
University of Waterloo

CS240 Winter 2024
Assignment 3

Due Date: Tuesday, March 5 at 5:00pm

Please read https://student.cs.uwaterloo.ca/~cs240/w24/assignments.phtml#guidelines
for guidelines on submission. Each question must be submitted individually to
MarkUs as a PDF with the corresponding file names: a3q1.pdf, a3q2.pdf, ... , a3q6.pdf .
It is a good idea to submit questions as you go so you aren’t trying to create several PDF
files at the last minute.

Late Policy: Assignments are due at 5:00pm, with the grace period until 11:59pm.

Notes: Logarithms are in base 2, if not mentioned otherwise.

Question 1 [2+3+3=8 marks]

27

7

3

31

45

58

53

49

51

56

72

80

Figure 1: AVL tree of problem 1.

a) Consider the AVL tree shown in Figure 1. Draw the tree again by adding the balance
factors to all nodes.

b) Consider the AVL tree shown in Figure 1. Draw the tree after performing operation
insert(5). Draw the intermediate trees.

c) Consider the AVL tree shown in Figure 1. Draw the tree after performing operation
delete(27). Swap with the successor. Draw the intermediate trees.
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Question 2 [2+2+2+5=11 marks]

Define a family (Th)h≥−1 recursively in the following manner: T−1 is empty and T0 is a single
node; to form Th, we start with a single node and take a copy of Th−2 and a copy of Th−1

as the left and the right children of the root, respectively. Note that in this question, we do
not distinguish between single and double rotations, i.e. when we say a ’rotation’ we mean
any rotation (single or double).

a) For h ≥ 0, what is the height of Th? Prove your claim by induction.

b) Prove that for h ≥ 0, Th is an AVL tree. Prove your claim by induction.

c) Which leaves of T3 require ⌊3/2⌋ = 1 rotation upon their deletion? Pick one and show
the resulting tree.

d) For h ≥ 0, prove by induction that there is a node in Th s.t. deletion of that node
requires ⌊h/2⌋ rotations and upon deletion the resulting tree has height h− 1.

Question 3 [4+2=6 marks]

a) Draw a diagram of a skip list starting with an empty one and inserting the seven keys
67, 28, 64, 66, 60, 81, 49. Use the following coin tosses to determine the heights of towers
(note, not every toss is necessarily used):

T, T,H,H, T,H, T,H,H, T,H,H, T, T,H, T,H,H, T, T,H,H,H, T, . . .

It is sufficient to show the final skip list.

b) Suppose we use a biased coin to build a skip list, and probability of H (heads) is 1/3.
What is the probability that every tower in a skip list storing n entries will have height
strictly larger than 4?

Question 4 [2+(2+2)+4 =10 marks]

For this problem, we use a skip list to store key-value pairs (KVPs) with real-numbered keys
and values which can be compared to each other. Keys are unique. For skip list node v,
we access the node on the same level with v.after() and the level below with v.below(). We
access the key of node v with v.key(), and if v ∈ S0, we access its value with v.value(). We
call a node v of the skip-list not-final if v.key() ̸= +∞. Assume the front sentinel node in
S0 stores −∞ for the value.

a) Let i ≥ 1, let v be a not-final node in Si and let w = v.after(). Show that the expected
number of nodes between v.below() and w.below(), including v.below() and w.below(),
is O(1).
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b) Let v be a not-final node in Si. Define w
v to be a node in S0 s.t. v.key() ≤ wv.key() <

v.after().key() and wv.value() ≥ q.value() for any q ∈ S0 with v.key() ≤ q.key() <
v.after().key(). We wish to modify skip list so that each non-final node v ∈ Si

maintains an attribute v.maxV al equal to wv.value(). This is achieved with two steps
below. You can use the result in part (a) even if you did not prove it.

i) Develop an algorithm fixFromBelow(v) which takes not-final node v ∈ Si as
an input and sets v.maxV al correctly. You can assume that if i > 0, then
z.maxV al are correct for all nodes z in Sj with j < i. The expected running
time of fixFromBelow(v) must be O(1).

ii) After each insert and delete in skip list, v.maxV alue of some nodes becomes
incorrect and must be fixed. Explain on which nodes and in which order you have
to call fixFromBelow developed in part (i) to restore v.maxV alue attributes to
correct values after insert and after delete. The expected running time of fixing
v.maxV alue attributes must be O(log n).

c) Given key y, explain how to find KVP (k, v) in the skip list with k < y and the largest
v, where the skip list was modified as in part (b). In other words, out of all KVP with
keys less than y, find and return the one with the largest value. Even if you did not
solve (b), you can assume the result in (b) is available to you. The expected running
time must be O(log n).

d) (Just for fun, not graded) Given keys x < y, explain how to find KVP (k, v) in the
skip list with x ≤ k < y and the largest v, where the skip list was modified as in
part (b). In other words, out of all KVP with keys in between x (inclusively) and y
(exclusively), find and return the one with the largest value. Even if you did not solve
(b), you can assume the result in (b) is available to you. The expected running time
must be O(log n).

Question 5 [2+2+(2+2)=8 marks]

a) Consider the list of keys:
[1 2 3 4 5 6 7 8 9 10]

and assume we perform the following searches:

10, 7, 2, 2, 4⋆, 1, 2, 1, 2, 1⋆, 1, 7, 1, 9⋆

Using the move-to-front heuristic, give the list ordering after the starred (⋆) searches
are performed.

b) Repeat part (a), using the transpose heuristic instead of the move-to-front heuristic.
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c) You are given a dictionary D implemented using the Move-to-Front heuristic, with n
distinct keys, stored as an unordered linked list L. Suppose you want to perform a
sequence of n searches on keys present inD where the number of different keys searched
for is

√
n. What is the best and worst-case runtime to perform all n searches? Use Θ

notation. Briefly explain.

Question 6 [2+4=6 marks]

a) Illustrate interpolation search on array A = [0, 10, 100, 1000, 10000] and search key 10.
To illustrate the search, it is enough to show the sequence of values computed for m.

b) Assume that A is an array of size n with A[i] = ai2 + b for 0 ≤ i ≤ n − 1, where
a, b are some numbers. Recall that interpolation search used the formula m = l +⌊

k−A[l])
A[r]−A[l]

· (r − l)
⌋
to determine the index m. Define a different formula for m such

that for any key k that is in the dictionary, and any choice of l and r, the new formula
for m gives exactly the index where k is stored. You can assume the key k is in between
l and r.
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