **only** if $L(c) < j$
- Example when $L(c) > j$

$$T = \text{acraaapple}, \quad P = \text{aaroa}$$

$$j = 3 \quad i = 3$$

<table>
<thead>
<tr>
<th>a</th>
<th>c</th>
<th>r</th>
<th>a</th>
<th>a</th>
<th>a</th>
<th>p</th>
<th>p</th>
<th>l</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>o</td>
<td></td>
<td></td>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- $i = i + m - 1 - L(c)$
 - $L(a) = 4 > j = 3$
 - $i = 3 + 4 - 4 = 3$
- shifts the pattern in the wrong direction!

- If $L(c) > j$, do brute-force step
 - $i = i - j + m$
 - $j = m - 1$
- Unified formula that works in all cases: $i = i + m - 1 - \min\{L(c), j - 1\}$
Boyer-Moore Algorithm

BoyerMoore\((T, P)\)

\[L \leftarrow \text{last occurrence array computed from } P \]

\[j \leftarrow m - 1 \]

\[i \leftarrow m - 1 \]

\textbf{while } i < n \text{ and } j \geq 0 \textbf{ do}

\textbf{if } T[i] = P[j] \textbf{ then}

\[i \leftarrow i - 1 \]

\[j \leftarrow j - 1 \]

\textbf{else}

\[i \leftarrow i + m - 1 - \min\{L(c), j - 1\} \]

\[j \leftarrow m - 1 \]

\textbf{if } j = -1 \textbf{ return } i + 1

\textbf{else } \textbf{return } \text{FAIL}
Good Suffix Heuristic

- Idea is similar to KMP, but applied to the suffix, since matching backwards

\[P = \text{onobobo} \]

\[
\begin{array}{cccccccccccccccc}
\hline
T & o & n & o & o & o & b & o & o & o & i & b & b & o & u & n & d & a & r & y \\
\hline
& & & & & & b & o & b & o & & & & & & & & & & & \\
& & o & n & o & b & o & b & o & & & & & & & & & & & & \\
\hline
\end{array}
\]

- Text has letters **obo**
- Do the smallest shift so that **obo** fits
- Can precompute this from the pattern itself, before matching starts
 - ‘if failure at \(j = 3 \), shift pattern by 2’
- Continue matching from the end of the new shift
- Will not study the precise way to do it
Boyer-Moore Summary

- Boyer-Moore performs very well, even when using only bad character heuristic
- Worst case run time is $O(nm)$ with bad character heuristic, but in practice much faster
- On typical English text, Boyer-Moore looks only at $\approx 25\%$ of text
- With good suffix heuristic, can ensure $O(n + m + |\Sigma|)$ run time
 - no details
Outline

- String Matching
 - Introduction
 - Karp-Rabin Algorithm
 - Knuth-Morris-Pratt algorithm
 - Boyer-Moore Algorithm
- Suffix Trees
 - Suffix Arrays
 - Conclusion
Suffix Tree: trie of Suffixes

- What if we search for many patterns P within the same fixed text T?
- Idea: preprocess the text T rather than pattern P
- Observation: P is a substring of T if and only if P is a prefix of some suffix of T

Store all suffixes of T in a trie
 - generalize search to prefixes of stored strings
- To save space
 - use compressed trie
 - store suffixes implicitly via indices into T

This is called a suffix tree
Trie of suffixes: Example

- $T =$ bananaban

Suffixes = \{bananaban, ananaban, nanaban, anaban, naban, aban, ban, an, n, Λ\}

$S =$ \{bananaban$, ananaban$, nanaban$, anaban$, naban$, ..., ban$, n$, $\}$
Trie of suffixes: Example

- $T = \text{bananaban}$
- If P occurs in the text, it is a prefix of one (or more) strings stored in the trie
- Will have to modify search in a trie to allow search for a prefix
Trie of suffixes: Example

- Store suffixes via indices

\[T = \begin{array}{cccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\text{b} & \text{a} & \text{n} & \text{a} & \text{n} & \text{a} & \text{b} & \text{a} & \text{n} & \$
\end{array} \]
Trie of suffixes: Example

- Store suffixes via indices

```
T = b a n a n a b a n $
```

```
T[5..9]
```

```
T[9..9]
```

```
T = a b a n
```

```
T[9..9]
```

```
T[5..9]
```

```
T = a b a n
```

```
T[9..9]
```

```
T[5..9]
```

```
T = a b a n
```

```
T[9..9]
```

```
T = a b a n
```

```
T[9..9]
```

```
T = a b a n
```

```
T[9..9]
```

```
T = a b a n
```

```
T[9..9]
```

```
T = a b a n
```

```
T[9..9]
```

```
T = a b a n
```

```
T[9..9]
```

```
T = a b a n
```

```
T[9..9]
```

```
T = a b a n
```

```
T[9..9]
```

```
T = a b a n
```

```
T[9..9]
```

```
T = a b a n
```

```
T[9..9]
```

```
T = a b a n
```

```
T[9..9]
```

```
T = a b a n
```

```
T[9..9]
```

```
T = a b a n
```

```
T[9..9]
```

```
T = a b a n
```

```
T[9..9]
```
Tries of suffixes

- each leaf l stores the start of its suffix in variable $l.start$

$$T = \begin{array}{cccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
& b & a & n & a & n & a & b & a & n & $\
\end{array}$$
Suffix tree

- **Suffix tree**: compressed trie of suffixes

\[
T = \begin{array}{c}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\end{array}
\begin{array}{c}
b & a & n & a & n & a & b & a & n & \$
\end{array}
\]

\[T = \]

```
0
  \_1
    \_b
      \_n
        \_\$
          \_a
            \_b
              \_n
                \_T[9..9]
                  \_T[5..9]
                    \_T[7..9]
                      \_T[3..9]
                        \_T[1..9]
                          \_T[6..9]
                            \_T[0..9]
                              \_T[2..9]
                                \_T[4..9]
                                  \_T[8..9]
```


Building Suffix Tree

- **Building**
 - text T has n characters and $n + 1$ suffixes
 - can build suffix tree by inserting each suffix of T into compressed trie
 - takes $\Theta(|\Sigma|n^2)$ time
 - there is a way to build a suffix tree of T in $\Theta(|\Sigma|n)$ time
 - beyond the course scope

- **Pattern Matching**
 - essentially search for P in compressed trie
 - some changes needed, since P may only be prefix of stored word
 - run-time is $O(|\Sigma|m)$

- **Summary**
 - theoretically good, but construction is slow or complicated and lots of space-overhead
 - rarely used in practice
Outline

- **String Matching**
 - Introduction
 - Karp-Rabin Algorithm
 - Knuth-Morris-Pratt algorithm
 - Boyer-Moore Algorithm
 - Suffix Trees
- **Suffix Arrays**
- Conclusion
Suffix Arrays

- Relatively recent development (popularized in the 1990s)
- Sacrifice some performance for simplicity
 - slightly slower (by a log-factor) than suffix trees
 - much easier to build
 - much simpler pattern matching
 - very little space, only one array
- Idea
 - store suffixes implicitly, by storing start indices
 - store sorting permutation of the suffixes in T
Suffix Array Example

Given String:

$$T = \text{bananaban}$$

Suffix Array Calculation:

1. **suffixes** of **T**:
 - **0**: bananaban$
 - **1**: ananaban$
 - **2**: nanaban$
 - **3**: anaban$
 - **4**: naban$
 - **5**: aban$
 - **6**: ban$
 - **7**: an$
 - **8**: n$
 - **9**: $

2. **Sort lexicographically**:

<table>
<thead>
<tr>
<th>i</th>
<th>suffix $T[i...n]$</th>
<th>j</th>
<th>$A^s[j]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>bananaban$</td>
<td>0</td>
<td>9 $</td>
</tr>
<tr>
<td>1</td>
<td>ananaban$</td>
<td>1</td>
<td>5 aban$</td>
</tr>
<tr>
<td>2</td>
<td>nanaban$</td>
<td>2</td>
<td>7 an$</td>
</tr>
<tr>
<td>3</td>
<td>anaban$</td>
<td>3</td>
<td>3 anaban$</td>
</tr>
<tr>
<td>4</td>
<td>naban$</td>
<td>4</td>
<td>1 ananaban$</td>
</tr>
<tr>
<td>5</td>
<td>aban$</td>
<td>5</td>
<td>6 ban$</td>
</tr>
<tr>
<td>6</td>
<td>ban$</td>
<td>6</td>
<td>0 bananaban$</td>
</tr>
<tr>
<td>7</td>
<td>an$</td>
<td>7</td>
<td>8 n$</td>
</tr>
<tr>
<td>8</td>
<td>n$</td>
<td>8</td>
<td>4 naban$</td>
</tr>
<tr>
<td>9</td>
<td>$</td>
<td>9</td>
<td>2 nanaban$</td>
</tr>
</tbody>
</table>

3. **Suffix Array**:

$$A^s = [9, 5, 7, 3, 1, 6, 0, 8, 4, 2]$$
Suffix Array Example

\[
T = \begin{array}{c}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\text{bananaban$} & \text{ananaban$} & \text{nanaban$} & \text{anaban$} & \text{naban$} & \text{aban$} & \text{ban$} & \text{an$} & \text{n$} & \\
\text{bananaban$} & \text{ananaban$} & \text{nanaban$} & \text{anaban$} & \text{naban$} & \text{aban$} & \text{ban$} & \text{an$} & \text{n$} & \\
\text{bananaban$} & \text{ananaban$} & \text{nanaban$} & \text{anaban$} & \text{naban$} & \text{aban$} & \text{ban$} & \text{an$} & \text{n$} & \\
\text{bananaban$} & \text{ananaban$} & \text{nanaban$} & \text{anaban$} & \text{naban$} & \text{aban$} & \text{ban$} & \text{an$} & \text{n$} & \\
\text{bananaban$} & \text{ananaban$} & \text{nanaban$} & \text{anaban$} & \text{naban$} & \text{aban$} & \text{ban$} & \text{an$} & \text{n$} & \\
\text{bananaban$} & \text{ananaban$} & \text{nanaban$} & \text{anaban$} & \text{naban$} & \text{aban$} & \text{ban$} & \text{an$} & \text{n$} & \\
\text{bananaban$} & \text{ananaban$} & \text{nanaban$} & \text{anaban$} & \text{naban$} & \text{aban$} & \text{ban$} & \text{an$} & \text{n$} & \\
\text{bananaban$} & \text{ananaban$} & \text{nanaban$} & \text{anaban$} & \text{naban$} & \text{aban$} & \text{ban$} & \text{an$} & \text{n$} & \\
\text{bananaban$} & \text{ananaban$} & \text{nanaban$} & \text{anaban$} & \text{naban$} & \text{aban$} & \text{ban$} & \text{an$} & \text{n$} & \\
\text{bananaban$} & \text{ananaban$} & \text{nanaban$} & \text{anaban$} & \text{naban$} & \text{aban$} & \text{ban$} & \text{an$} & \text{n$} & \\
\text{bananaban$} & \text{ananaban$} & \text{nanaban$} & \text{anaban$} & \text{naban$} & \text{aban$} & \text{ban$} & \text{an$} & \text{n$} & \\
\text{bananaban$} & \text{ananaban$} & \text{nanaban$} & \text{anaban$} & \text{naban$} & \text{aban$} & \text{ban$} & \text{an$} & \text{n$} & \\
\text{bananaban$} & \text{ananaban$} & \text{nanaban$} & \text{anaban$} & \text{naban$} & \text{aban$} & \text{ban$} & \text{an$} & \text{n$} & \\
\text{bananaban$} & \text{ananaban$} & \text{nanaban$} & \text{anaban$} & \text{naban$} & \text{aban$} & \text{ban$} & \text{an$} & \text{n$} & \\
\text{bananaban$} & \text{ananaban$} & \text{nanaban$} & \text{anaban$} & \text{naban$} & \text{aban$} & \text{ban$} & \text{an$} & \text{n$} &
\end{array}
\]

Suffix Array Example:

\[
\begin{array}{c|c|c|c|c|c|c|c|c|c|c|}
\text{i} & \text{suffix } T[i \ldots n] & \text{j} & A^s[j] \\
\hline
0 & \text{bananaban$} & 0 & 9 & $ \\
1 & \text{ananaban$} & 1 & 5 & \text{aban$} \\
2 & \text{nanaban$} & 2 & 7 & \text{an$} \\
3 & \text{anaban$} & 3 & 3 & \text{anaban$} \\
4 & \text{naban$} & 4 & 1 & \text{ananaban$} \\
5 & \text{aban$} & 5 & 6 & \text{ban$} \\
6 & \text{ban$} & 6 & 0 & \text{bananaban$} \\
7 & \text{an$} & 7 & 8 & \text{n$} \\
8 & \text{n$} & 8 & 4 & \text{naban$} \\
9 & $ & 9 & 2 & \text{nanaban$} \\
\end{array}
\]

Sort lexicographically:

Suffix Array = [9, 5, 7, 3, 1, 6, 0, 8, 4, 2]
Suffix Array Construction

- Easy to construct using MSD-Radix-Sort (pad with any character to get the same length)

```
round 1
bananaban$
ananaban*$
nanaban$**
anaban$***
naban$****
aban$*****
ban$******
an$*******
n$********
$*********

round 2
$********
aban$*****
ananaban$
anaban$**
an$*******
bananaban$
ban$******
nanaban$**
naban$*****
n$********

round n
$********
aban$*****
ananaban$
anaban$**
an$*******
bananaban$
ban$******
nanaban$**
naban$*****
n$********
```

- Fast in practice, suffixes are unlikely to share many leading characters
- But worst case run-time is $\Theta(n^2)$
 - n rounds of recursion, each round takes $\Theta(n)$ time (bucket sort)
Suffix Array Construction

- Idea: we do not need n rounds
 - $\Theta(\log n)$ rounds enough $\rightarrow \Theta(n \log n)$ run time
- Construction-algorithm
 - MSD-radix sort plus some bookkeeping
 - needs only one extra array
 - easy to implement
 - details are covered in an algorithms course
Pattern Matching in Suffix Arrays

- Suffix array stores suffixes (implicitly) in sorted order
- Idea: apply binary search

<table>
<thead>
<tr>
<th>l</th>
<th>j</th>
<th>$A^s[j]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9</td>
<td>$$</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>aban$</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>an$</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>anaban$</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>ananaban$</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>ban$</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>bananaban$</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>n$</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>naban$</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>nanaban$</td>
</tr>
</tbody>
</table>
Pattern Matching in Suffix Arrays

- Suffix array stores suffixes (implicitly) in sorted order
- Idea: apply binary search

\[P = \text{ban} \]

<table>
<thead>
<tr>
<th>(j)</th>
<th>(A^s[j])</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
</tr>
</tbody>
</table>
Pattern Matching in Suffix Arrays

- Suffix array stores suffixes (implicitly) in sorted order
- Idea: apply binary search

\[
P = \text{ban}
\]

<table>
<thead>
<tr>
<th>(j)</th>
<th>(A^s[j])</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
</tr>
</tbody>
</table>

- \(\Theta(\log n)\) comparisons
- Each comparison is `strcmp(P, T[A^s[v] \ldots A^s[v + m - 1]]))`
- \(\Theta(m)\) per comparison \(\Rightarrow\) run-time is \(\Theta(m \log n)\)
Pattern Matching in Suffix Arrays

\textbf{SuffixArray-Search}(A^s[j], P[0 \ldots m - 1], T)

\textbf{A}^s: suffix array of \textbf{T}, \textbf{P}: pattern

\begin{align*}
l & \leftarrow 0, r \leftarrow n - 1 \\
\textbf{while } l < r \textbf{ do} \\
& v \leftarrow \left\lceil \frac{l+r}{2} \right\rceil \\
& i \leftarrow A^s[v] \\
& \text{ // assume \texttt{strcmp} handles out of bounds suitably} \\
& s \leftarrow \texttt{strcmp}(T[i \ldots i + m - 1], P) \\
& \textbf{if } (s < 0) \textbf{ do } l \leftarrow v + 1 \\
& \textbf{else } (s > 0) \textbf{ do } r \leftarrow v - 1 \\
& \textbf{else return}\ ‘found at guess } T[i \ldots i + m - 1]' \\
& \textbf{if } \texttt{strcmp}(P, T[A^s[l], A^s[l] + m - 1]]) \\
& \texttt{return} ‘found at guess } T[l \ldots l + m - 1]' \\
\texttt{returnFAIL}
\end{align*}
Outline

- String Matching
 - Introduction
 - Karp-Rabin Algorithm
 - Knuth-Morris-Pratt algorithm
 - Boyer-Moore Algorithm
 - Suffix Trees
 - Suffix Arrays
- Conclusion
String Matching Conclusion

<table>
<thead>
<tr>
<th></th>
<th>Brute Force</th>
<th>KR</th>
<th>BM</th>
<th>KMP</th>
<th>Suffix Trees</th>
<th>Suffix Array</th>
</tr>
</thead>
<tbody>
<tr>
<td>preproc.</td>
<td></td>
<td>—</td>
<td>$O(m)$</td>
<td>$O(m)$</td>
<td>$O(</td>
<td>\Sigma</td>
</tr>
<tr>
<td>search time</td>
<td>$O(nm)$</td>
<td>$O(n + m)$</td>
<td>$O(n)$ often</td>
<td>$O(n)$</td>
<td>$O(m)$</td>
<td>$O(m\log n)$</td>
</tr>
<tr>
<td>excluded</td>
<td></td>
<td>—</td>
<td>$O(1)$</td>
<td>$O(m)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>

- Algorithms stop once they found one occurrence
- Most of them can be adapted to find *all* occurrences within the same worst-case run-time