1. Let \(P = \text{abacabaca} \) and let \(T = \text{abacabadabaca} \). Search for \(P \) in \(T \) using the KMP algorithm.

2. Consider using the Boyer-Moore algorithm with only the Bad Character heuristic to search for a pattern \(P \) of length \(m \) in a text \(T \) of length \(n \), with \(n > m \), where \(P \) does \textbf{not} appear in \(T \).

 a) Give an example of a pattern \(P \) with length \(n \) and text \(T \) with length \(n \) that achieves the worst-case runtime for searching. Do not consider preprocessing time.

 b) Same question, but for the best-case runtime.

3. Let \(P = \text{MOM} \) and let \(T = \text{ALOMOMOLA} \). Search for \(P \) in \(T \) using Suffix Arrays,