
University of Waterloo

CS240 Winter 2024
Programming Question 1

Due Date: Tyesday, February 6th at 5:00pm

Please read https://student.cs.uwaterloo.ca/~cs240/w24/assignments.phtml#guidelines
for guidelines on submission. Submit the file CS240MaxHeap.cpp to Marmoset.
Late Policy: Assignments are due at 5:00pm, with the grace period until 11:59pm.

Question 1 [25 marks]

Design and implement CS240MaxHeap, which is a modified version of maximum-oriented
heap. Unlike the standard maxheap, each node of CS240MaxHeap (except possibly the last
node) stores exactly k integer keys. An example is in Fig. 1. For any node v, if it has a
parent, any key of the parent is larger than or equal to any key stored in node v.

Provide an implementation of the class below, with the corresponding required time
complexities, where n is the total number of keys, and k is the number of keys per node. All
printing should be done to the standard output.

Important: function delete max 5() must be implemented from scratch and cannot
reuse functions delete max() and insert(int key). In other words, you are not allowed
to delete the 5th largest element by deleting maximum element 5 times, and then reinserting
4 largest items back. If you use delete max() or insert(int key) inside delete max 5()

we will subtract 5 marks from your submission.

10, 11, 22

5, 7, 9 1, 5, 9

1, 3, 4 3, 4

Figure 1: CS240MaxHeap with k = 3.

1

https://student.cs.uwaterloo.ca/~cs240/w24/assignments.phtml#guidelines


class CS240MaxHeap{

// add any fields and methods, as necessary

public:

CS240MaxHeap(const int k); //constructor, complexity O(1)

void insert(int key); // inserts new key, complexity O(k log n)

int delete_max(); // deletes and returns the maximum key

// complexity O(k log n)

int delete_max_5(); // deletes and returns the 5th maximum key

// complexity O(k log n)

void print(); // prints all items in the CS240 MaxHeap,

// one node per line, nodes are printed in

// the order of levels from the leftmost to the

// rightmost. Keys stored at each node are printed

// on the same line in non-decreasing order

// complexity O(n)

printLeftPath(); // prints the leftmost path, complexity O(k log n)

// each node is printed on separate line

// keys of each node are printed on the same line

// in non-decreasing order, complexity O(k log n)

printRightPath(); // prints the rightmost path, complexity O(k log n)

int crazy_clean(): // deletes all items in the heap and

// computes and returns ’’crazy sum’’ of all keys

// how to compute this ’’crazy sum’’ is described

// later, complexity O(kn log n)

int size(): // returns number of keys in the data structure

You may not use any pre-existing code that would trivialize implementation (i.e. heaps
from STL, etc). You may use C++ vector, stack, and pair data structures. If in doubt,
make a private Piazza post and ask.

Place your program in file CS240MaxHeap.cpp. We provide you with a starter code that
has the main function that accepts commands from the standard input. You may assume
all inputs are valid, i.e. we will never try to delete 5th largest element from a heap with less
than 5 items. See the starter code for the description of the commands. You are not allowed
to modify the main function.

The function crazy clean works as follows. Let S be the collection of all keys in the
heap. This function removes all the keys from the heap, and computes a ”crazy sum” which
is defined procedurally as follows. The two largest items are removed from the heap, the
smallest is subtracted from the largest, and the result is added back to the heap. This
continues until there is only one item left in the heap. This item is removed and returned.
For the heap in Fig. 1, we first remove 22 and 11, subtract 11 from 22 and get 11, which we
insert back in the heap. Then we remove 11 and 10, subtract 10 from 11 and insert 1 into
the heap. After 13 iterations, we are left with only one key, namely key 0, which is then

2



returned.
We provide several sample inputs and outputs. Note that in the main function, when

printing out the heap contents, and the left or right paths, we first also print the total number
of items in the heap and k, the number of items stored at each node.

3


	[25 marks]

