CS 240 – Data Structures and Data Management

Module 4: Dictionaries

T. Biedl E. Schost O. Veksler
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2021

Outline

- Dictionaries and Balanced Search Trees
 - ADT Dictionary
 - Review: Binary Search Trees
 - AVL Trees
 - Insertion in AVL Trees
 - Restoring the AVL Property: Rotations

Outline

- Dictionaries and Balanced Search Trees
 - ADT Dictionary
 - Review: Binary Search Trees
 - AVL Trees
 - Insertion in AVL Trees
 - Restoring the AVL Property: Rotations

Dictionary ADT

Dictionary: An ADT consisting of a collection of items, each of which contains

- a key
- some data (the "value")

and is called a key-value pair (KVP). Keys can be compared and are (typically) unique.

Operations:

- search(k) (also called findElement(k))
- insert(k, v) (also called insertItem(k, v))
- delete(k) (also called removeElement(k)))
- optional: closestKeyBefore, join, isEmpty, size, etc.

Examples: symbol table, license plate database

Elementary Implementations

Common assumptions:

- Dictionary has n KVPs
- Each KVP uses constant space (if not, the "value" could be a pointer)
- Keys can be compared in constant time

Unordered array or linked list

search
$$\Theta(n)$$

insert $\Theta(1)$ (except array

insert $\Theta(1)$ (except array occasionally needs to resize)

delete
$$\Theta(n)$$
 (need to search)

Ordered array

delete
$$\Theta(n)$$
 (need to search) [5,1,16,2,7] ared array search $\Theta(\log n)$ (via binary search) [5,1,-,2,7]

insert
$$\Theta(n)$$

delete
$$\Theta(n)$$

Outline

- Dictionaries and Balanced Search Trees
 - ADT Dictionary
 - Review: Binary Search Trees
 - AVL Trees
 - Insertion in AVL Trees
 - Restoring the AVL Property: Rotations

Binary Search Trees (review)

Structure Binary tree: all nodes have two (possibly empty) subtrees
Every node stores a KVP
Empty subtrees usually not shown

Ordering Every key k in T.left is less than the root key. Every key k in T.right is greater than the root key.

In our examples we only show the keys, and we show them directly in the node. A more accurate picture would be (m) (key = 15, other info)

BST::search(k) Start at root, compare k to current node's key. Stop if found or subtree is empty, else recurse at subtree.

BST::search(k) Start at root, compare k to current node's key. Stop if found or subtree is empty, else recurse at subtree.

BST::search(k) Start at root, compare k to current node's key. Stop if found or subtree is empty, else recurse at subtree.

BST::search(k) Start at root, compare k to current node's key. Stop if found or subtree is empty, else recurse at subtree.

BST::search(k) Start at root, compare k to current node's key. Stop if found or subtree is empty, else recurse at subtree.

BST::insert(k, v) Search for k, then insert (k, v) as new node

Example: BST::insert(24, v)

- First search for the node x that contains the key.
- If x is a **leaf** (both subtrees are empty), delete it.

- First search for the node x that contains the key.
- If x is a **leaf** (both subtrees are empty), delete it.

- First search for the node x that contains the key.
- If x is a leaf (both subtrees are empty), delete it.
- ullet If x has one non-empty subtree, move child up

- First search for the node x that contains the key.
- If x is a leaf (both subtrees are empty), delete it.
- If x has one non-empty subtree, move child up

- First search for the node x that contains the key.
- If x is a leaf (both subtrees are empty), delete it
- If x has one non-empty subtree, move child up \checkmark
- Else, swap key at x with key at successor or predecessor node and then delete that node

- First search for the node x that contains the key.
- If x is a leaf (both subtrees are empty), delete it.
- If x has one non-empty subtree, move child up
- Else, swap key at x with key at successor or predecessor node and then delete that node

- First search for the node x that contains the key.
- If x is a leaf (both subtrees are empty), delete it.
- If x has one non-empty subtree, move child up
- Else, swap key at x with key at successor or predecessor node and then delete that node

BST::search, BST::insert, BST::delete all have cost $\Theta(h)$, where h = height of the tree = max. path length from root to leaf

If n items are inserted one-at-a-time, how big is h?

n = 7

Worst-case:

BST::search, BST::insert, BST::delete all have cost $\Theta(h)$, where h = height of the tree = max. path length from root to leaf

If n items are inserted one-at-a-time, how big is h?

- Worst-case: $n-1 = \Theta(n)$
- Best-case:

BST::search, BST::insert, BST::delete all have cost $\Theta(h)$, where h = height of the tree = max. path length from root to leaf

If n items are inserted one-at-a-time, how big is h?

- Worst-case: $n-1 = \Theta(n)$
- Best-case: $\Theta(\log n)$. Any binary tree with n nodes has height $\geq \log(n+1)-1$
- Average-case:

BST::search, BST::insert, BST::delete all have cost $\Theta(h)$, where h = height of the tree = max. path length from root to leaf

If n items are inserted one-at-a-time, how big is h?

- Worst-case: $n-1 = \Theta(n)$
- Best-case: $\Theta(\log n)$. Any binary tree with n nodes has height $\geq \log(n+1)-1$
- Average-case: Can show $\Theta(\log n)$

Outline

- Dictionaries and Balanced Search Trees
 - ADT Dictionary
 - Review: Binary Search Trees
 - AVL Trees
 - Insertion in AVL Trees
 - Restoring the AVL Property: Rotations

AVL Trees

Introduced by Adel'son-Vel'skiĭ and Landis in 1962, an **AVL Tree** is a BST with an additional **height-balance property** at every node:

| The heights of the left and right subtree differ by at most 1.

(The height of an empty tree is defined to be -1.)

Rephrase: If node v has left subtree L and right subtree R, then

balance(
$$v$$
) := $height(R) - height(L)$ must be in $\{-1, 0, 1\}$
 $balance(v) = -1$ means v is $left$ -heavy $|V|$
 $balance(v) = +1$ means v is $right$ -heavy $|V|$

balance (root) = -1-1=-2

AVL Trees

Introduced by Adel'son-Vel'skii and Landis in 1962, an **AVL Tree** is a BST with an additional **height-balance property** at every node:

The heights of the left and right subtree differ by at most 1.

(The height of an empty tree is defined to be -1.)

Rephrase: If node v has left subtree L and right subtree R, then

$$\begin{aligned} \textbf{balance}(v) &:= \textit{height}(R) - \textit{height}(L) \text{ must be in } \{-1,0,1\} \\ & \textit{balance}(v) = -1 \text{ means } v \text{ is } \textit{left-heavy} \\ & \textit{balance}(v) = +1 \text{ means } v \text{ is } \textit{right-heavy} \end{aligned}$$

- ullet Need to store at each node v the height of the subtree rooted at it
- Can show: It suffices to store balance(v) instead
 - uses fewer bits, but code gets more complicated

AVL tree example

(The lower numbers indicate the height of the subtree.)

AVL tree example

Alternative: store balance (instead of height) at each node.

Height of an AVL tree

Theorem: An AVL tree on n nodes has $\Theta(\log n)$ height. // \Rightarrow search, insert, delete all cost $\Theta(\log n)$ in the worst case!

Proof:

- Define N(h) to be the *least* number of nodes in a height-h AVL tree.
- What is a ecurrence relation for N(h)?
- What does this recurrence relation resolve to?

(lain: the height of any birary search tree with a begg is $\Sigma(\log n)$.

Proof: Let h be the beight of with a tree The number in of begg in the tree is the wunter of bear in $= 2^{k+1} - 1$ $(k=3=) 2^{k+1} - 1 = 15$ =D N < 2 2 4+1 -1 =D N+1 & 2 &+1 => log(un) -1 < h

Proof of O Fix le, let N(&) be the minimum number of votes in an AVL tree of beight le. N(-1) = 0. N(0) = 1. N(1) = 2 =4 N(2) = 4 N(3) = 4+2+1=7

Take an AVL tree with in nodes and height l. n> Na) > 12h-1 n+1 > 12th log (nH) > h > h € O (log n).

Outline

- Dictionaries and Balanced Search Trees
 - ADT Dictionary
 - Review: Binary Search Trees
 - AVL Trees
 - Insertion in AVL Trees
 - Restoring the AVL Property: Rotations

AVL insertion

To perform AVL::insert(k, v):

- First, insert (k, v) with the usual BST insertion.
- ullet We assume that this returns the new leaf z where the key was stored.
- Then, move up the tree from z, updating heights.
 - ► We assume for this that we have parent-links. This can be avoided if BST::Insert returns the full path to z.
- If the height difference becomes ±2 at node z, then z is unbalanced.
 Must re-structure the tree to rebalance.

AVL insertion

```
AVL::insert(k, v)
       z \leftarrow BST::insert(k, v) // leaf where k is now stored
      while (z is not NIL)
            if (|z.left.height - z.right.height| > 1) then
                 Let y be taller child of z
4.
                 Let x be taller child of y
                 z \leftarrow restructure(x, y, z) // see later
6.
                          // can argue that we are done
7.
                 break
           setHeightFromSubtrees(z)
8.
9.
            z \leftarrow z.parent
 setHeightFromSubtrees(u)
         u.height \leftarrow 1 + \max\{u.left.height, u.right.height\}
```


Outline

- Dictionaries and Balanced Search Trees
 - ADT Dictionary
 - Review: Binary Search Trees
 - AVL Trees
 - Insertion in AVL Trees
 - Restoring the AVL Property: Rotations

How to "fix" an unbalanced AVL tree

Note: there are many different BSTs with the same keys.

Goal: change the *structure* among three nodes without changing the *order* and such that the subtree becomes balanced.

Right Rotation

This is a **right rotation** on node z:

rotate-right(z)

- 1. $\underline{y} \leftarrow z.left$, $z.left \leftarrow y.right$, $y.right \leftarrow z$
- 2. setHeightFromSubtrees(z), setHeightFromSubtrees(y)
 - return y // returns new root of subtree

Left Rotation

Symmetrically, this is a **left rotation** on node *z*:

Again, only two links need to be changed and two heights updated. Useful to fix right-right imbalance.

Double Right Rotation

This is a **double right rotation** on node *z*:

First, a left rotation at y.

Double Right Rotation

This is a **double right rotation** on node z:

First, a left rotation at y. Second, a right rotation at z.

Double Left Rotation

Symmetrically, there is a **double left rotation** on node *z*:

First, a right rotation at y. Second, a left rotation at z.

Fixing a slightly-unbalanced AVL tree

```
restructure(x, y, z)
node x has parent y and grandparent z
       case
        : // Right rotation
         return rotate-right(z)
       : // Double-right rotation
    z.left \leftarrow rotate-left(v)
         return rotate-right(z)
        : // Double-left rotation
       z.right \leftarrow rotate-right(y)
         return rotate-left(z)
        : // Left rotation
         return rotate-left(z)
```

Rule: The middle key of x, y, z becomes the new root.

AVL Insertion Example revisited

AVL Insertion Example revisited

AVL Deletion

Remove the key k with BST::delete.

Find node where structural change happened.

(This is not necessarily near the node that had k.)

Go back up to root, update heights, and rotate if needed.

```
AVL::delete(k)
          BST::delete(k)
     // Assume z is the parent of the BST node that was removed
3.
      while (z is not NIL)
4.
           if (|z.left.height - z.right.height| > 1) then \checkmark
                 Let y be taller child of z
5.
                 Let x be taller child of y (break ties to prefer single rotation)
6.
7.
                z \leftarrow restructure(x, y, z)
        // Always continue up the path and fix if needed.
8.
9.
           setHeightFromSubtrees(z) ✓
10.
           z \leftarrow z.parent
```


AVL Tree Operations Runtime

search: Just like in BSTs, costs $\Theta(height)$

insert: BST::insert, then check & update along path to new leaf

- total cost Θ(height)
- restructure restores the height of the subtree to what it was,
 so restructure will be called at most once.

delete: BST::delete, then check & update along path to deleted node

- total cost Θ(height)
- restructure may be called Θ(height) times.

Worst-case cost for all operations is $\Theta(height) = \Theta(\log n)$.

But in practice, the constant is quite large.

Claim: Let & be the first non-balanced wode we meet after insent We call T the tree rooted at 2 We call T' the tree after restructure. Then: (D all moles in T' are balanced 2 beight (T') = beight (T before insert)

