CS 240 — Data Structures and Data Management

Module 11: External Memory

T. Biedl E. Schost O. Veksler

Based on lecture notes by many previous ¢s240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2021

version 2021-04-07 16:31

C5240 — Module 11 Winter 2021 1/37

Outline

@ External Memory
@ Motivation
@ Stream-based algorithms
@ External sorting
@ External Dictionaries
@ 2-4 Trees

® a-b-Trees
@ B-Trees

C5240 — Module 11 Winter 2021

Qutline

@ External Memory
@ Motivation

C5240 — Module 11

Different levels of memory

Current architectures:
o registers (very fast, very small) =
cache L1, L2 (still fast, less small) yd

°
@ main memory el
o disk or cloud (slow, very large) _~

General question: how to adapt our algorithms to take the memory
hierarchy into account, avoiding transfers as much as possible?

Observation: Accessing a single location in external memory
(e.g. hard disk) automatically loads a whole block (or “page”).

C5240 — Module 11 Winter 2021 2/37

The External-Memory Model (EMM)
crrrrrrrr e PP PP e

external memory — size unbounded

A I e PP
transfer in blocks of B cells (slow)
PO —
.

(LTI TTTTTITITTITITITT]

internal memory — size M
WA

random access (fast)

New objective: revisit all algorithms/data structures with the objective of

[ETY

minimizing block transfers (“probes”, “disk transfers”, “page loads")

Bied|, Schost, Ve M) CS240 — Module 11 Winter 2021 3/37

Qutline

@ External Memory

@ Stream-based algorithms

C5240 — Module 11

Streams and external memory

If input and output are handled via streams, then we automatically use
©(4) block transfers.

L
2 AREIEE AEEEE y- - | external
— -—

[
next block of input for next blr of output memory

transfer when empty transfer when full
gw" \-]
Gelal T 1] l:
T
E‘l +M-‘(‘5 ? otk on tall internal memo
B

NEREEAmE R [T

——1

*1»2(/?

Bied|, Schost, Veksler (SCS, UW) C5240 — Module 11 Winter 2021 4 /37

Streams and external memory

If input and output are handled via streams, then we automatically use
©(4) block transfers.

G T [l - - | external
memory

[—
next block of input for next block of output

transfer when empty transfer when full

CETT A~y TEEE |
K internal memory
top work on tail

So can do the following with ©(5) block transfers:

@ Pattern matching: Karp-Rabin, Knuth-Morris-Pratt, Boyer-Moore
(This assumes that pattern P fits into internal memory.)

@ Text compression: Huffman, run-length encoding, Lempel-Ziv-Welch

Bied|, Schost, V (SCS, UW) C5240 — Module 11 Winter 2021 4 /37

Qutline

@ External Memory

@ External sorting

C5240 — Module 11

Sorting in external memory

Recall: The sorting problem:
Given an array A of n numbers, put them into sorted order.

Now assume n is huge and A is stored in blocks in external memory.

@ Heapsort was optimal in time and space in RAM model

@ But: Heapsort accesses A at indices that are far apart
~ typically one block transfer per array accesse—

~= typically ©(nlogn) block transfers. p o
Can we do better? v \7_

/
4 s 6
0,3 %5, .- /-\‘4\/\/\/\

C5240 — Module 11 Winter 2021 5 /37

Bied|, Schost,

Sorting in external memory

Recall: The sorting problem:
Given an array A of n numbers, put them into sorted order.

Now assume n is huge and A is stored in blocks in external memory.

@ Heapsort was optimal in time and space in RAM model

@ But: Heapsort accesses A at indices that are far apart
~+ typically one block transfer per array access
~= typically ©(nlogn) block transfers.
Can we do better?

@ Mergesort adapts well to external memory. Recall algorithm:
» Split input in half
» Sort each half recursively — two sorted parts
» Merge sorted parts.

Key idea: Merge can be done with streams.

Bied|, Schost, V (SCS, UW) CS240 — Module 11 Winter 2021 5 /37

Merge

Merge(S1, $2, S)
51, S,: input streams that are in sorted order, S: output stream

1. while 5; or S5 is not empty do
if (S1 is empty) S.append(Sz.pop())e&—
else if (52 is empty) S.append(S:.pop())ae—
else if (S1.ton() < S2.top()) S.append[sl.pop!))
else S.append(S,.pop())

e —

internal memory 9(%'X *M&’:

fer block
whenempry ¥St[1[8]3] | J& el
¢

S OEmMELS
i

o wN

Here B =5
—

Bied|, Schost, M) CS240 — Module 11 Winter 2021 6 /37

Mergesort in external memory

@ Merge uses streams 51,59, S.
= Each block in the stream only transferred once.

@ So Merge takes ©(5) block-transfers to merge m elements

—— ————————
(o Recall: Mergesort uses [log, n| rounds of merging, each round merges
n elements

= Mergesort uses O(- log, n) block-transfers.

e
)

Not bad, but we can do better.

\‘u‘w\': ol mloaﬁ \Aoo\a Lm»s{us

C5240 — Module 11 Winter 2021 T/37

Towards d-way Mergesort

Recall: Mergesort uses [log, n| rounds of splitting-and-merging.
N=ly

r%ﬂi%%%%%%%'%%%%“:;m
JLLLLLLARA

JALAAAARARAARARARIAL

Towards d-way Mergesort
Observe: We had space left in internal memory during merge.

wnen ey | ST T Be§ e "
SEITTT

@ We use only three blocks, but typically M > 22
@ ldea: We could merge d_parts at once.

@ Here d = % — 1 so that d+1 blocks fit into internal memory.
— =n/y ﬂ

sifufe] |]
transfer block ! transfer block
when empty 5,a when full

T
e — —
T
dt |sEmTm
T
S o

Bied|, Schost, V CS, UW) C5240 — Module 11 Winter 2021 9 /37

d-way merge

S1,...,54: input streams that are in sorted order, S: output stream
“1. P77 empty min-oriented priority queue
2. [fori< 1to ddo P.insert((S;.top(),i))
// each item in P keeps track of its input-steam
while P is not empty do
(X, i) + P.deleteMin()
S.append[s,'fff[}}k
if S; is not empty do
P.insert((S;.top().i))

sifafe]x] [| .
transfer block @ transfer block

11 X
’
wn amey | (6T T [| [T B[] s fvhen
— T
sl 2 ©
T

s 1] @

T

d-way-merge(Sa, . . ., S4,5)

No o s w

v,

C5240 — Module 11 Winter 2021 10 / 37

d-way merge

4yt an
@ We use a min-oriented priority queue P to find the next item to add
to the output.
» This is irrelevant for the number of block transfers.
» But there is no space-overhead needed for a priority queue.
(Recall: heaps are typically implemented as arrays.)
» And with this the run-time (in RAM-model) is O[nl_g_d)
e The items in P store not only the next key but also the index of the
stream that contained the item.
» With this, can efficiently find the stream to reload from.

We assume d is such that d + 1 blocks and P fit into main memory.

O —————

The number of block transfers then is again O(3).
™

Bied|, Schost, Veksle S, UW) C5240 — Module 11 Winter 2021 11 /37

d-way merge

@ We use a min-oriented priority queue P to find the next item to add
to the output.

» This is irrelevant for the number of block transfers.

» But there is no space-overhead needed for a priority queue.
(Recall: heaps are typically implemented as arrays.)

» And with this the run-time (in RAM-model) is O(nlog d).

@ The items in P store not only the next key but also the index of the
stream that contained the item.

» With this, can efficiently find the stream to reload from.
@ We assume d is such that d + 1 blocks and P fit into main memory.

@ The number of block transfers then is again O(g).

How does d-way merge help to improve external sorting?

Bied|, Schost, Vi M) C5240 — Module 11 Winter 2021 11 /37

Towards d-way Mergesort

Recall: Mergesort uses [log, n| rounds of splitting-and-merging.

array of size 64

NSRS

| LRACLOARAR LA AL AR AL

Towards d-way Mergesort

Observe: If we split and merge d-ways, there are fewer rounds.

EVREETIR)

[|0g3n] [mnmnmnn] ||||‘<|| ‘

i e e, Nl N
RS A A A A

® Number of rounds is now [logy n]

@ We choose d such that each round uses ©(3) block transfers
(Then the number of block transfers is G(Iogd n-z).)
@ Two further improvements:

Ta(w). “a
» Proceed bottom-up (while-loops) rather than gp recursmns)

~* Save more rounds by starting immediately with runs of length My

Biedl, Schost, Veksler (SCS, UW)

C5240 — Module 11

Winter 2021 13 /37

d-way mergesort

External (B = 2):

[29] 5 J28]2210[33]28]37] & [ao[sa[ac[31]s2]21]as]3s 11 a2]s3]13[12as]36] a Jra[2r] o Jaa] 3 [32[1s]as]2 [ua] 6 Jas[2afzo] 1 J2a] 7 Tusfav]aa]16aa[sck=

Internal (M = 8):

LTIl

N3
@ Create f; sorted runs of length M.

C5240 — Module 11

Winter 2021

14 / 37

d-way mergesort

External (B = 2):

[35] 5 [28[za10[33[28[37] & [3o[sa]ao[31]52[21[as[35]11 a2]53[13]12[aa[36] 4 [1a] 2] @ [a] 3 [32[1s[a3] 2 [i7] 6 [a[23[z0] 1 [2a] 7 [1a[a7]26]16]as]5a]

Internal (M = 8):
[39] 5 [28]22[10[33]29]37]

@ Create f; sorted runs of length M.

Bied|, S¢ d . C5240 — Module 11 Winter 2021 14 /37

d-way mergesort

External (B = 2):

[35] 5 [28[za10[33[28[37] & [3o[sa]ao[31]52[21[as[35]11 a2]53[13]12[aa[36] 4 [1a] 2] @ [a] 3 [32[1s[a3] 2 [i7] 6 [a[23[z0] 1 [2a] 7 [1a[a7]26]16]as]5a]

Internal (M = 8):
[5 [10]22]28]29]33]37]39]

@ Create f; sorted runs of length M.

Bied|, S¢ d . C5240 — Module 11 Winter 2021 14 /37

d-way mergesort

External (B = 2):

5 [10[22[28[28[33[3739] & [aa[saa0]31]52]21]as 35 11]a2]53]13]12[as[36] 4 [1a] 5] & [4a] 3 [32[15[as] 2 [17] 6 [as[23[20[1 [24]7 [1a[a72é]16]48]50]

serted run

Internal (M = 8):

LTIl

@ Create f; sorted runs of length M.

C5240 — Module 11

Winter 2021

14 / 37

d-way mergesort

External (B = 2):

[5 [olz2eaaa [ae & eisofE i aefas[safaiiz[ia]asaaaaa[s3] 3 [a [@ [w[s[zi3afaa] 1 [2 [6 [ui[ee[2a[aa]as] 7 [ie[ie[aa]asfar[ae]50]

serted run serted run serted run serted run serted run serted run

Internal (M = 8):

LTIl

|=

@ Create {; sorted runs of length M. ©(

) block transfers

2]

=

C5240 — Module 11 Winter 2021

14 / 37

d-way mergesort

External (B = 2)-
| EE ., A S ER R EE D (A P EE EE EE R Y e e
=

sorted run sorted run serted run sorted run sorted run B sorted run
LI T T T T T T T I T T T T T T I T T T I I T T I I T T T I T T I I T T T T I T T T I ITTT1]
Internal (M = 8): A
|5]_OI 8 211111112 | I (priority queue not shown) _""
S s s s 8
NG S~~~ -
=2.1%

@ Create 4 sorted runs of length M. ©(3) block transfers 2
@ Merge the first d = % — 1 sorted runs using d-Way-Merge

CS240 — Module 11 Winter 2021 14 /37

d-way mergesort

External (B = 2):

[EI0[zee2e33[27 28] 8 P01 ac as 2 [rai2 i3 ea 3a[az[aa[53] 3[4] & [1a[1s[27[32[aa 1 [2 6 [t7[2023[a3[as] 7 [r6[1e[2a[z6[a7[az]50]

sorted run serted run T serted run serted run sorted run serted run

Internal (M = 8):
| ‘10” 8 |21H11|12H 5 | | (priority queue not shown)

S, S5 S s

@ Create g sorted runs of length M. ©(3) block transfers
@ Merge the first d = % — 1 sorted runs using d-Way-Merge

C5240 — Module 11 Winter 2021 14 /37

d-way mergesort

External (B = 2):

[EI0[zee2e33[27 28] 8 P01 ac as 2 [rai2 i3 ea 3a[az[aa[53] 3[4] & [1a[1s[27[32[aa 1 [2 6 [t7[2023[a3[as] 7 [r6[1e[2a[z6[a7[az]50]

sorted run serted run T serted run serted run sorted run serted run

Internal (M = 8):
| ‘10” |21H11|12H 5 | 8 | (priority queue not shown)

S, S5 S s

@ Create g sorted runs of length M. ©(3) block transfers
@ Merge the first d = % — 1 sorted runs using d-Way-Merge

C5240 — Module 11 Winter 2021 14 /37

d-way mergesort

External (B = 2):
[EI0[zee2e33[27 28] 8 P01 ac as 2 [rai2 i3 ea 3a[az[aa[53] 3[4] & [1a[1s[27[32[aa 1 [2 6 [t7[2023[a3[as] 7 [r6[1e[2a[z6[a7[az]50]

serted run serted run serted run serted run serted run serted run
T T T T T T I T T T T T T I I T T I T T I T TTITTIITITITTIITIITTITITTT]
—
Internal (M = 8):
| ‘10” |2]_ ‘ []_]_l 12 ‘ ‘ | | (priority queue not shown)
5 5 53 5

@ Create g sorted runs of length M. ©(3) block transfers
@ Merge the first d = % — 1 sorted runs using d-Way-Merge

Winter 2021 14 /37

CS240 — Module 11

d-way mergesort

External (B = 2):

[EI0[zee2e33[27 28] 8 P01 ac as 2 [rai2 i3 ea 3a[az[aa[53] 3[4] & [1a[1s[27[32[aa 1 [2 6 [t7[2023[a3[as] 7 [r6[1e[2a[z6[a7[az]50]

sorted run serted run T serted run serted run sorted run serted run

G T T I I T T I T I T T I I T T T I T T I I T I T I T I I T I TITIITTIITITIT1]

Internal (M = 8):
| ‘ || |21 ‘ []_]_l 12 ‘ ‘]_Ol | (priority queue not shown)

S, S5 S s

@ Create g sorted runs of length M. ©(3) block transfers
@ Merge the first d = % — 1 sorted runs using d-Way-Merge

C5240 — Module 11 Winter 2021 14 /37

d-way mergesort

External (B = 2):

]nazgmpﬂmls Ao [acfas[s2 sa[ia[i2[1325 [3a[a2[aa]5a] 3 [a [@ [[1s[27[32[aa[1 2 & [17]20[23[a3[a6] 7 [1e[1a[2a[2a a7 [aa[50]
7

sorted run serted run T serted run serted run sorted run serted run

G T T I I T T I T I T T I I T T T I T T I I T I T I T I I T I TITIITTIITITIT1]

Internal (M = 8):
[22[28][[21][11][12][10] | (prioviy queve ot show)

S, S5 S s

@ Create g sorted runs of length M. ©(3) block transfers
@ Merge the first d = % — 1 sorted runs using d-Way-Merge

C5240 — Module 11 Winter 2021 14 /37

d-way mergesort

External (B = 2):

22[ea[2a[33[37 e PARo 1 [ac[as[s2sa[ia[i2[1325 3a[a2[aal5a] 3 [a [@ [[1s[27[32[aa[1 2 [& [17]20[23[as[a6] 7 [1e[1a[2a[2a a7[aa[s0]

sorted run serted run T serted run serted run sorted run serted run

G T T I I T T I T I T T I I T T T I T T I I T I T I T I I T I TITIITTIITITIT1]

Internal (M = 8):
[22[28][[21]| [12][10][11] (prioviy queve ot show)

S, S5 S s

@ Create g sorted runs of length M. ©(3) block transfers
@ Merge the first d = % — 1 sorted runs using d-Way-Merge

C5240 — Module 11 Winter 2021 14 /37

d-way mergesort

External (B = 2):

22[ea[2a[33[37 e PARo 1 [ac[as[s2sa[ia[i2[1325 3a[a2[aal5a] 3 [a [@ [[1s[27[32[aa[1 2 [& [17]20[23[as[a6] 7 [1e[1a[2a[2a a7[aa[s0]

sorted run serted run T serted run serted run sorted run serted run

Gl [T T T T ITTTT I I I I T I I I I I T TITIITTIITITIT1]
—

Internal (M = 8):
Bpa P B[] e e

S, S5 S s

@ Create g sorted runs of length M. ©(3) block transfers
@ Merge the first d = % — 1 sorted runs using d-Way-Merge

C5240 — Module 11 Winter 2021 14 /37

d-way mergesort

External (B = 2):

A A A A A D D D D D 0 0 A £ £ 5 5 2 3 D 2

- b 3
serted run serted run serted run

-
ha Y
ElﬂI10I11I12I13I21I22I28I29I10|31I33I35I16I3?I39I40I42I45I49I52|53I54l [TITTTITTITITIITITTIITIITITITIT]

serted run

Internal (M = 8):

| ‘ | | | ‘ [| ‘ ‘ | | (priority queue not shown)

S, S5 S s

@ Create g sorted runs of length M. ©(3) block transfers
@ Merge the first d = % — 1 sorted runs using d-Way-Merge

C5240 — Module 11 Winter 2021 14 /37

d-way mergesort

External (B = 2):
LTI T I I T I IT I I ITITIITITIT1]

[5 T Jro[ua]iz13]a1]222a e 3031 33 35 36 37 3a]anaz]as[as]52]sa]sa] 1] 2 [3T a] 6] 7 [& [ra[usia]ir]1a[ao[23]za]26]27 32]a3]aa]asa7]ae]50] (

sorted run sorted run
Internal (M = 8):
| ‘ | | | ‘ [| ‘ ‘ | | (priority queue not shown)
5 S S3 s

@ Create g sorted runs of length M. ©(3) block transfers
@ Merge the first d = % — 1 sorted runs using d-Way-Merge

© Keep merging the next runs to reduce # runs by factor of d
~+ one round of merging. ©(5) block transfers

C5240 — Module 11 Winter 2021 14 /37

d-way mergesort

External (B = 2):

[tTz]2]a]s e a7 [rofafrzfuafra]is]ua]171a[20]z1]2223]2a 26 2728 2e] 0] 31 3233353637 e[an]az]a3]aa]as]asa7 as]aa]50]52]53]54]

serted run

[5 T Jro[ua]iz13]a1]222a e 3031 33 35 36 37 3a]anaz]as[as]52]sa]sa] 1] 2 [3T a] 6] 7 [& [ra[usia]ir]1a[ao[23]za]26]27 32]a3]aa]asa7]ae]50]

sorted run sorted run
Internal (M = 8):
| ‘ | | | ‘ [| ‘ ‘ | | (priority queue not shown)
5 S S3 s

@ Create ; sorted runs of length M. ©(3) block transfers 4=——
@ Merge the first d = % — 1 sorted runs using d-Way-Merge

© Keep merging the next runs to reduce # runs by factor of d
~+ one round of merging. ©(5) block transfers

@ Keep doing rounds until only one run is Ieft‘/

C5240 — Module 11 Winter 2021 14 /37

d-way mergesort

e We have log,(;) rounds of merging:
= _runs after initialization g

C: &7/ d)runs after one round. N ‘
L r k roun 2. - =
:M d s after k rounds = k < log,({F) N-Ak'
(’9 Jh_—_ lﬁ (‘/H.)
LY/ [N
=D h-_— (/H)
(= h=ly .

"/
. AT

“/l)kfac)(“\

C5240 — Module 11 Winter 2021 15 / 37

Biedl, Schost, Veksler (SCS, UW)

d-way mergesort

e We have log,(;) rounds of merging:

» 4 runs after initialization —— 0(—3
» 4;/d runs after one round. &

» & /d* runs after k rounds = k < logy(#).

o We have(O(%) block-transfers per round.
o d= % -1

= Total # block transfers is proportional to

loga(#7) - 8y € Ollogws(77)-

bompiort wlogln)

werjsort % log(n)
duoy et 8 logy (3)
i by w2 h h)

?13

0—

W
®I1=x

Biedl, Schost, Veksler (SCS, UW) C5240 — Module 11

Winter 2021 15 / 37

d-way mergesort

e We have log,(;) rounds of merging:

» 4 runs after initialization

> 1;/d runs after one round.
> ﬁ/dk runs after k rounds = k < log,(7).

@ We have O() block-transfers per round.
~ M
. d o~ § - 1.
= Total # block transfers is proportional to

logy(#7) -) € O(logns(7) - &)

One can prove lower bounds in the external memory model:

We require Q2(log /5 (7)- %) block transfers in any comparison-
based sorting algorithm.

(The proof is beyond the scope of the course.)

CS240 — Module 11 Winter 2021 15 / 37

d-way mergesort

e We have log,(;) rounds of merging:
» 4 runs after initialization
» 4;/d runs after one round.

» & /d* runs after k rounds = k < logy(#).
@ We have O() block-transfers per round.
~ M
. d L § - 1.
= Total # block transfers is proportional to

logy(#7) -) € O(logns(7) - &)

One can prove lower bounds in the external memory model:

We require Q2(log /5 (7)- %) block transfers in any comparison-

based sorting algorithm.
(The proof is beyond the scope of the course.)

e d-way mergesort is optimal (up to constant factors)!

CS240 — Module 11 Winter 2021 15 / 37

Qutline

@ External Memory

@ External Dictionaries

e d

-

- ¢

C5240 — Module 11

Dictionaries in external memory

Recall: Dictionaries store n KVPs and support search, insert and delete.

@ Recall: AVL-trees were optimal in time and space in RAM model
@ O(log n) run-time = O(log n) block transfers per operation

@ But: Inserts happen at varying locations of the tree.
~+ nearby nodes are unlikely to be on the same block
~ typically ©(log n) block transfers per operation

@ We would like to have fewer block transfers.

Better solution: design a tree-structure that guarantees that many nodes
on search-paths are within one block.

Biedl, Schost, V (CS240 — Module 11 Winter 2021 16 / 37

|dealized structure

block of external memory

@ If block can hold subtree of size b—1, then block covers height log b
= Search-path hits % blocks = ©(log, n) block-transfers

o Block acts as one node of a multiway-tree (b—1 KVPs, b subtrees)

Bied|, Schost, Veksler (SCS, UW) CS240 — Module 11 Winter 2021 17 /37

Towards B-trees

o ldea: Define multiway-tree
» One node stores many KVPs
» Always true: b—1 KVPs < b subtrees l/
— —
e To allow insert/delete, we permit varying numbers of KVPs in nodes

@ This gives much smaller height than for AVL-trees
= fewer block transfers

o Study first one special case: 2-4-trees
——————

» Also useful for dictionaries in internal memory
» May be faster than AVL-trees even in internal memory

Biedl, Schost, V S, UW) CS240 — Module 11 Winter 2021 18 / 37

Qutline

@ External Memory

[@ 2-4 Trees

C5240 — Module 11

2-4 Trees k
|

Structural property: Every node is either / >‘!
@ l-node: one KVP and twg subtrees (p055|bly empty or b?
® 2-node: two KVPs and three subtrees (possibly empty), o
@ 3-node: three KVPs and four subtrees (possibly empty). g

_.’ m—

— —
Order property: The keys at a node are between the keys in the subtrees.
@ With this, search is much like in binary search trees.

ey k] [key ko] Jkey ks]
/ Lok \V\

keys < ki k1< keys <ko ko< keys < ks k3 < keys

Another structural property: All empty subtrees are at the same level.
@ This is important to ensure small height.

Bied|, Schost, M) CS240 — Module 11 Winter 2021 19 / 37

2-4 Tree example

ny

» This tree has height 1 Li(u\ % *L
@ Easy to show: Height is in O(log n), where n = # KVPs.

» Layer i has at least 2 nodes for i =0,..., h &—
» Each node has at least one KVP.

Bied|, Schost, ! (SCS, UW) C5240 — Module 11 Winter 2021 20 /37

2-4 Tree Operations

@ Search is similar to BST:

» Compare search-key to keys at node
> |f not found, recurse in appropriate subtree

Example: search(15)

C5240 — Module 11 Winter 2021 21 /37

2-4 Tree Operations

@ Search is similar to BST:

» Compare search-key to keys at node
> |f not found, recurse in appropriate subtree

Example: search(15)

C5240 — Module 11 Winter 2021 21 /37

2-4 Tree Operations

@ Search is similar to BST:

» Compare search-key to keys at node
> |f not found, recurse in appropriate subtree

Example: search(15) not found

C5240 — Module 11 Winter 2021 21 /37

2-4 Tree operations

/

24Tree::5€arch[%v + root, p + NIL)
k: key to search, v: node where we search, p: parent of v
1. if yrepresents gmpty subtree

return “not found, would be in p”
Let (Tg, ky,. .., kg, Ty) be key-subtree list at v
if k >k

i < maximal index such that k; < k

if ki =k

return key-value pair at k;

else 24 Tree:search(k, T;, v)

else 24 Tree::search(k, Tg, v)

LN e W

C5240 — Module 11 Winter 2021 22 /37

Insertion in a 2-4 tree

Example: insert(10)
@ Do 24Tree:search and add key and empty subtree at leaf.

14]16]

host, Veksler (SCS, UW) CS240 — Module 11 Winter 2021 23 /37

Insertion in a 2-4 tree

Example: insert(10)
@ Do 24Tree:search and add key and empty subtree at leaf.
o If the leaf had room then we are done.

14]16]

eksler (SCS, UW) CS240 — Module 11 Winter 2021 23 /37

Insertion in a 2-4 tree

Example: insert(17)

Do 24Tree::search and add key and empty subtree at leaf.
o If the leaf had room then we are done.

o Else overflow: More keys/subtrees than permitted.

@ Resolve overflow by node splitting.

Biedl|, Scho \ Winter 2021 23 /37

Insertion in a 2-4 tree

Example: insert(17)

Do 24Tree::search and add key and empty subtree at leaf.
o If the leaf had room then we are done.

o Else overflow: More keys/subtrees than permitted.

@ Resolve overflow by node splitting.

[6]8] [10]11] [13[14]Le]

[2] @ i [2} J X1 J i \ﬂ

Winter 2021 23 /37

Insertion in a 2-4 tree

Example: insert(17)

Do 24Tree::search and add key and empty subtree at leaf.
o If the leaf had room then we are done.

o Else overflow: More keys/subtrees than permitted.

@ Resolve overflow by node splitting.

I
I'

Winter 2021

23 /37

Insertion in a 2-4 tree

Example: insert(17)

Do 24Tree::search and add key and empty subtree at leaf.
o If the leaf had room then we are done.

o Else overflow: More keys/subtrees than permitted.

@ Resolve overflow by node splitting.

Winter 2021 23 /37

2-4 Tree operations

24Tree::insert(k)
v ¢ 24Tree::search(k) [/ leaf where k should be
Add k and an empty subtree in key-subtree-list of v
while v has 4 keys (overflow ~~ node split)
Let (Tg, ky,..., ks, T4) be key-subtree list at v -
if (v has no parent) create a parent of v without KVPs
p + parent of v -~
v' < new node with keys ki, k» and subtrees Ty, T1, T>
v + new node with key k4 and subtrees T3, T4
Replace (v) by (v', k3, v"') in key-subtree-list of pg—
10. Vi Pge

LN e W

kH %

C5240 — Module 11 Winter 2021 24 /37

Towards 2-4 Tree Deletion

@ For deletion, we symmetrically will have to handle underflow
(too few keys/subtrees)

@ Crucial ingredient for this: immediate sibling

@ Observe: Any node except the root has an immediate sibling.

Biedl, Schost, CS240 — Module 11 Winter 2021 25 /37

2-4 Tree Deletion

Example: delete(43)
@ 24Tree::search, then trade with successor if KVP is not at a leaf.

Bied|, Schost, Veksler (SCS, UW) C5240 — Module 11 Winter 2021 26 /37

2-4 Tree Deletion

Example: delete(43)
@ 24Tree::search, then trade with successor if KVP is not at a leaf.
o If underflow:

Bied|, Schost, Veksler (SCS, UW) C5240 — Module 11 Winter 2021 26 /37

2-4 Tree Deletion

Example: delete(43)
@ 24Tree::search, then trade with successor if KVP is not at a leaf.

o If underflow:
» If immediate sibling has extras, rotate/transfer

Bied|, Schost, Veksler (SCS, UW) C5240 — Module 11 Winter 2021 26 /37

2-4 Tree Deletion

Example: delete(19)
@ 24Tree::search, then trade with successor if KVP is not at a leaf.

o If underflow:
» If immediate sibling has extras, rotate/transfer

Biedl, Scho CS, UW) C5240 — Module 11 Winter 2021 26 /37

2-4 Tree Deletion

Example: delete(19)
@ 24Tree::search, then trade with successor if KVP is not at a leaf.

e If underflow:

» If immediate sibling has extras, rotate/transfer
» Else node merge (this affects the parent!)

C5240 — Module 11 Winter 2021 26 /37

2-4 Tree Deletion

Example: delete(19)
@ 24Tree::search, then trade with successor if KVP is not at a leaf.

e If underflow:

» If immediate sibling has extras, rotate/transfer
» Else node merge (this affects the parent!)

Biedl, Scho \ CS240 — Module 11 Winter 2021 26 /37

2-4 Tree Deletion

Example: delete(42)
@ 24Tree::search, then trade with successor if KVP is not at a leaf.

e If underflow:

» If immediate sibling has extras, rotate/transfer
» Else node merge (this affects the parent!)

Biedl, Scho \ CS240 — Module 11 Winter 2021 26 /37

2-4 Tree Deletion

Example: delete(42)
@ 24Tree::search, then trade with successor if KVP is not at a leaf.

e If underflow:

» If immediate sibling has extras, rotate/transfer
» Else node merge (this affects the parent!)

Biedl, Scho CS, UW) C5240 — Module 11 Winter 2021 26 /37

2-4 Tree Deletion
Example: delete(42)

@ 24Tree::search, then trade with successor if KVP is not at a leaf.

e If underflow:

» If immediate sibling has extras, rotate/transfer
» Else node merge (this affects the parent!)

56

EnESNC

Biedl, Scho . C5240 — Module 11 Winter 2021

26 /37

2-4 Tree Deletion

Example: delete(42)
@ 24Tree::search, then trade with successor if KVP is not at a leaf.

e If underflow:

» If immediate sibling has extras, rotate/transfer
» Else node merge (this affects the parent!)

E [

Biedl, Scho \ CS240 — Module 11 Winter 2021 26 /37

2-4 Tree Deletion

Example: delete(42)
@ 24Tree::search, then trade with successor if KVP is not at a leaf.

e If underflow:

» If immediate sibling has extras, rotate/transfer
» Else node merge (this affects the parent!)

B [

CS240 — Module 11 Winter 2021 26 /37

Deletion from a 2-4 Tree

24 Tree::delete(fk)
L ve24 ree::search(k) // node containing k

2 if v is not leaf

3 | swap k with its successor k' and v with leaf containing k'

4, delete k and one empty subtree in v

5. while v has 0_keys (underflow)

6 — if paren’fp of v is NIL, delete v and break

7 > if v has immediate sibling u with 2 or more keys (transfer/rotate)
8

9

- transfer the key of u that is nearest to v to p 7 r_l
7
- transfer the key of p between v and v to v -iL

‘ Ve ‘i_
10. —5 transfer the subtree of u that is nearest to vﬂ \? 3\4{'

11. break ! "M
12. else (merge & repeat) '_.[_';x
13. u < immediate sibling of v =

14. transfer the key of p between v and v to u §

15. transfer the subtree of v to u \m
16. delete node v and set v < p ! 17\ / \

Bied|, Schost, V (SCS, UW) C5240 — Module 11 Winter 2021 27 /37

Deletion from a 2-4 Tree

24 Tree::delete(k)

1. v +— 24Tree::search(k) // node containing k

2. if v is not leaf

3. swap k with its successor k' and v with leaf containing k'

4, delete k and one empty subtree in v

5. while v has 0 keys (underflow)

6. if parent p of v is NIL, delete v and break

7. if v has immediate sibling v with 2 or more keys (transfer/rotate)
8. transfer the key of u that is nearest to v to p

9. transfer the key of p between u and v to v A ?
10. transfer the subtree of u that is nearest to v to v

11. break i

12. else (merge & repeat) 14 - N
13. u < immediate sibling of v o

14. “ transfer the key of p between v and v to u E‘

15. transfer the subtree of v to u q \}E
16. delete node v and set v + p d { 1S

Bied|, Schost, V (SCS, UW) C5240 — Module 11 Winter 2021 27 /37

2-4 Tree summary

A 2-4 tree has height O(log n)
» In internal memory,Mations have run-time O(log n).
» This is no better than AVL-trees in theory.
(Though 2-4-trees are faster than AVL-trees in practice, especially when converted
to binary search trees called red-black trees. No details.)

@ A 2-4 tree has height {(logn) .
(b Level i contains at most 4' nodes ot wod -4 kﬁz&

» Each node contains at most 3 KVPs

So not significantly better than AVL-trees w.r.t. block transfers.

@ But we can gener, ncept to decrease the height.

o ok owed A1+ P he) 2 3 AT oy
wi bW fea 90, 74—

eksler (5CS, UW) €5240 — Module 11 Winter 2021 28 / 37

Qutline

@ External Memory

® a-b-Trees

— Module 11

a-b-Trees

A 2-4 tree is an a-b-tree for a=2 and b = 4.
S— SN~—

An a-b-tree satisfies:

@ Each node has at least a subtrees, unless it is the root.
The root has at least 2 subtrees.

@ Each node has at most b subtrees.
b subtrees.
o If a node has d subtrees, then it stores d—1 key-value pairs (KVPs).
@ Empty subtrees are at the same level.
@ The keys in the node are between the keys in the corresponding
subtrees. bzlh = 2-U dves V
Requirement: a < [b/2] = |(b+1)/2]. Z—%ﬂg

search, insert, delete then work just like for 2-4 trees, after re-defining
underflow/overflow to consider the above constraints.

Bied|, Schost, Veksler (SCS, UW) CS240 — Module 11 Winter 2021 29 /37

a-b-tree example

h=b IS Zéﬁ-’kcax,-w{f

xzD
wods
A 3-6-tree
38
[Ta]20]26[32 24]50]62

10|12 16|18 22|24 28 30' 34 36| 40142| |46

5

52[54]|56|58]|60| |64

CS240 — Module 11 Winter 2021 30 /37

a-b-tree insertion

insert(55):

C5240 — Module 11 Winter 2021 31 /37

a-b-tree insertion

insert(55):

|14|2G 26|32 44150 56|62|

/1

[1o[12] [16]18] [22]24] [28]30] [34]36] [40]22] [46]4¢] [B2]54]55] [B8e0] [64

S RN
b heg
o Overflow now means b keys (and b + 1 subtrees) = bt \.,,,36
 Node split = new nodes have > [(b—1)/2] keys |44 Th-\
e Since we required a < [(b+1)/2], thisis > a—1 keys as required.?
EE— 1
IR A=Y

Biedl, Scho (SCS, UW) C5240 — Module 11 Winter 2021 31/37

Height of an a-b-tree

Recall: n = numbers of KVPs (not the number of nodes)
What is smallest possible number of KVPs in an a-b-tree of height-h?

Level Nodes
0 >1
1 > 2 - Il
2 =22 Ml Il]
3 > 2a
= aligliggiigiigiigiigingi
h > 231 mmmmm\mmm
nodes > + Yl oaiwe
root: 2LKVP o ihers: Za—1KVPs
n=#KVPs >

Therefore the height of an a-b-tree is O(log,(n

Biedl, Schost, Veksler (SCS, UW)

CS240 — Module 11

i

0 @ 0e B DROnan o

2]

4 nodss > 9,4“" L
Hlegs >, denolis >0 B
wh 3 e o bylt)y

h

2} o

1+(a-1)3r 422 =142(a-1)25 =1+2a"

A~
NAAN

)) = O(log n/ log a).

Winter 2021 32 /37

a-b-trees as implementations of dictionaries

Analysis (if entire a-b-tree is stored in internal memory):
@ search, insert, and delete each requires visiting ©(height) nodes
o Height is O(log n/ log a). -
@ Recall: a < (b/21/equired for insert and delete

= choose a = [b/2] to minimize the height.

e Work at node can be done in O(log b) time.
A s

log n
Total cost: O(Iog . (log bll) =O(lognf[——F——) =

4‘“A‘) W‘r"
This is still no better than AVL-trees.ku

The main motivation for a-b-trees is external memory.

Bied|, Scho S, UW) CS240 — Module 11 Winter 2021 33 /37

Qutline

@ External Memory

@ B-Trees

— Module 11

B-trees

A B-tree is an a-b-tree tailored to the external memory model.
e Every node is one block of memory (of sizeﬁ.

=
® b is chosen maximally such that a node with b—1 KVPs (hence b—1
value-references and b subtree-references) fits into a block.

¥ ais set to be [b/2] as before. "4" ": JM\?“:
FEUNENC=—0 - .

|r|14IVIr|2D|V|$|26|V|1;| [p38]v[e[44]v]e[50[v[e] [p[64]v]e[70]v]e]

Bied|, Schost, Veksler (SCS, UW) C5240 — Module 11 Winter 2021 34 /37

B-tree in external memory

Close-up on one node in one block:

external memory

[,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,.,,...]

rs transfer
T
ded -
. internal memory
parent Ty Ty T2 T3
R=1
Lolefllv]elie]w]e[k]w]e] [[-[[]] =
’ : unused (node not full) i
~ % 6

In this example: 17 computer-words fit into one block, so the B-tree can
have order 6.

CS240 — Module 11 Winter 2021 35 /37

B-tree analysis

[32]v]e]58]v]e{_] Je]

[p[14]v]e[20][v]e]26[v[e] [p[38[v[e]44]v]e[50[v]e] [p[64[v[e[70[v][e] | [e]

(o] [*]
28] [34
o] []
o] [=]
I
] L
& =

@ search, insert, and delete each requires visiting @! he.fght) nodes
- - - - . /

@ Work within a node is done in internal memory = no block-transfer.

@ The height is ©(log, n) = ©(logg n) (presuming a = [b/2] € O(B))

—
—

So all operations require ©(logg n) block transfers.

Bied|, Schost, Veksler (SCS, UW) C5240 — Module 11 Winter 2021 36 /37

