University of Waterloo
 CS240 Winter 2024
 Assignment 1 Post-Mortem

Question $1 \quad[3+3+3+3+3=15$ marks $]$

- Some students made a mistake while working/solving desired inequalities.
- For part d) and e), some students had n_{0} in terms of n, which is not a correct approach.
- For part d) and e), some students ended up with a statement that desired inequality is true for $n_{0} \leq f(c)$ where $f(c)$ is a function in terms of c. This is not a desired statement that we want to show and received deductions.

Question $2 \quad[2+4=6$ marks $]$

- This question was nicely done overall.
- For part b), some students forgot to take max of all $n_{0} s$ that was given as part of definition. This was one of important details in this question and missing such detail received proper deductions.

Question $3 \quad[3+3+3=9$ marks]

- This question was well done overall.
- For part a) and b), some students did not show how they were able to evaluate limit. Though your proof does not need to be as detailed as MATH 137/138 proof, with these type of questions, some details and work needs to be shown.
- For part c), we cannot use limit theorem directly. That is, one cannot conclude directly that $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty$, and such approaches received deductions.

Question $4 \quad[3+3+3+3=12$ marks]

- For part c), some students concluded that runtime is $\Theta\left(n^{4} \log n\right)$. Though this seems to be intuitive answer, as you can find in the sample solution, the actual answer is different to our intuition.
- Some students tried to explain the runtime without summation. Using words is acceptable, however, it need to contain good amount of details. Missing some important details received proper deductions.

Question $5 \quad[4+4=8$ marks]

- Part a) was done nicely.
- For part b), some students tried to show a single counter example for k value. However, correction was made via Piazza and to disprove this statement, a single counter example is not sufficient enough. Such approach received deductions.

Question $6 \quad[1+4=5$ marks]

- This question was done nicely as well.
- Some students missed to show how we can find a new constant factor by using max. This detail was the key of this question and missing those details received proper deductions.

