1 External Memory
- Motivation
- Stream-based algorithms
- External sorting
- External Dictionaries
- 2-4 Trees
- a-b-Trees
- B-Trees
Outline

1 External Memory
 - Motivation
 - Stream-based algorithms
 - External sorting
 - External Dictionaries
 - 2-4 Trees
 - a-b-Trees
 - B-Trees
Different levels of memory

Current architectures:

- registers (very fast, very small)
- cache L1, L2 (still fast, less small)
- main memory
- disk or cloud (slow, very large)

General question: how to adapt our algorithms to take the memory hierarchy into account, avoiding transfers as much as possible?

Observation: Accessing a single location in external memory (e.g. hard disk) automatically loads a whole block (or “page”).
The External-Memory Model (EMM)

external memory – size unbounded

transfer in blocks of B cells (slow)

internal memory – size M

random access (fast)

CPU

New objective: revisit all algorithms/data structures with the objective of minimizing block transfers ("probes", "disk transfers", "page loads")
Outline

1. External Memory
 - Motivation
 - Stream-based algorithms
 - External sorting
 - External Dictionaries
 - 2-4 Trees
 - a-b-Trees
 - B-Trees
Streams and external memory

If input and output are handled via streams, then we automatically use $\Theta(\frac{n}{B})$ block transfers.

Transfer when empty

Transfer when full

$B = 5$
Streams and external memory

If input and output are handled via streams, then we automatically use $\Theta\left(\frac{n}{B}\right)$ block transfers.

So can do the following with $\Theta\left(\frac{n}{B}\right)$ block transfers:

- Pattern matching: Karp-Rabin, Knuth-Morris-Pratt, Boyer-Moore (This assumes that pattern P fits into internal memory.)
- Text compression: Huffman, run-length encoding, Lempel-Ziv-Welch
Outline

1 External Memory
 • Motivation
 • Stream-based algorithms
 • External sorting
 • External Dictionaries
 • 2-4 Trees
 • a-b-Trees
 • B-Trees
Sorting in external memory

Recall: The sorting problem:
Given an array A of n numbers, put them into sorted order.

Now assume n is huge and A is stored in blocks in external memory.

- Heapsort was optimal in time and space in RAM model
- But: Heapsort accesses A at indices that are far apart
 \leadsto typically one block transfer per array access
 \leadsto typically $\Theta(n \log n)$ block transfers.
Can we do better?
Sorting in external memory

Recall: The sorting problem:
Given an array A of n numbers, put them into sorted order.

Now assume n is huge and A is stored in blocks in external memory.

- Heapsort was optimal in time and space in RAM model
- But: Heapsort accesses A at indices that are far apart
 - \leadsto typically one block transfer per array access
 - \leadsto typically $\Theta(n \log n)$ block transfers.

Can we do better?

- Mergesort adapts well to external memory. Recall algorithm:
 - Split input in half
 - Sort each half recursively \rightarrow two sorted parts
 - Merge sorted parts.

Key idea: Merge can be done with streams.
Merge

\[\text{Merge}(S_1, S_2, S) \]

\(S_1, S_2 \): input streams that are in sorted order, \(S \): output stream

1. \textbf{while} \(S_1 \) or \(S_2 \) is not empty \textbf{do}
2. \hspace{1cm} \textbf{if} \ (S_1 \text{ is empty}) \ S.\text{append}(S_2.\text{pop}())
3. \hspace{1cm} \textbf{else if} \ (S_2 \text{ is empty}) \ S.\text{append}(S_1.\text{pop}())
4. \hspace{1cm} \textbf{else if} \ (S_1.\text{top}() < S_2.\text{top}()) \ S.\text{append}(S_1.\text{pop}())
5. \hspace{1cm} \textbf{else} \ S.\text{append}(S_2.\text{pop}())

\[\Theta \left(\frac{m}{B} \right) \text{ transfers to merge} \]

Here \(B = 5 \)
Mergesort in external memory

- *Merge* uses streams S_1, S_2, S.
 \[\Rightarrow \] Each block in the stream only transferred once.
- So *Merge* takes $\Theta\left(\frac{m}{B}\right)$ block-transfers to merge m elements
- Recall: Mergesort uses $\lceil \log_2 n \rceil$ rounds of merging, each round merges n elements
 \[\Rightarrow \] Mergesort uses $O\left(\frac{n}{B} \cdot \log_2 n\right)$ block-transfers.

Not bad, but we can do better.

heapsort: $O\left(\frac{n}{B} \log n\right)$ block transfers
Towards \(d \)-way Mergesort

Recall: Mergesort uses \(\lceil \log_2 n \rceil \) rounds of splitting-and-merging.
Towards *d*-way Mergesort

Observe: We had space left in internal memory during *merge*.

- We use only three blocks, but typically $M \gg 3B$.
- **Idea:** We could merge *d* parts at once.
- Here $d \approx \frac{M}{B} - 1$ so that $d+1$ blocks fit into internal memory.
d-way merge

$$d\text{-}way\text{-}merge(S_1, \ldots, S_d, S)$$

- S_1, \ldots, S_d: input streams that are in sorted order, S: output stream
- 1. $P \leftarrow$ empty **min-oriented** priority queue
- 2. $\textbf{for } i \leftarrow 1 \textbf{ to } d \textbf{ do } P\text{.insert}((S_i\text{.top},i))$

 // each item in P keeps track of its input-stream
- 3. $\textbf{while } P \text{ is not empty } \textbf{ do }$
- 4. $(x, i) \leftarrow P\text{.deleteMin}()$
- 5. $S\text{.append}(S_i\text{.pop})$
- 6. $\textbf{if } S_i \text{ is not empty } \textbf{ do }$
- 7. $P\text{.insert}((S_i\text{.top},i))$
We use a *min-oriented* priority queue P to find the next item to add to the output.

- This is irrelevant for the number of block transfers.
- But there is no space-overhead needed for a priority queue. (Recall: heaps are typically implemented as arrays.)
- And with this the run-time (in RAM-model) is $O(n \log d)$.

The items in P store not only the next key but also the index of the stream that contained the item.

- With this, can efficiently find the stream to reload from.

We assume d is such that $d + 1$ blocks and P fit into main memory.

The number of *block transfers* then is again $O\left(\frac{n}{B}\right)$.

\[d \leq \frac{M}{B} \ll M \]
We use a *min-oriented* priority queue P to find the next item to add to the output.

- This is irrelevant for the number of block transfers.
- But there is no space-overhead needed for a priority queue. (Recall: heaps are typically implemented as arrays.)
- And with this the run-time (in RAM-model) is $O(n \log d)$.

The items in P store not only the next key but also the index of the stream that contained the item.

- With this, can efficiently find the stream to reload from.

We assume d is such that $d + 1$ blocks and P fit into main memory.

The number of *block transfers* then is again $O\left(\frac{n}{B}\right)$.

How does *d-way merge* help to improve external sorting?
Towards d-way Mergesort

Recall: Mergesort uses $\lfloor \log_2 n \rfloor$ rounds of splitting-and-merging.
Towards d-way Mergesort

Observe: If we split and merge d-ways, there are fewer rounds.

- Number of rounds is now $\lceil \log_d n \rceil$
- We choose d such that each round uses $\Theta\left(\frac{n}{B}\right)$ block transfers. (Then the number of block transfers is $\Theta(\log_d n \cdot \frac{n}{B})$.)
- Two further improvements:
 - Proceed bottom-up (while-loops) rather than top-down (recursions).
 - Save more rounds by starting immediately with runs of length M.

![Diagram](image-url)
d-way mergesort

External \((B = 2)\):

\[
\begin{array}{cccccccccccccccccccc}
\end{array}
\]

Internal \((M = 8)\):

\[
\begin{array}{cccccccc}
\text{\ } & \text{\ }
\end{array}
\]

1. Create \(\frac{n}{M}\) sorted runs of length \(M\).
d-way mergesort

External ($B = 2$):

| 39 | 5 | 28 | 22 | 10 | 33 | 29 | 37 | 8 | 30 | 54 | 40 | 31 | 52 | 21 | 45 | 35 | 11 | 42 | 53 | 13 | 12 | 49 | 36 | 4 | 14 | 27 | 9 | 44 | 3 | 32 | 15 | 43 | 2 | 17 | 6 | 46 | 23 | 20 | 1 | 24 | 7 | 18 | 47 | 26 | 16 | 48 | 50 |

Internal ($M = 8$):

| 39 | 5 | 28 | 22 | 10 | 33 | 29 | 37 |

1. Create $\frac{n}{M}$ sorted runs of length M.
d-way mergesort

External ($B = 2$):

```
39 5 28 22 10 33 29 37 8 30 54 40 31 52 21 45 35 11 42 53 13 12 49 36 4 14 27 9 44 3 32 15 43 2 17 6 46 23 20 1 24 7 18 47 26 16 48 50
```

Internal ($M = 8$):

```
5 10 22 28 29 33 37 39
```

1. Create $\frac{n}{M}$ sorted runs of length M.

d-way mergesort

External \((B = 2)\):

\[
\begin{array}{cccccccccccccccccccc}
\end{array}
\]

\(\text{sorted run}\)

Internal \((M = 8)\):

\[
\begin{array}{cccccccc}
\quad & \quad
\end{array}
\]

1. Create \(\frac{n}{M}\) sorted runs of length \(M\).
d-way mergesort

External ($B = 2$):

External ($B = 2$):

Internal ($M = 8$):

1. Create $\frac{n}{M}$ sorted runs of length M. $\Theta(\frac{n}{B})$ block transfers
d-way mergesort

External \((B = 2)\):

```
5 10 22 28 29 33 37 51 8 21 30 31 40 45 52 53 3 4 9 14 15 27 32 44 1 2 6 17 20 23 43 46 7 16 18 24 26 47 48 50
```

Internal \((M = 8)\):

```
5 10 8 21 11 12
```

(priority queue not shown)

1. Create \(\frac{n}{M}\) sorted runs of length \(M\). \(\Theta\left(\frac{n}{B}\right)\) block transfers
2. Merge the first \(d \approx \frac{M}{B} - 1\) sorted runs using **d-Way-Merge**

\[
d = \frac{n}{B} - 1 = \frac{8}{2} - 1 = 3
\]
d-way mergesort

External ($B = 2$):

```
5 10 22 28 29 33 37 39 8 21 30 31 40 45 52 54 11 12 13 35 36 42 49 53 3 4 9 14 15 27 32 44 1 2 6 17 20 23 43 46 7 16 18 24 26 47 48 50
```

Internal ($M = 8$):

```
<table>
<thead>
<tr>
<th>10</th>
<th>8</th>
<th>21</th>
<th>11</th>
<th>12</th>
<th>5</th>
</tr>
</thead>
</table>
```

(priority queue not shown)

1. Create $\frac{n}{M}$ sorted runs of length M. $\Theta\left(\frac{n}{B}\right)$ block transfers

2. Merge the first $d \approx \frac{M}{B} - 1$ sorted runs using d-Way-Merge
d-way mergesort

External ($B = 2$):

![Sorted runs diagram]

Internal ($M = 8$):

![Priority queue diagram]

1. Create $\frac{n}{M}$ sorted runs of length M. $\Theta(\frac{n}{B})$ block transfers
2. Merge the first $d \approx \frac{M}{B} - 1$ sorted runs using d-Way-Merge
d-way mergesort

External ($B = 2$):

\[5 \ 10 \ 22 \ 28 \ 29 \ 33 \ 37 \ 39 \ 8 \ 21 \ 30 \ 31 \ 40 \ 45 \ 52 \ 54\ 11 \ 12 \ 13 \ 35 \ 36 \ 42 \ 49 \ 53 \ 3 \ 4 \ 9 \ 14 \ 15 \ 27 \ 32 \ 44 \ 1 \ 2 \ 6 \ 17 \ 20 \ 23 \ 43 \ 46 \ 7 \ 16 \ 18 \ 24 \ 26 \ 47 \ 48 \ 50\]

\[\text{sorted run} \quad \text{sorted run}\]

\[5 \ 8 \]

Internal ($M = 8$):

\[\begin{array}{ccccccc}
S_1 & S_2 & S_3 & S \\
10 & 21 & 11 & 12 & \text{(priority queue not shown)}
\end{array}\]

1. Create $\frac{n}{M}$ sorted runs of length M. $\Theta\left(\frac{n}{B} \right)$ block transfers
2. Merge the first $d \approx \frac{M}{B} - 1$ sorted runs using d-Way-Merge
d-way mergesort

External ($B = 2$):

```
5 10 22 28 29 33 37 39 8 21 30 31 40 45 52 54 11 12 13 35 36 42 49 53
```

(sorted run) (sorted run) (sorted run) (sorted run) (sorted run) (sorted run) (sorted run)

5 8

Internal ($M = 8$):

```
s_{1} s_{2} \boxed{21} s_{3} 11 12 10 s
```

(priority queue not shown)

1. Create $\frac{n}{M}$ sorted runs of length M. $\Theta(\frac{n}{B})$ block transfers
2. Merge the first $d \approx \frac{M}{B} - 1$ sorted runs using d-Way-Merge
d-way mergesort

External \((B = 2)\):

\[
\begin{array}{cccccccccccccccccccccccc}
\text{sorted run} & \text{sorted run} \\
\end{array}
\]

Internal \((M = 8)\):

\[
\begin{array}{cccc}
22 & 28 & 21 & 11 & 12 & 10
\end{array}
\]

(priority queue not shown)

1. Create \(\frac{n}{M}\) sorted runs of length \(M\). \(\Theta\left(\frac{n}{B}\right)\) block transfers

2. Merge the first \(d \approx \frac{M}{B} - 1\) sorted runs using \textit{d-Way-Merge}
d-way mergesort

External ($B = 2$):

\[
\begin{array}{cccccccccccccccccccccccc}
\end{array}
\]

\[\text{sorted run} \quad \text{sorted run}\]

Internal ($M = 8$):

\[
\begin{array}{cccccccc}
22 & 28 & _ & 21 & _ & 12 & 10 & 11
\end{array}
\]

(priority queue not shown)

\[s_1 \quad s_2 \quad s_3 \quad s\]

1. Create $\frac{n}{M}$ sorted runs of length M. $\Theta\left(\frac{n}{B}\right)$ block transfers

2. Merge the first $d \approx \frac{M}{B} - 1$ sorted runs using d-Way-Merge
d-way mergesort

External \((B = 2)\):

```
| 22 | 28 | 29 | 33 | 37 | 39 | 8 | 21 | 30 | 31 | 40 | 45 | 52 | 54 | 11 | 12 | 13 | 35 | 36 | 42 | 49 | 53 |
```

sorted run \rightarrow \leftarrow sorted run \rightarrow \leftarrow sorted run \rightarrow \leftarrow sorted run \rightarrow \leftarrow sorted run

\[5 \ 8 \ 10 \ 11 \]

Internal \((M = 8)\):

```
22 | 28 | | 21 | | 12 | | (priority queue not shown)
```

\(s_1 \quad s_2 \quad s_3 \quad s\)

1. Create \(\frac{n}{M}\) sorted runs of length \(M\). \(\Theta\left(\frac{n}{B}\right)\) block transfers
2. Merge the first \(d \approx \frac{M}{B} - 1\) sorted runs using \textit{d-Way-Merge}
d-way mergesort

External ($B = 2$):

\[
\begin{array}{c}
\end{array}
\]

(sorted run) \hspace{1cm} \text{sorted run} \hspace{1cm} \text{sorted run}

Internal ($M = 8$):

\[
\begin{array}{c}
\end{array}
\]

(priority queue not shown)

\[
\begin{array}{c}
\text{s}_1 \hspace{1cm} \text{s}_2 \hspace{1cm} \text{s}_3 \hspace{1cm} \text{s}
\end{array}
\]

1. Create $\frac{n}{M}$ sorted runs of length M. $\Theta\left(\frac{n}{B}\right)$ block transfers
2. Merge the first $d \approx \frac{M}{B} - 1$ sorted runs using d-Way-Merge
d-way mergesort

External ($B = 2$):

```
5 8 10 11 12 13 21 22 28 29 30 31 33 35 36 37 39 40 42 45 49 52 53 54 1 2 3 4 6 7 9 14 15 16 17 18 20 23 24 26 27 32 43 44 46 47 48 50
```

Internal ($M = 8$):

```
S_1  S_2  S_3  S
```

(priority queue not shown)

1. Create $\frac{n}{M}$ sorted runs of length M. $\Theta(\frac{n}{B})$ block transfers
2. Merge the first $d \approx \frac{M}{B} - 1$ sorted runs using d-Way-Merge
3. Keep merging the next runs to reduce $\#$ runs by factor of d \leadsto one round of merging. $\Theta(\frac{n}{B})$ block transfers
d-way mergesort

External ($B = 2$):

```
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21 22 23 24 26 27 28 29 30 31 32 33 35 36 37 39 40 42 43 44 45 46 47 48 49 50 52 53 54
```

sorted run

```
5 8 10 11 12 13 21 22 28 29 30 31 33 35 36 37 39 40 42 45 49 52 53 54 1 2 3 4 6 7 9 14 15 16 17 18 20 23 24 26 27 32 43 44 46 47 48 50
```

sorted run

Internal ($M = 8$):

```
S_1  S_2  S_3  S
```

(priority queue not shown)

1. Create $\frac{n}{M}$ sorted runs of length M. $\Theta(\frac{n}{B})$ block transfers
2. Merge the first $d \approx \frac{M}{B} - 1$ sorted runs using d-Way-Merge
3. Keep merging the next runs to reduce the number of runs by factor of d one round of merging. $\Theta(\frac{n}{B})$ block transfers
4. Keep doing rounds until only one run is left ✓
d-way mergesort

- We have $\log_d\left(\frac{n}{M}\right)$ rounds of merging:
 - $\frac{n}{M}$ runs after initialization.
 - $\frac{n}{M}/d$ runs after one round.
 - $\frac{n}{M}/d^k$ runs after k rounds $\Rightarrow k \leq \log_d\left(\frac{n}{M}\right)$.

\[\frac{n}{M} \cdot d^k = 1 \]
\[\Leftrightarrow d^k = \log\left(\frac{n}{M}\right) \]
\[\Leftrightarrow k = \log_d\left(\frac{n}{M}\right) \]
d-way mergesort

- We have $\log_d\left(\frac{n}{M}\right)$ rounds of merging:
 - $\frac{n}{M}$ runs after initialization $\rightarrow O\left(\frac{n}{b}\right)$
 - $\frac{n}{M} / d$ runs after one round.
 - $\frac{n}{M} / d^k$ runs after k rounds $\Rightarrow k \leq \log_d\left(\frac{n}{M}\right)$.

- We have $O\left(\frac{n}{B}\right)$ block-transfers per round.

- $d \approx \frac{M}{B} - 1$.

\Rightarrow Total # block transfers is proportional to

$$\log_d\left(\frac{n}{M}\right) \cdot \frac{n}{B} \in O\left(\frac{n}{B}\right) \cdot \frac{n}{B}$$

$$\Rightarrow d \approx \frac{M}{B} - 1$$

| Algorithm | Complexity
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>heapsort</td>
<td>$n \log(n)$</td>
</tr>
<tr>
<td>mergesort</td>
<td>$\frac{n}{B} \log(n)$</td>
</tr>
<tr>
<td>d-way mergesort</td>
<td>$\frac{n}{B} \log_d(n)$</td>
</tr>
<tr>
<td>optimized d-way</td>
<td>$\frac{n}{B} \log_2(n) / n$</td>
</tr>
</tbody>
</table>
d-way mergesort

- We have $\log_d\left(\frac{n}{M}\right)$ rounds of merging:
 - $\frac{n}{M}$ runs after initialization
 - $\frac{n}{M}/d$ runs after one round.
 - $\frac{n}{M}/d^k$ runs after k rounds \(\Rightarrow k \leq \log_d\left(\frac{n}{M}\right)\).

- We have $O\left(\frac{n}{B}\right)$ block-transfers per round.

- $d \approx \frac{M}{B} - 1$.

\[\Rightarrow\] Total \# block transfers is proportional to

$$\log_d\left(\frac{n}{M}\right) \cdot \frac{n}{B} \in O\left(\log_{M/B}\left(\frac{n}{M}\right) \cdot \frac{n}{B}\right)$$

One can prove lower bounds in the external memory model:

We **require** $\Omega\left(\log_{M/B}\left(\frac{n}{M}\right) \cdot \frac{n}{B}\right)$ block transfers in any comparison-based sorting algorithm.

(The proof is beyond the scope of the course.)
d-way mergesort

- We have $\log_d\left(\frac{n}{M}\right)$ rounds of merging:
 - $\frac{n}{M}$ runs after initialization
 - $\frac{n}{M}/d$ runs after one round.
 - $\frac{n}{M}/d^k$ runs after k rounds $\Rightarrow k \leq \log_d\left(\frac{n}{M}\right)$.
- We have $O\left(\frac{n}{B}\right)$ block-transfers per round.
- $d \approx \frac{M}{B} - 1$.

\Rightarrow Total # block transfers is proportional to

$$\log_d\left(\frac{n}{M}\right) \cdot \frac{n}{B} \in O\left(\log_{M/B}\left(\frac{n}{M}\right) \cdot \frac{n}{B}\right)$$

One can prove lower bounds in the external memory model:

We require $\Omega\left(\log_{M/B}\left(\frac{n}{M}\right) \cdot \frac{n}{B}\right)$ block transfers in any comparison-based sorting algorithm.

(The proof is beyond the scope of the course.)

- d-way mergesort is optimal (up to constant factors)!
Outline

1. External Memory
 - Motivation
 - Stream-based algorithms
 - External sorting
 - External Dictionaries
 - 2-4 Trees
 - a-b-Trees
 - B-Trees
Dictionaries in external memory

Recall: Dictionaries store \(n \) KVPs and support *search*, *insert* and *delete*.

- **Recall**: AVL-trees were optimal in time and space in RAM model
- \(\Theta(\log n) \) run-time \(\Rightarrow \) \(O(\log n) \) block transfers per operation
- But: Inserts happen at varying locations of the tree.
 \(\leadsto \) nearby nodes are unlikely to be on the same block
 \(\leadsto \) typically \(\Theta(\log n) \) block transfers per operation
- We would like to have *fewer* block transfers.

Better solution: design a tree-structure that *guarantees* that many nodes on search-paths are within one block.
Idea: Store subtrees in one block of memory.

- If block can hold subtree of size $b-1$, then block covers height $\log b$

\Rightarrow Search-path hits $\frac{\Theta(\log n)}{\log b}$ blocks $\Rightarrow \Theta(\log_b n)$ block-transfers

- Block acts as one node of a multiway-tree ($b-1$ KVPs, b subtrees)
Towards B-trees

- **Idea:** Define *multiway-tree*
 - One node stores many KVPs
 - Always true: $b - 1$ KVPs \Leftrightarrow b subtrees
 - To allow *insert/delete*, we permit varying numbers of KVPs in nodes
 - This gives much smaller height than for AVL-trees
 - \Rightarrow fewer block transfers

- Study first one special case: *2-4-trees*
 - Also useful for dictionaries in internal memory
 - May be faster than AVL-trees even in internal memory
Outline

1 External Memory
 - Motivation
 - Stream-based algorithms
 - External sorting
 - External Dictionaries

2-4 Trees
 - a-b-Trees
 - B-Trees
2-4 Trees

Structural property: Every node is either
- **1-node:** one KVP and two subtrees (possibly empty), or
- **2-node:** two KVPs and three subtrees (possibly empty), or
- **3-node:** three KVPs and four subtrees (possibly empty).

Order property: The keys at a node are between the keys in the subtrees.
- With this, search is much like in binary search trees.

Another structural property: All empty subtrees are at the same level.
- This is important to ensure small height.
2-4 Tree example

- Empty trees do not count towards height
 - This tree has height 1
- Easy to show: Height is in $O(\log n)$, where $n = \# \text{ KVPs.}$
 - Layer i has at least 2^i nodes for $i = 0, \ldots, h$
 - Each node has at least one KVP.

- Level 0: 1 node
- Level 1: ≥ 2 nodes
- Level 2: ≥ 4 nodes

At level h, we have at least 2^h keys.

$n \geq 2^h$

$\log(n) \geq h$
2-4 Tree Operations

- Search is similar to BST:
 - Compare search-key to keys at node
 - If not found, recurse in appropriate subtree

Example: $\text{search}(15)$

```
5 9 12

3 4

6 8

11

13 14 16

∅ ∅ ∅

∅ ∅ ∅

∅ ∅ ∅

∅ ∅ ∅
```
2-4 Tree Operations

- **Search is similar to BST:**
 - Compare search-key to keys at node
 - If not found, recurse in appropriate subtree

Example: *search(15)*
2-4 Tree Operations

- Search is similar to BST:
 - Compare search-key to keys at node
 - If not found, recurse in appropriate subtree

Example: search(15) *not found*
2-4 Tree operations

\(24\text{Tree::search}(k, v \leftarrow \text{root}, p \leftarrow \text{NIL})\)

- **k**: key to search, **v**: node where we search, **p**: parent of v
- If \(v\) represents empty subtree
- Return "not found, would be in \(p\)"
- Let \(\langle T_0, k_1, \ldots, k_d, T_d \rangle\) be key-subtree list at \(v\)
- If \(k \geq k_1\)
- \(i \leftarrow \) maximal index such that \(k_i \leq k\)
- If \(k_i = k\)
- Return key-value pair at \(k_i\)
- Else \(24\text{Tree::search}(k, T_i, v)\)
- Else \(24\text{Tree::search}(k, T_0, v)\)
Insertion in a 2-4 tree

Example: \texttt{insert}(10)

- Do \texttt{Tree::search} and add key and empty subtree at leaf.
Insertion in a 2-4 tree

Example: \texttt{insert(10)}

- Do \texttt{24Tree::search} and add key and empty subtree at leaf.
- If the leaf had room then we are done.
Example: insert(17)
- Do `24Tree::search` and add key and empty subtree at leaf.
- If the leaf had room then we are done.
- Else **overflow**: More keys/subtrees than permitted.
- Resolve overflow by **node splitting**.
Insertion in a 2-4 tree

Example: `insert(17)`
- Do `24Tree::search` and add key and empty subtree at leaf.
- If the leaf had room then we are done.
- Else **overflow**: More keys/subtrees than permitted.
- Resolve overflow by **node splitting**.
Insertion in a 2-4 tree

Example: $\text{insert}(17)$

- Do 24Tree::search and add key and empty subtree at leaf.
- If the leaf had room then we are done.
- Else **overflow**: More keys/subtrees than permitted.
- Resolve overflow by **node splitting**.
Insertion in a 2-4 tree

Example: \textit{insert}(17)
- Do \texttt{24Tree::search} and add key and empty subtree at leaf.
- If the leaf had room then we are done.
- Else \textbf{overflow}: More keys/subtrees than permitted.
- Resolve overflow by \textbf{node splitting}.
2-4 Tree operations

24Tree::insert(k)
1. \(v \leftarrow 24\text{Tree}::\text{search}(k) \) // leaf where \(k \) should be
2. Add \(k \) and an empty subtree in key-subtree-list of \(v \)
3. while \(v \) has 4 keys (overflow \(\leadsto \) node split)
 Let \(\langle T_0, k_1, \ldots, k_4, T_4 \rangle \) be key-subtree list at \(v \) -
 if \((v \) has no parent) create a parent of \(v \) without KVPs
 \(p \leftarrow \) parent of \(v \)
4. \(v' \leftarrow \) new node with keys \(k_1, k_2 \) and subtrees \(T_0, T_1, T_2 \)
5. \(v'' \leftarrow \) new node with key \(k_4 \) and subtrees \(T_3, T_4 \)
6. Replace \(\langle v \rangle \) by \(\langle v', k_3, v'' \rangle \) in key-subtree-list of \(p \)
7. \(v \leftarrow p \)
Towards 2-4 Tree Deletion

- For deletion, we symmetrically will have to handle **underflow** (too few keys/subtrees)
- Crucial ingredient for this: **immediate sibling**

![Diagram of a 2-4 tree with nodes 5, 9, 12, 3, 4, 6, 8, 11, 13, 14, 16]

- **Observe:** Any node except the root has an immediate sibling.
2-4 Tree Deletion

Example: \textit{delete}(43)

- \texttt{24Tree::search}, then trade with successor if KVP is not at a leaf.
2-4 Tree Deletion

Example: `delete(43)`

- `24Tree::search`, then trade with successor if KVP is not at a leaf.
- If underflow:
2-4 Tree Deletion

Example: delete(43)

- 24Tree::search, then trade with successor if KVP is not at a leaf.
- If underflow:
 - If immediate sibling has extras, rotate/transfer
2-4 Tree Deletion

Example: $\textit{delete}(19)$
- $\textit{24Tree::search}$, then trade with successor if KVP is not at a leaf.
- If underflow:
 - If immediate sibling has extras, $\textit{rotate/transfer}$
2-4 Tree Deletion

Example: \textit{delete}(19)

- \texttt{24Tree::search}, then trade with successor if KVP is not at a leaf.
- If underflow:
 - If immediate sibling has extras, \texttt{rotate/transfer}
 - Else \texttt{node merge} (this affects the parent!)
2-4 Tree Deletion

Example: delete(19)

- *24Tree::search*, then trade with successor if KVP is not at a leaf.
- If underflow:
 - If immediate sibling has extras, **rotate/transfer**
 - Else **node merge** (this affects the parent!)
2-4 Tree Deletion

Example: `delete(42)`

- **24Tree::search**, then trade with successor if KVP is not at a leaf.
- If underflow:
 - If immediate sibling has extras, **rotate/transfer**
 - Else **node merge** (this affects the parent!)
2-4 Tree Deletion

Example: delete(42)

- 24Tree::search, then trade with successor if KVP is not at a leaf.
- If underflow:
 - If immediate sibling has extras, rotate/transfer
 - Else node merge (this affects the parent!)
2-4 Tree Deletion

Example: \textit{delete}(42)

- \textit{24Tree::search}, then trade with successor if KVP is not at a leaf.
- If underflow:
 - If immediate sibling has extras, \textit{rotate/transfer}
 - Else \textit{node merge} (this affects the parent!)
2-4 Tree Deletion

Example: delete(42)

- *24Tree::search*, then trade with successor if KVP is not at a leaf.
- If underflow:
 - If immediate sibling has extras, **rotate/transfer**
 - Else **node merge** (this affects the parent!)
2-4 Tree Deletion

Example: `delete(42)`

- **24Tree::search**, then trade with successor if KVP is not at a leaf.
- If underflow:
 - If immediate sibling has extras, **rotate/transfer**
 - Else **node merge** (this affects the parent!)
Deletion from a 2-4 Tree

\[24\text{Tree::delete}(k)\]

1. \(v \leftarrow 24\text{Tree::search}(k) \) // node containing \(k \)
2. \textbf{if} \(v \) is not leaf
3. \hspace{1em} \textbf{swap} \(k \) with its successor \(k' \) and \(v \) with leaf containing \(k' \)
4. delete \(k \) and one empty subtree in \(v \)
5. \textbf{while} \(v \) has 0 keys (underflow)
6. \hspace{1em} \textbf{if} parent \(p \) of \(v \) is NIL, delete \(v \) and \textbf{break}
7. \hspace{1em} \textbf{if} \(v \) has immediate sibling \(u \) with 2 or more keys (transfer/rotate)
8. \hspace{2em} \textbf{transfer} the key of \(u \) that is nearest to \(v \) to \(p \)
9. \hspace{2em} \textbf{transfer} the key of \(p \) between \(u \) and \(v \) to \(v \)
10. \hspace{2em} \textbf{transfer} the subtree of \(u \) that is nearest to \(v \) to \(v \)
 \hspace{1em} \textbf{break}
11. \textbf{else} (merge & repeat)
12. \hspace{1em} \(u \leftarrow \) immediate sibling of \(v \)
13. \hspace{1em} \textbf{transfer} the key of \(p \) between \(u \) and \(v \) to \(u \)
14. \hspace{1em} \textbf{transfer} the subtree of \(v \) to \(u \)
15. \hspace{1em} delete node \(v \) and set \(v \leftarrow p \)
Deletion from a 2-4 Tree

\texttt{24Tree::delete}(k)
1. \texttt{v} ← \texttt{24Tree::search}(k) // node containing \texttt{k}
2. \texttt{if} \ \texttt{v} is not leaf
3. \hspace{1em} swap \texttt{k} with its successor \texttt{k}' and \texttt{v} with leaf containing \texttt{k}'
4. \texttt{delete \texttt{k} and one empty subtree in \texttt{v}}
5. \texttt{while} \ \texttt{v} has 0 keys (\texttt{underflow})
6. \hspace{1em} \texttt{if} parent \texttt{p} of \texttt{v} is NIL, delete \texttt{v} and \texttt{break}
7. \hspace{1em} \texttt{if} \ \texttt{v} has immediate sibling \texttt{u} with 2 or more keys (\texttt{transfer/rotate})
8. \hspace{2em} transfer the key of \texttt{u} that is nearest to \texttt{v} to \texttt{p}
9. \hspace{2em} transfer the key of \texttt{p} between \texttt{u} and \texttt{v} to \texttt{v}
10. \hspace{2em} transfer the subtree of \texttt{u} that is nearest to \texttt{v} to \texttt{v}
11. \hspace{1em} \texttt{break}
12. \texttt{else} (\texttt{merge & repeat})
13. \hspace{2em} \texttt{u} ← immediate sibling of \texttt{v}
14. \hspace{3em} transfer the key of \texttt{p} between \texttt{u} and \texttt{v} to \texttt{u}
15. \hspace{3em} transfer the subtree of \texttt{v} to \texttt{u}
16. \hspace{2em} delete node \texttt{v} and set \texttt{v} ← \texttt{p}
2-4 Tree summary

- A 2-4 tree has height $O(\log n)$
 - In internal memory, all operations have run-time $O(\log n)$.
 - This is no better than AVL-trees in theory.
 (Though 2-4-trees are faster than AVL-trees in practice, especially when converted to binary search trees called red-black trees. No details.)

- A 2-4 tree has height $\Omega(\log n)$
 - Level i contains at most 4^i nodes
 - Each node contains at most 3 KVPs

- So not significantly better than AVL-trees w.r.t. block transfers.

- But we can generalize the concept to decrease the height.

 total: at most $3 \left(1 + 4 + 4^2 + \ldots + 4^n \right) = 3 \cdot \frac{4^{n+1} - 1}{4 - 1}$
 - $n \leq 4^{h+1} \rightarrow \log n \leq 2(h+1)$.
Outline

1. External Memory
 - Motivation
 - Stream-based algorithms
 - External sorting
 - External Dictionaries
 - 2-4 Trees
 - \(a-b\)-Trees
 - B-Trees
a-b-Trees

A 2-4 tree is an *a-b-tree* for $a = 2$ and $b = 4$.

An *a-b-tree* satisfies:

- Each node has at least a subtrees, unless it is the root. The root has at least 2 subtrees.
- Each node has at most b subtrees.
- If a node has d subtrees, then it stores $d-1$ key-value pairs (KVPs).
- Empty subtrees are at the same level.
- The keys in the node are between the keys in the corresponding subtrees.

Requirement: $a \leq \lceil b/2 \rceil = \lceil (b+1)/2 \rceil$.

search, insert, delete then work just like for 2-4 trees, after re-defining underflow/overflow to consider the above constraints.
\(a-b \)-tree example

\[
\begin{align*}
 b &= 6 \\
 a &= 3
\end{align*}
\implies 2 \leq \text{#keys per node} \leq 5
\]

A 3-6-tree

```
38
```
```
14 20 26 32
```
```
10 12 16 18 22 24 28 30
```
```
44 50 62
```
```
40 42 46 48 52 54 56 58 60 64 66
```
```
**a-b-tree insertion**

**insert**(55):

- Overflow now means $b$ keys (and $b + 1$ subtrees)
"a-b-tree insertion"

**insert(55):**

- Overflow now means \( b \) keys (and \( b + 1 \) subtrees)
- Node split \( \Rightarrow \) new nodes have \( \geq \lfloor (b-1)/2 \rfloor \) keys
- Since we required \( a \leq \lfloor (b+1)/2 \rfloor \), this is \( \geq a-1 \) keys as required.
Height of an $a$-$b$-tree

**Recall:** $n =$ numbers of KVPs (not the number of nodes)

What is smallest possible number of KVPs in an $a$-$b$-tree of height-$h$?

<table>
<thead>
<tr>
<th>Level</th>
<th>Nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\geq 1$</td>
</tr>
<tr>
<td>1</td>
<td>$\geq 2$</td>
</tr>
<tr>
<td>2</td>
<td>$\geq 2a$</td>
</tr>
<tr>
<td>3</td>
<td>$\geq 2a^2$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>$h$</td>
<td>$\geq 2a^{h-1}$</td>
</tr>
</tbody>
</table>

\[
\# \text{nodes} \geq 1 + \sum_{i=0}^{h-1} 2a^i = 1 + (a-1)\sum_{i=0}^{h-1} 2a^i = 1 + 2(a-1)\frac{a^h}{a-1} = 1 + 2a^h
\]

Therefore the height of an $a$-$b$-tree is $O(\log_a(n)) = O(\log n/ \log a)$.
a-b-trees as implementations of dictionaries

**Analysis** (if entire a-b-tree is stored in internal memory):

- *search, insert, and delete* each requires visiting $\Theta(\text{height})$ nodes
- Height is $O(\log n / \log a)$.
- Recall: $a \leq \lceil b/2 \rceil$ required for *insert* and *delete*
  $\Rightarrow$ choose $a = \lceil b/2 \rceil$ to minimize the height.

- Work at node can be done in $O(\log b)$ time.

Total cost: $O\left(\frac{\log n}{\log a} \cdot (\log b)\right) = O(\log n \left(\frac{\log b}{\log b - 1}\right)) = O(\log n)$

This is still no better than AVL-trees.

The main motivation for a-b-trees is *external memory*.
Outline

1. External Memory
   - Motivation
   - Stream-based algorithms
   - External sorting
   - External Dictionaries
   - 2-4 Trees
   - $a$-$b$-Trees
   - B-Trees
A **B-tree** is an *a*b*-tree tailored to the external memory model.

- Every node is one block of memory (of size $B$).
- $b$ is chosen maximally such that a node with $b-1$ KVPs (hence $b-1$ value-references and $b$ subtree-references) fits into a block.
- $b$ is called the **order** of the $B$-tree. Typically $b \in \Theta(B)$.
- $a$ is set to be $\lceil b/2 \rceil$ as before.
B-tree in external memory

Close-up on one node in one block:

In this example: 17 computer-words fit into one block, so the $B$-tree can have order 6.
B-tree analysis

- search, insert, and delete each requires visiting $\Theta(\text{height})$ nodes
- Work within a node is done in internal memory $\implies$ no block-transfer.
- The height is $\Theta(\log_a n) = \Theta(\log_B n)$ (presuming $a = \lceil b/2 \rceil \in \Theta(B)$)

So all operations require $\Theta(\log_B n)$ block transfers.