CS 240 — Data Structures and Data Management

Module 4: Dictionaries

T. Biedl E. Schost 0. Veksler

Based on lecture notes by many previous ¢s240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2021

version 2021-01-06 21:24

C5240 — Module 4 Winter 2021 1/26



Outline

@ Dictionaries and Balanced Search Trees
@ ADT Dictionary
@ Review: Binary Search Trees
@ AVL Trees
@ Insertion in AVL Trees
@ Restoring the AVL Property: Rotations

C5240 — Module 4 Winter 2021



Qutline

@ Dictionaries and Balanced Search Trees
@ ADT Dictionary
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Dictionary ADT

Dictionary: An ADT consisting of a collection of items, each of which
contains

@ a key

® some data (the "value")
and is called a key-value pair (KVP). Keys can be compared and are
(typically) unique.
Operations:

e search(k) (also called findElement(k))

o insert(k,v) (also called insert/tem(k, v))
o delete(k) (also called removeElement(k)))

@ optional: closestKeyBefore, join, isEmpty, size, etc.
Examples: symbol table, license plate database
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Elementary Implementations

Common assumptions:
@ Dictionary has n KVPs

@ Each KVP uses constant space
(if not, the “value” could be a pointer)

@ Keys can be compared in constant time
Unordered array or linked list

search ©(n)

insert ©(1) (except array occasionally needs to resize)

delete © eed to search
ciete O(n) (n eh) [1,’,\, ‘°/"/7]
Ordered array
search ©(log n) (via binary search) [ SN - 11:}‘3
insert ©(n) tt;/‘;ll 3

delete ©(n)
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Qutline

@ Dictionaries and Balanced Search Trees

@ Review: Binary Search Trees
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Binary Search Trees (review)

Structure Binary tree: all nodes have two (possibly empty) subtrees
Every node stores a KVP
Empty subtrees usually not shown

Ordering Every key k in T.left is less than the root key.
Every key k in T.right is greater than the root key.

( In our examples we only show the keys, and we show them directly in the )

node. A more accurate picture would be O ------------- »(key = 15, <other info> )
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BST as realization of ADT Dictionary

BST::search(k) Start at root, compare k to current node’s key.
Stop if found or subtree is empty, else recurse at subtree.

Example: BST::search(24)
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BST as realization of ADT Dictionary

BST::search(k) Start at root, compare k to current node’s key.
Stop if found or subtree is empty, else recurse at subtree.
BST:insert(k,v) Search for k, then insert (k, v) as new node

Example: BST::insert(24,v)
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Deletion in a BST

o First search for the node x that contains the key.

o If x is a leaf (both subtrees are empty), delete it.
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Deletion in a BST

o First search for the node x that contains the key.

o If x is a leaf (both subtrees are empty), delete it.
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Deletion in a BST

o First search for the node x that contains the key.
o If x is a leaf (both subtrees are empty), delete it.

@ If x has one non-empty subtree, move child up
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Deletion in a BST

o First search for the node x that contains the key.
o If x is a leaf (both subtrees are empty), delete it/
@ If x has one non-empty subtree, move child up ¢

@ Else, swap key at x with key at successor or predecessor node and
then delete that node
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Deletion in a BST

First search for the node x that contains the key.
If x is a leaf (both subtrees are empty), delete it.

If x has one non-empty subtree, move child up

Else, swap key at x with key at successor or predecessor node and
then delete that node
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Deletion in a BST

First search for the node x that contains the key.
If x is a leaf (both subtrees are empty), delete it.

If x has one non-empty subtree, move child up

Else, swap key at x with key at successor or predecessor node and

then delete that node
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Height of a BST

el:l @/ N

£
BST::search, BST::insert, BST::delete all have cost ©(h), where

h = height of the tree = max. path length from root to leaf

If n items are inserted one-at-a-time, how big is h? "o 7

@ Worst-case: () Cl,?.,&, oo '}J
( 2
D@ } -6 /@j

® o}
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Height of a BST

BST::search, BST::insert, BST::delete all have cost ©(h), where
h = height of the tree = max. path length from root to leaf

If n items are inserted one-at-a-time, how big is h?
@ Worst-case: n— 1 = ©(n)

o Best-case: L [h, L, 6, 5/?, ‘}J
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Height of a BST

BST::search, BST::insert, BST::delete all have cost ©(h), where
h = height of the tree = max. path length from root to leaf

If n items are inserted one-at-a-time, how big is h?
@ Worst-case: n— 1 = ©(n)
@ Best-case: O(log n).
Any binary tree with n nodes has height > log(n+ 1) — 1
@ Average-case:
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Height of a BST

BST::search, BST::insert, BST::delete all have cost ©(h), where
h = height of the tree = max. path length from root to leaf

If n items are inserted one-at-a-time, how big is h?
@ Worst-case: n— 1 = ©(n)
@ Best-case: O(log n).
Any binary tree with n nodes has height > log(n+ 1) — 1
@ Average-case: Can show ©(log n)
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Qutline

@ Dictionaries and Balanced Search Trees

@ AVL Trees
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AVL Trees

Introduced by Adel'son-Vel'skii and Landis in 1962, an AVL Tree is a BST
with an additional height-balance property at every node:

{l The heights of the left and right subtree differ by at most 1.
(The height of an empty tree is defined to be —1.)

Rephrase: If node v has left subtree L and right subtree R, then
balance(v) := height(R) — height(L) must be in {—1,0,1}

balance(v) = —1 means v is left-heavy

balance(v) = +1 means v is right-heavy 1l

j. blonte, (ook) = -1 -t =2

,a
'

ans
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AVL Trees

Introduced by Adel'son-Vel'skii and Landis in 1962, an AVL Tree is a BST
with an additional height-balance property at every node:

The heights of the left and right subtree differ by at most 1.
(The height of an empty tree is defined to be —1.)

Rephrase: If node v has left subtree L and right subtree R, then
balance(v) := height(R) — height(L) must be in {—1,0,1}

balance(v) = —1 means v is left-heavy

balance(v) = +1 means v is right-heavy

@ Need to store at each node v the height of the subtree rooted at it
@ Can show: It suffices to store balance(v) instead
» uses fewer bits, but code gets more complicated
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AVL tree example

(The lower numbers indicate the height of the subtree.)
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AVL tree example

Alternative: store balance (instead of height) at each node.
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Height of an AVL tree

Theorem: An AVL tree on n nodes has ©(log n) height. 7/
= search, insert, delete all cost ©(log n) in the worst case!

Proof:

o Define N(h) 36 be the least number of nodes in a height-h AVL tree.
e What is afecurrence relation for N(h)?

@ What ¢des this recurrence relation resolve to?

(loi: R Bl 4 any \sirory fards s wile w ey
s _51(206 w).
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Qutline

@ Dictionaries and Balanced Search Trees

@ Insertion in AVL Trees
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AVL insertion

To perform AVL::Ensert(ﬁTQ:
First, insert (k, v) with the usual BST insertion.

@ We assume that this returns the new Ieafiwhere the key was stored.
@ Then, move up the tree from z, updating heights.

» We assume for this that we have parent-links. This can be avoided if
BST::Insert returns the full path to z.

If the height difference becomes +2 at node z, then z is unbalanced.
Must re-structure the tree to rebalance.

6 wutlh b 4 Y
J—— X 3 —_ y / \‘
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AVL insertion

AVL ::insert(k; v)
Lz« BST insert(k,v) // leaf where k is now stored
2. While (z is not NIL)
3. if (|z.left.height — z.right.height| > 1) then
4. Let y be taller child of z =
5. { Let x be taller child of y
6. z + restructure(x,y,z) // see later
7. break // can argue that we are done !!
8. setHeightFromSubtrees(z) g———\
9. Z + z.parent
setHeightFromSubtrees(u) \

1. u.height +— 1 + max{ u.left.height, u.right.height }
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AVL Insertion Example
Example: AVL:insert(8)
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AVL Insertion Example
Example: AVL:insert(8)
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AVL Insertion Example
Example: AVL:insert(8)
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Qutline

@ Dictionaries and Balanced Search Trees

@ Restoring the AVL Property: Rotations
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How to “fix" an unbalanced AVL tree

Note: there are many different BSTs with the same keys.

Goal: change the structure among three nodes without changing the
order and such that the subtree becomes balanced.
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Right Rotation

This is a right rotation on node z:

(0)

rotate-right(z)
1.y < zleft, z.left < y.right, y.right < z

3.  return y // returns new root of subtree

2. setHeightFromSubtrees(z), setHeightFromSubtrees(y)
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Why do we call this a rotation?
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Why do we call this a rotation?

ANANRARNA
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Left Rotation

Symmetrically, this is a left rotation on node z:

Again, only two links need to be changed and two heights updated.
Useful to fix right-right imbalance.
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Double Right Rotation

This is a double right rotation on node z:

First, a left rotation at y.
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Double Right Rotation

This is a double right rotation on node z:

(2 ()

A°°A Q/B\/S)\

AVA) v T2
Fist, a eft rotation at . A( A é_< /3

Second, a right rotation at z.
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Double Left Rotation

Symmetrically, there is a double left rotation on node z:

O N O
SN AR

First, a right rotation at y.
Second, a left rotation at z.
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Fixing a slightly-unbalanced AVL tree

restructure(x,y, z
node x has'pa?ent y and grandparent z
1. case
: // Right rotation
return rotate-right(z)

: // Double-right rotation
z left « rotate-left(y)
return rotate-right(z)

: // Double-left rotation
z.right « rotate-right(y)
return rotate-left(z)

: // Left rotation
return rotate-left(z)

o° 9c® oo O

fRule: The middle key of x,y,z becomes the new root.
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AVL Insertion Example revisited
Example: AVL:insert(8)
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AVL Insertion Example revisited
Example: AVL:insert(8)
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AVL Insertion: Second example
Example: AVL:insert(45)
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Example: AVL:insert(45)
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AVL Deletion

Remove the key k with BST::delete.
Find node where structural change happened.

(This is not necessarily near the node that had k.)
Go back up to root, update heights, and rotate if needed.

AVL::delete( k)
24 BS T::delete( k)
// Assume z is the parent of the BST node that was removed
while (z is not NIL)
if (|z.left.height — z.right.height| > 1) then
Let y be taller child of z
Let x be taller child of y (break ties to prefer single rotation)
z ¢ restructure(x,y,z) \/
// Always continue up the path and fix if needed.
setHeightFromSubtrees(z)
zZ < z.parent

O XN WwN

_
e
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AVL Deletion Example
Example: AVL::delete(22)
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AVL Deletion Example
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AVL Tree Operations Runtime

search: Just like in BSTs, costs ©(height)

insert: BSTinsert, then check & update along path to new leaf
o total cost ©(height)

{f)restructure restores the height of the subtree to what it was,
o

so restructure will be called at most once.

delete: BST::delete, then check & update along path to deleted node
e total cost ©(height)
o restructure may be called ©(height) times.

Worst-case cost for all operations is ©(height) = ©(log n).

But in practice, the constant is quite large.
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