CS 240 — Data Structures and Data Management

Module 4: Dictionaries

T. Biedl E. Schost 0. Veksler

Based on lecture notes by many previous ¢s240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2021

version 2021-01-06 21:24

C5240 — Module 4 Winter 2021 1/26

Outline

@ Dictionaries and Balanced Search Trees
@ ADT Dictionary
@ Review: Binary Search Trees
@ AVL Trees
@ Insertion in AVL Trees
@ Restoring the AVL Property: Rotations

C5240 — Module 4 Winter 2021

Qutline

@ Dictionaries and Balanced Search Trees
@ ADT Dictionary

C5240 — Module 4

Dictionary ADT

Dictionary: An ADT consisting of a collection of items, each of which
contains

@ a key

® some data (the "value")
and is called a key-value pair (KVP). Keys can be compared and are
(typically) unique.
Operations:

e search(k) (also called findElement(k))

o insert(k,v) (also called insert/tem(k, v))
o delete(k) (also called removeElement(k)))

@ optional: closestKeyBefore, join, isEmpty, size, etc.
Examples: symbol table, license plate database

C5240 — Module 4 Winter 2021 2/2

Elementary Implementations

Common assumptions:
@ Dictionary has n KVPs

@ Each KVP uses constant space
(if not, the “value” could be a pointer)

@ Keys can be compared in constant time
Unordered array or linked list

search ©(n)

insert ©(1) (except array occasionally needs to resize)

delete © eed to search
ciete O(n) (n eh) [1,’,\, ‘°/"/7]
Ordered array
search ©(log n) (via binary search) [SN - 11:}‘3
insert ©(n) tt;/‘;ll 3

delete ©(n)

Biedl, Scho \ C5240 — Module 4 Winter 2021

Qutline

@ Dictionaries and Balanced Search Trees

@ Review: Binary Search Trees

C5240 — Module 4

Binary Search Trees (review)

Structure Binary tree: all nodes have two (possibly empty) subtrees
Every node stores a KVP
Empty subtrees usually not shown

Ordering Every key k in T.left is less than the root key.
Every key k in T.right is greater than the root key.

(In our examples we only show the keys, and we show them directly in the)

node. A more accurate picture would be O ------------- »(key = 15, <other info>)

Biedl, Schost, Veksle C5240 — Madule 4 Winter 2021 4 /26

BST as realization of ADT Dictionary

BST::search(k) Start at root, compare k to current node’s key.
Stop if found or subtree is empty, else recurse at subtree.

Example: BST::search(24)

Biedl, Scho C5240 — Module 4 Winter 2021 5 /26

BST as realization of ADT Dictionary

BST::search(k) Start at root, compare k to current node’s key.
Stop if found or subtree is empty, else recurse at subtree.

Example: BST::search(24)

C5240 — Module 4 Winter 2021 5 /26

BST as realization of ADT Dictionary

BST::search(k) Start at root, compare k to current node’s key.
Stop if found or subtree is empty, else recurse at subtree.

Example: BST::search(24)

Biedl, Scho C5240 — Module 4 Winter 2021 5 /26

BST as realization of ADT Dictionary

BST::search(k) Start at root, compare k to current node’s key.
Stop if found or subtree is empty, else recurse at subtree.

Example: BST::search(24)

C5240 — Module 4 Winter 2021 5 /26

BST as realization of ADT Dictionary

BST::search(k) Start at root, compare k to current node’s key.
Stop if found or subtree is empty, else recurse at subtree.
BST:insert(k,v) Search for k, then insert (k, v) as new node

Example: BST::insert(24,v)

C5240 — Module 4 Winter 2021 5 /26

Deletion in a BST

o First search for the node x that contains the key.

o If x is a leaf (both subtrees are empty), delete it.

C5240 — Module 4 Winter 2021 6 /26

Deletion in a BST

o First search for the node x that contains the key.

o If x is a leaf (both subtrees are empty), delete it.

Biedl, Schost, V CS, UW) C5240 — Module 4 Winter 2021 6 /26

Deletion in a BST

o First search for the node x that contains the key.
o If x is a leaf (both subtrees are empty), delete it.

@ If x has one non-empty subtree, move child up

Biedl, Schost, V CS, UW) C5240 — Module 4 Winter 2021 6 /26

Deletion in a BST

o First search for the node x that contains the key.
o If x is a leaf (both subtrees are empty), delete it.

@ If x has one non-empty subtree, move child up

Biedl, Schost, V CS, UW) C5240 — Module 4 Winter 2021 6 /26

Deletion in a BST

o First search for the node x that contains the key.
o If x is a leaf (both subtrees are empty), delete it/
@ If x has one non-empty subtree, move child up ¢

@ Else, swap key at x with key at successor or predecessor node and
then delete that node

C5240 — Module 4 Winter 2021 6 /26

Deletion in a BST

First search for the node x that contains the key.
If x is a leaf (both subtrees are empty), delete it.

If x has one non-empty subtree, move child up

Else, swap key at x with key at successor or predecessor node and
then delete that node

Bied|, Schost, V CS, UW) C5240 — Module 4 Winter 2021 6 /26

Deletion in a BST

First search for the node x that contains the key.
If x is a leaf (both subtrees are empty), delete it.

If x has one non-empty subtree, move child up

Else, swap key at x with key at successor or predecessor node and

then delete that node

Bied|, Schost, V (SCS, UW) C5240 — Module 4 Winter 2021 6 /26

Height of a BST

el:l @/ N

£
BST::search, BST::insert, BST::delete all have cost ©(h), where

h = height of the tree = max. path length from root to leaf

If n items are inserted one-at-a-time, how big is h? "o 7

@ Worst-case: () Cl,?.,&, oo '}J
(2
D@ } -6 /@j

® o}

Biedl, Schost, Veksler (SCS, UW)

C5240 — Module 4 Winter 2021 7/

Height of a BST

BST::search, BST::insert, BST::delete all have cost ©(h), where
h = height of the tree = max. path length from root to leaf

If n items are inserted one-at-a-time, how big is h?
@ Worst-case: n— 1 = ©(n)

o Best-case: L [h, L, 6, 5/?, ‘}J

Biedl, Schost, Veksler (SCS, UW)

C5240 — Module 4 Winter 2021 7/

Height of a BST

BST::search, BST::insert, BST::delete all have cost ©(h), where
h = height of the tree = max. path length from root to leaf

If n items are inserted one-at-a-time, how big is h?
@ Worst-case: n— 1 = ©(n)
@ Best-case: O(log n).
Any binary tree with n nodes has height > log(n+ 1) — 1
@ Average-case:

C5240 — Module 4 Winter 2021

Height of a BST

BST::search, BST::insert, BST::delete all have cost ©(h), where
h = height of the tree = max. path length from root to leaf

If n items are inserted one-at-a-time, how big is h?
@ Worst-case: n— 1 = ©(n)
@ Best-case: O(log n).
Any binary tree with n nodes has height > log(n+ 1) — 1
@ Average-case: Can show ©(log n)

C5240 — Module 4 Winter 2021

Qutline

@ Dictionaries and Balanced Search Trees

@ AVL Trees

C5240 — Module 4

AVL Trees

Introduced by Adel'son-Vel'skii and Landis in 1962, an AVL Tree is a BST
with an additional height-balance property at every node:

{l The heights of the left and right subtree differ by at most 1.
(The height of an empty tree is defined to be —1.)

Rephrase: If node v has left subtree L and right subtree R, then
balance(v) := height(R) — height(L) must be in {—1,0,1}

balance(v) = —1 means v is left-heavy

balance(v) = +1 means v is right-heavy 1l

j. blonte, (ook) = -1 -t =2

,a
'

ans

Bied|, Schost, Veksler (SCS, UW) C5240 — Module 4 Winter 2021 8/2

AVL Trees

Introduced by Adel'son-Vel'skii and Landis in 1962, an AVL Tree is a BST
with an additional height-balance property at every node:

The heights of the left and right subtree differ by at most 1.
(The height of an empty tree is defined to be —1.)

Rephrase: If node v has left subtree L and right subtree R, then
balance(v) := height(R) — height(L) must be in {—1,0,1}

balance(v) = —1 means v is left-heavy

balance(v) = +1 means v is right-heavy

@ Need to store at each node v the height of the subtree rooted at it
@ Can show: It suffices to store balance(v) instead
» uses fewer bits, but code gets more complicated

Bied|, Schost, Veksler (SCS, UW) C5240 — Module 4 Winter 2021 8/2

AVL tree example

(The lower numbers indicate the height of the subtree.)

Bied|, Schost, Veksler (SCS, UW) C5240 — Module 4 Winter 2021 9 /2

AVL tree example

Alternative: store balance (instead of height) at each node.

Biedl, Schost, Veksler (SCS, UW) C5240 — Module 4 Winter 2021 10 / 26

Height of an AVL tree

Theorem: An AVL tree on n nodes has ©(log n) height. 7/
= search, insert, delete all cost ©(log n) in the worst case!

Proof:

o Define N(h) 36 be the least number of nodes in a height-h AVL tree.
e What is afecurrence relation for N(h)?

@ What ¢des this recurrence relation resolve to?

(loi: R Bl 4 any \sirory fards s wile w ey
s _51(206 w).

Biedl, Schost, Veksler (SCS, UW)

C5240 — Module 4 Winter 2021 11/ 26

\'
Y
N
— —~)
—+ I
> 7 && »s
§ N
w Q& ’
A., d =
i \ , w =
) \ I £
(\\..Av N
+ ~ S
ERLEPEEERRELEL
T
+
5
Lal

Lot & be

W<

] :

{

D
—

Her

3
K
-n 1 ~
F J «. N
“- % N / //!l -~
3 U e
- 7
s 4 3 \
< > \
.-w .”v — A Sl)L \
~ X u ..J...
=% § =
alr-
(VAR K
'Jl
K| o
D ¢ M O +
o o “
== 1 D=
ow) = 2 2

! N(&) = Nm-«)-’- m-‘l) ¥ ~ \p
1 AN ®)
o L)
S e O(H) |y 1S
7/ 2
Ciw M3 GGE| > -
h=-t Nz O B/ £0 v
hzo | N(o\= | 0G0~ = v
Pave bwe fon -0, b0l froe for &
1
N = N (84) HI) 1% (k0) Y (% ~1) 4] N
2B 24|
-1

Take om AVL e il amLima&k
> NB) S, G-
AL
Yoy \ém\ > hs O (S

Qutline

@ Dictionaries and Balanced Search Trees

@ Insertion in AVL Trees

C5240 — Module 4

AVL insertion

To perform AVL::Ensert(ﬁTQ:
First, insert (k, v) with the usual BST insertion.

@ We assume that this returns the new Ieafiwhere the key was stored.
@ Then, move up the tree from z, updating heights.

» We assume for this that we have parent-links. This can be avoided if
BST::Insert returns the full path to z.

If the height difference becomes +2 at node z, then z is unbalanced.
Must re-structure the tree to rebalance.

6 wutlh b 4 Y
J—— X 3 —_ y / \‘

Biedl, N) Winter 2021 12 /26

AVL insertion

AVL ::insert(k; v)
Lz« BST insert(k,v) // leaf where k is now stored
2. While (z is not NIL)
3. if (|z.left.height — z.right.height| > 1) then
4. Let y be taller child of z =
5. { Let x be taller child of y
6. z + restructure(x,y,z) // see later
7. break // can argue that we are done !!
8. setHeightFromSubtrees(z) g———\
9. Z + z.parent
setHeightFromSubtrees(u) \

1. u.height +— 1 + max{ u.left.height, u.right.height }

C5240 — Module 4 Winter 2021 13 / 26

AVL Insertion Example
Example: AVL:insert(8)

Biedl, Schost, Veksler (SCS, UW) C5240 — Module 4 Winter 2021 14 [26

AVL Insertion Example
Example: AVL:insert(8)

C5240 — Module 4

AVL Insertion Example
Example: AVL:insert(8)

C5240 — Module 4

AVL Insertion Example
Example: AVL:insert(8)

C5240 — Module 4 Winter 2021 14 [26

Qutline

@ Dictionaries and Balanced Search Trees

@ Restoring the AVL Property: Rotations

C5240 — Module 4

How to “fix" an unbalanced AVL tree

Note: there are many different BSTs with the same keys.

Goal: change the structure among three nodes without changing the
order and such that the subtree becomes balanced.

CS5240 — Module 4 Winter 2021 15 / 26

Right Rotation

This is a right rotation on node z:

(0)

rotate-right(z)
1.y < zleft, z.left < y.right, y.right < z

3. return y // returns new root of subtree

2. setHeightFromSubtrees(z), setHeightFromSubtrees(y)

Bied|, Schost, Veksle CS, UW) C5240 — Madule 4

Winter 2021

A

16 / 26

Why do we call this a rotation?

C5240 — Module 4

Why do we call this a rotation?

C5240 — Module 4

Why do we call this a rotation?

C5240 — Module 4

Why do we call this a rotation?

ANANRARNA

C5240 — Module 4

Left Rotation

Symmetrically, this is a left rotation on node z:

Again, only two links need to be changed and two heights updated.
Useful to fix right-right imbalance.

Biedl, Scho C5240 — Module 4 Winter 2021 18 / 26

Double Right Rotation

This is a double right rotation on node z:

First, a left rotation at y.

Biedl, Schost, Veksler (SCS, UW) C5240 — Module 4 Winter 2021 19 / 25

Double Right Rotation

This is a double right rotation on node z:

(2 ()

A°°A Q/B\/S)\

AVA) v T2
Fist, a eft rotation at . A(A é_< /3

Second, a right rotation at z.

Bied|, Schost, Veksler (SCS, UW) C5240 — Module 4 Winter 2021 19 / 25

Double Left Rotation

Symmetrically, there is a double left rotation on node z:

O N O
SN AR

First, a right rotation at y.
Second, a left rotation at z.

C5240 — Module 4 Winter 2021 20 /26

Fixing a slightly-unbalanced AVL tree

restructure(x,y, z
node x has'pa?ent y and grandparent z
1. case
: // Right rotation
return rotate-right(z)

: // Double-right rotation
z left « rotate-left(y)
return rotate-right(z)

: // Double-left rotation
z.right « rotate-right(y)
return rotate-left(z)

: // Left rotation
return rotate-left(z)

o° 9c® oo O

fRule: The middle key of x,y,z becomes the new root.

C5240 — Module 4 Winter 2021 21 /26

AVL Insertion Example revisited
Example: AVL:insert(8)

C5240 — Module 4

AVL Insertion Example revisited
Example: AVL:insert(8)

C5240 — Module 4

AVL Insertion: Second example
Example: AVL:insert(45)

C5240 — Module 4 Winter 2021 23 /26

AVL Insertion: Second example
Example: AVL:insert(45)

C5240 — Module 4

AVL Insertion: Second example
Example: AVL:insert(45)

C5240 — Module 4

AVL Insertion: Second example
Example: AVL:insert(45)

C5240 — Module 4

AVL Insertion: Second example
Example: AVL:insert(45)

C5240 — Module 4

AVL Deletion

Remove the key k with BST::delete.
Find node where structural change happened.

(This is not necessarily near the node that had k.)
Go back up to root, update heights, and rotate if needed.

AVL::delete(k)
24 BS T::delete(k)
// Assume z is the parent of the BST node that was removed
while (z is not NIL)
if (|z.left.height — z.right.height| > 1) then
Let y be taller child of z
Let x be taller child of y (break ties to prefer single rotation)
z ¢ restructure(x,y,z) \/
// Always continue up the path and fix if needed.
setHeightFromSubtrees(z)
zZ < z.parent

O XN WwN

_
e

Biedl, Schost, Ve M) C5240 — Madule 4 Winter 2021 24 [26

AVL Deletion Example
Example: AVL::delete(22)

C5240 — Module 4 Winter 2021 25 /26

AVL Deletion Example
Example: AVL::delete(22)

C5240 — Module 4 Winter 2021 25 /26

AVL Deletion Example
Example: AVL::delete(22)

C5240 — Module 4 Winter 2021 25 /26

AVL Deletion Example
Example: AVL::delete(22)

C5240 — Module 4 Winter 2021 25 /26

AVL Deletion Example
Example: AVL::delete(22)

C5240 — Module 4 Winter 2021 25 /26

AVL Deletion Example
Example: AVL::delete(22)

C5240 — Module 4

AVL Deletion Example
Example: AVL::delete(22)

C5240 — Module 4

AVL Tree Operations Runtime

search: Just like in BSTs, costs ©(height)

insert: BSTinsert, then check & update along path to new leaf
o total cost ©(height)

{f)restructure restores the height of the subtree to what it was,
o

so restructure will be called at most once.

delete: BST::delete, then check & update along path to deleted node
e total cost ©(height)
o restructure may be called ©(height) times.

Worst-case cost for all operations is ©(height) = ©(log n).

But in practice, the constant is quite large.

Bied|, Schost, CS5240 — Module 4 Winter 2021 26 /26

woelt 4

elancd

e-.\.ll“ 4

ok o

Bl Ml_(In ‘T' L

O

D) Rzt (0= Lot (T bedore wesk)

W T He b ohr

Lt 2 le

v

ek mfd:r insenC
We LTI

Thew: G

L

ol N

ARSI

e e it

Dl

2|,

C i,
o ki3

4 bt

afler| st

ST

z

C
PRV

/
®

/ \

to e

wodip 3T | one
S u
gx_l__'_ \‘)- h—‘l_ A
7\ \ .
. A (a1l B
ATd L DI ‘QM Ny
Raiatk (eedoel sts)]
adted lredrothoe | (T = U

