CS 240 – Data Structures and Data Management

Module 10: Compression

T. Biedl E. Schost O. Veksler

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2021

Outline

- Compression
 - Encoding Basics
 - Huffman Codes
 - Run-Length Encoding
 - Lempel-Ziv-Welch
 - bzip2
 - Burrows-Wheeler Transform

Outline

Compression

- Encoding Basics
- Huffman Codes
- Run-Length Encoding
- Lempel-Ziv-Welch
- bzip2
- Burrows-Wheeler Transform

Data Storage and Transmission

- The problem: How to store and transmit data?
- Source text
 - the original data, string S of characters from the source alphabet Σ_S
- Coded text
 - the encoded data, string C of characters from the coded alphabet Σ_C
- Encoding
 - an algorithm mapping source texts to coded texts
- Decoding
 - an algorithm mapping coded texts back to their original source text
- Notes
 - source "text" can be any sort of data (not always text)
 - usually the coded alphabet is just binary $\Sigma_{\mathcal{C}} = \{0,1\}$
 - usually S and C are stored as streams
 - read/write only one character at a time
 - convenient for handling huge texts
 - can start processing text while it is still being loaded
 - input stream supports methods: pop(), top(), isEmpty()
 - output stream supports methods: append(), isEmpty()

Judging Encoding Schemes

- Can measure time/space efficiency of encoding/decoding algorithms, as for any usual algorithm
- What other goals make sense?
 - reliability
 - error-correcting codes
 - security
 - encryption
 - size (our main objective in this course)
- Encoding schemes that try to minimize the size of the coded text perform data compression
- We will measure the compression ratio

$$\frac{|C| \cdot \log|\Sigma_C|}{|S| \cdot \log|\Sigma_S|}$$

Types of Data Compression

- Logical vs. Physical
 - Logical Compression
 - uses the meaning of the data
 - only applies to a certain domain (e.g. sound recordings)
 - Physical Compression
 - only know physical bits in data, not their meaning
- Lossy vs. Lossless
 - Lossy Compression
 - achieves better compression ratios
 - decoding is approximate
 - exact source text S is not recoverable
 - Lossless Compression
 - always decodes S exactly
- Lossy, logical compression is useful
 - media files: JPEG, MPEG
- But we will concentrate on physical, lossless compression
 - can be safely used for any application

Character Encodings

■ **Definition:** character encoding *E* maps each *character* in the source alphabet to a *string* in coded alphabet

$$E: \Sigma_S \to \Sigma_C^*$$

- for $c \in \Sigma_S$, E(c) is called the *codeword* (or *code*) of c
- Character encoding sometimes is called character-by-character encoding
 - encode one character at a time
- Two possibilities
 - Fixed-length code: all codewords have the same length
 - Variable-length code: codewords may have different lengths

Fixed Length Codes

Example: ASCII (American Standard Code for Information Interchange), 1963

$charin\Sigma_{\mathcal{S}}$	null	start of heading		• • •	0	1	•••	А	В	•••	~	delete
code	0	1	2	• • •	48	49		65	66		126	127
code as binary string	0000000	000001	0000010		0110000	0110001		01000001	01000010		1111110	1111111

- 7 bits to encode 128 possible characters
 - control codes, spaces, letters, digits, punctuation
 - APPLE \rightarrow (65, 80, 80, 76, 69) \rightarrow 01000001 1010000 1010000 1001100 1000101
- Standard in all computers and often our source alphabet
- Not well-suited for non-English text
 - ISO-8859 extends to 8 bits, handles most Western languages
- Other (earlier) fixed-length codes: Baudot code, Murray code
- To decode a fixed-lenth code (say codewords have k bits), we look up each
 k-bit pattern in a table

Variable-Length Codes

- Overall goal: Find an encoding that is short
- Observation: Some alphabet letters occur more often than others
 - idea: use shorter codes for more frequent characters
 - example: frequency of letters in typical English text

e	12.70%	d	4.25%	р	1.93%
t	9.06%	1	4.03%	b	1.49%
а	8.17%	C	2.78%	V	0.98%
0	7.51%	u	2.76%	k	0.77%
i	6.97%	m	2.41%	j	0.15%
n	6.75%	W	2.36%	X	0.15%
S	6.33%	f	2.23%	q	0.10%
h	6.09%	g	2.02%	Z	0.07%
r	5.99%	У	1.97%		

Variable-Length Codes

Example 1: Morse code

- Example 2: UTF-8 encoding of Unicode
 - there are more than 107,000 Unicode characters
 - uses 1-4 bytes to encode any Unicode character

Encoding

- Assume we have some character encoding $E: \Sigma_S \to \Sigma_C^*$
- E is a dictionary with keys in Σ_S
- Typically E would be stored as array indexed by Σ_S

```
charByChar::Encoding(E, S, C)

E: encoding dictionary, S: input stream with characters in \Sigma_S

C: output stream

while S is non-empty

x \leftarrow E.search(S.pop())

C.append(x)
```

Example: encode text "WATT" with Morse code

Decoding

- The decoding algorithm must map $\Sigma_{\mathcal{C}}^*$ to $\Sigma_{\mathcal{S}}$

- The code must be uniquely decodable
 - false for Morse code as described
 - • decodes to both WATT and EAJ
 - Morse code uses 'end of character' pause to avoid ambiguity
 - From now on only consider prefix-free codes E
 - E(c) is not a prefix of E(c') for any $c, c' \in \Sigma_S$
 - Store codes in a *trie* with characters of Σ_S at the leaves

Do not need symbol \$, codewords are prefix-free by definition

Example: Prefix-free Encoding/Decoding

• Code as table $c \in \Sigma_S$ \square A \square N O T E(c) 000 01 101 001 100 11

- Encode AN⊔ANT → 01 001 000 0100111
- Decode 111000001010111 → TO LI EAT

Decoding of Prefix-Free Codes

Any prefix-free code is uniquely decodable


```
PrefixFree::decoding(T, C, S)
T: trie of a prefix-free code, C: input-stream with characters in \Sigma_C
S: output-stream
    while C is non-empty
       r \leftarrow T.root
       while r is not a leaf
              if C is empty or has no child labelled C.top()
                      return "invalid encoding"
              r \leftarrow \text{child of } r \text{ that is labelled with } C.pop()
        S. append (character stored at r)
```

• Run-time: O(|C|)

Can encode directly from the trie T

```
PrefixFree::encoding(T, S, C)
T: prefix-free code trie, S: input-stream with characters in \Sigma_S
          L \leftarrow array of nodes in T indexed by \Sigma_S
         for all leaves l in T
               L[\text{character at } l] \leftarrow l
         while S is non-empty
                w \leftarrow \text{empty string}; v \leftarrow L[S.pop()]
                while v is not the root
                       w.prepend (character from v to its parent)
                       v \leftarrow \mathsf{parent}(v)
                 // now w is the encoding of S
                C.append(w)
```

- Run-time: O(|T| + |C|)
 - $O(|\Sigma_S| + |C|)$ if T has no nodes with one child

Ш

Outline

Compression

- Encoding Basics
- Huffman Codes
- Run-Length Encoding
- Lempel-Ziv-Welch
- bzip2
- Burrows-Wheeler Transform

Huffman's Algorithm: Building the Best Trie

- For a given S the best trie can be constructed with Huffman tree algorithm
 - trie giving the shortest coded text C if alphabet is binary
 - $\Sigma_C = \{0,1\}$
 - tailored to frequencies in that particular S

- Example text: GREENENERGY, $\Sigma_S = \{G, R, E, N, Y\}$
- Calculate character frequencies

```
G: 2, R: 2, E: 4, N: 2, Y: 1
```

- Put each character into its own (single node) trie
 - each trie has a frequency
 - initially, frequency is equal to its character frequency

2 G

2 R 4

2 N

<u>ү</u>

- Example text: GREENENERGY, $\Sigma_S = \{G, R, E, N, Y\}$
- Calculate character frequencies

- Join two least frequent tries into a new trie
 - frequency of the new trie = sum of old trie frequencies

- Example text: GREENENERGY, $\Sigma_S = \{G, R, E, N, Y\}$
- Calculate character frequencies

- Join two least frequent tries into a new trie
 - frequency of the new trie = sum of old trie frequencies

- Example text: GREENENERGY, $\Sigma_S = \{G, R, E, N, Y\}$
- Calculate character frequencies

- Join two least frequent tries into a new trie
 - frequency of the new trie = sum of old trie frequencies

- Example text: GREENENERGY, $\Sigma_S = \{G, R, E, N, Y\}$
- Calculate character frequencies

- Join two least frequent tries into a new trie
 - frequency of the new trie = sum of old trie frequencies

- Example text: GREENENERGY, $\Sigma_S = \{G, R, E, N, Y\}$
- Calculate character frequencies

- Join two least frequent tries into a new trie
 - frequency of the new trie = sum of old trie frequencies

- Example text: GREENENERGY, $\Sigma_S = \{G, R, E, N, Y\}$
- Calculate character frequencies

- Join two least frequent tries into a new trie
 - frequency of the new trie = sum of old trie frequencies

- Example text: GREENENERGY, $\Sigma_S = \{G, R, E, N, Y\}$
- Calculate character frequencies

- Join two least frequent tries into a new trie
 - frequency of the new trie = sum of old trie frequencies

- Example text: GREENENERGY, $\Sigma_S = \{G, R, E, N, Y\}$
- Calculate character frequencies

Final Huffman tree

- GREENENERGY → 000 10 01 01 11 01 11 01 10 000 001
- Compression ratio

$$\frac{25}{11 \cdot \log 5} \approx 98\%$$

These frequencies are not skewed enough to lead to good compression

Huffman Algorithm Summary

- For a given source S, to determine a trie that minimizes length of C
 - 1) determine frequency of each character $c \in \Sigma$ in S
 - 2) for each $c \in \Sigma$, create trie of height 0 holding only c
 - call it c-trie
 - 3) assign a weight to each trie
 - sum of frequencies of all letters in a trie
 - initially, these are just the character frequencies
 - 4) find the two tries with the minimum weight
 - 5) merge these tries with a new interior node
 - the new weight is the sum of merged tries weights
 - added one bit to the encoding of each character
 - 6) repeat Steps 4–5 until there is only 1 trie left
 - this is D, the final decoder
- Data structure for making this efficient?
 - min-ordered heap
 - step 4 is two delete-min
 - step 5 is insert

Heap Storing Tries during Huffman Tree Construction

- Efficient data structure to store tries
 - a min-ordered heap
 - (key,value) = (trie weight, link to trie)
 - step 4 is two delete-mins, step 5 is insert

Huffman's Algorithm Pseudocode

```
Huffman::encoding(S,C)
S: input-stream with characters in \Sigma_S, S: output-stream
        f \leftarrow \text{array indexed by } \Sigma_{S} initialized to 0
        while S is non-empty do increase f[S.pop()] by 1 // get frequencies
                                                                                               O(n)
        Q \leftarrow \text{min-oriented priority queue to store tries}
        for all c \in \Sigma_S with f[c] > 0
                                                                                               O(|\Sigma_S|\log|\Sigma_S|)
                  Q.insert(single-node trie for c with weight f[c])
        while Q.size() > 1
             T_1 \leftarrow Q. deleteMin(), f_1 \leftarrow weight of T_1
             T_2 \leftarrow Q. deleteMin(), f_2 \leftarrow weight of T_2
                                                                                               O(|\Sigma_S|\log|\Sigma_S|)
             Q.insert(trie with T_1, T_2 as subtries and weight f_1 + f_2)
        T \leftarrow Q.deleteMin() // trie for decoding
        reset input-stream S
                                                                                              O(|\Sigma_S| + |C|)
        C \leftarrow PrefixFreeEncodingFromTrie(T,S) // perform actual encoding
```

• Total time is $O(|\Sigma_S| \log |\Sigma_S| + |C|)$

Huffman Coding Evaluation

- Constructed trie is **not unique** (why?)
- So decoding trie must be transmitted along with the coded text C
- This may make encoding bigger than source text!
- Encoding must pass through strem twice
 - to compute frequencies and to encode
 - cannot use stream unless it can be reset
- Time to compute trie T and encode S

$$O(|\Sigma_S| \log |\Sigma_S| + |C|)$$

Decoding run-time

- The constructed trie is optimal in the sense that
 - C is shortest among all prefix-free character encodings with $\Sigma_C = \{0, 1\}$
 - proof omitted
- Many variations
 - give tie-breaking rules, estimate frequencies, adaptively change encoding, ...

Outline

Compression

- Encoding Basics
- Huffman Codes
- Run-Length Encoding
- Lempel-Ziv-Welch
- bzip2
- Burrows-Wheeler Transform

Single-Character vs Multi-Character Encoding

Single character encoding: each source-text character receive one codeword

$$S = b$$
 a n a n a 01 1 11 1 11 1

Multi-character encoding: multiple source-text characters can receive one codeword

$$S = b \quad a \quad n \quad a \quad n \quad a$$

$$01 \quad 11 \quad 101$$

Run-Length Encoding

- RLE is an example of multi-character encoding
- Source alphabet and coded alphabet are both binary: $\Sigma = \{0, 1\}$
 - can be extended to non-binary alphabets
- Useful S has long runs of the same character: 00000 111 0000
- Dictionary is uniquely defined by algorithm
 - no need to store it explicitly
- Encoding idea
 - give the first bit of S (either 0 or 1)
 - then give a sequence of integers indicating run lengths
 - do not have to give the bit for runs since they alternate
- Example <u>00000</u> <u>111</u> <u>0000</u>
 - becomes: 0 5 3 4
- Need to encode run length in binary, how?
 - cannot use variable length binary encoding 10111100
 - do not know how to parse in individual run lengths
 - fixed length binary encoding (say 16 bits) wastes space, bad compression

Prefix-free Encoding for Positive Integers

- Use Elias gamma code to encode k
 - $\lfloor \log k \rfloor$ copies of 0, followed by
 - binary representation of k (always starts with 1)

k	$\lfloor \log k \rfloor$	$m{k}$ in binary	encoding
1	0	1	1
2	1	10	010
3	1	11	011
4	2	100	00100
5	2	101	00101
6	2	110	00110

- Easy to decode
 - (number of zeros+1) tells you the length of k (in binary representation)
 - after zeros, read binary representation of k (it starts with 1)

RLE Example: Encoding

k	$\lfloor \log k \rfloor$	k in binary	encoding	
1	0	1	1	
2	1	10	010	
3	1	11	011	
4	2	100	00100	
5	2	101	00101	
6	2	110	00110	
7	2	111	00111	

Encoding

$$C = 1$$

RLE Example: Encoding

k	[log k]	$m{k}$ in binary	encoding	
1	0	1	1	
2	1	10	010	
3	1	11	011	
4	2	100	00100	
5	2	101	00101	
6	2	110	00110	
7	2	111	00111	

Encoding

k = 7

C = 100111

k	$\lfloor \log k \rfloor$	k in binary	encoding
1	0	1	1
2	1	10	010
3	1	11	011
4	2	100	00100
5	2	101	00101
6	2	110	00110
7	2	111	00111

Encoding

$$k = 2$$

$$C = 100111 \, 010$$

k	[log k]	$m{k}$ in binary	encoding
1	0	1	1
2	1	10	010
3	1	11	011
4	2	100	00100
5	2	101	00101
6	2	110	00110
7	2	111	00111

Encoding

k = 1

C = 10011101011

k	[log k]	k in binary	encoding
1	0	1	1
2	1	10	010
3	1	11	011
4	2	100	00100
5	2	101	00101
6	2	110	00110
7	2	111	00111
20	4	10100	000010100

Encoding

k = 20

 $C = 1001110101 \, 000010100$

k	[log k]	k in binary	encoding
1	0	1	1
2	1	10	010
3	1	11	011
4	2	100	00100
5	2	101	00101
6	2	110	00110
7	2	111	00111
11	3	1011	0001011

Encoding

k = 11

C = 10011101010000101000001011

Compression ratio

RLE Encoding

```
RLE::encoding(S,C)
S: input-stream of bits, C: output-stream
       b \leftarrow S.top()
       C.append(b)
       while S is non-empty do
            k \leftarrow 1 // initialize run length
            while (S is non-empty and S. top() = b) //compute run length
                 k + +; S. pop()
           // compute Elias gamma code K (binary string) for k
            K \leftarrowempty string
            while (k > 1)
                  C.append(0) // 0 appended to output C directly
                  K.\mathsf{prepend}(k \bmod 2) // K is built from last digit forwards
                  k \leftarrow |k/2|
            K.prepend(1) // the very first digit of K was not computed
            C.append(K)
           b \leftarrow 1 - b
```

 Recall that (# zeros+1) tells you the length of k in binary representation

Decoding

$$C = 00001101001001010$$
 $b = 0$
 $l = 4$
 $k = 13$
 $S = 0000000000000$

k	[log k]	$m{k}$ in binary	encoding
1	0	1	1
2	1	10	010
3	1	11	011
4	2	100	00100
5	2	101	00101
6	2	110	00110
13	3	1101	0001101

Decoding

$$C = 00001101001001010$$
 $b = 1$
 $l = 3$
 $k = 4$
 $S = 0000000000001111$

k	[log k]	k in binary	encoding
1	0	1	1
2	1	10	010
3	1	11	011
4	2	100	00100
5	2	101	00101
6	2	110	00110
13	3	1101	0001101

Decoding

k	$\lfloor \log k \rfloor$	$m{k}$ in binary	encoding
1	0	1	1
2	1	10	010
3	1	11	011
4	2	100	00100
5	2	101	00101
6	2	110	00110
13	3	1101	0001101

Decoding

$$C = \frac{00001101001001010}{10}$$

$$b = 1$$

$$l = 2$$

$$k = 2$$

S = 0000000000001111011

k	$\lfloor \log k \rfloor$	$m{k}$ in binary	encoding
1	0	1	1
2	1	10	010
3	1	11	011
4	2	100	00100
5	2	101	00101
6	2	110	00110
13	3	1101	0001101

RLE Decoding

```
RLE-Decoding(C)
C: input stream of bits, S: output-stream
    b \leftarrow C.pop() // bit-value for the first run
    while C is non-empty
             l \leftarrow 0 // length of base-2 number - 1
             while C.pop() = 0
                 l++
             k \leftarrow 1 // base-2 number converted
             for (j = 1 \text{ to } l) // translate k from binary string to integer
                   k \leftarrow k * 2 + C.pop()
             // if C runs out of bits then encoding was invalid
             for (j = 1 \text{ to } k)
                  S.append(b)
             b \leftarrow 1 - b // alternate bit-value
```

RLE Properties

- Variable length encoding
- Dictionary is uniquely defined by an algorithm
 - no need to explicitly store or send dictionary
- Best compression is for $S = 000 \dots 000$ of length n
 - compressed to $2[\log n] + 2 \in o(n)$ bits
 - 1 for the initial bit
 - $\lfloor \log n \rfloor$ zeros to encode the length of binary representation of integer n
 - $\lfloor \log n \rfloor + 1$ digits that represent n itself in binary
- Usually not that lucky
 - no compression until run-length $k \geq 6$
 - **expansion** when run-length k=2 or 4
- Method can be adapted to larger alphabet sizes
 - but then the encoding for each run must also store the character
- Method can be adapted to encode only runs of 0
 - we will need this soon
- Used in some image formats (e.g. TIFF)

Outline

Compression

- Encoding Basics
- Huffman Codes
- Run-Length Encoding
- Lempel-Ziv-Welch
- bzip2
- Burrows-Wheeler Transform

Longer Patterns in Input

- Huffman and RLE take advantage of frequent or repeated single characters
- Observation: certain substrings are much more frequent than others
- Examples
 - English text
 - most frequent digraphs: TH, ER, ON, AN, RE, HE, IN, ED, ND, HA
 - most frequent trigraphs: THE, AND, THA, ENT, ION, TIO, FOR, NDE
 - HTML
 - "<a href", "<img src", "
"
 - Video
 - repeated background between frames, shifted sub-image
- Ingredient 1 for Lempel-Ziv-Welch compression
 - Encode characters and frequent substrings
 - no need to know which substrings are frequent
 - will discover frequent substring as we process text
 - will encode them as we read the text
 - dictionary constructed during encoding/decoding, no need to send it with encoding
 - how?

Adaptive Dictionaries

- ASCII, UTF-8, and RLE use fixed dictionaries
 - same dictionary for any text encoded
 - no need to pass dictionary to the dencoder
- In Huffman, the dictionary is not fixed, but it is static
 - each text has its own dictionary
 - the dictionary does not change for the entire encoding/decoding
 - need to pass dictionary to the decoder
- Ingredient 2 for LZW: adaptive dictionary
 - lacktriangle start with some initial dictionary D_0
 - usually ASCII
 - at iteration $i \geq 0$, D_i is used to determine the *i*th output
 - after iteration i, update D_i to D_{i+1}
 - a new character combination is inserted
 - encoder and decoder must both know how dictionary changes
 - compute dictionary during encoding/decoding

LZW Overview

- Start with dictionary D_0 for Σ_S
 - usually $\Sigma_S = ASCII$
 - codes from 0 to 127
 - every step adds to dictionary multi-character string, using codenumbers 128, 129, ...
- Iteration i of encoding, current dictionary D_i

S = abbbcbbad
$$D_i = \{a:65, ab:140, bb:145, bbc:146\}$$

find longest substring that starts at current pointer and already in dictionary encode 'bb'

```
D_{i+1} = D_i.insert('bba', next_available_code) (logic: 'bba' would have been useful at iteration i, so it may bey useful in the future)
```

- Store current dictionary D_i in a trie
- Output is a list of numbers (codewords)
 - each number is usually converted to bit-string with fixed-width encoding using 12 bits
 - this limits code numbers to 4096

Tries for LZW

- Key-value pairs are (string,code)
- Trie stores KVP at all nodes (external and internal) except the root
 - works because a string is inserted only after all its prefixes are inserted
- We show code (value) at each node, because the key can be read off from the edges

- Start dictionary D
 - ASCII characters
 - codes from 0 to 127
 - next inserted code will be 128
 - variable idx keeps track of next available code
 - initialize idx = 128

■ Text A N A N A N A N A

Encoding

• idx = 129

N

Text

65

 Add to dictionary "string just encoded" + "first character of next string to be encoded"

N

Inserting new item is O(1) since we stopped at the right node in the trie when we searched for 'A'

- Dictionary D
 - idx = 130

A

N

Α

N

Α

Ν

Δ

Λ

Ν

Encoding

65

78

Dictionary D

Encoding

• idx = 131

add to dictionary

65

83

128

129

128

78

65

- Dictionary D
 - idx = 132

Text
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A</li

Dictionary D

Encoding

• idx = 133

Text

65

N

78

- Α
- N

128

- N

130

- Α
- N
- N

add to dictionary

130

131

- 78

Α

- Dictionary D
 - idx = 133

Text
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A</li

130

131

•
$$idx = 133$$

- Text
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A</li
- Use fixed length (12 bits) per code
 - 12 bit binary string representation for each code
 - total of 2^{12} = 4096 codes available during encoding

130

LZW encoding pseudocode

```
LZW-encode(S)
S: input stream of characters, C: output-stream
       initialize dictionary D with ASCII in a trie
       idx \leftarrow 128
       while there is input in S do
           v \leftarrow \text{root of trie } D
           while S is non-empty and v has a child c labelled S. top()
                  v \leftarrow c
                  S.pop()
           C. append (codenumber stored at v)
          if S is non-empty
                  create child of v labelled S.top() with code idx
                  idx + +
```


LZW encoding pseudocode

```
LZW-encode(S)
S: input stream of characters, C: output-stream
       initialize dictionary D with ASCII in a trie
      idx \leftarrow 128
      while there is input in S do
           v \leftarrow \text{root of trie } D
           while S is non-empty and v has a child c labelled S. top()
                                                                                trie
                  v \leftarrow c
                                                                                search
                  S.pop()
           C. append (codenumber stored at v)
                                                                             new
          if S is non-empty
                                                                             dictionary
                  create child of v labelled S.top() with code idx
                                                                             entry
                  idx + +
```

• Running time is O(|S|)

LZW Encoder vs Decoder

- For decoding, need a dictionary
- Construct a dictionary during decoding, but one step behind
 - at iteration i of decoding we can reconstruct the substring which encoder inserted into dictionary at iteration i-1
 - delay is due to not having access to the original text

Given encoding to decode back to the source text

65

78

128

130

78

initial D

129

- Build dictionary adaptively, while decoding
- Decoding starts with the same initial dictionary as encoding
 - use array instead of trie, need D that allows efficient search by code
- We will show the original text during decoding in this example, but just for reference
 - do not need original text to decode

initial <i>D</i>			
65	А		
78	N		
83	S		

$$idx = 128$$

- Encoding
- 65

Α

78 128

130

78 129

- Decoding
 - iter i = 0

	65	Α
	78	N
_	83	S
D =		

$$idx = 128$$

- First step: s = D(65) = 'A'
- During encoding, added new string 'AN' to the dictionary at iteration i=0
 - looked ahead at the text and saw 'N'
- During decoding, when read 65, cannot look ahead in the text
 - no new word added at iteration i = 0
 - but keep track of s_{prev} = string decoded at previous iteration
 - it is also the string encoder encoded at previous iteration

Text

- Encoding
- 78 65 Decoding N

••	4
iter <i>i</i>	
$\iota\iota\iota$	

65	Α
78	N
83	S
128	AN
	78 83

$$idx = 129$$

- Ν Ν Α
 - 128 130 78 129

- $s_{prev} = A'$
- First step: s = D(78) = 'N'
- Now know that at iteration i = 0 of encoding, next character we peaked at was 'N'
- So can add string 'A' + 'N'='AN' to the dictionary

$$S_{prev}$$
 $S[0]$

- s is string decoded at current iteration
- Starting at iteration i = 1 of decoding
 - add $s_{prev} + s[0]$ to dictionary

LZW Decoding Example Continued

Text
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A</li

	65	Α
	78	N
5	83	S
D =	128	AN
	129	NA

iter i = 2

- $s_{prev} = 'N'$
- First step: s = D(128) = 'AN'
- Next step: add to dictionary $s_{prev} + s[0]$

$$'N' + 'A' = 'NA'$$

$$idx = 130$$

iter i = 3

	65	A
$D = \frac{1}{2}$	78	N
	83	S
	128	AN
	129	NA
	idx =	= 130

•
$$s_{prev} = 'AN'$$

- First step: s = D(130) = ???
 - problem: code 130 is not in D
- Dictionary is exactly one step behind at decoding
- Current decoder iteration is i = 3
- Encoder added (s,130) to D at iteration i=2
 - encoder adds $s_{prev} + s[0]$
 - s_{prev} = 'AN'

$$\begin{array}{c|c} \mathbf{130} & \mathsf{AN} + s[0] \\ \hline & s \\ \end{array}$$

$$s[0] = s_{prev}[0] = A'$$

 $s = ANA'$

$$s = AN$$

Text

N

Α

Α

Ν

N

Encoding

65

78

128

i=2

N

130

Ν

78

129

Decoding

iter i = 3

Α

ANA

Ν

AN

ANA

General rule: if code C is not in D

$$s = s_{prev} + s_{prev} [0]$$

in our example

$$\blacksquare$$
 AN + A = ANA

- Continue the example
- Add to dictionary $s_{prev} + s[0]$

	65	Α
$D = \int_{0}^{\infty}$	78	Ν
	83	S
	128	AN
	129	NA

130

$$idx = 131$$

Text	Α	N	A N	A N A	N	N A
Encoding	65	78	128	130	78	129
Decoding	Α	N	AN	ANA	N	

iter
$$i=4$$

	65	Α
	78	Ν
.	83	S
$D = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	128	AN
	129	NA
	130	ANA
	131	ANAN

$$idx = 132$$

•
$$s_{prev} = 'ANA'$$

■ If code *C* is not in *D*

$$s = s_{prev} + s_{prev} [0]$$

• Add to dictionary $s_{prev} + s[0]$

Text	Α	N	A N	A N A	N	N A
Encoding	65	78	128	130	78	129
Decoding	Α	N	AN	ANA	N	NA

iter i = 5

	65	А
	78	N
D	83	S
D =	128	AN
	129	NA
	130	ANA
	131	ANAN

$$idx = 132$$

•
$$s_{prev} = 'N'$$

■ If code *C* is not in *D*

$$s = s_{prev} + s_{prev} [0]$$

• Add to dictionary $s_{prev} + s[0]$

LZW Decoding Pseudocode

```
LZW::decoding(C,S)
C: input-stream of integers, S: output-stream
         D \leftarrow \text{dictionary that maps } \{0, \dots, 127\} \text{ to ASCII}
         idx \leftarrow 128 // next available code
         code \leftarrow C.pop()
         s \leftarrow D(code)
         S.append(s)
         while there are more codes in C do
                S_{prev} \leftarrow S
                code \leftarrow C.pop()
                if code < idx
                   s \leftarrow D(code) / code in D, look up string s
                if code = idx // code not in D yet, reconstruct string
                    s \leftarrow s_{prev} + s_{prev} [0]
                else Fail
                S.append(s)
               D.insert(idx, s_{prev} + s[0])
               idx ++
```

• Running time is O(|S|)

LZW decoding

- To save space, store new codes using its prefix code + one character
 - for each codeword, can find corresponding string s in O(|s|) time

	65	А
	78	N
	83	S
D =	128	AN
	129	NA
	130	ANA
	131	ANAN

		1
65	А	
78	N	
83	S	
128	65, N	means 'AN'
129	78, A	means 'NA'
130	128, A	means 'ANA'
131	130, N	means 'ANAA'

wasteful storage

Lempel-Ziv Family

- Lempel-Ziv is a family of adaptive compression algorithms
 - LZ77 Original version ("sliding window")
 - Derivatives: LZSS, LZFG, LZRW, LZP, DEFLATE, . . .
 - DEFLATE used in (pk)zip, gzip, PNG
 - LZ78 Second (slightly improved) version
 - Derivatives LZW, LZMW, LZAP, LZY, . . .
 - LZW used in compress, GIF
 - patent issues

LZW Summary

- Encoding is O(|S|) time, uses a trie of encoded substrings to store the dictionary
- Decoding is O(|S|) time, uses an array indexed by code numbers to store the dictionary
- Encoding and decoding need to go through the string only one time and do not need to see the whole string
 - can do compression while streaming the text
- Works badly if no repeated substrings
 - dictionary gets bigger, but no new useful substrings inserted
- In practice, compression rate is around 45% on English text

Outline

Compression

- Encoding Basics
- Huffman Codes
- Run-Length Encoding
- Lempel-Ziv-Welch
- bzip2
- Burrows-Wheeler Transform

Overview of bzip2

- Text transform changes input text into a different text
 - not necessarily shorter
 - but has properties likely to lead to better compression at a later stage
- To achieve better compression, bzip2 uses the following text transforms

Move-to-Front transform

- Recall the MTF heuristic
 - after an element is accessed, move it to array front

Use this idea for MTF (move to front) text transformation

- Source alphabet Σ_S with size $|\Sigma_S| = m$
- Store alphabet in an array

- This gives us encoding dictionary D
 - single character encoding E
- Code of any character = index of array where character stored in dictionary D
 - E('B') = 1
 - E('H') = 7
- Coded alphabet is $\Sigma_C = \{0, 1, \dots, m-1\}$
- Change dictionary D dynamically (like LZW)
 - unlike LZW
 - no new items added to dictionary
 - codeword for one or more letters can change at each iteration

$$S = MISSISSIPPI$$

$$C =$$

$$S = MISSISSIPPI$$

$$C = 12$$

$$S = MISSISSIPPI$$

$$C = 129$$

$$C = 12918$$

$$C = 129180$$

$$C = 1291801$$

$$C = 1291801$$

$$C = 129180110$$

$$C = 12 \ 9 \ 18 \ 0 \ 1 \ 1 \ 0 \ 1 \ 16 \ 0 \ 1$$

- What does a run in C mean about the source S?
 - zeros tell us about consecutive character runs

$$S = C = 12 9 18 0 1 1 0 1 16 0 1$$

- Decoding is similar
- Start with the same dictionary D as encoding
- Apply the same MTF transformation at each iteration
 - dictionary D undergoes exactly the transformations when decoding
 - lacktriangle no delays, identical dictionary at encoding and decoding iteration i
 - can always decode original letter

$$S = M$$

 $C = 12 9 18 0 1 1 0 1 16 0 1$

$$S = M \mid S$$

 $C = 12918011011601$

Move-to-Front Transform: Properties

```
S = affs \$efIIIaaata MTF C = 13053435006006 Transformation
```

- If a character in S repeats k times, then C has a run of k-1 zeros
- C contains a lot of small numbers and a few big ones
- lacktriangle C has the same length as S, but better properties for encoding

Move-to-Front Encoding/Decoding Pseudocode

```
\begin{array}{l} \textit{MTF::encoding}(S,C) \\ L \leftarrow \text{array with } \Sigma_S \text{ in some pre-agreed, fixed order (i.e. ASCII)} \\ \textbf{while } S \text{ is non-empty } \textbf{do} \\ c \leftarrow S.pop() \\ i \leftarrow \text{index such that } L[i] = c \\ \textbf{for } j = i-1 \text{ down to } 0 \\ \text{swap } L[j] \text{ and } L[j+1] \end{array}
```

```
MTF::decoding(C,S)
L \leftarrow \operatorname{array\ with\ } \Sigma_S \operatorname{in\ some\ pre-agreed,\ fixed\ order\ (i.e.\ ASCII)}
\operatorname{while\ } C \operatorname{is\ non-empty\ do}
i \leftarrow \operatorname{next\ integer\ of\ } C
S.\operatorname{append\ } (L[i])
\operatorname{for\ } j=i-1 \operatorname{\ down\ to\ } 0
\operatorname{swap\ } L[j] \operatorname{\ and\ } L[j+1]
```

Move-to-Front Transform Summary

MTF text transform

- source alphabet is Σ_S with size $|\Sigma_S| = m$
- store alphabet in an array
 - code of any character = index of array where character stored
 - coded alphabet is $\Sigma_{\mathcal{C}} = \{0,1,\dots,m-1\}$
- Dictionary is adaptive
 - nothing new is added, but meaning of codewords are changed
- MTF is an adaptive text-transform algorithm
 - it does not compress input
 - the output has the same length as input
 - but output has better properties for compression

Outline

Compression

- Encoding Basics
- Huffman Codes
- Run-Length Encoding
- Lempel-Ziv-Welch
- bzip2
- Burrows-Wheeler Transform

Burrows-Wheeler Transform

- Transformation (not compression) algorithm
 - transforms source text to a coded text with the same letters but in different order
 - source and coded alphabets are the same
 - if original text had frequently occurring substrings, then
 transformed text should have many runs of the same character
 - more suitable for MTF transformation

$$S = alfeats alfalfa$$
Burrows-Wheeler
Transform
$$C = affs \$efl[laaata]$$

- Required: the source text S ends with end-of-word character \$
 - \$ occurs nowhere else in S
- Based on cyclic shifts for a string

example string a cyclic shiftabcde cdeab


```
S = alfeatsalfalfa
```

- Write all consecutive cyclic shifts
 - forms an array of shifts
 - last letter in any row is the first letter of the previous row

```
alfeatsalfalfa$
lfeatsalfalfa$a
featsalfalfa$al
eatsalfalfa$alf
atsalfalfa$alfe
tsalfalfa$alfea
salfalfa$alfeat
alfalfa$alfeats
lfalfa$alfeatsa
falfa$alfeatsal
alfa$alfeatsalf
lfa$alfeatsalfa
fa$alfeatsalfal
a$alfeatsalfalf
$alfeatsalfalfa
```



```
S = alfeatsalfalfa$
```

- Array of cyclic shifts
 - the first column is the original S

```
alfeatsalfalfa$
1 featsalfalfa$a
featsalfalfa$al
eatsalfalfa$alf
atsalfalfa$alfe
tsalfalfa$alfea
salfalfa$alfeat
alfalfa$alfeats
1 falfa$alfeatsa
falfa$alfeatsal
alfa$alfeatsalf
1 fa$alfeatsalfa
fa$alfeatsalfal
a $ a l f e a t s a l f a l f
$alfeatsalfalfa
```


$$S = a | featsa | fa | fa |$$

- Array of cyclic shifts
- S has 'alf' repeated 3 times
 - 3 different shifts start with 'If' and end with 'a'

```
alfeatsalfalfa$
lfeatsalfalfa$a
featsalfalfa$al
eatsalfalfa$alf
atsalfalfa$alfe
tsalfalfa$alfea
salfalfa$alfeat
alfalfa$alfeats
lfalfa$alfeatsa
falfa$alfeatsal
alfa$alfeatsalf
lfa$alfeatsalfa
fa$alfeatsalfal
a$alfeatsalfalf
$alfeatsalfalfa
```


S = alfeatsalfalfa\$

- Array of cyclic shifts
- Sort (lexographically) cyclic shifts
 - strict sorting order due to '\$'
- First column (of course) has many consecutive character runs
- But also the last column has many consecutive character runs
 - sort groups 'If' lines together, and they all end with 'a'

sorted shifts array

\$alfeatsalfalfa a\$alfeatsalfalf alfa\$alfeatsalf alfalfa\$alfeats alfeatsalfalfa\$ atsalfalfa\$alfe eatsalfalfa\$alf fa\$alfeatsalfal falfa\$alfeatsal featsalfalfa\$al 1fa\$alfeatsalfa 1falfa\$alfeatsa lfeatsalfalfa\$a salfalfa\$alfeat tsalfalfa\$alfea

S = alfeatsalfalfa\$

- Array of cyclic shifts
- Sort (lexographically) cyclic shifts
 - strict sorting order due to '\$'
- First column (of course) has many consecutive character runs
- But also the last column has many consecutive character runs
 - sort groups 'If' lines together, and they all end with 'a'
 - could happen that another pattern will interfere
 - 'hlfd' broken into 'h' and 'lfd'
 - the longer is repeated pattern,
 the less chance of interference

sorted shifts array

\$alfeatsalfalfa a\$alfeatsalfalf alfa\$alfeatsalf alfalfa\$alfeats alfeatsalfalfa\$ atsalfalfa\$alfe eatsalfalfa\$alf fa\$alfeatsalfal falfa\$alfeatsal featsalfalfa\$al 1fa\$alfeatsalfa 1falfa\$alfeatsa lfd lfeatsalfalfa\$a salfalfa\$alfeat tsalfalfa\$alfea

S = alfeatsalfalfa\$

- Sorted array of cyclic shifts
- First column is useless for encoding
 - cannot decode it
- Last column can be decoded
- BWT Encoding
 - last characters from sorted shifts
 - i.e. the last column

C = affs = flllaaata

sorted shifts array

```
$alfeatsalfalfa
a$alfeatsalfalf
alfa$alfeatsalf
alfalfa$alfeats
alfeatsalfalfa$
atsalfalfa$alfe
eatsalfalfa$alf
fa$alfeatsalfa1
falfa$alfeatsa1
featsalfalfa$a1
lfa$alfeatsalfa
lfalfa$alfeatsa
lfeatsalfalfa$a
salfalfa$alfeat
tsalfalfa$alfea
```


S = alfeatsalfalfa

i	cyclic shift
0	alfeatsalfalfa\$
1	lfeatsalfalfa\$a
2	featsalfalfa\$al
3	eatsalfalfa\$alf
4	atsalfalfa\$alfe
5	tsalfalfa\$alfea
6	salfalfa\$alfeat
7	alfalfa\$alfeats
8	lfalfa\$alfeatsa
9	falfa\$alfeatsal
10	alfa\$alfeatsalf
11	lfa\$alfeatsalfa
12	fa\$alfeatsalfal
13	a\$alfeatsalfalf
14	\$alfeatsalfalfa

- Can refer to a cyclic shift by the start index in the text, no need to write it out explicitly
- For sorting, letters after '\$' do not matter

alfalfa\$alfeats
lfa\$alfeatsalfa

S = alfeatsalfalfa

i	cyclic shift
0	alfeatsalfalfa\$
1	lfeatsalfalfa\$a
2	featsalfalfa\$al
3	eatsalfalfa\$alf
4	atsalfalfa\$alfe
5	tsalfalfa\$alfea
6	salfalfa\$alfeat
7	alfalfa\$alfeats
8	lfalfa\$alfeatsa
9	falfa\$alfeatsal
10	alfa\$alfeatsalf
11	lfa\$alfeatsalfa
12	fa\$alfeatsalfal
13	a\$alfeatsalfalf
14	\$alfeatsalfalfa

- Can refer to a cyclic shift by the start index in the text, no need to write it out explicitly
- For sorting, letters after '\$' do not matter

lfa\$alfeatsalfa salfalfa\$alfeat

S = alfeatsalfalfa

i	cyclic shift
0	alfeatsalfalfa\$
1	lfeatsalfalfa\$a
2	featsalfalfa\$al
3	eatsalfalfa\$alf
4	atsalfalfa\$alfe
5	tsalfalfa\$alfea
6	salfalfa\$alfeat
7	alfalfa\$alfeats
8	lfalfa\$alfeatsa
9	falfa\$alfeatsal
10	alfa\$alfeatsalf
11	lfa\$alfeatsalfa
12	fa\$alfeatsalfal
13	a\$alfeatsalfalf
14	\$alfeatsalfalfa

- Can refer to a cyclic shift by the start index in the text, no need to write it out explicitly
- For sorting, letters after '\$' do not matter

lfa\$alfeatsalfa
lfalfa\$alfeatsa

S = alfeatsalfalfa

i	cyclic shift
0	alfeatsalfalfa\$
1	lfeatsalfalfa\$a
2	featsalfalfa\$al
3	eatsalfalfa\$alf
4	atsalfalfa\$alfe
5	tsalfalfa\$alfea
6	salfalfa\$alfeat
7	alfalfa\$alfeats
8	lfalfa\$alfeatsa
9	falfa\$alfeatsal
10	alfa\$alfeatsalf
11	lfa\$alfeatsalfa
12	fa\$alfeatsalfal
13	a\$alfeatsalfalf
14	\$alfeatsalfalfa

- Can refer to a cyclic shift by the start index in the text, no need to write it out explicitely
- For sorting, letters after '\$' do not matter
- This is the same as sorting suffixes of S
- We already know how to do it
 - exactly as for suffix arrays, with MSD-Radix-Sort
 - $O(n \log n)$ running time

S = alfeatsalfalfa\$

i	cyclic shift
0	alfeatsalfalfa\$
1	lfeatsalfalfa\$a
2	featsalfalfa\$al
3	eatsalfalfa\$alf
4	atsalfalfa\$alfe
5	tsalfalfa\$alfea
6	salfalfa\$alfeat
7	alfalfa\$alfeats
8	lfalfa\$alfeatsa
9	falfa\$alfeatsal
10	alfa\$alfeatsalf
11	lfa\$alfeatsalfa
12	fa\$alfeatsalfal
13	a\$alfeatsalfalf
14	\$alfeatsalfalfa

j	$A^s[j]$	sorted cyclic shifts
0	14	\$alfeatsalfalfa
1	13	a\$alfeatsalfalf
2	10	alfa\$alfeatsalf
3	7	alfalfa\$alfeats
4	0	alfeatsalfalfa\$
5	4	atsalfalfa\$alfe
6	3	eatsalfalfa\$alf
7	12	fa\$alfeatsalfal
8	9	falfa\$alfeatsal
9	2	featsalfalfa\$al
10	11	lfa\$alfeatsalfa
11	8	lfalfa\$alfeatsa
12	1	lfeatsalfalfa\$a
13	6	salfalfa\$alfeat
14	5	tsalfalfa\$alfea

• Can read BWT encoding from suffix array in O(n) time

cyclic shift starts at S[14]

we need the last letter of that cyclic shift, it is at S[13]

a

• Can read BWT encoding from suffix array in O(n) time

$$S = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\ a & I & f & e & a & t & s & a & I & f & a & I & f & a & ξ \end{bmatrix}$$

cyclic shift starts at S[13]

we need the last letter of that cyclic shift, it is at S[12]

a f

• Can read BWT encoding from suffix array in O(n) time

cyclic shift starts at S[5]

we need the last letter of that cyclic shift, it is at S[4]

affs\$eflllaaata

affs\$eflllaaata

j	$A^{s}[j]$	
0	14	\$alfeatsalfalfa
1	13	a\$alfeatsalfalf
2	10	alfa\$alfeatsalf
3	7	alfalfa\$alfeats
4	0	alfeatsalfalfa\$
5	4	atsalfalfa\$alfe
6	3	eatsalfalfa\$alf
7	12	fa\$alfeatsalfa1
8	9	falfa\$alfeatsa1
9	2	featsalfalfa\$a1
10	11	lfa\$alfeatsalfa
11	8	lfalfa\$alfeatsa
12	1	lfeatsalfalfa\$a
13	6	salfalfa\$alfeat
14	5	tsalfalfa\$alfea


```
C = affs  eflllaaata
```

- Unsorted array of cyclic shifts
 - the first column is the original S

```
alfeatsalfalfa$
1 featsalfalfa$a
featsalfalfa$al
eatsalfalfa$alf
atsalfalfa$alfe
tsalfalfa$alfea
salfalfa$alfeat
alfalfa$alfeats
1 falfa$alfeatsa
falfa$alfeatsal
alfa$alfeatsalf
1 fa$alfeatsalfa
fa$alfeatsalfal
a $ a l f e a t s a l f a l f
$alfeatsalfalfa
```


C = affs = flllaaata

- Given *C*, last column of sorted shifts array
- Can reconstruct the first column of sorted shifts array by sorting
 - first column has exactly the same characters as the last column
 - and they must be sorted

•	•	•	•	•	•	•	•	•	•	а
•	•	•	•	•	•	•	•	•	•	f
•	•	•	•	•	•	•	•	•	•	f
•	•	•	•	•	•	•	•	•	•	S
•	•	•	•	•	•	•	•	•	•	\$
										ė
				•	_					f
•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	1
•	•	•	•	•	•	•	•	•	•	1
•	•	•	•	•	•	•	•	•	•	1
•	•	•	•	•	•	•	•	•	•	а
•	•	•	•	•	•	•	•	•	•	а
•	•	•	•	•	•	•	•	•	•	а
•	•	•	•	•	•	•	•	•	•	t
•	•	•	•	•	•	•	•	•	•	a

```
C = affs = flllaaata
```

- Given *C*, last column of sorted shifts array
- Can reconstruct the first column of sorted shifts array by sorting
 - first column has exactly the same characters as the last column
 - and they must be sorted
 - Also need row number for decoding

•	•	•	•	•	•	•	•	•	•	a	,	0	
•	•	•	•	•	•	•	•	•	•	f	,	1	
•	•	•	•	•	•	•	•	•	•	f	,	2	
•	•	•	•	•	•	•	•	•	•	S	,	3	
•	•	•	•	•	•	•	•	•	•	\$,	4	
•	•	•	•	•	•	•	•	•	•	е	,	5	
•	•	•	•	•	•	•	•	•	•	f	,	6	
•	•	•	•	•	•	•	•	•	•	1	,	7	
•	•	•	•	•	•	•	•	•	•	1	,	8	
•	•	•	•	•	•	•	•	•	•	1	,	9	
•	•	•	•	•	•	•	•	•	•	а	,	1	0
•	•	•	•	•	•	•	•	•	•	а	,	1	1
•	•	•	•	•	•	•	•	•	•	а	,	1	2
•	•	•	•	•	•	•	•	•	•	t	,	1	3
_			_	_	_	_	_	_	_	а		1	4

```
C = affs$eflllaaata
```

- Now have the first and the last columns of sorted shifts array
 - use stable sort
 - equal letters stay in the same order

```
$,4....a,0
a, 0....f, 1
a, 10....f, 2
a, 11....s, 3
a, 12....$, 4
a,14....e,5
e,5....f,6
f, 1....., 7
f, 2.......8
f, 6.........9
1,7....a,10
1,8....a,11
1,9....a,12
s, 3....t, 13
t, 13....a, 14
```



```
C = affs$eflllaaata
```

- Now have the first and the last columns of sorted shifts array
- Key for decoding is figuring out where in the sorted shifts array are the unsorted rows 0, 1, ...
- Where is row 0 of unsorted shifts array?
 - must end with '\$'

```
$,4....a,0
a, 0....f, 1
a, 10....f, 2
a, 11....s, 3
a, 12....$, 4
a, 14...e, 5
e,5....f,6
f, 2.........8
f, 6.........9
1,7....a,10
1,8....a,11
1,9....a,12
s, 3....t, 13
t, 13....a, 14
```



```
C = affs$eflllaaataS = a
```

- Row = 0 of unsorted shifts starts with a
- Therefore
 - string S starts with a
- Where is row = 1 of the unsorted shifts array?

```
$,4....a,0
a, 0....f, 1
a, 10....f, 2
a, 11....s, 3
a, 12....$, 4
a, 14...e, 5
e,5....f,6
f, 1....., 7
f, 2.......8
f, 6.........9
1,7....a,10
1,8....a,11
1,9....a,12
s,3....t,13
t, 13....a, 14
```


$$C = affs$$
\$eflllaaata

- In the unsorted shifts array, any row ends with the first letter of previous row
 - unsorted row 1 ends with the same letter that unsorted row 0 begins with

```
alfeatsalfalfa$
1 featsalfalfa$a
featsalfalfa$al
eatsalfalfa$alf
atsalfalfa$alfe
tsalfalfa$alfea
salfalfa$alfeat
alfalfa$alfeats
1 falfa$alfeatsa
falfa$alfeatsal
alfa$alfeatsalf
1 fa$alfeatsalfa
fa$alfeatsalfal
a$alfeatsalfalf
$alfeatsalfalfa
```



```
C = affs$eflllaaataS = a
```

- Row = 0 of unsorted shifts starts with a
- Therefore
 - string S starts with a
- Where is row = 1 of the unsorted shifts array?
 - row = 1 of unsorted shifts array ends with a

```
$,4....a,0
a, 0....f, 1
a, 10....f, 2
a, 11....s, 3
a, 12....$, 4
a, 14...e, 5
e,5....f,6
f, 1....., 7
f, 2.......8
f, 6.........9
1,7....a,10
1,8....a,11
1,9....a,12
s, 3....t, 13
t, 13....a, 14
```



```
C = affs$eflllaaataS = a
```

- Row = 0 of unsorted shifts starts with a
- Therefore
 - string S starts with a
- Where is row = 1 of the unsorted shifts array?
 - row = 1 of unsorted shifts array ends with a
- Multiple rows end with a, which one is row 1 of unsorted shifts?

```
$,4....a,0
a, 0....f, 1
a,10....f,2
a, 11....s, 3
a, 12....$, 4
a, 14....e, 5
e,5....f,6
f,1.....,7
f,6.........9
1,7...a,10
1,8....a,11
1,9....a,12
s,3....t,13
t, 13....a, 14
```


S = alfeatsalfalfa\$

 Consider all patterns in sorted array that start with 'a'

```
$alfeatsalfalfa
a$alfeatsalfalf
alfa$alfeatsalf
alfalfa$alfeats
alfeatsalfalfa$
atsalfalfa$alfe
eatsalfalfa$alf
fa$alfeatsalfal
falfa$alfeatsal
featsalfalfa$al
lfa$alfeatsalfa
lfalfa$alfeatsa
lfeatsalfalfa$a
salfalfa$alfeat
tsalfalfa$alfea
```


S = alfeatsalfalfa\$

 Consider all patterns in sorted array that start with 'a'

```
a $ a l f e a t s a l f a l f a $ a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f e a t s a l f a l f a l f e a t s a l f a l f a l f e a t s a l f a l f a l f e a t s a l f a l f e l f a l f e a t s a l f a l f e a t s a l f a l f e a t s a l f a l f e a t s a l f a l f e a t s a l f a l f e a t s a l f a l f e a t s a l f a l f e a t s a l f a l f e a t s a l f a l f e a t s a l f a l f e a t s a l f a l f e a t s a l f a l f e a t s a l f a l f e a t s a l f a l f e a t s a l f a l f e a t s a l f a l f e a t s a l f a l f e a t s a l f a l f e a t s a l f a l f e a t s a l f a l f e a t s a l f a l f e a t s a l f a l f e a t s a l f a l f e a t s a l f a l f e a t s a l f a l f e a t s a l f a l f e a t s a l f a l f e a t s a l f a l f e a t s a l f a l f e a t s a l f e a t s a l f a l f e a t s a l f e a t s a l f a l f e a t s a l f e a t s a l f a l f e a t s a l f a l f e a t s a l f a l f e a t s a l f a l f e a t s a l f e a t s a l f a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l
```

Take their cyclic shifts (by one letter)

```
$alfeatsalfalfa
lfa$alfeatsalfa
lfalfa$alfeatsa
lfeatsalfalfa$a
tsalfalfa$alfea
```

- Find them in sorted array of cyclic shifts
- They have 'a' at the end, and are the only rows that have 'a' at the end
- They appear in the same relative order as before cyclic shift
 - for patterns with same first letter, cyclic shift by one letter does not change relative sorting order

sorted shifts array

\$alfeatsalfalf**a** a\$alfeatsalfalf alfa\$alfeatsalf alfalfa\$alfeats alfeatsalfalfa\$ atsalfalfa\$alfe eatsalfalfa\$alf fa\$alfeatsalfal falfa\$alfeatsal featsalfalfa\$al lfa\$alfeatsalf**a** lfalfa\$alfeatsa lfeatsalfalfa\$a salfalfa\$alfeat tsalfalfa\$alfe**a**

S = alfeatsalfalfa\$

 Consider all patterns in sorted array that start with 'a'

```
a $ a l f e a t s a l f a l f a $ a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f a l f a $ a l f a l f a $ a l f e a t s a l f a l f a $ a l f e $ a l f a $ a l f e $ a l f a $ a l f e $ a l f a $ a l f e $ a l f a $ a l f e $ a l f a $ a l f e $ a l f a $ a l f e $ a l f a $ a l f e $ a l f a $ a l f e $ a l f a $ a l f e $ a l f a $ a l f e $ a l f a $ a l f e $ a l f a $ a l f e $ a l f a $ a l f e $ a l f a $ a l f e $ a l f a $ a l f e $ a l f a $ a l f e $ a l f a $ a l f e $ a l f a $ a l f e $ a l f a l f a $ a l f e $ a l f a l f a $ a l f e $ a l f a l f a $ a l f e $ a l f a l f a $ a l f e $ a l f a l f a $ a l f e $ a l f a l f a $ a l f e $ a l f a l f a $ a l f e $ a l f a l f a l f a l f a $ a l f e $ a l f a l f a l f a $ a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f
```

Take their cyclic shifts (by one letter)

```
$alfeatsalfalfa
lfa$alfeatsalfa
lfalfa$alfeatsa
lfeatsalfalfa$a
tsalfalfa$alfea
```

```
$alfeatsalfalfa 0
  a$alfeatsalfalf
  alfa$alfeatsalf
11 alfalfa$alfeats
12 )alfeatsalfalfa$
14 atsalfalfa$alfe
  eatsalfalfa$alf
  fa$alfeatsalfal
  falfa$alfeatsal
  featsalfalfa$al
  lfa$alfeatsalfa 10
  lfalfa$alfeatsa 11
  lfeatsalfalfa$a 12
  salfalfa$alfeat
  tsalfalfa$alfea 14
```

- Unsorted row 1 is a cyclic shift by 1 letter of unsorted row 0
 - unsorted row 0 is #4 among all rows starting with 'a'
 - unsorted row 1 is #4 among all rows ending with 'a'

S = alfeatsalfalfa\$

 Consider all patterns in sorted array that start with 'a'

```
a $ a l f e a t s a l f a l f a $ a l f e a t s a l f e a t s a l f e a t s a l f e a t s a l f a l f a $ a l f a l f a $ a l f e a t s a l f a l f a $ a l f e $ a l f a $ a l f e $ a l f a $ a l f e $ a l f a $ a l f e $ a l f a $ a l f e $ a l f a $ a l f e $ a l f a $ a l f e $ a l f a $ a l f e $ a l f a $ a l f e $ a l f a $ a l f e $ a l f a $ a l f e $ a l f a $ a l f e $ a l f a $ a l f e $ a l f a $ a l f e $ a l f a $ a l f e $ a l f a $ a l f e $ a l f a $ a l f e $ a l f a $ a l f e $ a l f a $ a l f e $ a l f a l f a $ a l f e $ a l f a l f a $ a l f e $ a l f a l f a $ a l f e $ a l f a l f a $ a l f e $ a l f a l f a $ a l f e $ a l f a l f a $ a l f e $ a l f a l f a $ a l f e $ a l f a l f a l f a l f a $ a l f e $ a l f a l f a l f a $ a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f a l f
```

Take their cyclic shifts (by one letter)

```
$alfeatsalfalfa
lfa$alfeatsalfa
lfalfa$alfeatsa
lfeatsalfalfa$a
tsalfalfa$alfea
```

```
$alfeatsalfalfa 0
  a$alfeatsalfalf
  alfa$alfeatsalf
11 alfalfa$alfeats
12 )alfeatsalfalfa$
14 atsalfalfa$alfe
  eatsalfalfa$alf
  fa$alfeatsalfal
  falfa$alfeatsal
  featsalfalfa$al
  lfa$alfeatsalfa 10
  lfalfa$alfeatsa 11
  lfeatsalfalfa$a 12
  salfalfa$alfeat
  tsalfalfa$alfea 14
```

- Unsorted row 1 is a cyclic shift by 1 letter of unsorted row 0
 - unsorted row 0 is #4 among all rows starting with 'a'
 - unsorted row 1 is #4 among all rows ending with 'a'


```
C = affs$eflllaaataS = a l
```

- Multiple rows end with a, which one is row 1 of unsorted shifts?
- Unsorted row = 1 is located in row 12 of the sorted shifts

•
$$S[1] = l$$

```
$,4....a,0
a, 0....f, 1
a, 10....f, 2
a <u>, 1</u> 1 . . . . . s , 3
a,12)....$,4
              row 0
a,14...e,5
e,5....f,6
f, 1....., 7
f, 2........8
1,7....a,10
1,8....a,11
1,9....a,12 row 1
s, 3....t, 13
t, 13....a, 14
```


$$C = affs$$
\$eflllaaata $S = alf$

- Unsorted row = 2 is located in row9 of the sorted shifts
 - S[2] = f

```
$,4....a,0
a, 0....f, 1
a, 10....f, 2
a,11....s,3
             row 0
a, 12....$, 4
a, 14...e, 5
e,5....f,6
row 2
f, 6..........9
1,7....a,10
1,8....a,11
l, 9 .....a, 12 row 1
s,3....t,13
t, 13....a, 14
```


$$C = affs$$
\$eflllaaata $S = alf e$

- Unsorted row = 3 is located in row 6 of the sorted shifts
 - S[3] = e

```
$,4....a,0
a, 0....f, 1
a,10...f,2
a, 11....s, 3
            row 0
a,12...$,4
a, 14...e, 5
e,5....f,6
            row 3
f, 1....., 7
row 2
1,7....a,10
1,8....a,11
1,9....a,12 row 1
s,3....t,13
t, 13....a, 14
```


$$C = affs$$
\$eflllaaata $S = alfe a$

- Unsorted row = 4 is located in row 5 of the sorted shifts
 - S[4] = a

\$,	4	•	•	•	•	•	•	•	а	,	0	
a	,	0	•	•	•	•	•	•	•	f	,	1	
а	,	1	0	•	•	•	•	•	•	f	,	2	
а	,	1	1	•	•	•	•	•	•	S	,	3	
а	,	1	2	•	•	•	•	•	•	\$,	4	row 0
a		1	4	•	•	•	•	•	•	е	,	5	row 4
е	,	5	ر ر	•	•	•	•	•	•	f	,	6	row 3
f	,	1	•	•	•	•	•	•	•	1	,	7	
f	,	2	•	•	•	•	•	•	•	1	,	8	
f	,	6	•	•	•	•	•	•	•	1	,	9	row 2
1	,	7	•	•	•	•	•	•	•	а	,	1 0	
1	,	8	•	•	•	•	•	•	•	а	,	1 1	
1	,	9	•	•	•	•	•	•	•	а	,	1 2	row 1
S	,	3	•	•	•	•	•	•	•	t	,	1 3	
t	,	1	3	•	•	•	•	•	•	а	,	1 4	


```
S = alfeatsalfalfa$
```

```
$,4....a,0
               row 14
a, 0....f, 1
               row 13
               row 10
a, 10....f, 2
               row 7
a, 11....s, 3
               row 0
a, 12....$, 4
               row 4
a, 14...e, 5
               row 3
e,5....f,6
               row 12
row 9
f, 2.........8
               row 2
row 11
1,7....a,10
               row 8
1,8....a,11
               row 1
1,9....a,12
               row 6
s,3....t,13
t, 13....a, 14 row 5
```



```
BWT::decoding(C[0...n-1], S)
C: string of characters over alphabet \Sigma_C, S: output stream
     A \leftarrow \text{array of size } n // \text{ leftmost column}
     for i = 0 to n - 1
           A[i] \leftarrow (C[i], i) // store character and index
     stably sort A by character
     for j = 0 to n // find $
         if C[j] = $ break
     repeat
          S. append (character stored in A[j])
          j \leftarrow \text{index stored in } A[j]
     until we have appended $
```


BWT Overview

Encoding cost

- $O(n \log n)$ with special sorting algorithm
 - in practice MSD sort is good enough but worst case is $\Theta(n^2)$
- read encoding from the suffix array

Decoding cost

- faster than encoding
- $O(n + |\Sigma_S|)$
- Encoding and decoding both use O(n) space
- They need all of the text (no streaming possible)
 - can use on blocks of text (block compression method)
- BWT tends to be slower than other methods
- But combined with MTF, RLE and Huffman leads to better compression

Compression Summary

Huffman	Run-length encoding	Lempel-Ziv-Welch	Bzip2 (uses Burrows-Wheeler
variable-length	variable-length	fixed-length	multi-step
single-character	multi-character	multi-character	multi-step
2-pass	1-pass	1-pass	not streamable
60% compression on English text	bad on text	45% compression on English text	70% compression on English text
optimal 01-prefix-code	good on long runs (e.g., pictures)	good on English text	better on English text
requires uneven frequencies	requires runs	requires repeated substrings	requires repeated substrings
rarely used directly	rarely used directly	frequently used	used but slow
part of pkzip, JPEG, MP3	fax machines, old picture- formats	GIF, some variants of PDF Unix compress	bzip2 and variants

