
University of Waterloo

CS240 Winter 2024
Assignment 2

Due Date: February 13 at 5:00pm

Please read https://student.cs.uwaterloo.ca/~cs240/w24/assignments.phtml#guidelines
for guidelines on submission. Each question must be submitted individually to
MarkUs as a PDF with the corresponding file names: a2q1.pdf, a2q2.pdf, ... It is a
good idea to submit questions as you go so you aren’t trying to create several PDF files at
the last minute.

Late Policy: Assignments are due at 5:00pm, with the grace period until 11:59pm.

Question 1 [2+3+5=10 marks]

a) Let array A = [6, 2, 10, 9, 4, 11, 27]. Show the resulting array after applying heapify to
A. No explanation is necessary.

b) Let array H of size 2k store a permutation of integers in {1, .., 2k}, where k is integer
larger than 1. Array H is also a valid max-heap. What is the largest key that can be
stored in a leaf of the heap? Explain.

c) You are given:

– Algorithm median(A) which takes an array A of size n and returns its median
element. For example, if A = [6, 1, 3] then median(A) returns 3, and if A =
[6, 2, 4, 5] then median(A) returns 4. The running time is O(n).

– Algorithm partition(A, x) which takes an array A of size n and number x and
partitions A in such a way that all elements smaller than x are placed at smaller in-
dexes than all elements that are larger than x. For example, [1, 3, 6] is a valid out-
put for partition([6, 1, 3], 5) and [1, 2, 3, 6] is a valid output for partition([6, 1, 3, 2], 2).
The running time is O(n).

Design algorithm CS240Heap, which given an array A of size n rearranges all the
elements in such a way that if we view array A as a min heap, any key at level i− 1 is
smaller than any key at level i. For example, if the input array is A = [5, 3, 8, 1, 4, 2],
one possible valid output of CS240Heap is A = [1, 3, 2, 5, 4, 8]. The running time of
CS240Heap must be O(n). You can assume n = 2k− 1 for some integer k, i.e. the last
level of the heap is full.

1

https://student.cs.uwaterloo.ca/~cs240/w24/assignments.phtml#guidelines


Question 2 [2+3+2+4 = 11 marks]

a) Let H be a heap of height h. How many key comparisons must be performed by
deleteMax() in the worst case? Give the exact, not asymptotic, answer (i.e. the
answer should be a function of h, for example, 2 + h, or h2, as appropriate). Describe
the worst case instance where this number of comparisons is achieved.

b) Consider method deleteMaxFaulty(H), implemented as follows. First we remove the
item at the root node and store it in a variable to be returned to the user. Then we
compare the items at the two children of the root. Whichever item is larger is moved
to the root. We repeat this last step at the node of the deleted item until we reach a
leaf. The pseudocode for is below.

deleteMaxFaulty(H)
H: is an array storing max heap
1. i← 0
2. toReturn← H[0]
3. while i is not a leaf do
4. if i has right child and i has left child
5. H[right child of i].key > H[left child of i].key
6. H[i] = H[right child of i].key
7. i← right child of i
8. else
9. H[i] = H[left child of i].key
10. i← left child of i
11. else
12. H[i] = H[left child of i].key
13. i← left child of i
14. H.size← H.size− 1
15. return toReturn

Explain why deleteMaxFaulty() does not perform deletion of the maximum element
correctly.

c) How many key comparisons does deleteMaxFautly() perform in the worst case? Give
the exact, not asymptotic, answer.

d) Develop a method fixAfterDeleteMaxFaulty(), s.t. if we run it after deleteMaxFaulty(),
the result is a valid heap. The maximum number of key comparisons allowed for
fixAfterDeleteMaxFaulty() is log h. You can modify deleteMaxFaulty() to return
more items in the output in addition to the deleted maximum element. You do not
have to write pseudo-code, you can describe your algorithm in sufficient detail. Note
that we are not asking for the runtime of fixAfterDeleteMaxFaulty() to be O(log h),
but putting a restriction on the allowed number of key comparisons.

2



Question 3 [1+1+5 =7 marks]

Consider the following algorithm.

Mystery(A)
A: an array of size n ≥ 2 storing distinct numbers
1. sum← 0
2. sorted← true
3. for i = 1 to n− 1
4. if A[i− 1] > A[i]
5. sorted← false
6. if sorted
7. for i = 1 to n4

8. sum← sum+ i ∗ sum
9. return sum
10. if A[0] > A[1] and A[1] > A[2]
11. for i = 1 to n3

12. sum← sum+ i ∗ sum
13. return sum
14. return sum

a) What is the best-case running time? Use Θ notation. Briefly justify.

b) What is the worst-case running time? Use Θ notation. Briefly justify.

c) Derive the average-case running time. Use Θ notation. Your derivation must be based
on the definition of the average-case running time (not on an equivalence of running
time to some randomized version of Mystery(A)).

Question 4 [5 marks]

Consider the algorithm below, where random(k) returns an integer from the set of {0, 1, 2, . . . , k−
1} uniformly and at random.

ArrayAlg(A)
A: an array storing numbers
1. if A.size == 1
2. return
3. i← random(A.size)
4. for j = 0 to i2 do
5. print(A[j]) print(A[i])
6. ArrayAlg(A[0, ..., A.size− 2])

3



Let T exp(n) be the expected running time of ArrayAlg of size n. Derive a tight recursive
upper bound for T exp(n) and then solve it. Express your final answer using big-O asymptotic
notation. Your bound must be asymptotically tight, but you need not prove that it is tight.

Question 5 [5 marks]

Write an in-place partition algorithm called ModuloPartition(A) that takes an array A of n
numbers and rearranges A in such a way that all the values that are equivalent to 0 mod 10
precede all the values equivalent to 1 mod 10, which precede all the values equivalent to 2
mod 10, etc. For example, for an input array A = [7, 62, 5, 57, 12, 39, 5, 8, 16, 48], one possible
correct result is A = [12, 62, 5, 5, 16, 57, 7, 8, 48, 39]. The runtime of your algorithm must be
Θ(n).

Question 6 [5 marks]

Given an array A[0 . . . n− 1] of numbers, show that if A[i] ≥ A[i− j] for all j ≥ log n then
the array can be sorted in O(n log log n) time.

Hint: Partition A into contiguous blocks of size (log n); i.e. the first (log n) elements are
in the first block, the next (log n) elements are in the second block, and so on. Then think
about how to apply sorting to blocks.

Question 7 [2+2+2+3=9 marks]

a) Show the contents of array A = [45, 112, 83, 8] after one round of LSD sort, where one
round means one application of single digit bucket sort. No explanation is required.

b) Perform MSD sort on array A = [736, 212, 213, 376, 354, 850]. For each number, un-
derline the digits (if any) which are not examined by MSD sort. You only need to
underline the not examined digits, nothing else, and no explanation is required for
your answer.

c) What is the running time of bucket-sort when sorting an array of size n2 containing
elements in the range [0, .., n10]? Briefly explain.

d) Explain how to sort n integers in the range [0, n100) in O(n) time.

4


	[2+3+5=10 marks]
	[2+3+2+4 = 11 marks]
	[1+1+5 =7 marks]
	[5 marks]
	[5 marks]
	[5 marks]
	[2+2+2+3=9 marks]

