Module 1: Introduction and Asymptotic Analysis

CS 240 - Data Structures and Data Management
O. Veksler

Based on lecture notes by many previous cs240 instructors
David R. Cheriton School of Computer Science, University of Waterloo

Winter 2024

Outline

- CS240 overview
- course objectives
- course topics
- Introduction and Asymptotic Analysis
- algorithm design
- pseudocode
- measuring efficiency
- asymptotic analysis
- analysis of algorithms
- analysis of recursive algorithms
- helpful formulas

Outline

- CS240 overview
- course objectives
- course topics
- Introduction and Asymptotic Analysis
- algorithm design
- pseudocode
- measuring efficiency
- asymptotic analysis
- analysis of algorithms
- analysis of recursive algorithms
- helpful formulas

Course Objectives: What is this course about?

- Computer Science is mostly about problem solving
- write program that converts given input to expected output
- When first learn to program, emphasize correctness
- does program output the expected results?
- This course is also concerned with efficiency
- does program use computer resources efficiently?
- processor time, memory space
- strong emphasis on mathematical analysis of efficiency
- Study efficient methods of storing, accessing, and organizing large collections of data
- typical operations: inserting new data items, deleting data items, searching for specific data items, sorting

Course Objectives: What is this course about?

- New abstract data types (ADTs)
- how to implement ADT efficiently using appropriate data structures
- New algorithms solving problems in data management
- sorting, pattern matching, compression
- Algorithms
- presented in pseudocode
- analyzed using order notation (big-Oh, etc.)

Course Topics

- asymptotic (big-Oh) analysis mathematical tool for efficiency
- priority queues and heaps
- sorting, selection
- binary search trees, AVL trees
- skip lists
- hashing
- quadtrees, kd-trees
- range search
- tries
- string matching
- data compression
- external memory

CS Background

- Topics covered in previous courses with relevant sections [Sedgewick]
- arrays, linked lists (Sec. 3.2-3.4)
- strings (Sec. 3.6)
- stacks, queues (Sec. 4.2-4.6)
- abstract data types (Sec. 4-intro, 4.1, 4.8-4.9)
- recursive algorithms (5.1)
- binary trees (5.4-5.7)
- basic sorting (6.1-6.4)
- binary search (12.4)
- binary search trees (12.5)
- probability and expectation (Goodrich \& Tamassia, Section 1.3.4)

Outline

- CS240 overview
- Course objectives
- Course topics
- Introduction and Asymptotic Analysis
- algorithm design
- pseudocode
- measuring efficiency
- asymptotic analysis
- analysis of algorithms
- analysis of recursive algorithms
- helpful formulas

Algorithm Design Terminology

- Problem: description of input and required output
- example: given an input array, rearrange elements in nondecreasing order
- Problem Instance: one possible input for specified problem
- $I=[5,2,1,8,2]$
- Size of a problem instance size(I)
- positive integer measuring size of instance I
- $\operatorname{size}([5,2,1,8,2])=5$
- often input is array, and instance size is array size

Algorithm Design Terminology

- Algorithm: step-by-step process (can be described in finite length) for carrying out a series of computations, given an arbitrary instance I
- Solving a problem: algorithm A solves problem Π if for every instance I of Π, A computes a valid output for instance I in finite time
- Program: implementation of an algorithm using a specified computer language
- In this course, the emphasis is on algorithms
- as opposed to programs or programming

Algorithms and Programs

- From problem Π to program that solves it

1. Algorithm Design: design algorithm(s) that solves Π
2. Algorithm Analysis: assess correctness and efficiency of algorithm(s)
3. Implementation: if acceptable (correct and efficient), implement algorithms(s)

- for each algorithm, multiple implementations are possible
- run experiments to determine a better solution
- CS240 focuses on the first two steps
- the main point is to avoid implementing obviously bad algorithms

Outline

- CS240 overview
- Course objectives
- Course topics
- Introduction and Asymptotic Analysis
- algorithm design
- pseudocode
- measuring efficiency
- asymptotic analysis
- analysis of algorithms
- analysis of recursive algorithms
- helpful formulas

Pseudocode

- Pseudocode is a method of communicating algorithm to a human
- whereas program is a method of communicating algorithm to a computer

```
insertion-sort(A,n)
A: array of size n
    1. for }i\leftarrow1\mathrm{ to }n-1\mathrm{ do
2. }j\leftarrow
3. while j>0 and }A[j]<A[j-1] do
4. swap }A[j]\mathrm{ and }A[j-1
5. 
```

- Pseudocode
- preferred language for describing algorithms
- omits obvious details, e.g. variable declarations
- sometimes uses English descriptions
- has limited if any error detection, e.g. assumes A is initialized
- sometimes uses mathematical notation
- should use good indentation and variable names

Pseudocode Details

- Control flow
if ... then ... [else ...]
while ... do ...
repeat ... until ...
for ... do ...
indentation replaces braces
- Expressions

Algorithm arrayMax(A, n)

Input: array A of n integers
Output: maximum element of A currentMax $\leftarrow \boldsymbol{A}[0]$
for $\boldsymbol{i} \leftarrow \mathbf{1}$ to $\boldsymbol{n}-1$ do
if $A[i]>$ currentMax then
currentMax $\leftarrow A[i]$
return currentMax
\leftarrow assignment
== equality testing
n^{2} superscripts and other mathematical formatting allowed

- Method declaration

Algorithm method (arg, arg...)
Input ...
Output ...

Outline

- CS240 overview
- Course objectives
- Course topics
- Introduction and Asymptotic Analysis
- algorithm design
- pseudocode
- measuring efficiency
- asymptotic analysis
- analysis of algorithms
- analysis of recursive algorithms
- helpful formulas

Efficiency of Algorithms/Programs

- Efficiency
- Running Time: amount of time program takes to run
- Auxiliary Space: amount of additional memory program requires
- additional to the memory needed for the input instance
- Primarily concerned with time efficiency in this course
- but also look at space efficiency sometimes
- same techniques as for time apply to space efficiency
- When we say efficiency, assume time efficiency
- unless we explicitly say space efficiency

Efficiency is a Function of Input

- The amount of time and/or memory required by a program usually depends on the given instance
- $T([3,-\mathbf{1}, 4,7,10])<T([3,1,4,7,0])$
- So we express time or memory efficiency as a mathematical function of instances, i.e. T(I)

```
Algorithm hasNegative(A, n)
    Input: array A of n integers
    fori}\boldsymbol{i}\leftarrow0\mathrm{ to }\boldsymbol{n}-1\mathrm{ do
        if A[i]<0
            return True
    return False
```


Efficiency is a Function of Input

- The amount of time and/or memory required by a program usually depends on the given instance
- $T([3,-1,4,7,10])<T([3,1,4,7,0])$
- So we express time or memory efficiency as a mathematical function of instances, i.e. T(I)

Algorithm arraySum (A, n)
Input: array A of n integers
Output: sum of elements of A
sum $\leftarrow 0$
for $i \leftarrow 0$ to $\boldsymbol{n}-1$ do

$$
\text { sum } \leftarrow \operatorname{sum}+A[i]
$$

return sum
$T([3,-\mathbf{1}, 4])<T([3,1,4,7,0,10])$

- Deriving $T(I)$ for each specific instance I is impractical
- Usually running time is longer for larger instances
- Group all instances of size n into set $I_{n}=\{I \mid \operatorname{size}(I)=n\}$
- Measure over the set $I_{n}: T(n)=$ "time for instances in I_{n} "
- average over I_{n} ?
- or take the best (smallest time) instance in I_{n} ?
- or take the worst (largest time) instance in I_{n} ?
- Running time usually depends both on instance size and instance composition

Running Time of Algorithms/Programs

- One option: experimental studies
- write program implementing the algorithm
- run program with inputs of varying size and composition

```
Algorithm hasNegative(A, n)
    Input: array A of n integers
    for i}\leftarrow0\mathrm{ to }\boldsymbol{n}-1\mathrm{ do
        if A[i]<0
        return True
    return False
```

- can use clock() from time.h, to measure running time

- plot/compare results

Running Time of Algorithms/Programs

- Shortcomings of experimental studies
- implementation may be complicated/costly
- timings are affected by many factors
- hardware (processor, memory)
- software environment (OS, compiler, programming language)
- human factors (programmer)
- cannot test all inputs, hard to select good sample inputs
- Thus cannot easily compare two algorithms/programs

Theoretical Framework for Algorithm Analysis

- Want framework that
- does not require implementing the algorithm
- independent of hardware/software environment
- takes into account all possible input instances
- Experimentation is still useful in practice
- especially when theoretical analysis yields no useful results for deciding between multiple algorithms

Theoretical Framework For Algorithm Analysis

- To overcome dependency on hardware/software
- write algorithms in pseudo-code
- language independent
- "run" algorithms on idealized computer model
- allows to understand how to compute time and space complexity
- i.e. states explicitly all the assumptions we make when computing time and space complexity

Idealized Computer Model

- Random Access Machine (RAM) Model
- has a set of memory cells, each of which stores one data item
- number, character, reference
- memory cells are big enough to hold stored items
- any access to a memory location takes the same constant time c
- constant time means that time is independent of the input size
- run primitive operations on this machine
- primitive operation takes the same constant time c
- will call access to a memory cell a primitive operation as well
- These assumptions may not be valid for a real computer

Theoretical Framework For Algorithm Analysis

- To overcome dependency on hardware/software
- write algorithms in pseudo-code
- language independent
- "run" algorithms on idealized computer model
- allows to reason about efficiency
- for time efficiency, count number of primitive operations
- as a function of problem size n
- running time is proportional to number of primitive operations
- assumed all primitive operations take constant time c
- can get complicated functions like $99 n^{3}+8 n^{2}+43421$
- measure time efficiency in terms of growth rate
- avoids complicated functions and isolates the factor that effects the efficiency the most for large inputs
- for space efficiency, count maximum number of memory cells ever in use
- This framework makes many simplifying assumptions
- makes analysis of algorithms easier

Theoretical Analysis of Running time

- Pseudocode is a sequence of primitive operations
- A primitive operation is
- independent of input size
- Examples of Primitive Operations
- arithmetic: -, +, \%, *, mod, round
- x^{n} is not a primitive operation, runtime depends on input size n

$$
\text { - } x^{n}=x \cdot x \ldots \cdot x
$$

- assigning a value to a variable
- indexing into an array

Algorithm arrayMax(A, n)

Input: array A of n integers
Output: maximum element of A
currentMax $\leftarrow \boldsymbol{A}[0]$
for $\boldsymbol{i} \leftarrow 1$ to $\boldsymbol{n}-1$ do
if $A[i]>$ currentMax then

$$
\text { currentMax } \leftarrow A[i]
$$

return currentMax

- returning from a method
- comparisons, calling subroutine, entering a loop, breaking, etc.
- To find running time, count the number of primitive operations
- as a function of input size \boldsymbol{n}

Theoretical Analysis of Running time

- To find running time, count the number of primitive operations $T(\boldsymbol{n})$
- function of input size \boldsymbol{n}

```
Algorithm arraySum(A, n)
sum}\leftarrowA[0
2
for }i\leftarrow1\mathrm{ to n-1 do
    sum}\leftarrow\mathrm{ sum + A[i]
{ increment counter i }
return sum
```


Theoretical Analysis of Running time

- To find running time, count the number of primitive operations $T(\boldsymbol{n})$
- function of input size \boldsymbol{n}

$$
\begin{aligned}
& \text { Algorithm arraySum(A, n) } \\
& \text { sum } \leftarrow A[0] \\
& \text { \# operations } \\
& 2 \\
& \text { for } i \leftarrow 1 \text { to } n-1 \text { do } \\
& \text { sum } \leftarrow \text { sum }+A[i] \quad i \leftarrow 1 \\
& n-1 \\
& i=1 \text {, check } i \leq n-1 \text { (go inside loop) } \\
& i=2 \text {, check } i \leq n-1 \text { (go inside loop) } \\
& i=n-1 \text {, check } i \leq n-1 \text { (go inside loop) } \\
& i=n \text {, check } i \leq n-1 \text { (do not go inside loop) } \\
& \text { Total: 2+n }
\end{aligned}
$$

Theoretical Analysis of Running time

- To find running time, count the number of primitive operations $T(\boldsymbol{n})$
- function of input size \boldsymbol{n}

$$
\begin{array}{|ll}
\hline \text { Algorithm } \operatorname{arraySum}(A, n) & \text { \# operations } \\
\text { sum } \leftarrow A[0] & 2 \\
\text { for } i \leftarrow 1 \text { to } n-1 \text { do } & 2+n \\
\quad \text { sum } \leftarrow \text { sum }+A[i] & 3(n-1) \\
\{\text { increment counter } i\} & 2(n-1) \\
\text { return sum } & 1
\end{array}
$$

Theoretical Analysis of Running time: Multiplicative factors

- Algorithm arraySum executes $\boldsymbol{T}(\boldsymbol{n})=6 \boldsymbol{n}$ primitive operations
- On a real computer, primitive operations will have different runtimes
- Let $\quad a=$ time taken by fastest primitive operation
$b=$ time taken by slowest primitive operation
- Actual runtime is bounded by two linear functions
$a(6 \boldsymbol{n}) \leq$ actual runtime $\leq b(6 \boldsymbol{n})$
- Changing hardware/software environment affects runtime by a multiplicative constant factor
- a and will b change, but the runtime is always, in essence, some constant multiplied by n
- therefore, multiplicative constants are not important
- Want to say $\boldsymbol{T}(\boldsymbol{n})=\mathbf{6 n}$ is essentially \boldsymbol{n}
- Want to ignore constant multiplicative factors
- in a theoretically justified way

Theoretical Analysis of Running time: Large Inputs

We are not interested in smaller inputs (smaller n)

- scientists work with data of ever increasing size
- Perform analysis for large n
- this further simplifies analysis

Theoretical Analysis of Running time: Lower Order Terms

- Recall that we are interested in runtime for large inputs (large n)
- Consider $\boldsymbol{T}(\boldsymbol{n})=n^{2}+\boldsymbol{n}$
- For large \boldsymbol{n}, fastest growing factor contributes the most

$$
\boldsymbol{T}(100,000)=10,000,000,000+100,000 \approx 10,000,000,000
$$

Want to ignore lower order terms

- in a theoretically justified way

Theoretical Analysis of Running time

- Thus we want

1) ignore multiplicative constant factors
2) focus on behaviour for large n or 'eventual' behaviour
3) ignore lower order terms

- This means focusing on the growth rate of the function
- We want to say
- $\boldsymbol{f}(\boldsymbol{n})=10 \boldsymbol{n}^{2}+100 \boldsymbol{n}$ has growth rate of $\boldsymbol{g}(\boldsymbol{n})=\boldsymbol{n}^{2}$
- $\boldsymbol{f}(\boldsymbol{n})=10 \boldsymbol{n}+10$ has growth rate of $\boldsymbol{g}(\boldsymbol{n})=\boldsymbol{n}$
- Asymptotic analysis (i.e. order notation) gives tools to formally focus on the growth rate
- To say that function $\boldsymbol{f}(\boldsymbol{n})$ has growth rate expressed by $\boldsymbol{g}(\boldsymbol{n})$

1) upper bound: asymptotically bound $\boldsymbol{f}(\boldsymbol{n})$ from above by $\boldsymbol{g}(\boldsymbol{n})$
2) lower bound: asymptotically bound $\boldsymbol{f}(\boldsymbol{n})$ from below by $\boldsymbol{g}(\boldsymbol{n})$

- asymptotically means: for large enough n, ignoring constant multiplicative factors

Outline

- CS240 overview
- Course objectives
- Course topics
- Introduction and Asymptotic Analysis
- algorithm design
- pseudocode
- measuring efficiency
- asymptotic analysis
- analysis of algorithms
- analysis of recursive algorithms
- helpful formulas

Order Notation: big-Oh

- Upper bound: asymptotically bound $\boldsymbol{f}(\boldsymbol{n})$ from above by $\boldsymbol{g}(\boldsymbol{n})$
- $\boldsymbol{f}(\boldsymbol{n})$ is running time, is function expressing growth rate $\boldsymbol{g}(\boldsymbol{n})$
$f(n) \in O(g(n))$ if there exist constants $c>0$ and $n_{0} \geq 0$ s.t. $|f(n)| \leq c|g(n)| \quad$ for all $n \geq n_{0}$
a set of
functions

- Need c to "get rid" of multiplicative constant in the growth rate
- cannot say $5 n^{2} \leq n^{2}$, but can say $5 n^{2} \leq c n^{2}$ for some constant c
- Absolute value not relevant for run-time or space, but useful in other applications
- Unless say otherwise, assume n (and n_{0}) are real numbers

big-Oh Example

O-notation

$f(n) \in O(g(n)) \quad$ if there exist constants $c>0$ and $n_{0} \geq 0$ s.t. $|f(n)| \leq c|g(n)| \quad$ for all $n \geq n_{0}$

- Take $c=1, n_{0}=20$
- Can also take $c=10, n_{0}=30$
- Conclusion: $f(n)=75 n+500$ has the same or slower growth rate as $g(n)=5 n^{2}$

Order Notation: big-Oh

$f(n) \in O(g(n))$
if there exist constants $c>0$ and $n_{0} \geq 0$
s.t. $|f(n)| \leq c|g(n)|$ for all $n \geq n_{0}$

- Big-O gives asymptotic upper bound
- $f(n) \in O(g(n))$ means function $f(n)$ is "bounded" above by function $g(n)$

1. eventually, for large enough n
2. ignoring multiplicative constant

- Growth rate of $f(n)$ is slower or the same as growth rate of $g(n)$
- Use big-O to bound the growth rate of algorithm
- $f(n)$ for running time
- $g(n)$ for growth rate
- should choose $g(n)$ as simple as possible
- Saying $f(n)$ is $\mathrm{O}(g(n))$ is equivalent to saying $f(n) \in O(g(n))$

Order Notation: big-Oh

- Choose $g(n)$ as simple as possible
- Previous example: $f(n)=75 n+500, g(n)=5 n^{2}$
- Simpler function for growth rate: $g(n)=n^{2}$
- Can show $f(n) \in O(g(n))$ as follows
- set $f(n)=g(n)$ and solve quadratic equation
- intersection point is $n=82$
- take $c=1, n_{0}=82$

Order Notation: big-Oh

$f(n) \in O(g(n))$ if there exist constants $c>0$ and $n_{0} \geq 0$ s.t. $|f(n)| \leq c|g(n)|$ for all $n \geq n_{0}$

- Do not have to solve equations
- $f(n)=75 n+500, g(n)=n^{2}$
- For all $n \geq 1$

Side note: for $0<n<1$
$75 n>75 n \cdot n=75 n^{2}$

$$
\begin{aligned}
& 75 n \leq 75 n \cdot n=75 n^{2} \\
& 500 \leq 500 \cdot n \cdot n=500 n^{2}
\end{aligned}
$$

- Therefore, for all $n \geq 1$

$$
75 n+500 \leq 75 n^{2}+500 n^{2}=575 n^{2}
$$

- So take $c=575, n_{0}=1$

Order Notation: big-Oh

$f(n) \in \mathrm{O}(g(n))$ if there exist constants $c>0$ and $n_{0} \geq 0$ s.t. $|f(n)|$

$$
\leq c|g(n)| \text { for all } n \geq n_{0}
$$

- Better (i.e. "tighter") bound on growth
- can bound $f(n)=75 n+500$ by slower growth than n^{2}
- $f(n)=75 n+500, g(n)=n$
- Show $f(n) \in O(g(n))$

$$
\begin{aligned}
& 75 n+500 \leq 75 n+500 n=575 n \\
& \quad \text { for all } n \geq 1
\end{aligned}
$$

- So take $c=575, n_{0}=1$

More big-O Examples

- Prove that

$$
2 n^{2}+3 n+11 \in O\left(n^{2}\right)
$$

- Need to find $c>0$ and $n_{0} \geq 0$ s.t.

$$
2 n^{2}+3 n+11 \leq c n^{2} \text { for all } n \geq n_{0}
$$

$2 n^{2}+3 n+11 \leq 2 n^{2}+3 n^{2}+11 n^{2}=16 n^{2}$ for all $n \geq 1$

- Take $c=16, n_{0}=1$

More big-O Examples

- Prove that

$$
2 n^{2}-3 n+11 \in O\left(n^{2}\right)
$$

- Need to find $c>0$ and $n_{0} \geq 0$ s.t.

$$
2 n^{2}-3 n+11 \leq c n^{2} \text { for all } n \geq n_{0}
$$

$$
2 n^{2}-3 n+11 \leq 2 n^{2}+0+11 n^{2}=13 n^{2}
$$

$$
\text { for all } n \geq 1
$$

- Take $c=13, n_{0}=1$

More big-O Examples

- Be careful with logs
- Prove that

$$
2 n^{2} \log n+3 n \in O\left(n^{2} \log n\right)
$$

- Need to find $c>0$ and $n_{0} \geq 0$ s.t. $2 n^{2} \log n+3 n \leq c n^{2} \log n$ for all $n \geq n_{0}$

$$
2 n^{2} \log n+3 n \leq 2 n^{2} \log n+3 n^{2} \log n \leq 5 n^{2} \log n
$$

$$
\text { for all } n \geq 1
$$

$$
\text { for all } n \geq 2
$$

- Take $c=5, n_{0}=2$

Theoretical Analysis of Running time

- To find running time, count the number of primitive operations $T(\boldsymbol{n})$
- function of input size \boldsymbol{n}
- Last step: express the running time using asymptotic notation

```
Algorithm arraySum(A, n) # operations
sum}\leftarrowA[0] \mp@subsup{c}{1}{
for }i\leftarrow1\mp@code{1 to n-1 do
    sum}\leftarrow\operatorname{sum}+A[i]\quad-\mp@subsup{c}{2}{}
{ increment counter i }
return sum
C3
```

Total: $c_{1}+c_{3}+c_{2} n$ which is $O(n)$

Theoretical Analysis of Running time

- Distinguishing between $c_{1} c_{2} c_{3}$ has no influence on asymptotic running time
- just use on constant c throughout

Algorithm arraySum(A, n) \# operations

Total: $c+c n$ which is $O(n)$

Need for Asymptotic Tight bound

- $2 n^{2}+3 n+11 \in O\left(n^{2}\right)$
- But also $2 n^{2}+3 n+11 \in O\left(n^{10}\right)$
- this is a true but hardly a useful statement
- if I say I have less than a million \$ in my pocket, it is a true, but useless statement
- i.e. this statement does not give a tight upper bound
- a bound is tight if it uses the slowest growing function possible
- Want an asymptotic notation that guarantees a tight bound
- For tight bound, also need asymptotic lower bound

Aymptotic Lower Bound

- Ω-notation (asymptotic lower bound)
$f(n) \in \Omega(g(n))$ if there exist constants $c>0$ and $n_{0} \geq 0$

$$
\text { s.t. }|f(n)| \geq c|g(n)| \text { for all } n \geq n_{0}
$$

- $f(n) \in \Omega(g(n))$ means function $f(n)$ is asymptotically bounded below by function $g(n)$

1. eventually, for large enough n
2. ignoring multiplicative constant

- Growth rate of $f(n)$ is larger or the same as growth rate of $g(n)$

Asymptotic Lower Bound

$f(n) \in \Omega(g(n))$ if \exists constants $c>0, n_{0} \geq 0$ s.t. $|f(n)| \geq c|g(n)|$ for $n \geq n_{0}$

- Prove that $2 n^{2}+3 n+11 \in \Omega\left(n^{2}\right)$
- Find $c>0$ and $n_{0} \geq 0$ s.t.

$$
\begin{aligned}
& 2 n^{2}+3 n+11 \geq c n^{2} \text { for all } n \geq n_{0} \\
& 2 n^{2}+3 n+11 \geq 2 n^{2} \text { for all } n \geq 0
\end{aligned}
$$

- Take $c=2, n_{0}=0$

Asymptotic Lower Bound

$f(n) \in \Omega(g(n))$ if \exists constants $c>0, n_{0} \geq 0$ s.t. $|f(n)| \geq c|g(n)|$ for $n \geq n_{0}$

- Prove that $\frac{1}{2} n^{2}-5 n \in \Omega\left(n^{2}\right)$
- $\frac{1}{2} n^{2}-5 n<0$ for $0<n<10$
- we want to ignore absolute value in the derivation, so we need to ensure $f(n)$ is positive for considered range, i.e. for $n \geq n_{0}$
- for positivity of $f(n)$, make sure to take $n_{0} \geq 10$
- Need to find c and n_{0} s.t. $\frac{1}{2} n^{2}-5 n \geq c n^{2}$ for all $n \geq n_{0}$
- Unlike before, cannot just drop lower growing term, as $\frac{1}{2} n^{2}-5 n \leq \frac{1}{2} n^{2}$
- Need $\frac{1}{2} n^{2}-5 n \geq c n^{2}$
for large enough n
$a n^{2}\left(b n^{2}\right.$ positive for large enough n

$$
\frac{1}{2} n^{2}-5 n \geq a n^{2}+\left(b n^{2}-5 n\right) \geq a n^{2}
$$

Asymptotic Lower Bound

$f(n) \in \Omega(g(n))$ if \exists constants $c>0, n_{0} \geq 0$ s．t．$|f(n)| \geq c|g(n)|$ for $n \geq n_{0}$
－For positivity of $f(n)$ ，make sure to take $n_{0} \geq 10$
－Need to find c and n_{0} s．t．$\frac{1}{2} n^{2}-5 n \geq c n^{2}$ for all $n \geq n_{0}$
－Rewrite

$$
\begin{gathered}
\frac{1}{2} n^{2}-5 n=\frac{1}{4} n^{2}+\frac{1}{4} n^{2}-5 n=\frac{1}{4} n^{2}+(\underbrace{\left(\frac{1}{4} n^{2}-5 n\right) \geq \frac{1}{4} n^{2} \text { if } n \geq 20} ⿻ ⿻ 一 𠃋 十 𠃌 \text { if } n \geq 20
\end{gathered}
$$

－Take $c=\frac{1}{4}, n_{0}=20$
－n_{0} happened to be bigger than 10 ，as needed，automatically

Tight Asymptotic Bound

- Θ-notation
$f(n) \in \Theta(g(n))$ if there exist constants $c_{1}, c_{2}>0, n_{0} \geq 0$ s.t.

$$
c_{1}|g(n)| \leq|f(n)| \leq c_{2}|g(n)| \text { for all } n \geq n_{0}
$$

- $f(n) \in \Theta(g(n))$ means $f(n), g(n)$ have equal growth rates
- typically $f(n)$ is complicated, and $g(n)$ is chosen to be simple
- Easy to prove that

$$
f(n) \in \Theta(g(n)) \Leftrightarrow f(n) \in O(g(n)) \text { and } f(n) \in \Omega(g(n))
$$

- Therefore, to show that $f(n) \in \Theta(g(n))$, it is enough to show

1. $f(n) \in O(g(n))$
2. $f(n) \in \Omega(g(n))$

Tight Asymptotic Bound

- Proved previously that
- $2 n^{2}+3 n+11 \in O\left(n^{2}\right)$
- $2 n^{2}+3 n+11 \in \Omega\left(n^{2}\right)$
- Thus $2 n^{2}+3 n+11 \in \Theta\left(n^{2}\right)$
- Ideally, should use Θ to determine growth rate of algorithm
- $f(n)$ for running time
- $g(n)$ for growth rate
- Sometimes determining tight bound is hard, so big-O is used

Tight Asymptotic Bound

Prove that $\log _{b} n \in \Theta(\log n)$ for $b>1$

- Find $c_{1}, c_{2}>0, n_{0} \geq 0$ s.t. $c_{1} \log n \leq \log _{b} n \leq c_{2} \log n$ for all $n \geq n_{0}$
- $\log _{b} n=\frac{\log n}{\log b}=\frac{1}{\log b} \log n$
- $\frac{1}{\log b} \log n \leq \log _{b} n \leq \frac{1}{\log b} \log n$
- Since $b>1, \log b>0$
- Take $c_{1}=c_{2}=\frac{1}{\log b}$ and $n_{0}=1$

Common Growth Rates

- Commonly encountered growth rates in increasing order of growth
- $\Theta(1) \quad$ constant complexity
- note: here 1 stands for function $f(n)=1$
- $\Theta(\log n) \quad$ logarithmic complexity
- $\Theta(n) \quad$ linear complexity
- $\Theta(n \log n)$ linearithmic
- $\Theta\left(n \log ^{k} n\right)$ quasi-linear
- note: k is constant, i.e. independent of the problem size n
- $\Theta\left(n^{2}\right) \quad$ quadratic complexity
- $\Theta\left(n^{3}\right) \quad$ cubic complexity
- $\Theta\left(2^{n}\right) \quad$ exponential complexity

How Growth Rates Affect Running Time

- How running time affected when problem size doubles ($n \rightarrow 2 n$)
- constant complexity: $T(n)=c$
- logarithmic complexity: $T(n)=c \log n$
- linear complexity: $T(n)=c n$
- linearithmic: $T(n)=c n \log n$
- quadratic complexity: $T(n)=c n^{2}$
- cubic complexity: $T(n)=c n^{3}$
- exponential complexity: $T(n)=c 2^{n}$

$$
\begin{aligned}
& T(2 n)=c \\
& T(2 n)=T(n)+c
\end{aligned}
$$

$$
T(2 n)=2 T(n)
$$

$$
T(2 n)=2 T(n)+2 c n
$$

$$
T(2 n)=4 T(n)
$$

$$
T(2 n)=8 T(n)
$$

$$
T(2 n)=\frac{1}{c} T^{2}(n)
$$

Growth Rate: Concrete Numbers

n	$\log (n)$	n	$n \log (n)$	n^{2}	n^{3}	2^{n}
8	3	8	24	64	512	256
16	4	16	64	256	4096	65536
32	5	32	160	1024	32768	4.3×10^{9}
64	6	64	384	4096	262144	1.8×10^{19}
128	7	128	896	16384	2097152	3.4×10^{38}
256	8	256	2048	65536	16777218	1.2×10^{77}

Strictly Smaller Asymptotic Bound

- $f(n)=2 n^{2}+3 n+11 \in \Theta\left(n^{2}\right)$
- How to say $f(n)$ is asymptotically strictly smaller than $g(n)=n^{3}$?

- o-notation

$$
\begin{aligned}
& f(n) \in o(g(n)) \text { if for any constant } c>0 \text {, there exists a } \\
& \text { constant } n_{0} \geq 0 \text { s.t. }|f(n)| \leq c|g(n)| \text { for all } n \geq n_{0}
\end{aligned}
$$

- Think of c as being arbitrarily small
- No matter how small c is, $c \cdot g(n)$ is eventually larger than $f(n)$
- Meaning: f grows slower than g, or growth rate of f is less than growth rage of g
- Useful for certain statements
- there is no general-purpose sorting algorithm with run-time $o(n \log n)$

Big-Oh vs. Little-o

- Big-Oh, means f grows at the same rate or slower than g

$$
\begin{aligned}
& f(n) \in O(g(n)) \text { if there exist constants } c>0 \text { and } n_{0} \geq 0 \text { s.t. }|f(n)| \\
& \leq c|g(n)| \text { for all } n \geq n_{0}
\end{aligned}
$$

- Little-o, means f grows slower than g

$$
\begin{aligned}
& f(n) \in o(g(n)) \text { if for any constant } c>0 \text {, there exists a } \\
& \text { constant } n_{0} \geq 0 \text { s.t. }|f(n)| \leq c|g(n)| \text { for all } n \geq n_{0}
\end{aligned}
$$

- Main difference is the quantifier for c : exists vs. any
- for big-Oh, you can choose any c you want
- for little-o, you are given c, it can be arbitrarily small
- in proofs for little-o, n_{0} will normally depend on c, so it is really a function $n_{0}(c)$

Big-Oh vs. Little-o

- Big-Oh, means f grows at the same rate or slower than a $f(n) \in$
- Little-o, m
- Main diffe
- for
- for little-0, you ar- sivell c, it can be arbitrarily small
- in proofs for little-o, n_{0} will normally depend on c, so it is really a function $n_{0}(c)$

Strictly Larger Asymptotic Bound

- ω-notation
$f(n) \in \omega(g(n))$ if for any constant $c>0$, there exists a constant $n_{0} \geq 0$ s.t. $|f(n)| \geq c|g(n)|$ for all $n \geq n_{0}$
- Meaning: f grows much faster than g

Strictly Smaller Proof Example

$$
f(n) \in o(g(n)) \text { if for any } c>0 \text {, there exists } n_{0} \geq 0 \text { s.t. }|f(n)| \leq c|g(n)| \text { for all } n \geq n_{0}
$$

Prove that $5 n \in o\left(n^{2}\right)$

- Given $c>0$ need to find n_{0} s.t. $5 n \leq c n^{2}$ for all $n \geq n_{0}$
- Dividing both sides by n, this is equivalent to the statement below
- Given $c>0$ need to find n_{0} s.t. $5 \leq c n$ for all $n \geq n_{0}$
- solving for n, the above holds for $n \geq \frac{5}{c}$
- Therefore, $5 n \leq c n^{2}$ for $n \geq \frac{5}{c}$
- Take $n_{0}=\frac{5}{c}$
- n_{0} is a function of c
- we noted before that for little-o proofs, n_{0} is usually a function of c

Relationship between Order Notations

One can prove the following relationships

- $f(n) \in \Theta(g(n)) \quad \Leftrightarrow g(n) \in \Theta(f(n))$
- $f(n) \in O(g(n)) \Leftrightarrow g(n) \in \Omega(f(n))$
- $f(n) \in o(g(n)) \Leftrightarrow g(n) \in \omega(f(n))$
- $f(n) \in o(g(n)) \Rightarrow f(n) \in O(g(n))$
- $f(n) \in o(g(n)) \Rightarrow f(n) \notin \Omega(g(n))$
- $f(n) \in \omega(g(n)) \Rightarrow f(n) \in \Omega(g(n))$
- $f(n) \in \omega(g(n)) \Rightarrow f(n) \notin O(g(n))$

Algebra of Order Notations (1)

- The following rules are easy to prove [exercise]

1. Identity rule: $f(n) \in \Theta(f(n))$
2. Transitivity

- if $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$ then $f(n) \in O(h(n))$
- if $f(n) \in \Omega(g(n))$ and $g(n) \in \Omega(h(n))$ then $f(n) \in \Omega(h(n))$
- if $f(n) \in O(g(n))$ and $g(n) \in o(h(n))$ then $f(n) \in o(h(n))$

Algebra of Order Notations (2)

$$
\max \{f, g\}(n)=\left\{\begin{array}{lc}
f(n) & \text { if } f(n)>g(n) \\
g(n) & \text { otherwise }
\end{array}\right.
$$

3. Maximum rules

Suppose that $f(n)>0$ and $g(n)>0$ for all $n \geq n_{0}$, then
a) $f(n)+g(n) \in \Omega(\max \{f(n), g(n)\})$
b) $f(n)+g(n) \in O(\max \{f(n), g(n)\})$

Proof:
a) $f(n)+g(n) \geq$ either $f(n)$ or $g(n)=\max \{f(n), g(n)\}$
b) $f(n)+g(n)=\max \{f(n), g(n)\}+\min \{f(n), g(n)\}$ $\leq \max \{f(n), g(n)\}+\max \{f(n), g(n)\}$ $=2 \max \{f(n), g(n)\}$

Limit Theorem for Order Notation

- So far had proofs for order notation from the first principles
- i.e. from the definition

Limit theorem for order notation

- Suppose for all $n \geq n_{0}, f(n)>0, g(n)>0$ and $\mathrm{L} \underset{n \rightarrow \infty}{=} \lim _{n} \frac{f(n)}{g(n)}$
- Then $f(n) \in\left\{\begin{array}{lc}o(g(n)) & \text { if } L=0 \\ \Theta(g(n)) & \text { if } 0<L<\infty \\ \omega(g(n)) & \text { if } L=\infty\end{array}\right.$
- Limit can often be computed using l'Hopital's rule
- Theorem gives sufficient but not necessary conditions
- Can use theorem unless asked to prove from the first principles

Example 1

Let $f(n)$ be a polynomial of degree $d \geq 0$ with $c_{d}>0$

$$
f(n)=c_{d} n^{d}+c_{d-1} n^{d-1}+\cdots+c_{1} n+c_{0}
$$

Then $f(n) \in \Theta\left(n^{d}\right)$
Proof:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{f(n)}{n^{d}} & =\lim _{n \rightarrow \infty}\left(\frac{c_{d} n^{d}}{n^{d}}+\frac{c_{d-1} n^{d-1}}{n^{d}}+\cdots+\frac{c_{0}}{n^{d}}\right) \\
& =\underbrace{\lim _{n}\left(\frac{c_{d} n^{d}}{n^{d}}\right)}_{n \rightarrow \infty}+\lim _{n \rightarrow \infty} \underbrace{\left(\frac{c_{d-1} n^{d-1}}{n^{d}}\right)+\cdots+\underbrace{\lim _{n \rightarrow \infty}\left(\frac{c_{0}}{n^{d}}\right)}_{n \rightarrow \infty}}_{=0} \begin{aligned}
&=c_{d} \\
&=c_{d}>0
\end{aligned},=0
\end{aligned}
$$

Example 2

- Compare growth rates of $\log n$ and n

$$
\lim _{n \rightarrow \infty} \frac{\log n}{n}=\lim _{n \rightarrow \infty} \frac{\frac{\ln n}{\ln 2}}{n}=\lim _{n \rightarrow \infty} \frac{\frac{1}{\ln 2 \cdot n}}{1}=\lim _{n \rightarrow \infty} \frac{1}{n \cdot \ln 2}=0
$$

- $\log n \in o(n)$

Example 3

- Prove $(\log n)^{a} \in \mathrm{o}\left(n^{d}\right)$, for any (big) $a>0$, (small) $d>0$

1) Prove (by induction):

$$
\lim _{n \rightarrow \infty} \frac{\ln ^{\mathrm{k}} n}{n}=0 \text { for any integer } k
$$

- Base case $k=1$ is proven on previous slide
- Inductive step: suppose true for $k-1$
- $\lim _{n \rightarrow \infty} \frac{\ln ^{\mathrm{k}} n}{n}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n} k \ln ^{k-1} n}{1}=k \lim _{n \rightarrow \infty} \frac{\ln k-1 n}{n}=0$

L'Hopital rule

2) Prove $\lim _{n \rightarrow \infty} \frac{\ln ^{\mathrm{a}} n}{n^{d}}=0$

- $\lim _{n \rightarrow \infty} \frac{\ln ^{\text {a }} n}{n^{d}}=\left(\lim _{n \rightarrow \infty} \frac{\ln ^{a / d} n}{n}\right)^{d} \leq\left(\lim _{n \rightarrow \infty} \frac{\ln ^{\lceil a / d\rceil} n}{n}\right)^{d}=0$

3) Finally $\lim _{n \rightarrow \infty} \frac{(\log n)^{a}}{n^{d}}=\lim _{n \rightarrow \infty} \frac{\left(\frac{\ln n}{\ln 2}\right)^{a}}{n^{d}}=\left(\frac{1}{\ln 2}\right)^{a} \lim _{n \rightarrow \infty} \frac{(\ln n)^{a}}{n^{d}}=0$

Example 4

- Sometimes limit does not exist, but can prove from first principles
- Let $f(n)=n(2+\sin n \pi / 2)$
- Prove that $f(n)$ is $\Theta(n)$

Example 4

- Let $f(n)=n(2+\sin n \pi / 2)$, prove that $f(n)$ is $\Theta(n)$
- Proof:

$$
-1 \leq \sin (\text { any number }) \leq 1
$$

$$
f(n) \leq n(2+1)=3 n \text { for all } n \geq 1
$$

$$
n=n(2-1) \leq f(n)
$$

$$
\text { for all } n \geq 1
$$

$$
n \leq f(n) \leq 3 n
$$

for all $n \geq 1$
Use $c_{1}=1, c_{2}=3, n_{0}=1$

Example 5

- Let $f(n)=n(1+\sin n \pi / 2)$, prove that $f(n)$ is $\operatorname{not} \Omega(n)$
- Intuition: $f(n)=0$ infinitely many times
- Proof: (by contradiction)
- Suppose $f(n)$ is $\Omega(n)$
- Then there is $n_{0} \geq 0$ and $c>0$ s.t.

$$
n(1+\sin n \pi / 2) \geq c n \text { for all } n \geq n_{0}
$$

$(1+\sin n \pi / 2) \geq c$ for all $n \geq n_{0}$

- Take $m=4\left\lceil n_{0}\right\rceil+2 \geq n_{0}$
- $\sin m \pi / 2=-1$, so $(1+\sin n \pi / 2)=0<c$
- Contradiction!

Order notation Summary

- $f(n) \in \Theta(g(n))$: growth rates of f and g are the same
- $f(n) \in \mathrm{o}(g(n))$: growth rate of f is less than growth rate of g
- $f(n) \in \omega(g(n))$: growth rate of f is greater than growth rate of g
- $f(n) \in \mathrm{O}(g(n))$: growth rate of f is the same or less than growth rate of g
- $f(n) \in \Omega(g(n))$: growth rate of f is the same or greater than growth rate of g

Abuse of Notation

- Normally, say $f(n) \in \Theta(g(n))$ because $\Theta(g(n))$ is a set
- Sometimes it is convenient to abuse notation
- $f(n)=2 n^{2}+\Theta(n)$
- $f(n)$ is $2 n^{2}$ plus a linear term
- nicer to read than ' $2 n^{2}+30 n+\log n^{\prime}$
- does not hide the constant term 2, unlike if we said $O\left(n^{2}\right)$
- $f(n)=n^{2}+o(1)$
- $\quad f(n)$ is n^{2} plus a vanishing term (term goes to 0)
- example: $f(n)=n^{2}+1 / n$
- Use these sparingly, typically only for stating final result
- But avoid arithmetic with asymptotic notation, can go very wrong
- Instead, replace $\Theta(g(n))$ by $c \cdot g(n)$
- still sloppy, but less dangerous
- if $f(n) \in \Theta(g(n))$, more accurate statement is $c \cdot g(n) \leq f(n) \leq c^{\prime} \cdot g(n)$ for large enough n

Outline

- CS240 overview
- Course objectives
- Course topics
- Introduction and Asymptotic Analysis
- algorithm design
- pseudocode
- measuring efficiency
- analysis of algorithms
" analysis of recursive algorithms
- helpful formulas

Techniques for Runtime Analysis

- Goal: Use asymptotic notation to simplify run-time analysis
- Running time of an algorithm depends on the input size n

```
Test1(n)
1. sum \(\leftarrow 0\)
2. \(\quad\) for \(i \leftarrow 1\) to \(n\) do
3. \(\quad\) for \(j \leftarrow i\) to \(n\) do
4. \(\quad \operatorname{sum} \leftarrow \operatorname{sum}+(i-j)^{2}\)
5. return sum
```

- Identify primitive operations: these require constant time
- Loop complexity expressed as sum of complexities of each iteration
- Nested loops: start with the innermost loop and proceed outwards
- This gives nested summations

Techniques for Runtime Analysis

- Goal: Use asymptotic notation to simplify run-time analysis
- Running time of an algorithm depends on the input size n

```
Test1( \(n\) )
1. sum \(\leftarrow 0\)
2. for \(i \leftarrow 1\) to \(n\) do
3. for \(j \leftarrow i\) to \(n\) do
5. return sum \(\operatorname{sum} \leftarrow \operatorname{sum}+(i-j)^{2}\)
    C
5. return sum
```

- Identify primitive operations: these require constant time
- Loop complexity expressed as sum of complexities of each iteration
- Nested loops: start with the innermost loop and proceed outwards
- This gives nested summations

Techniques for Algorithm Analysis

- Goal: Use asymptotic notation to simplify run-time analysis
- Running time of an algorithm depends on the input size n

```
```

Test1(n)

```
```

Test1(n)

1. sum $\leftarrow 0$
2. sum $\leftarrow 0$
3. for $i \leftarrow 1$ to n do
4. for $i \leftarrow 1$ to n do
5.
6.
7.
8.
9. return sum
```
```

5. return sum
```
```

- Identify primitive operations: these require constant time
- Loop complexity expressed as sum of complexities of each iteration
- Nested loops: start with the innermost loop and proceed outwards
- This gives nested summations

Techniques for Algorithm Analysis

- Goal: Use asymptotic notation to simplify run-time analysis
- Running time of an algorithm depends on the input size n

```
Test1 (n)
1. sum \(\leftarrow 0\)
2. for \(i \leftarrow 1\) to \(n\) do
3. \(\quad\) for \(j \leftarrow i\) to \(n\) do
4.
5. return sum
```

- Identify primitive operations: these require constant time
- Loop complexity expressed as sum of complexities of each iteration
- Nested loops: start with the innermost loop and proceed outwards
- This gives nested summations

Techniques for Algorithm Analysis

- Goal: Use asymptotic notation to simplify run-time analysis
- Running time of an algorithm depends on the input size n

Test1(n)

	1.
2.	fum $\leftarrow \leftarrow$
3.	for $\leftarrow 1$ to n do
3.	for $j \leftarrow i$ to n do
4.	sum $\leftarrow \operatorname{sum}+(i-j)^{2}$
5.	return sum

$$
\sum_{i=1}^{n} \sum_{j=i}^{n} c+c
$$

- Identify primitive operations: these require constant time
- Loop complexity expressed as sum of complexities of each iteration
- Nested loops: start with the innermost loop and proceed outwards
- This gives nested summations

Techniques for Algorithm Analysis

```
Test1(n)
1. sum \(\leftarrow 0\)
2. \(\quad\) for \(i \leftarrow 1\) to \(n\) do
3. for \(j \leftarrow i\) to \(n\) do
4. sum \(\leftarrow \operatorname{sum}+(i-j)^{2}\)
5. return sum
```

- Derived complexity as

- Some textbooks will write this as
- Or even as
- Now need to work out the sum

Sums: Review

Sums: Review

$$
\begin{array}{rllc}
\sum_{j=i}^{n} 1=\begin{array}{ll}
1 & +1
\end{array} & \cdots & +1=n-i+1 \\
j=i & j=i+1 & \cdots & j=n \\
& & & \\
k=i-i+1=1 & k=i+1-i+1=2 & & k=n-i+1=n-i+1
\end{array}
$$

Sums: Review

$$
\begin{array}{cll}
\sum_{j=i}^{n}\left(n-e^{x}\right)=n-e^{x} & +n-e^{x} & \ldots+n-e^{x}=(n-i+1)\left(n-e^{x}\right) \\
j=i & j=i+1 & \ldots . j=n
\end{array}
$$

Sums: Review

$$
\begin{aligned}
& S=\sum_{i=1}^{n} i=\begin{array}{ccccc}
1 & +2 & +3 & \ldots & +n \\
i=1 & i=2 & i=3 & \ldots & i=n
\end{array}
\end{aligned}
$$

$2 S=(n+1) n$

$$
S=\sum_{i=1}^{n} i=\frac{1}{2}(n+1) n
$$

Sums: Review

$$
\begin{aligned}
& S=\sum_{i=a}^{b} i=\begin{array}{cccc}
a & +(a+1) & \ldots & +b \\
i=a & i=a+1 & \ldots & i=b
\end{array} \\
& \left.+\begin{array}{c}
a+b \\
S=a+b \\
S=a+(a+1) \\
b
\end{array}\right) \\
& \ldots\left(\begin{array}{c}
a+b \\
+b \\
+a
\end{array}\right)
\end{aligned}
$$

$2 S=(a+b)(b-a+1)$

$$
S=\sum_{i=a}^{b} i=\frac{1}{2}(a+b)(b-a+1)
$$

Techniques for Algorithm Analysis

$$
\begin{aligned}
& \text { Test1(n) } \\
& \text { 1. sum } \leftarrow 0 \\
& \text { 2. for } i \leftarrow 1 \text { to } n \text { do } \\
& \text { 3. } \quad \text { for } j \leftarrow i \text { to } n \text { do } \\
& \text { 4. } \quad \operatorname{sum} \leftarrow \operatorname{sum}+(i-j)^{2} \\
& \text { 5. return sum } \\
& c+\sum_{i=1}^{n} \sum_{j=i}^{n} c=c+\sum_{i=1}^{n} c(n-i+1)=c+c \sum_{i=1}^{n}(n-i+1) \\
& \begin{array}{l}
=c+c \sum_{i=1}^{n} n-c \sum_{i=1}^{n} i+c \sum_{i=1}^{n} 1 \\
=c+c n^{2}-c \frac{(n+1) n}{2}+c n=c \frac{n^{2}}{2}+c \frac{n}{2}+c
\end{array}
\end{aligned}
$$

- Complexity of algorithm Test1 is $\Theta\left(n^{2}\right)$

Techniques for Algorithm Analysis

```
Test1(n)
1. sum}\leftarrow
2. for }i\leftarrow1\mathrm{ to }n\mathrm{ do
3. for }j\leftarrowi\mathrm{ to }n\mathrm{ do
4. sum}\leftarrow\operatorname{sum}+(i-j\mp@subsup{)}{}{2
5. return sum
```

- Can use $\Theta-b o u n d s ~ e a r l i e r, ~ b e f o r e ~ w o r k i n g ~ o u t ~ t h e ~ s u m ~$

$$
c+\sum_{i=1}^{n} \sum_{j=i}^{n} c \quad \text { is } \quad \Theta\left(\sum_{i=1}^{n} \sum_{j=i}^{n} c\right)
$$

- Therefore, can drop the lower order term and work on

- Using Ө-bounds earlier makes final expressions simpler
- Complexity of algorithm Test1 is $\Theta\left(n^{2}\right)$

Techniques for Algorithm Analysis

- Two general strategies

1. Use Θ-bounds throughout the analysis and obtain Θ bound for the complexity of the algorithm

- used this strategy on previous slides for Test1 Θ-bound

2. Prove a O-bound and a matching Ω-bound separately

- use upper bounds (for O-bounds) and lower bounds (for Ω-bound) early and frequently
- easier because upper/lower bounds are easier to sum

Techniques for Algorithm Analysis

- Second strategy: upper bound for Test1

$$
\sum_{i=1}^{n} \sum_{j=i}^{n} c
$$

- Add more iterations to make sum easier to work out

$$
\sum_{i=1}^{n} \sum_{j=i}^{n} c \leq \sum_{i=1}^{n} \sum_{j=1}^{n} c=\sum_{i=1}^{n} c n=c \sum_{i=1}^{n} n=c n^{2}
$$

Techniques for Algorithm Analysis

- Second strategy: upper bound for Test1

- Add iterations to make sum easier to work out

$$
\sum_{i=1}^{n} \sum_{j=i}^{n} c \leq \sum_{i=1}^{n} \sum_{j=1}^{n} c=\sum_{i=1}^{n} c n=c \sum_{i=1}^{n} n=c n^{2}
$$

upper bound \star

- Test1 is $O\left(n^{2}\right)$

Techniques for Algorithm Analysis

- Second strategy: lower bound for Test1

$$
\sum_{i=1}^{n} \sum_{j=i}^{n} c
$$

- Remove iterations to make sum easier to work out

$$
\sum_{i=1}^{n} \sum_{j=i}^{n} c \geq \sum_{i=1}^{n / 2} \sum_{j=n / 2}^{n} c=\sum_{i=1}^{n / 2} c \frac{n}{2}=c \sum_{i=1}^{n / 2} \frac{n}{2}=c\left(\frac{n}{2}\right)^{2}
$$

Techniques for Algorithm Analysis

- Second strategy: lower bound for Test1

$$
\sum_{i . E}
$$

- Remove iterations to make sum easier to work out
- Can get the same result without visualization
- To remove iterations, increase lower or increase upper range bounds, or both
- Examples: $\sum_{k=10}^{100} c \geq \sum_{k=20}^{80} c \quad \quad \sum_{k=i}^{j} 1 \geq \sum_{k=i+1}^{j-1} 1$
- In our case:

$$
\sum_{i=1}^{n} \sum_{j=i}^{n} c \geq \sum_{\substack{i=1 \\ \text { now } i \leq n / 2}}^{n / 2} \sum_{j=i}^{n} c \geq \sum_{i=1}^{n / 2} \sum_{j=n / 2}^{n} c=c\left(\frac{n}{2}\right)^{2}
$$

- Test1 is $\Omega\left(n^{2}\right)$, previously concluded that Test1 is $O\left(n^{2}\right)$
- Therefore Test1 is $\Theta\left(n^{2}\right)$

Worst Case Time Complexity

- Can have different running times on two instances of equal size

```
insertion-sort(A,n)
A: array of size n
    1. for }i\leftarrow1\mathrm{ to }n-1\mathrm{ do
2. }j\leftarrow
3. while j>0 and A[j]<A[j-1] do
4. swap A[j] and A[j-1]
5. 
```

- Let $T(I)$ be running time of an algorithm on instance I
- Let $I_{n}=\{\operatorname{I}: \operatorname{Size}(I)=n\}$
- Worst-case complexity of an algorithm: take the worst I
- Formal definition: the worst-case running time of algorithm A is a function $f: \mathrm{Z}^{+} \rightarrow \mathrm{R}$ mapping n (the input size) to the longest running time for any input instance of size n

$$
T_{\text {worst }}(n)=\max _{I \in I_{n}}\{T(I)\}
$$

Worst Case Time Complexity

- Can have different running times on two instances of equal size

```
insertion-sort(A, n)
A: array of size n
1. for }i\leftarrow1\mathrm{ to }n-1\mathrm{ do
2. }
3. while j>0 and A[j]<A[j-1] do
4. swap }A[j]\mathrm{ and }A[j-1
5. 
```

- Worst-case complexity of an algorithm: take worst instance I
- $T_{\text {worst }}(n)=c(n-1) n / 2$
- this is primitive operation count as a function of input size n
- after primitive operation count, apply asymptotic analysis
- $\Theta\left(n^{2}\right)$ or $O\left(n^{2}\right)$ or $\Omega\left(n^{2}\right)$ are all valid statements about the worst case running time of insertion-sort

Best Case Time Complexity

```
insertion-sort(A, n)
A: array of size n
1. for }i\leftarrow1\mathrm{ to }n-1\mathrm{ do
        j
        while }j>0\mathrm{ and }A[j]<A[j-1] do
        swap A[j] and A[j-1]
        j}\leftarrowj-
```

- Best-case complexity of an algorithm: take the best instance I
- Formal definition: the best-case running time of an algorithm A is a function $f: \mathrm{Z}^{+} \rightarrow \mathrm{R}$ mapping n (the input size) to the smallest running time for any input instance of size n

$$
T_{\text {best }}(n)=\min _{I \in I_{n}}\{T(I)\}
$$

- $\quad T_{\text {best }}(n)=c(n-1)$
- this is primitive operation count as a function of input size n
- after primitive operation count, apply asymptotic analysis
- $\Theta(n)$ or $O(n)$ or $\Omega(n)$ are all valid about best case running time

Best Case Time Complexity

- Note that best-case complexity is a function of input size n
- Think of the best instance of size n
- For insertion-sort, best instance is sorted (decreasing) array A of size n
- Best instance is not an array of size 1
- Best-case complexity is $\Theta(n)$

```
insertion-sort (A,n)
A: array of size n
1. for }i\leftarrow1\mathrm{ to }n-1\mathrm{ do
2. }j\leftarrow
3. while j>0 and }A[j]<A[j-1] do
4. swap A[j] and A[j-1]
5. 
```

- For hasNegative, best instance is array A of size n where $A[0]<0$
- Best instance is not an array of size 1
- Best-case complexity is $\Theta(1)$

Best Case Running Time Exercise

- $T(n)=\left\{\begin{array}{cc}c & \text { if } n=5 \\ c n & \text { otherwise }\end{array}\right.$
- Best case running time?
a) $\Theta(1)$
b) $\Theta(n)$

Average Case Time Complexity

Average-case complexity of an algorithm: The average-case running time of an algorithm A is function $f: \mathrm{Z}^{+} \rightarrow \mathrm{R}$ mapping n (input size) to the average running time of A over all instances of size n

$$
T_{\text {avg }}(n)=\frac{1}{\left|I_{n}\right|} \sum_{I \epsilon I_{n}} T(I)
$$

- Will assume $\left|I_{n}\right|$ is finite
- If all instances are equally often used, $T_{a v g}(n)$ gives a good estimate of a running time of an algorithm on average

Average vs. Worst vs. Best Case Time Complexity

- Sometimes, best, worst, average time complexities are the same
- If there is a difference, then best time complexity could be overly optimistic, worst time complexity could be overly pessimistic, and average time complexity is most useful
- However, average case time complexity is usually hard to compute
- Therefore, most often, use worst time complexity
- worst time complexity is useful as it gives bound on the maximum amount of time one will have to wait for the algorithm to complete
- default in this course
- unless stated otherwise, whenever we mention time complexity, assume we mean worst case time complexity

O-notation and Running Time of Algorithms

- It is important not to try make comparisons between algorithms using O-notation
- Suppose algorithm A and B both solve the same problem
- A has worst-case runtime $O\left(n^{3}\right)$
- B has worst-case runtime $O\left(n^{2}\right)$
- Cannot conclude that \boldsymbol{B} is more efficient that \boldsymbol{A} for all inputs

1. the worst case runtime may only be achieved on some instances
2. more importantly, O-notation is only an upper bound, \boldsymbol{A} could have worst case runtime $O(n)$

- To compare algorithms, should use Θ notation

Running Time: Theory and Practice, Multiplicative Constants

- Algorithm \boldsymbol{A} has runtime $T(n)=10000 n^{2}$
- Algorithm B has runtime $T(n)=10 n^{2}$
- Theoretical efficiency of \boldsymbol{A} and B is the same, $\Theta\left(n^{2}\right)$
- In practice, algorithm B will run faster (for most implementations)
- multiplicative constants matter in practice, given two algorithms with the same growth rate
- but we will not talk about this issue more in this course

Running Time: Theory and Practice, Small Inputs

- Algorithm A running time $T(n)=75 n+500$
- Algorithm B running time $T(n)=5 n^{2}$
- Then B is faster for $n \leq 20$
- will use this fact when talking about practical implementation of recursive sorting algorithms

Theoretical Analysis of Space

- To find space used by an algorithm, count total number of memory cells ever accessed (for reading or writing or both) by algorithm
- as a function of input size \boldsymbol{n}
- space used must always be initialized, although it may not be stated explicitly in pseudocode
- Mostly interested in auxiliary space
- space used in addition to the space used by the input data
- arrayMax uses 2 memory cells
- $\quad T(n)=2$
- Auxiliary space is $O(1)$

Algorithm arrayMax (A, n)
Input: array A of n integers
Output: maximum element of A
currentMax $\leftarrow \boldsymbol{A}[0]$
for $\boldsymbol{i} \leftarrow \mathbf{1}$ to $\boldsymbol{n}-\mathbf{1}$ do
if $A[i]>$ currentMax then currentMax $\leftarrow A[i]$
return currentMax

Theoretical Analysis of Space

- arrayMax uses $1+n$ memory cells
- $\quad T(n)=1+n$
- Auxiliary space is $O(n)$

Algorithm arrayCumSum (A, n)

Input: array A of n integers
initialize array B of size n to 0
$B[0] \leftarrow A[0]$
for $i \leftarrow 1$ to $n-1$ do
$B[i] \leftarrow B[i-1]+A[i]$
return B

Outline

- CS240 overview
- Course objectives
- Course topics
- Introduction and Asymptotic Analysis
- algorithm design
- pseudocode
- measuring efficiency
- asymptotic analysis
- analysis of algorithms
- analysis of recursive algorithms
- helpful formulas

MergeSort: Overall Idea

Input: Array A of n integers

1: split A into two subarrays

- A_{L} consists of the first $\left\lceil\frac{n}{2}\right\rceil$ elements
- A_{R} consists of the last $\left\lfloor\frac{n}{2}\right\rfloor$ elements

2: Recursively run MergeSort on A_{L} and A_{R}
3: After A_{L} and A_{R} are sorted, use function Merge to merge them into a single sorted array

MergeSort: Pseudo-code

```
merge-sort(A,n,\ell\leftarrow0,r\leftarrown-1,S\leftarrowNIL)
A: array of size n, 0\leq\ell\leqr\leqn-1
1. if S is NIL initialize it as array S[0..n-1]
2. if (r\leq\ell) then
3. return
4. else
5. m=\(r+\ell)/2\rfloor
6. merge-sort (A,n,\ell,m,S)
7. merge-sort( }A,n,m+1,r,S
8. merge(A,\ell,m,r,S)
```

- Two tricks to avoid copying/initializing too many arrays
- recursion uses parameters that indicate the range of the array that needs to be sorted
- array S used for merging is passed along as parameter

Merging Two Sorted Subarrays: Initialization

Merging Two Sorted Subarrays: Merging Starts

$$
\begin{aligned}
& \begin{array}{|c|c|c|c|c|c|c|c|c|}
\hline 3 & 4 & 5 & 7 & 1 & 1 & 2 & 8 & 9 \\
\hline k & & & & & & & & \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 1 & 4 & 5 & 7 & 1 & 1 & 2 & 8 & 9 \\
\hline & k & & & & & & & \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 1 & 1 & 5 & 7 & 1 & 1 & 2 & 8 & 9 \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \\
& \begin{array}{|l|l|l|l|l|l|l|l|}
\hline \mathbf{1} & \mathbf{1} & \mathbf{2} & \mathbf{3} & 4 & \mathbf{1} & 2 & 8 \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \\
& \begin{array}{l|l|l|l|l|l|l|l|l|}
\hline 3 & 4 & 5 & 7 & 1 & 1 & 2 & 8 & 9 \\
\hline i_{L} & & & & & & i_{R} \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 3 & 4 & 5 & 7 & 1 & 1 & 2 & 8 & 9 \\
\hline i_{L} & & & & & & i_{R} \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 3 & 4 & 5 & 7 & 1 & 1 & 2 & 8 & 9 \\
\hline & i_{L} & & & & & & i_{R} \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 3 & 4 & 5 & 7 & 1 & 1 & 2 & 8 & 9 \\
\hline & & \\
\hline
\end{array}
\end{aligned}
$$

Merging Two Sorted Subarrays: Merging Cont.

$\mathbf{1}$	$\mathbf{1}$	2	3	4	1	2	8

$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	5	$\mathbf{2}$	$\mathbf{8}$	$\mathbf{9}$

$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 3 & 4 & 5 & 7 & 1 & 1 & 2 & 8 \\
\hline
\end{array}
$$

$i_{L}>m$, done with the first subarray

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|l|l|l|l}
\hline 1 & 1 & 2 & 3 & 4 & 5 & 7 & 8 & 9 \\
\hline
\end{array} \quad \begin{array}{ll|l|l|l|l|l|l|l|l|}
\hline 3 & 3 & 4 & 5 & 7 & 1 & 1 & 2 & 8 & 9 \\
\hline
\end{array}
\end{aligned}
$$

Merge: Pseudocode

```
\(\operatorname{Merge}(A, \ell, m, r, S)\)
\(A[0 . . n-1]\) is an array, \(A[\ell . . m]\) is sorted, \(A[m+1 . . r]\) is sorted
\(S[0 . . n-1]\) is an array
    1. copy \(A[\ell . . r]\) into \(S[\ell . . r]\)
    2. \(\left(i_{L}, i_{R}\right) \leftarrow(\ell, m+1)\);
    3. for \((k \leftarrow \ell ; k \leq r ; k++)\) do
    4. if \(\left(i_{L}>m\right) A[k] \leftarrow S\left[i_{R}++\right]\)
    else if \(\left(i_{R}>r\right) A[k] \leftarrow S\left[i_{L}++\right]\)
    else if \(\left(S\left[i_{L}\right] \leq S\left[i_{R}\right]\right) A[k] \leftarrow S\left[i_{L}++\right]\)
    else \(A[k] \leftarrow S\left[i_{R}++\right]\)
```

- Merge takes $\Theta(l-r+1)$ time
- this is $\Theta(n)$ time for merging n elements

Analysis of MergeSort

- First analyze subroutines separately
- merge is $\Theta(n)$ for merging n elements
- For a recursive algorithm, runtime $T(n)$ is a recursive function

```
merge-sort(A, n,\ell\leftarrow0,r\leftarrown-1,S\leftarrowNIL)
A: array of size n,0\leq\ell\leqr\leqn-1
    1. if S is NIL initialize it as array S[0..n-1]
    if (r\leq\ell) then
        return
    else
        m=\lfloor(r+\ell)/2\rfloor
        merge-sort(A,n,\ell,m,S)
        merge-sort(A,n,m+1,r,S)
        merge(A,\ell,m,r,S)
```

- Let $T(n)$ be time to run MergeSort on an array of length n
- Initialization (step 1) is $\Theta(n)$
- Recursively calling MergeSort is $T\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+T\left(\left\lfloor\frac{n}{2}\right\rfloor\right)$
- step 6 takes $T\left(\left\lceil\frac{n}{2}\right\rceil\right)$, step 6 takes $T\left(\left\lfloor\frac{n}{2}\right\rfloor\right)$
- Finally, merging (step 8) takes $\Theta(n)$
- The recurrence relation for MergeSort

$$
T(n)= \begin{cases}T\left(\left\lceil\frac{n}{2}\right\rceil\right)+T\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+c n & \text { if } n>1 \\ c & \text { if } n=1\end{cases}
$$

Analysis of MergeSort

- Sloppy recurrence with floors and ceilings removed

$$
T(n)=\left\{\begin{array}{cc}
2 T\left(\frac{n}{2}\right)+c n & \text { if } n>1 \\
c & \text { if } n=1
\end{array}\right.
$$

- Exact and sloppy recurrences are identical when n is a power of 2
- Recurrence easily solved when $n=2^{j}$

Visual proof via Recursion Tree
tree levels \#nodes
total work per level

0	2^{0}
1	2^{1}

2
2^{2}

- Stop recursion at height h when node size is 1
- Node size at height h is $\frac{n}{2^{h}} \Rightarrow \frac{n}{2^{h}}=1 \Rightarrow n=2^{h} \Rightarrow h=\log n$

Visual proof via Recursion Tree
tree levels \#nodes

$$
T(n)= \begin{cases}2 T\left(\frac{n}{2}\right)+c n & \text { if } n>1 \\ c & \text { if } n=1\end{cases}
$$ total work per level

- $c n$ operations on each tree level, $\log n$ levels, total work is $c n \log n \in \Theta(n \log n)$

Analysis of MergeSort

- Can show $T(n) \in \Theta(n \log n)$ for all n by analyzing exact recurrence

Some Recurrence Relations

Recursion	resolves to	example
$T(n) \leq T(n / 2)+O(1)$	$T(n) \in O(\log n)$	binary-search
$T(n) \leq 2 T(n / 2)+O(n)$	$T(n) \in O(n \log n)$	merge-sort
$T(n) \leq 2 T(n / 2)+O(\log n)$	$T(n) \in O(n)$	heapify $\left(^{*}\right)$
$T(n) \leq c T(n-1)+O(1)$ for some $c<1$	$T(n) \in O(1)$	avg-case analysis $\left(^{*}\right)$
$T(n) \leq 2 T(n / 4)+O(1)$	$T(n) \in O(\sqrt{n})$	range-search (*)
$T(n) \leq T(\sqrt{n})+O(\sqrt{n})$	$T(n) \in O(\sqrt{n})$	interpol. search $\left(^{*}\right)$
$T(n) \leq T(\sqrt{n})+O(1)$	$T(n) \in O(\log \log n)$	interpol. search $\left(^{*}\right)$

- Once you know the result, it is (usually) easy to prove by induction
- You can use these facts without a proof, unless asked otherwise
- Many more recursions, and some methods to solve, in cs341

Outline

- CS240 overview
- Course objectives
- Course topics
- Introduction and Asymptotic Analysis
- algorithm design
- pseudocode
- measuring efficiency
- asymptotic analysis
- analysis of algorithms
- analysis of recursive algorithms
- helpful formulas

Order Notation Summary

- O-notation $f(n) \in O(g(n))$ if there exist constants $c>0$ and $n_{0} \geq 0$ s.t. $|f(n)| \leq c|g(n)|$ for all $n \geq n_{0}$
- Ω-notation $f(n) \in \Omega(g(n))$ if there exist constants $c>0$ and $n_{0} \geq 0$ s.t. $c|g(n)| \leq|f(n)|$ for all $n \geq n_{0}$
- Θ-notation $f(n) \in \Theta(g(n))$ if there exist constants $c_{1}, c_{2}>0$ and $n_{0} \geq 0$ s.t. $c_{1}|g(n)| \leq|f(n)| \leq c_{2}|g(n)|$ for all $n \geq n_{0}$
- o-notation
$f(n) \in o(g(n))$ if for all constants $c>0$, there exists a constant $n_{0} \geq 0$ s.t. $|f(n)| \leq c|g(n)|$ for all $n \geq n_{0}$
- ω-notation
$f(n) \in \omega(g(n))$ if for all constants $c>0$, there exists a constant $n_{0} \geq 0$ s.t. $0 \leq c|g(n)| \leq|f(n)|$ for all $n \geq n_{0}$

Useful Sums

- Arithmetic

$$
\sum_{i=0}^{n-1} i=\frac{n(n-1)}{2} \quad \sum_{i=0}^{n-1}(a+d i)=n a+\frac{d n(n-1)}{2} \in \Theta\left(n^{2}\right) \text { if } d \neq 0
$$

- Geometric

$$
\sum_{i=0}^{n-1} 2^{i}=2^{n}-1
$$

$$
\sum_{i=0}^{n-1} a r^{i}=\left\{\begin{array}{cc}
a \frac{r^{n}-1}{r-1} \in \Theta\left(r^{n-1}\right) & \text { if } r>1 \\
n a \in \Theta(n) & \text { if } r=1 \\
a \frac{1-r^{n}}{1-r} \in \Theta(1) & \text { if } 0<r<1
\end{array}\right.
$$

- Harmonic $\quad \sum_{i=1}^{n} \frac{1}{i}=\ln n+\gamma+o(1) \in \Theta(\log n)$
- A few more

$$
\begin{array}{ll}
\sum_{i=1}^{\infty} \frac{1}{i^{2}}=\frac{\pi^{2}}{6} \in \Theta(1) & \sum_{i=1}^{n} i^{k} \in \Theta\left(n^{k+1}\right) \text { for } k \geq 0 \\
\sum_{i=1}^{\infty} \frac{i}{2^{i}}=\epsilon \Theta(1) & \sum_{i=0}^{\infty} i p(1-p)^{i-1}=\frac{1}{p} \quad \text { for } 0<p<1
\end{array}
$$

- You can use these without a proof, unless asked otherwise

Useful Math Facts

Logarithms:

- $y=\log _{b}(x)$ means $b^{y}=x$. e.g. $n=2^{\log n}$.
- $\log (x)$ (in this course) means $\log _{2}(x)$
- $\log (x \cdot y)=\log (x)+\log (y), \log \left(x^{y}\right)=y \log (x), \log (x) \leq x$
- $\log _{b}(a)=\frac{\log _{c} a}{\log _{c} b}=\frac{1}{\log _{a}(b)}, a^{\log _{b} c}=c^{\log _{b} a}$
- $\ln (x)=$ natural $\log =\log _{e}(x), \frac{\mathrm{d}}{\mathrm{d} x} \ln x=\frac{1}{x}$

Factorial:

- $n!:=n(n-1)(n-2) \cdots 2 \cdot 1=\#$ ways to permute n elements
- $\log (n!)=\log n+\log (n-1)+\cdots+\log 2+\log 1 \in \Theta(n \log n)$
(We will define Θ soon.)

Probability:

- $E[X]$ is the expected value of X.
- $E[a X]=a E[X], E[X+Y]=E[X]+E[Y]$ (linearity of expectation)

