University of Waterloo CS240 Winter 2024
 Assignment 1

Due Date: Tuesday, January 23 at 5:00pm
Please readhttps://student.cs.uwaterloo.ca/~cs240/w24/assignments.phtml\#guidelines for guidelines on submission. Each question must be submitted individually to MarkUs as a PDF with the corresponding file names: a1q1.pdf, a1q2.pdf, ... , a1q6.pdf . It is a good idea to submit questions as you go so you aren't trying to create several PDF files at the last minute.

Late Policy: Assignments are due at 5:00pm, with the grace period until 11:59pm.

Notes:

- Logarithms are in base 2, if not mentioned otherwise.
- A positive function is a function that takes positive real values.

Question $1 \quad[3+3+3+3+3=15$ marks $]$

Provide a complete proof of the following statements from first principles (i.e., using the original definitions of order notation).
a) $10 n^{5} \log n+42 n^{4}-15 n^{2} \in O\left(n^{5} \log n\right)$
b) $2 n^{4}-10 n^{2}+5 n \in \Omega\left(n^{4}\right)$
c) $1+\left(n^{2} \bmod 10\right) \in \Theta(1)$
d) $3^{n} \in o\left(3.1^{n}\right)$
e) $n^{2} \in \omega\left(n^{1.9}\right)$

Question $2 \quad[2+4=6$ marks]

Prove the following statements based on the definitions of the order notations. All functions take positive values.
a) If $f(n) \in \omega(1)$, then $f(n) h(n) \in \omega(h(n))$.
b) If $f(n) \in \Theta(g(n)), h(n) \in \Theta(r(n))$, and $g(n) \in o(r(n))$ then $f(n) \in o(h(n))$.

Question $3 \quad[3+3+3=9$ marks]

For each pair of the following functions, fill in the correct asymptotic notation among Θ, o, and ω in the statement $f(n) \in \sqcup(g(n))$. Prove the relationship using any relationship or technique described in class.
a) $f(n)=5 n+7 n^{2} \log n$ versus $g(n)=n^{2} \sqrt{n}$
b) $f(n)=n$! versus $g(n)=n^{100}$
c) $f(n)=2^{n}$ versus $g(n)=2^{\cos n}$

Question $4 \quad[3+3+3+3=12$ marks]

Analyze the following pieces of pseudocode and give a tight (Θ) bound on the running time as a function of n. Show your work. A formal proof is not required, but you should justify your answer (in all cases, n is assumed to be a positive integer).
a) $\mathrm{s}:=0$

```
for i=1 to n * n * n do
    for j=1 to i * i * i * i do
            s := s + 1
```

b) $p=1$
$s=0$
for $\mathrm{i}=1$ to n do
$p=p * 2$
for $j=1$ to p do
s = s + 1
c) $\mathrm{s}=0$
i $=1$
while i <= n do
$\mathrm{j}=\mathrm{n} * \mathrm{n} * \mathrm{n} * \mathrm{n}$
while $j>0$ do
$s=s+1$
$j=j-i$
i $=$ i * 2
d) For this question, you can derive O bound, but it must be as tight as possible.

```
foo(A[0...n-1]) # assume n>=1 is a power of two
    if n <= 1
            return
        print("x")
        foo(A[0...n/4-1]
        foo(A[n/4...n/2-1]
```


Question $5 \quad[4+4=8$ marks]

True or false? For each of the following assertions, indicate whether it is true or false. If true, prove it; if false, give a counter-example and briefly justify it.
a) $f(n)$ is $\Theta(f(n / 2))$, where f takes positive values.
b) $1+n+n^{2}+\cdots+n^{k-1} \in \Theta\left(n^{k}\right)$.

Question $6 \quad[1+4=5$ marks]

For this problem, assume that we only deal with functions that are defined on non-negative integers and take positive real values (i.e. the domain is non-negative integers and the range is positive reals). Dr. I. M. Smart has recently invented a new class of functions, denoted $O^{\prime}(f)$. A function $g(n)$ is in $O^{\prime}(f)$ if there is a constant $c>0$ such that $g(n) \leq c f(n)$ for all $n \geq 0$. Prove the following statements about relationship between $O(f)$ and $O^{\prime}(f)$.
a) If $g(n) \in O^{\prime}(f(n))$, then $g(n) \in O(f(n))$
b) If $g(n) \in O(f(n))$, then $g(n) \in O^{\prime}(f(n))$

