
Module 1: Introduction and Asymptotic Analysis

CS 240 – Data Structures and Data Management

O. Veksler
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science,
University of Waterloo

Winter 2024

Outline

 CS240 overview
 course objectives

 course topics

 Introduction and Asymptotic Analysis
 algorithm design

 pseudocode

 measuring efficiency

 asymptotic analysis

 analysis of algorithms

 analysis of recursive algorithms

 helpful formulas

Outline

 CS240 overview
 course objectives

 course topics

 Introduction and Asymptotic Analysis
 algorithm design

 pseudocode

 measuring efficiency

 asymptotic analysis

 analysis of algorithms

 analysis of recursive algorithms

 helpful formulas

 Computer Science is mostly about problem solving
 write program that converts given input to expected output

 When first learn to program, emphasize correctness
 does program output the expected results?

 This course is also concerned with efficiency
 does program use computer resources efficiently?

 processor time, memory space

 strong emphasis on mathematical analysis of efficiency

 Study efficient methods of storing, accessing, and
organizing large collections of data

 typical operations: inserting new data items, deleting data
items, searching for specific data items, sorting

Course Objectives: What is this course about?

Course Objectives: What is this course about?

 New abstract data types (ADTs)
 how to implement ADT efficiently using appropriate

data structures

 New algorithms solving problems in data management
 sorting, pattern matching, compression

 Algorithms
 presented in pseudocode

 analyzed using order notation (big-Oh, etc.)

Course Topics

 asymptotic (big-Oh) analysis

 priority queues and heaps

 sorting, selection

 binary search trees, AVL trees

 skip lists

 hashing

 quadtrees, kd-trees, range search

 tries

 string matching

 data compression

 external memory

Data Structures and
Algorithms

mathematical tool
for efficiency

CS Background

 Topics covered in previous courses with relevant sections [Sedgewick]

 arrays, linked lists (Sec. 3.2–3.4)

 strings (Sec. 3.6)

 stacks, queues (Sec. 4.2–4.6)

 abstract data types (Sec. 4-intro, 4.1, 4.8–4.9)

 recursive algorithms (5.1)

 binary trees (5.4–5.7)

 basic sorting (6.1–6.4)

 binary search (12.4)

 binary search trees (12.5)

 probability and expectation (Goodrich & Tamassia, Section 1.3.4)

Outline

 CS240 overview
 Course objectives

 Course topics

 Introduction and Asymptotic Analysis
 algorithm design

 pseudocode

 measuring efficiency

 asymptotic analysis

 analysis of algorithms

 analysis of recursive algorithms

 helpful formulas

Algorithm Design Terminology

 Problem: description of input and required output

 example: given an input array, rearrange elements in non-
decreasing order

 Problem Instance: one possible input for specified problem

 𝐼 = [5, 2, 1, 8, 2]

 Size of a problem instance size(𝐼)

 non-negative integer measuring size of instance 𝐼

 size([5, 2, 1, 8, 2]) = 5

 size([]) = 0

 Often input is array, and instance size is array size

Algorithm Design Terminology

 Algorithm: step-by-step process (can be described in finite
length) for carrying out a series of computations, given an
arbitrary instance 𝐼

 Solving a problem: algorithm 𝑨 solves problem 𝚷 if for every
instance 𝐼 of 𝚷, 𝑨 computes a valid output for instance 𝐼 in finite
time

 Program: implementation of an algorithm using a
specified computer language

 In this course, the emphasis is on algorithms
 as opposed to programs or programming

Algorithms and Programs

 From problem 𝚷 to program that solves it
1. Algorithm Design: design algorithm(s) that solves 𝚷

2. Algorithm Analysis: assess correctness and efficiency of algorithm(s)

3. Implementation: if acceptable (correct and efficient), implement
algorithms(s)

 for each algorithm, multiple implementations are possible

 run experiments to determine a better solution

 CS240 focuses on the first two steps
 the main point is to avoid implementing obviously bad algorithms

Outline

 CS240 overview
 Course objectives

 Course topics

 Introduction and Asymptotic Analysis
 algorithm design

 pseudocode

 measuring efficiency

 asymptotic analysis

 analysis of algorithms

 analysis of recursive algorithms

 helpful formulas

Pseudocode
 Pseudocode is a method of communicating algorithm to a human

 whereas program is a method of communicating algorithm to a computer

 preferred language for describing algorithms

 omits obvious details, e.g. variable declarations

 sometimes uses English descriptions

 has limited if any error detection, e.g. assumes 𝐴 is initialized

 sometimes uses mathematical notation

 indentation instead of braces to indicate the scope

 should use good variable names

Pseudocode Details

 Control flow
if … then … [else …]
while … do …
repeat … until …
for … do …
indentation replaces braces

 Expressions
← assignment
== equality testing
n2 superscripts and other mathematical formatting allowed

 Method declaration
Algorithm method (arg, arg…)
Input …
Output …

Algorithm arrayMax(A, n)

Input: array A of n integers

Output: maximum element of A

currentMax  A[0]

for i  1 to n  1 do

if A[i]  currentMax then

currentMax  A[i]

return currentMax

Outline

 CS240 overview
 Course objectives

 Course topics

 Introduction and Asymptotic Analysis
 algorithm design

 pseudocode

 measuring efficiency

 asymptotic analysis

 analysis of algorithms

 analysis of recursive algorithms

 helpful formulas

Efficiency of Algorithms/Programs
 Efficiency

 Running Time: amount of time program takes to run

 Auxiliary Space: amount of additional memory program
requires

 additional to the memory needed for the input instance

 Primarily concerned with time efficiency in this course

 but also look at space efficiency sometimes

 same techniques as for time apply to space efficiency

 When we say efficiency, assume time efficiency

 unless we explicitly say space efficiency

Efficiency is a Function of Input
 The amount of time and/or memory

required by a program usually depends
on the given instance

 𝑇([3, −𝟏, 4, 7,10]) < 𝑇 ([3, 1, 4, 7,0])

Algorithm hasNegative(A, n)

Input: array A of n integers

for i  0 to n  1 do

if A[i] < 0

return True

return False

 So we express time or memory
efficiency as a mathematical function of
instances, i.e. 𝑇(𝐼)

 Deriving 𝑇 𝐼 for each specific instance 𝐼 is impractical

 Usually running time is longer for larger instances

 Group all instances of size 𝑛 into set 𝐼𝑛 = { 𝐼 |𝑠𝑖𝑧𝑒 𝐼 = 𝑛}

 𝐼4 is all arrays of size 4

 Measure over the set 𝐼𝑛: 𝑇 𝑛 = “time for instances in 𝐼𝑛”

 average over 𝐼𝑛?

 or take the best (smallest time) instance in 𝐼𝑛 ?

 or take the worst (largest time) instance in 𝐼𝑛 ?

 Running time usually depends both on instance size and instance composition

Algorithm hasNegative(A, n)

Input: array A of n integers

for i  0 to n  1 do

if A[i] < 0

return True

return False

Algorithm arraySum(A, n)

Input: array A of n integers

Output: sum of elements of A

sum  0

for i  0 to n  1 do

sum  sum + A[i]

return sum

𝑇([3, −𝟏, 4]) < 𝑇 ([3, 1, 4, 7,0,10])

Efficiency is a Function of Input
 The amount of time and/or memory

required by a program usually depends
on the given instance

 𝑇([3, −𝟏, 4, 7,10]) < 𝑇 ([3, 1, 4, 7,0])

 So we express time or memory
efficiency as a mathematical function of
instances, i.e. 𝑇(𝐼)

Running Time of Algorithms/Programs

 One option: experimental studies
 write program implementing the

algorithm

 run program with inputs of varying
size and composition

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 50 100

Input Size
T

im
e

 (
m

s
)

Algorithm hasNegative(A, n)

Input: array A of n integers

for i  0 to n  1 do

if A[i] < 0

return True

return False

 can use clock() from time.h, to
measure running time

 plot/compare results

Running Time of Algorithms/Programs

 Shortcomings of experimental studies
 implementation may be complicated/costly

 timings are affected by many factors

 hardware (processor, memory)

 software environment (OS, compiler, programming
language)

 human factors (programmer)

 cannot test all inputs, hard to select good sample inputs

 Thus cannot easily compare two algorithms/programs

Theoretical Framework for Algorithm Analysis

 Want framework that

 does not require implementing the algorithm

 independent of hardware/software
environment

 takes into account all possible input instances

 Experimentation is still useful in practice
 especially when theoretical analysis yields no useful

results for deciding between multiple algorithms

Theoretical Framework for Algorithm Analysis

 To overcome dependency on hardware/software

 write algorithms in pseudo-code
 language independent

 “run” algorithms on idealized computer model
 allows to understand how to compute time and space

complexity

 i.e. states explicitly all the assumptions we make when
computing time and space complexity

Idealized Computer Model

 Random Access Machine (RAM) Model

 has a set of memory cells, each of which stores one data item
 number, character, reference

 memory cells are big enough to hold stored items

 any access to a memory location takes the same constant time 𝑐
 constant time means that time is independent of the input size

 run primitive operations on this machine
 primitive operation takes the same constant time 𝑐

 These assumptions may not be valid for a real computer

CPU

unlimited memory

random access (equally fast
access to any memory cell)

Theoretical Framework For Algorithm Analysis
 To overcome dependency on hardware/software

 write algorithms in pseudo-code

 language independent

 “run” algorithms on idealized computer model

 allows to reason about efficiency

 for time efficiency, count # primitive operations and memory accesses

 as a function of problem size 𝑛

 will call access to a memory cell a primitive operation as well

 running time is proportional to number of primitive operations

 assumed all primitive operations take constant time 𝑐

 can get complicated functions like 99𝑛3 + 8𝑛2 + 43421

 measure time efficiency in terms of growth rate

 avoids complicated functions and isolates the factor that effects the
efficiency the most for large inputs

 for space efficiency, count maximum # of memory cells ever in use

 This framework makes many simplifying assumptions

 makes analysis of algorithms easier

Theoretical Analysis of Running time

 Pseudocode is a sequence of primitive operations

 A primitive operation is
 independent of input size

 Examples of Primitive Operations
 arithmetic: -, +, %, *, mod, round

 𝑥𝑛 is not a primitive operation, runtime
depends on input size 𝑛

 𝑥𝑛 = 𝑥 ∙ 𝑥 … ∙ 𝑥

Algorithm arrayMax(A, n)

Input: array A of n integers

Output: maximum element of A

currentMax  A[0]

for i  1 to n  1 do

if A[i]  currentMax then

currentMax  A[i]

return currentMax

Algorithm arrayMax(A, n)

Input: array A of n integers

Output: maximum element of A

currentMax  A[0]

for i  1 to n  1 do

if A[i]  currentMax then

currentMax  A[i]

return currentMax assigning a value to a variable

Algorithm arrayMax(A, n)

Input: array A of n integers

Output: maximum element of A

currentMax  A[0]

for i  1 to n  1 do

if A[i]  currentMax then

currentMax  A[i]

return currentMax

 indexing into an array

Algorithm arrayMax(A, n)

Input: array A of n integers

Output: maximum element of A

currentMax  A[0]

for i  1 to n  1 do

if A[i]  currentMax then

currentMax  A[i]

return currentMax

 returning from a method
 comparisons, calling subroutine, entering a loop, breaking, etc.

Algorithm arrayMax(A, n)

Input: array A of n integers

Output: maximum element of A

currentMax  A[0]

for i  1 to n  1 do

if A[i]  currentMax then

currentMax  A[i]

return currentMax

 To find running time, count the number of primitive operations
 as a function of input size 𝒏

 To find running time, count the number of primitive operations 𝑇(𝒏)
 function of input size 𝒏

Algorithm arraySum(A, n)

sum  A[0]
for i  1 to n  1 do

sum  sum + A[i]

{ increment counter i }

return sum

Theoretical Analysis of Running time

operations

2

Theoretical Analysis of Running time

operations

2

Algorithm arraySum(A, n)

sum  A[0]
for i  1 to n  1 do

sum  sum + A[i]

{ increment counter i }

return sum

i  1
𝑛 − 1
𝑖 = 1, check 𝑖 ≤ 𝑛 − 1 (go inside loop)
𝑖 = 2, check 𝑖 ≤ 𝑛 − 1 (go inside loop)
…
𝑖 = 𝑛 − 1, check 𝑖 ≤ 𝑛 − 1(go inside loop)
𝑖 = 𝑛, check 𝑖 ≤ 𝑛 − 1 (do not go inside loop)

Total: 2+n

 To find running time, count the number of primitive operations 𝑇(𝒏)
 function of input size 𝒏

Theoretical Analysis of Running time

operations

2

2 + n

3(n  1)

2(n  1)

1

Total: 6n

Algorithm arraySum(A, n)

sum  A[0]
for i  1 to n  1 do

sum  sum + A[i]

{ increment counter i }

return sum

 To find running time, count the number of primitive operations 𝑇(𝒏)
 function of input size 𝒏

 Algorithm arraySum executes 𝑻(𝒏) = 6𝒏 primitive operations

 On a real computer, primitive operations will have different runtimes

 Let 𝑎 = time taken by fastest primitive operation

𝑏 = time taken by slowest primitive operation

 Actual runtime is bounded by two linear functions
𝑎 6𝒏  actual runtime  𝑏(6𝒏)

 Changing hardware/software environment affects runtime by a
multiplicative constant factor

 𝑎 and will 𝑏 change, but the runtime is always, in essence, some
constant multiplied by 𝑛

 therefore, multiplicative constants are not important

 Want to say 𝑻 𝒏 = 𝟔𝒏 is essentially 𝒏

 Want to ignore constant multiplicative factors

 in a theoretically justified way

Theoretical Analysis of Running time: Multiplicative factors

Theoretical Analysis of Running time: Large Inputs

 We are not interested in smaller inputs (smaller 𝑛)

 scientists work with data of ever increasing size

 Perform analysis for large 𝑛

 this further simplifies analysis

𝑓 𝑛

do not care what happens here

Theoretical Analysis of Running time: Lower Order Terms

 Recall that we are interested in runtime for large inputs (large 𝑛)

 Consider 𝑻(𝒏) = 𝒏2 + 𝒏

 For large 𝒏, fastest growing factor contributes the most

𝑻(100,000) = 10,000,000,000 + 100,000

 Want to ignore lower order terms

 in a theoretically justified way

≈ 10,000,000,000

Theoretical Analysis of Running time

 Thus we want
1) ignore multiplicative constant factors

2) focus on behaviour for large 𝑛 or ‘eventual’ behaviour

3) ignore lower order terms

 This means focusing on the growth rate of the function

 We want to say
 𝒇 𝒏 = 10𝒏2 + 100𝒏 has growth rate of 𝒈 𝒏 = 𝒏𝟐

 𝒇 𝒏 = 10𝒏 + 10 has growth rate of 𝒈 𝒏 = 𝒏

 Asymptotic analysis (i.e. order notation) gives tools to formally
focus on the growth rate

 To say that function 𝒇(𝒏) has growth rate expressed by 𝒈 𝒏
1) upper bound: asymptotically bound 𝒇(𝒏) from above by 𝒈(𝒏)

2) lower bound: asymptotically bound 𝒇(𝒏) from below by 𝒈(𝒏)

 asymptotically means: for large enough 𝑛, ignoring constant
multiplicative factors

Outline

 CS240 overview
 Course objectives
 Course topics

 Introduction and Asymptotic Analysis
 algorithm design
 pseudocode
 measuring efficiency
 asymptotic analysis

 analysis of algorithms

 analysis of recursive algorithms
 helpful formulas

Order Notation: big-Oh

𝑓 𝑛 ∈ Ο 𝑔 𝑛 if there exist constants 𝑐 > 0 and 𝑛0 ≥ 0 s.t.

𝑓 𝑛 ≤ 𝑐 𝑔 𝑛 for all 𝑛 ≥ 𝑛0

 Upper bound: asymptotically bound 𝒇(𝒏) from above by 𝒈 𝒏
 𝒇(𝒏) is running time, is function expressing growth rate 𝒈 𝒏

𝑓 𝑛

𝑛0

do not care what happens here 𝑓 𝑛 ≤ 𝑐𝑔(𝑛)

 Need 𝑐 to “get rid” of multiplicative constant in the growth rate
 cannot say 5𝑛2≤ 𝑛2, but can say 5𝑛2 ≤ 𝑐𝑛2 for some constant 𝑐

 Absolute value not relevant for run-time or space, but useful in other applications

 Unless say otherwise, assume 𝑛 (and 𝑛0) are real numbers

𝑐𝑔 𝑛

a set of
functions

big-Oh Example

O-notation

𝑓 𝑛 ∈ Ο 𝑔 𝑛 if there exist constants 𝑐 > 0 and 𝑛0 ≥ 0 s.t.

𝑓 𝑛 ≤ 𝑐 𝑔 𝑛 for all 𝑛 ≥ 𝑛0

15 205 100

3,000

2,500

2,000

1,500

1,000

500

0
25

 Take 𝑐 = 1, 𝑛0 = 20

 Can also take 𝑐 = 10, 𝑛0 = 30

 Conclusion: 𝑓 𝑛 = 75𝑛 + 500 has the same or slower growth rate as 𝑔 𝑛 = 5𝑛2

𝑓 𝑛 = 75𝑛 + 500

𝑔 𝑛 = 5𝑛2

𝑛0

Order Notation: big-Oh

 Big-O gives asymptotic upper bound

 𝑓 𝑛 ∈ Ο 𝑔 𝑛 means function 𝑓(𝑛) is “bounded” above by function 𝑔(𝑛)

1. eventually, for large enough 𝑛

2. ignoring multiplicative constant

 Growth rate of 𝑓(𝑛) is slower or the same as growth rate of 𝑔(𝑛)

 Use big-O to bound the growth rate of algorithm
 𝑓(𝑛) for running time

 𝑔(𝑛) for growth rate

 should choose 𝑔(𝑛) as simple as possible

 Saying 𝑓 𝑛 is Ο 𝑔 𝑛 is equivalent to saying 𝑓 𝑛 ∈ Ο 𝑔 𝑛

𝑓 𝑛 ∈ Ο 𝑔 𝑛

if there exist constants 𝑐 > 0 and 𝑛0 ≥ 0

s. t. 𝑓 𝑛 ≤ 𝑐 𝑔 𝑛 for all 𝑛 ≥ 𝑛0

𝑓 𝑛

𝑛0

do not care what happens here
𝑓 𝑛 ≤ 𝑐𝑔(𝑛)

𝑔 𝑛𝑐

Order Notation: big-Oh
𝑓 𝑛 ∈ Ο 𝑔 𝑛

if there exist constants 𝑐 > 0 and 𝑛0 ≥ 0

s. t. 𝑓 𝑛 ≤ 𝑐 𝑔 𝑛 for all 𝑛 ≥ 𝑛0

3,000

2,500

2,000

1,500

1,000

500

 Choose 𝑔(𝑛) as simple as possible

𝑓(𝑛)

𝑔(𝑛)

 Previous example: 𝑓 𝑛 = 75𝑛 + 500, 𝑔 𝑛 = 5𝑛2

 Simpler function for growth rate: 𝑔 𝑛 = 𝑛2

 Can show 𝑓 𝑛 ∈ Ο 𝑔 𝑛 as follows

 set 𝑓 𝑛 = 𝑔(𝑛) and solve quadratic equation

 intersection point is 𝑛 = 82

82

 take 𝑐 = 1, 𝑛0 = 82

Order Notation: big-Oh

 Do not have to solve equations

 𝑓 𝑛 = 75𝑛 + 500, 𝑔 𝑛 = 𝑛2

 For all 𝑛 ≥ 1

75𝑛 ≤ 75𝑛 ∙ 𝑛

𝑓 𝑛 ∈ Ο 𝑔 𝑛 if there exist constants 𝑐 > 0 and 𝑛0 ≥ 0

s. t. 𝑓 𝑛 ≤ 𝑐 𝑔 𝑛 for all 𝑛 ≥ 𝑛0

75𝑛 > 75𝑛 ∙ 𝑛
= 75𝑛2

Side note: for 0 < 𝑛 < 1

= 75𝑛2

500 ≤ 500 ∙ 𝑛 ∙ 𝑛 = 500𝑛2

75𝑛 + 500 ≤ 75𝑛2 = 575𝑛2

 So take 𝑐 = 575, 𝑛0 = 1

+500𝑛2

 Therefore, for all 𝑛 ≥ 1

Order Notation: big-Oh

 Better (i.e. “tighter”) bound on growth

 can bound 𝑓 𝑛 = 75𝑛 + 500 by slower growth than 𝑛2

 𝑓 𝑛 = 75𝑛 + 500, 𝑔 𝑛 = 𝑛

 Show 𝑓 𝑛 ∈ Ο 𝑔 𝑛

75𝑛 + 500 ≤ 75𝑛 + 500𝑛 = 575𝑛

for all 𝑛 ≥ 1

 So take 𝑐 = 575, 𝑛0 = 1

𝑓 𝑛 ∈ Ο 𝑔 𝑛 if there exist constants 𝑐 > 0 and 𝑛0 ≥ 0 s. t. 𝑓 𝑛

≤ 𝑐 𝑔 𝑛 for all 𝑛 ≥ 𝑛0

More big-O Examples

 Prove that
2𝑛2 + 3𝑛 + 11 ∈ 𝑂 𝑛2

 Need to find 𝑐 > 0 and 𝑛0 ≥ 0 s.t.

2𝑛2 + 3𝑛 + 11 ≤ 𝑐𝑛2 for all 𝑛 ≥ 𝑛0

2𝑛2 + 3𝑛 + 11 ≤ 2𝑛2 = 16𝑛2

for all 𝑛 ≥ 1

 Take 𝑐 = 16, 𝑛0 = 1

+3𝑛2 +11𝑛2

More big-O Examples

 Prove that
2𝑛2 − 3𝑛 + 11 ∈ 𝑂 𝑛2

 Need to find 𝑐 > 0 and 𝑛0 ≥ 0 s.t.

2𝑛2 − 3𝑛 + 11 ≤ 𝑐𝑛2 for all 𝑛 ≥ 𝑛0

2𝑛2 − 3𝑛 + 11 ≤ 2𝑛2 = 13𝑛2

for all 𝑛 ≥ 1

 Take 𝑐 = 13, 𝑛0 = 1

+ 0 +11𝑛2

More big-O Examples

 Be careful with logs

 Prove that
2𝑛2 log 𝑛 + 3𝑛 ∈ 𝑂 𝑛2 log 𝑛

 Need to find 𝑐 > 0 and 𝑛0 ≥ 0 s.t.
2𝑛2 log 𝑛 + 3𝑛 ≤ 𝑐𝑛2 log 𝑛 for all 𝑛 ≥ 𝑛0

2𝑛2 log 𝑛 + 3𝑛 ≤ 2𝑛2 log 𝑛 ≤ 5𝑛2 log 𝑛
for all 𝑛 ≥ 1

 Take 𝑐 = 5, 𝑛0 = 2

+3𝑛2 log 𝑛

for all 𝑛 ≥ 2

Algorithm arraySum(A, n)

sum  A[0]
for i  1 to n  1 do

sum  sum + A[i]

{ increment counter i }

return sum

 To find running time, count the number of primitive operations 𝑇(𝒏)
 function of input size 𝒏

 Last step: express the running time using asymptotic notation

Theoretical Analysis of Running time

operations

𝑐1

𝑐2𝑛

𝑐3

Total: 𝑐1+𝑐3 + 𝑐2𝑛 which is 𝑂(𝑛)

Algorithm arraySum(A, n)

sum  A[0]
for i  1 to n  1 do

sum  sum + A[i]

{ increment counter i }

return sum

Theoretical Analysis of Running time

operations

𝑐𝑛

Total: 𝑐 + 𝑐𝑛 which is 𝑂(𝑛)

𝑐

 Distinguishing between 𝑐1 𝑐2 𝑐3 has no influence on asymptotic
running time

 just use on constant 𝑐 throughout

Need for Asymptotic Tight bound

 2𝑛2 + 3𝑛 + 11 ∈ 𝑂 𝑛2

 But also 2𝑛2 + 3𝑛 + 11 ∈ 𝑂 𝑛10

 this is a true but hardly a useful statement

 if I say I have less than a million $ in my pocket, it is a true, but useless
statement

 i.e. this statement does not give a tight upper bound

 upper bound is tight if it uses the slowest growing function possible

 Want an asymptotic notation that guarantees a tight upper bound

 For tight bound, also need asymptotic lower bound

Aymptotic Lower Bound

 Ω-notation (asymptotic lower bound)

𝑓(𝑛) ∈ Ω 𝑔(𝑛) if there exist constants 𝑐 > 0 and 𝑛0 ≥ 0

s.t. 𝑓 𝑛 ≥ 𝑐 𝑔 𝑛 for all 𝑛 ≥ 𝑛0

 𝑓 𝑛 ∈ Ω 𝑔 𝑛 means function 𝑓(𝑛) is asymptotically bounded

below by function 𝑔(𝑛)

1. eventually, for large enough 𝑛

2. ignoring multiplicative constant

 Growth rate of 𝑓(𝑛) is larger or the same as growth rate of 𝑔(𝑛)

 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 , 𝑓(𝑛) ∈ Ω 𝑔(𝑛) ⇒ 𝑓 𝑛 has same growth as 𝑔(𝑛)

𝑐𝑔 𝑛

𝑛0

do not care what happens here
𝑓 𝑛 ≥ 𝑐𝑔(𝑛)

𝑓 𝑛

Asymptotic Lower Bound

𝑓(𝑛) ∈ Ω 𝑔(𝑛) if ∃ constants 𝑐 > 0, 𝑛0 ≥ 0 s.t. 𝑓 𝑛 ≥ 𝑐 𝑔 𝑛 for 𝑛 ≥ 𝑛0

 Prove that 2𝑛2 + 3𝑛 + 11 ∈ Ω 𝑛2

 Find 𝑐 > 0 and 𝑛0 ≥ 0 s.t.

2𝑛2 + 3𝑛 + 11 ≥ 𝑐𝑛2 for all 𝑛 ≥ 𝑛0

2𝑛2 + 3𝑛 + 11

 Take 𝑐 = 2, 𝑛0 = 0

≥ 2𝑛2 for all 𝑛 ≥ 0

Asymptotic Lower Bound

 Prove that
1

2
𝑛2 − 5𝑛 ∈ Ω 𝑛2


1

2
𝑛2 − 5𝑛 < 0 for 0 < 𝑛 < 10

 we want to ignore absolute value in the derivation, so we need to
ensure 𝑓 𝑛 is positive for considered range, i.e. for 𝑛 ≥ 𝑛0

 for positivity of 𝑓 𝑛 , make sure to take 𝑛0 ≥ 10

 Need to find 𝑐 and 𝑛0 s.t.
1

2
𝑛2 − 5𝑛 ≥ 𝑐𝑛2 for all 𝑛 ≥ 𝑛0

 Unlike before, cannot just drop lower growing term, as
1

2
𝑛2 − 5𝑛 ≤

1

2
𝑛2

 Need
1

2
𝑛2 − 5𝑛 ≥ 𝑐𝑛2

𝑓(𝑛) ∈ Ω 𝑔(𝑛) if ∃ constants 𝑐 > 0, 𝑛0 ≥ 0 s.t. 𝑓 𝑛 ≥ 𝑐 𝑔 𝑛 for 𝑛 ≥ 𝑛0

𝑎𝑛2 𝑏𝑛2 positive for large
enough 𝑛

1

2
𝑛2 − 5𝑛 ≥ 𝑎𝑛2 + (𝑏𝑛2 − 5𝑛) ≥ 𝑎𝑛2

for large enough 𝑛

Asymptotic Lower Bound

 For positivity of 𝑓 𝑛 , make sure to take 𝑛0 ≥ 10

 Need to find 𝑐 and 𝑛0 s.t.
1

2
𝑛2 − 5𝑛 ≥ 𝑐𝑛2 for all 𝑛 ≥ 𝑛0

1

2
𝑛2 − 5𝑛 =

1

4
𝑛2 +

1

4
𝑛2 − 5𝑛

 Take 𝑐 =
1

4
, 𝑛0 = 20

 𝑛0 happened to be bigger than 10, as needed, automatically

=
1

4
𝑛2 +

1

4
𝑛2 − 5𝑛

≥ 0, if 𝑛 ≥ 20

≥
1

4
𝑛2

𝑓(𝑛) ∈ Ω 𝑔(𝑛) if ∃ constants 𝑐 > 0, 𝑛0 ≥ 0 s.t. 𝑓 𝑛 ≥ 𝑐 𝑔 𝑛 for 𝑛 ≥ 𝑛0

 Rewrite

if 𝑛 ≥ 20

Tight Asymptotic Bound
 Θ-notation

𝑓(𝑛) ∈ Θ 𝑔(𝑛) if there exist constants 𝑐1, 𝑐2 > 0, 𝑛0 ≥ 0 s.t.

𝑐1 𝑔 𝑛 ≤ 𝑓 𝑛 ≤ 𝑐2 𝑔 𝑛 for all 𝑛 ≥ 𝑛0

 𝑓 𝑛 ∈ Θ 𝑔 𝑛 means 𝑓 𝑛 , 𝑔(𝑛) have equal growth rates

 typically 𝑓 𝑛 is complicated, and 𝑔(𝑛) is chosen to be simple

 Easy to prove that

𝑓(𝑛) ∈ Θ 𝑔(𝑛) ⇔ 𝑓(𝑛) ∈ Ο 𝑔(𝑛) and 𝑓(𝑛) ∈ Ω 𝑔(𝑛)

 Therefore, to show that 𝑓(𝑛) ∈ Θ 𝑔(𝑛) , it is enough to show

1. 𝑓(𝑛) ∈ Ο 𝑔(𝑛)

2. 𝑓(𝑛) ∈ Ω 𝑔(𝑛)

Tight Asymptotic Bound

 Proved previously that

 2𝑛2 + 3𝑛 + 11 ∈ 𝑂 𝑛2

 2𝑛2 + 3𝑛 + 11 ∈ Ω 𝑛2

 Thus 2𝑛2+3𝑛 + 11 ∈ Θ 𝑛2

 Ideally, should use Θ to determine growth rate of algorithm

 𝑓 𝑛 for running time

 𝑔 𝑛 for growth rate

 Sometimes determining tight bound is hard, so big-O is used

Tight Asymptotic Bound

Prove that log𝑏 𝑛 ∈ Θ log 𝑛 for 𝑏 > 1

 Find 𝑐1, 𝑐2 > 0, 𝑛0 ≥ 0 s.t. 𝑐1log 𝑛 ≤ log𝑏 𝑛 ≤ 𝑐2log 𝑛 for all 𝑛 ≥ 𝑛0

 log𝑏 𝑛 =
log 𝑛

log 𝑏
=

1
log 𝑏

log 𝑛


1

log 𝑏
log 𝑛 ≤ log𝑏 𝑛 ≤

1

log 𝑏
log 𝑛

 Since 𝑏 > 1, log 𝑏 > 0

 Take 𝑐1 = 𝑐2 =
1

log 𝑏
and 𝑛0 = 1

 rarely 𝑐1 = 𝑐2, normally 𝑐1 < 𝑐2

Common Growth Rates

 Commonly encountered growth rates in increasing order of growth

 Θ 1 constant complexity

 note: here 1 stands for function 𝑓 𝑛 = 1

 Θ log 𝑛 logarithmic complexity

 Θ 𝑛 linear complexity

 Θ 𝑛log 𝑛 linearithmic

 Θ 𝑛log𝑘 𝑛 quasi-linear

 note: 𝑘 is constant, i.e. independent of the problem size

 Θ 𝑛2 quadratic complexity

 Θ 𝑛3 cubic complexity

 Θ 2𝑛 exponential complexity

How Growth Rates Affect Running Time

 How running time affected when problem size doubles (𝑛 → 2𝑛)

 constant complexity: 𝑇 𝑛 = 𝑐

 logarithmic complexity: 𝑇 𝑛 = 𝑐 log 𝑛

 linear complexity: 𝑇 𝑛 = 𝑐𝑛

 linearithmic: 𝑇 𝑛 = 𝑐𝑛 log 𝑛

 quadratic complexity: 𝑇 𝑛 = 𝑐𝑛2

 cubic complexity: 𝑇 𝑛 = 𝑐𝑛3

 exponential complexity: 𝑇 𝑛 = 𝑐2𝑛

𝑇 2𝑛 = 𝑐

𝑇 2𝑛 = 𝑇 𝑛 + 𝑐

𝑇 2𝑛 = 2𝑇 𝑛

𝑇 2𝑛 = 2𝑇 𝑛 + 2𝑐n

𝑇 2𝑛 = 4𝑇 𝑛

𝑇 2𝑛 = 8𝑇 𝑛

𝑇 2𝑛 =
1

𝑐
𝑇2 𝑛

Growth Rate: Concrete Numbers

n log(n) n nlog(n) n2 n3 2n

8 3 8 24 64 512 256

16 4 16 64 256 4096 65536

32 5 32 160 1024 32768 4.3x109

64 6 64 384 4096 262144 1.8x1019

128 7 128 896 16384 2097152 3.4x1038

256 8 256 2048 65536 16777218 1.2x1077

Strictly Smaller Asymptotic Bound
 𝑓 𝑛 = 2𝑛2+3𝑛 + 11 ∈ Θ 𝑛2

 How to say 𝑓 𝑛 is asymptotically strictly smaller than 𝑔 𝑛 = 𝑛3?

 o-notation

𝑓 𝑛 ∈ 𝑜(𝑔 𝑛) if for any constant 𝑐 > 0, there exists a
constant 𝑛0 ≥ 0 s.t. 𝑓 𝑛 ≤ 𝑐|𝑔(𝑛)| for all 𝑛 ≥ 𝑛0

 Think of 𝑐 as being arbitrarily small

 No matter how small 𝑐 is, 𝑐 ⋅ 𝑔(𝑛) is eventually larger than 𝑓 𝑛

 Meaning: 𝑓 grows slower than 𝑔, or growth rate of 𝑓 is less than growth rage of 𝑔

𝑓 𝑛

𝑔 𝑛 0.1𝑔 𝑛 0.01𝑔 𝑛 0.00000001𝑔 𝑛

 Useful for certain statements

 there is no general-purpose sorting algorithm with run-time 𝑜(𝑛 log 𝑛)

Big-Oh vs. Little-o

 Little-o, means 𝑓 grows slower than 𝑔

𝑓 𝑛 ∈ 𝑜(𝑔 𝑛) if for any constant 𝑐 > 0, there exists a

constant 𝑛0 ≥ 0 s.t. 𝑓 𝑛 ≤ 𝑐|𝑔(𝑛)| for all 𝑛 ≥ 𝑛0

 Big-Oh, means 𝑓 grows at the same rate or slower than 𝑔

𝑓 𝑛 ∈ Ο 𝑔 𝑛 if there exist constants 𝑐 > 0 and 𝑛0 ≥ 0

s. t. 𝑓 𝑛 ≤ 𝑐 𝑔 𝑛 for all 𝑛 ≥ 𝑛0

 Main difference is the quantifier for 𝑐: exists vs. any

 for big-Oh, you can choose any 𝑐 you want

 for little-o, you are given 𝑐, it can be arbitrarily small

 in proofs for little-o, 𝑛0 will normally depend on 𝑐, so
it is really a function 𝑛0(𝑐)

Big-Oh vs. Little-o

 Little-o, means 𝑓 grows slower than 𝑔

𝑓 𝑛 ∈ 𝑜(𝑔 𝑛) if for any constant 𝑐 > 0, there exists a

constant 𝑛0 ≥ 0 s.t. 𝑓 𝑛 ≤ 𝑐|𝑔(𝑛)| for all 𝑛 ≥ 𝑛0

 Big-Oh, means 𝑓 grows at the same rate or slower than 𝑔

𝑓 𝑛 ∈ Ο 𝑔 𝑛 if there exist constants 𝑐 > 0 and 𝑛0 ≥ 0

s. t. 𝑓 𝑛 ≤ 𝑐 𝑔 𝑛 for all 𝑛 ≥ 𝑛0

 Main difference is the quantifier for 𝑐: exists vs. any

 for big-Oh, you can choose any 𝑐 you want

 for little-o, you are given 𝑐, it can be arbitrarily small

 in proofs for little-o, 𝑛0 will normally depend on 𝑐, so
it is really a function 𝑛0(𝑐)

𝑓 𝑛

𝑔 𝑛 0.1𝑔 𝑛 0.01𝑔 𝑛 0.00000001𝑔 𝑛

Strictly Smaller Proof Example
𝑓 𝑛 ∈ 𝑜(𝑔 𝑛) if for any 𝑐 > 0, there exists 𝑛0 ≥ 0 s.t. 𝑓 𝑛 ≤ 𝑐|𝑔(𝑛)| for all 𝑛 ≥ 𝑛0

Prove that 5𝑛 ∈ 𝑜 𝑛2

 Given 𝑐 > 0 need to find 𝑛0 s.t.

5𝑛 ≤ 𝑐𝑛2 for all 𝑛 ≥ 𝑛0 ⇔
divide both sides by 𝑛

5 ≤ 𝑐𝑛 for all 𝑛 ≥ 𝑛0

𝑛 ≥
5

𝑐

⇔
solve for 𝑛

 Therefore, 5𝑛 ≤ 𝑐𝑛2 for 𝑛 ≥
5

𝑐

 Take 𝑛0 =
5

𝑐

 𝑛0 is a function of 𝑐

 noted before that for little-o proofs, 𝑛0 is usually a function of 𝑐

Strictly Larger Asymptotic Bound

 ω-notation

𝑓 𝑛 ∈ ω(𝑔 𝑛) if for any constant 𝑐 > 0, there exists a
constant 𝑛0 ≥ 0 s.t. 𝑓 𝑛 ≥ 𝑐|𝑔(𝑛)| for all 𝑛 ≥ 𝑛0

 think of 𝑐 as being arbitrarily large

 Meaning: 𝑓 grows much faster than 𝑔

Strictly Larger Asymptotic Bound

 𝑓 𝑛 ∈ ω(𝑔 𝑛) if for any constant 𝑐 > 0, there exists constant 𝑛0 ≥ 0 s.t.
𝑓 𝑛 ≥ 𝑐|𝑔(𝑛)| for all 𝑛 ≥ 𝑛0

 meaning: 𝑓 grows much faster than 𝑔

 Given 𝑐 > 0 need to find 𝑛0 s.t.

𝑔(𝑛) ≤ 𝑐𝑓(𝑛) for all 𝑛 ≥ 𝑛0

1

𝑐
𝑔 𝑛 ≤ 𝑓 𝑛 for all 𝑛 ≥ 𝑛0

 Claim: 𝑓 𝑛 ∈ 𝜔 𝑔 𝑛 ⇒ 𝑔 𝑛 ∈ 𝑜 𝑓 𝑛

Proof:

⇔
divide both sides by 𝑐

 Since 𝑓 𝑛 ∈ 𝜔 𝑔 𝑛 , for any constant, in particular for

constant
1

𝑐
there is 𝑚0 s.t.

𝑓 𝑛 ≥
1

𝑐
𝑔(𝑛) for all 𝑛 ≥ 𝑚0𝑓 𝑛 ≥

1

𝑐
𝑔(𝑛)

1

𝑐
𝑔 𝑛 ≤ 𝑓(𝑛)

 𝑛0 = 𝑚0 and we are done!

Relationship between OrderNotations

One can prove the following relationships

 𝑓 𝑛 ∈ Θ 𝑔 𝑛 ⇔𝑔 𝑛 ∈ Θ 𝑓 𝑛

 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 ⇔ 𝑔 𝑛 ∈ Ω 𝑓 𝑛

 𝑓 𝑛 ∈ 𝑜 𝑔 𝑛 ⇔ 𝑔 𝑛 ∈ 𝜔 𝑓 𝑛

 𝑓 𝑛 ∈ 𝑜 𝑔 𝑛 ⇒ 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛

 𝑓 𝑛 ∈ 𝑜 𝑔 𝑛 ⇒ 𝑓 𝑛 ∉ Ω 𝑔 𝑛

 𝑓 𝑛 ∈ 𝜔 𝑔 𝑛 ⇒ 𝑓 𝑛 ∈ Ω 𝑔 𝑛

 𝑓 𝑛 ∈ 𝜔 𝑔 𝑛 ⇒ 𝑓 𝑛 ∉ 𝑂 𝑔 𝑛

Algebra of Order Notations (1)

 The following rules are easy to prove [exercise]

1. Identity rule: 𝑓 𝑛 ∈ Θ 𝑓 𝑛

2. Transitivity

 if 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 and 𝑔 𝑛 ∈ 𝑂 ℎ 𝑛 then 𝑓 𝑛 ∈ 𝑂 ℎ 𝑛

 if 𝑓 𝑛 ∈ Ω 𝑔 𝑛 and 𝑔 𝑛 ∈ Ω ℎ 𝑛 then 𝑓 𝑛 ∈ Ω ℎ 𝑛

 if 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 and 𝑔 𝑛 ∈ 𝑜 ℎ 𝑛 then 𝑓 𝑛 ∈ 𝑜 ℎ 𝑛

Algebra of Order Notations (2)

3. Maximum rules

Suppose that 𝑓 𝑛 > 0 and 𝑔 𝑛 > 0 for all 𝑛 ≥ 𝑛0, then

a) 𝑓 𝑛 + 𝑔 𝑛 ∈ Ω 𝑚𝑎𝑥 𝑓 𝑛 , 𝑔 𝑛

b) 𝑓 𝑛 + 𝑔 𝑛 ∈ 𝑂 𝑚𝑎𝑥 𝑓 𝑛 , 𝑔 𝑛

𝑚𝑎𝑥 𝑓 𝑛 , 𝑔 𝑛

𝑓 𝑛 + 𝑔 𝑛 =

𝑓 𝑛 + 𝑔 𝑛 ≥a)

𝑚𝑎𝑥 𝑓 𝑛 , 𝑔 𝑛 + 𝑚𝑖𝑛 𝑓 𝑛 , 𝑔 𝑛

≤ 𝑚𝑎𝑥 𝑓 𝑛 , 𝑔 𝑛 + 𝑚𝑎𝑥 𝑓 𝑛 , 𝑔 𝑛

= 2𝑚𝑎𝑥 𝑓 𝑛 , 𝑔 𝑛

b)

Proof:

𝑚𝑎𝑥 𝑓, 𝑔 (𝑛) = ቊ
𝑓(𝑛) if 𝑓 𝑛 > 𝑔(𝑛)
𝑔(𝑛) otherwise

𝑓 𝑛

𝑔 𝑛
max{𝑓,g} 𝑛

either 𝑓 𝑛 or 𝑔 𝑛 =

Limit Theorem for Order Notation
 So far had proofs for order notation from the first principles

 i.e. from the definition

Limit theorem for order notation

 Suppose for all 𝑛 ≥ 𝑛0, 𝑓(𝑛) > 0, 𝑔(𝑛) > 0 and L = lim
𝑛→∞

𝑓 𝑛

𝑔 𝑛

 Then 𝑓 𝑛 ∈

𝑜 𝑔 𝑛 𝑖𝑓 𝐿 = 0

Θ 𝑔 𝑛 𝑖𝑓 0 < 𝐿 < ∞

𝜔 𝑔 𝑛 𝑖𝑓 𝐿 = ∞

 Limit can often be computed using l’Hopital’s rule

 Theorem gives sufficient but not necessary conditions

 Can use theorem unless asked to prove from the first principles

Example 1

Let 𝑓 𝑛 be a polynomial of degree 𝑑 ≥ 0 with 𝑐𝑑 > 0

𝑓 𝑛 = 𝑐𝑑𝑛𝑑 +𝑐𝑑−1 𝑛𝑑−1 + ⋯ + 𝑐1 𝑛 + 𝑐0

Then 𝑓 𝑛 ∈ Θ 𝑛𝑑

Proof:

lim
𝑛→∞

𝑓(𝑛)

𝑛𝑑
= lim
𝑛→∞

𝑐𝑑𝑛𝑑

𝑛𝑑
+

𝑐𝑑−1𝑛𝑑−1

𝑛𝑑
+ ⋯ +

𝑐0

𝑛𝑑

= lim
𝑛→∞

𝑐𝑑𝑛𝑑

𝑛𝑑 + lim
𝑛→∞

𝑐𝑑−1𝑛𝑑−1

𝑛𝑑
lim

𝑛→∞

𝑐0

𝑛𝑑+ ⋯ +

= 0 = 0

= 𝑐𝑑 > 0

= 𝑐d

Example 2

 Compare growth rates of log 𝑛 and 𝑛

lim
𝑛→∞

log 𝑛

𝑛
= lim

𝑛→∞

ln 𝑛
ln 2

𝑛
= lim

𝑛→∞

1
ln 2 ⋅ 𝑛

1

L’Hopital rule

= 0= lim
𝑛→∞

1

𝑛 ⋅ ln 2

 log 𝑛 ∈ 𝑜(𝑛)

Example 3
 Prove log 𝑛 𝑎 ∈ o(𝑛𝑑), for any (big) 𝑎 > 0, (small) 𝑑 > 0

 log 𝑛 1000000 ∈ o(𝑛0.0000001)

1) Prove (by induction):

lim
𝑛→∞

lnk 𝑛

𝑛
= 0 for any integer 𝑘

 Base case 𝑘 = 1 is proven on previous slide

 Inductive step: suppose true for 𝑘 − 1

 lim
𝑛→∞

lnk 𝑛

𝑛
= = 𝑘 lim

𝑛→∞

𝑙𝑛𝑘−1𝑛

𝑛
= 0

L’Hopital rule

lim
𝑛→∞

1
𝑛

𝑘 𝑙𝑛𝑘−1𝑛

1

2) Prove lim
𝑛→∞

lna 𝑛

𝑛𝑑 = 0

 lim
𝑛→∞

lna 𝑛

𝑛𝑑 = lim
𝑛→∞

ln𝑎/𝑑 𝑛

𝑛

𝑑

≤ lim
𝑛→∞

ln 𝑎/𝑑 𝑛

𝑛

𝑑

= 0

3) Finally lim
𝑛→∞

log 𝑛 𝑎

𝑛𝑑 = lim
𝑛→∞

ln 𝑛
𝑙𝑛2

𝑎

𝑛𝑑 =
1

𝑙𝑛2

𝑎

lim
𝑛→∞

ln 𝑛 𝑎

𝑛𝑑
= 0

Example 4
 Sometimes limit does not exist, but can prove from first principles

 Let 𝑓(𝑛) = 𝑛(2 + sin 𝑛𝜋/2)

 Prove that 𝑓(𝑛) is Θ(𝑛)

𝑓(𝑛)

𝑛

3𝑛

Example 4

 Let 𝑓(𝑛) = 𝑛(2 + sin 𝑛𝜋/2), prove that 𝑓(𝑛) is Θ(𝑛)

 Proof:

−1 ≤ 𝑠𝑖𝑛(any number) ≤ 1

𝑛(2−1) ≤ 𝑓 𝑛

sin 𝑛𝜋/2

𝑓(𝑛) ≤ 𝑛(2 + 1) = 3𝑛

sin 𝑛𝜋/2

𝑛 ≤ 𝑓 𝑛 ≤ 3𝑛 for all 𝑛 ≥0

𝑛 = for all 𝑛 ≥ 0

for all 𝑛 ≥ 0

 Use 𝑐1 = 1, 𝑐2 = 3, 𝑛0 = 0

Example 5

 Let 𝑓(𝑛) = 𝑛(1 + sin 𝑛𝜋/2), prove that 𝑓(𝑛) is not Ω(𝑛)

 Intuition: 𝑓 𝑛 = 0 infinitely many times

𝑓(𝑛) ∈ Ω 𝑔(𝑛) if ∃ constants 𝑐 > 0, 𝑛0 ≥ 0 s.t. 𝑓 𝑛 ≥ 𝑐 𝑔 𝑛 for 𝑛 ≥ 𝑛0

𝑐𝑛

𝑛0 𝑓(𝑛) ≥ 𝑐 > 0

contradiction!

𝑓(𝑛)

Example 5

 Let 𝑓(𝑛) = 𝑛(1 + sin 𝑛𝜋/2), prove that 𝑓(𝑛) is not Ω(𝑛)

 Proof: (by contradiction)

 Suppose 𝑓 𝑛 is Ω 𝑛

 Then there is 𝑛0 ≥ 0 and 𝑐 > 0 s.t.

𝑛(1 + sin 𝑛𝜋/2)≥ 𝑐𝑛 for all 𝑛 ≥ 𝑛0

(1 + sin 𝑛𝜋/2)≥ 𝑐 for all 𝑛 ≥ 𝑛0

𝑓(𝑛) ∈ Ω 𝑔(𝑛) if ∃ constants 𝑐 > 0, 𝑛0 ≥ 0
s.t. 𝑓 𝑛 ≥ 𝑐 𝑔 𝑛 for 𝑛 ≥ 𝑛0

sin 𝑛𝜋/2

⇒ take 𝑚 = 3 + 4 𝑛0 > 𝑛0

 sin
3𝜋

2
+ 2𝜋𝑖 = −1 for integer 𝑖

 Divide inside by
𝜋

2
⇒ 3 + 4𝑖

 𝑓 𝑚 = 𝑚 1 + sin
3𝜋

2
+ 2𝜋 𝑛0 = 0 < 𝑐

contradiction!

𝑚𝑛0

Order notation Summary

 𝑓(𝑛) ∈ Θ 𝑔(𝑛) : growth rates of 𝑓 and 𝑔 are the same

 𝑓(𝑛) ∈ o(𝑔 𝑛): growth rate of 𝑓 is less than growth rate of 𝑔

 𝑓(𝑛) ∈ ω 𝑔 𝑛 : growth rate of 𝑓 is greater than growth rate of 𝑔

 𝑓(𝑛) ∈ O 𝑔 𝑛 : growth rate of 𝑓 is the same or less than growth rate of 𝑔

 𝑓(𝑛) ∈ Ω(𝑔 𝑛): growth rate of 𝑓 is the same or greater than growth rate of 𝑔

Abuse of Notation
 Normally, say 𝑓 𝑛 ∈ Θ 𝑔 𝑛 because Θ 𝑔 𝑛 is a set

 Sometimes it is convenient to abuse notation
 𝑓 𝑛 = 2𝑛2 + Θ 𝑛

 𝑓 𝑛 is 2𝑛2 plus a linear term

 nicer to read than ‘2𝑛2 + 30𝑛 + 𝑙𝑜𝑔𝑛’

 does not hide the constant term 2, unlike if we said 𝑂(𝑛2)

 𝑓 𝑛 = 𝑛2 + 𝑜 1

 𝑓 𝑛 is 𝑛2 plus a vanishing term (term goes to 0)

 example: 𝑓 𝑛 = 𝑛2 + 1/𝑛

 Use these sparingly, typically only for stating final result

 But avoid arithmetic with asymptotic notation, can go very wrong

 Instead, replace Θ 𝑔(𝑛) by 𝑐 ∙ 𝑔(𝑛)
 still sloppy, but less dangerous

 if 𝑓 𝑛 ∈ Θ 𝑔 𝑛 , more accurate statement is 𝑐 ∙ 𝑔 𝑛 ≤ 𝑓(𝑛) ≤ 𝑐′ ∙ 𝑔 𝑛 for

large enough 𝑛

Outline

 CS240 overview
 Course objectives
 Course topics

 Introduction and Asymptotic Analysis
 algorithm design
 pseudocode
 measuring efficiency

 analysis of algorithms

 analysis of recursive algorithms
 helpful formulas

Techniques for Runtime Analysis

 Goal: Use asymptotic notation to simplify run-time analysis

 Running time of an algorithm depends on the input size 𝑛

 Identify primitive operations: these require constant time

 Loop complexity expressed as sum of complexities of each iteration

 Nested loops: start with the innermost loop and proceed outwards

 This gives nested summations

Techniques for Runtime Analysis

 Goal: Use asymptotic notation to simplify run-time analysis

 Running time of an algorithm depends on the input size 𝑛

 Identify primitive operations: these require constant time

 Loop complexity expressed as sum of complexities of each iteration

 Nested loops: start with the innermost loop and proceed outwards

 This gives nested summations

𝑐

Techniques for Algorithm Analysis

 Goal: Use asymptotic notation to simplify run-time analysis

 Running time of an algorithm depends on the input size 𝑛

 Identify primitive operations: these require constant time

 Loop complexity expressed as sum of complexities of each iteration

 Nested loops: start with the innermost loop and proceed outwards

 This gives nested summations

෍
𝑗=𝑖

𝑛

𝑐

Techniques for Algorithm Analysis

 Goal: Use asymptotic notation to simplify run-time analysis

 Running time of an algorithm depends on the input size 𝑛

 Identify primitive operations: these require constant time

 Loop complexity expressed as sum of complexities of each iteration

 Nested loops: start with the innermost loop and proceed outwards

 This gives nested summations

෍
𝑗=𝑖

𝑛

𝑐෍
𝑖=1

𝑛

Techniques for Algorithm Analysis

 Goal: Use asymptotic notation to simplify run-time analysis

 Running time of an algorithm depends on the input size 𝑛

 Identify primitive operations: these require constant time

 Loop complexity expressed as sum of complexities of each iteration

 Nested loops: start with the innermost loop and proceed outwards

 This gives nested summations

෍
𝑗=𝑖

𝑛

𝑐 + 𝑐෍
𝑖=1

𝑛

Techniques for Algorithm Analysis

 Derived complexity as

𝑐1 + ෍
𝑖=1

𝑛

෍
𝑗=𝑖

𝑛

𝑐2 Some textbooks will write this as

𝑐 + ෍
𝑖=1

𝑛

෍
𝑗=𝑖

𝑛

𝑐

 Or even as 1 + ෍
𝑖=1

𝑛

෍
𝑗=𝑖

𝑛

1

 Now need to work out the sum

Sums: Review

෍
𝑗=1

𝑛

1 = 1

𝑗 = 1 𝑗 = 2

+1

𝑗 = 3

+1

… 𝑗 = 𝑛

+1… = 𝑛

summand

index of
summation

Sums: Review

𝑘 = 𝑖 − 𝑖 + 1 = 1 𝑘 = 𝑖 + 1 − 𝑖 + 1 = 2 𝑘 = 𝑛 − 𝑖 + 1 = 𝑛 − 𝑖 + 1

෍
𝑗=𝑖

𝑛

1 = 1

𝑗 = 𝑖 𝑗 = 𝑖 + 1

+1

… 𝑗 = 𝑛

+1… = 𝑛 − 𝑖 + 1

Sums: Review

෍
𝑗=𝑖

𝑛

(𝑛 − 𝑒𝑥) =𝑛 − 𝑒𝑥

𝑗 = 𝑖 𝑗 = 𝑖 + 1

+𝑛 − 𝑒𝑥

… 𝑗 = 𝑛

+𝑛 − 𝑒𝑥… = (𝑛 − 𝑖 + 1)(𝑛 − 𝑒𝑥)

Sums: Review

1

𝑖 = 1 𝑖 = 2

+ 2

𝑖 = 3

+ 3

… 𝑖 = 𝑛

+ 𝑛…𝑆 = ෍
𝑖=1

𝑛

𝑖 =

1 + 2 + 3 + 𝑛𝑆 = …

𝑛 +(𝑛 − 1) +(𝑛 − 2) + 1𝑆 = …

𝑛 + 1 𝑛 + 1 𝑛 + 1 𝑛 + 1

2𝑆 = 𝑛 + 1 𝑛

𝑆 = ෍
𝑖=1

𝑛

𝑖 =
1

2
𝑛 + 1 𝑛

+

Sums: Review

𝑎

𝑖 = 𝑎 𝑖 = 𝑎 + 1

+ (𝑎 + 1)

… 𝑖 = 𝑏

+ 𝑏…𝑆 = ෍
𝑖=𝑎

𝑏

𝑖 =

𝑎 + (𝑎 + 1) + 𝑏𝑆 = …

𝑏 +(𝑏 − 1) + 𝑎𝑆 = …

𝑎 + 𝑏 𝑎 + 𝑏 𝑎 + 𝑏

2𝑆 = 𝑎 + 𝑏 (𝑏 − 𝑎 + 1)

𝑆 = ෍
𝑖=𝑎

𝑏

𝑖 =
1

2
𝑎 + 𝑏 (𝑏 − 𝑎 + 1)

+

Techniques for Algorithm Analysis

𝑐 + ෍
𝑖=1

𝑛

෍
𝑗=𝑖

𝑛

𝑐

 Complexity of algorithm Test1 is Θ 𝑛2

+𝑐 ෍
𝑖=1

𝑛

𝑛= 𝑐 −𝑐 ෍
𝑖=1

𝑛

𝑖 +𝑐 ෍
𝑖=1

𝑛

1

= 𝑐 +𝑐𝑛2−𝑐
𝑛 + 1 𝑛

2
+𝑐𝑛 = 𝑐

𝑛2

2
+ 𝑐

𝑛

2
+ 𝑐

= 𝑐 + ෍
𝑖=1

𝑛

𝑐(𝑛 − 𝑖 + 1) = 𝑐 + 𝑐 ෍
𝑖=1

𝑛

(𝑛 − 𝑖 + 1)

Techniques for Algorithm Analysis

𝑐 + ෍
𝑖=1

𝑛

෍
𝑗=𝑖

𝑛

𝑐

 Using Θ-bounds earlier makes final expressions simpler

 Complexity of algorithm Test1 is Θ 𝑛2

 Can use Θ-bounds earlier, before working out the sum

෍
𝑖=1

𝑛

෍
𝑗=𝑖

𝑛

𝑐

is Θ ෍
𝑖=1

𝑛

෍
𝑗=𝑖

𝑛

𝑐

 Therefore, can drop the lower order term and work on

Techniques for Algorithm Analysis

 Two general strategies

1. Use Θ-bounds throughout the analysis and obtain Θ-
bound for the complexity of the algorithm

 used this strategy on previous slides for Test1 Θ-bound

2. Prove a O-bound and a matching Ω-bound separately
 use upper bounds (for O-bounds) and lower bounds (for Ω-bound)

early and frequently

 easier because upper/lower bounds are easier to sum

Techniques for Algorithm Analysis

 Second strategy: upper bound for Test1

෍
𝑖=1

𝑛

෍
𝑗=𝑖

𝑛

𝑐

 Add more iterations to make sum easier to work out

෍
𝑖=1

𝑛

෍
𝑗=𝑖

𝑛

𝑐 ≤ ෍
𝑖=1

𝑛

෍
𝑗=1

𝑛

𝑐 = ෍
𝑖=1

𝑛

𝑐𝑛 = 𝑐𝑛2= 𝑐 ෍
𝑖=1

𝑛

𝑛

𝒊

𝒋

1 2 𝑛

1

𝑛

Techniques for Algorithm Analysis

 Second strategy: upper bound for Test1

෍
𝑖=1

𝑛

෍
𝑗=𝑖

𝑛

𝑐

 Add more iterations to make sum easier to work out

෍
𝑖=1

𝑛

෍
𝑗=𝑖

𝑛

𝑐 ≤ ෍
𝑖=1

𝑛

෍
𝑗=1

𝑛

𝑐 = ෍
𝑖=1

𝑛

𝑐𝑛 = 𝑐𝑛2= 𝑐 ෍
𝑖=1

𝑛

𝑛

upper bound

𝒊

𝒋

1 2 𝑛

1

𝑛

 Test1 is 𝑂(𝑛2)

Techniques for Algorithm Analysis
 Second strategy: lower bound for Test1

෍
𝑖=1

𝑛

෍
𝑗=𝑖

𝑛

𝑐

 Remove iterations to make sum easier to work out

෍
𝑖=1

𝑛

෍
𝑗=𝑖

𝑛

𝑐 ≥

 Test1 is Ω(𝑛2)
𝒊

𝒋

1 2 𝑛

1

𝑛

෍
𝑖=1

𝑛/2

෍
𝑗=𝑛/2

𝑛

𝑐 = ෍
𝑖=1

𝑛/2

𝑐
𝑛

2
= 𝑐

𝑛

2

2

𝑛

2

𝑛

2

= 𝑐 ෍
𝑖=1

𝑛/2 𝑛

2

Techniques for Algorithm Analysis
 Second strategy: lower bound for Test1

෍
𝑖=1

𝑛

෍
𝑗=𝑖

𝑛

𝑐

 Remove iterations to make sum easier to work out

 Can get the same result without visualization

෍
𝑖=1

𝑛

෍
𝑗=𝑖

𝑛

𝑐 ≥ ෍
𝑖=1

𝑛/2

෍
𝑗=𝑖

𝑛

𝑐

 Test1 is Ω(𝑛2), previously concluded that Test1 is 𝑂(𝑛2)

 Therefore Test1 is Θ 𝑛2

≥ ෍
𝑖=1

𝑛/2

෍
𝑗=𝑛/2

𝑛

𝑐 = 𝑐
𝑛

2

2

 To remove iterations, increase lower or increase upper range bounds, or both

 Examples: ≥ ෍
𝑘=𝟐𝟎

𝟖𝟎

𝑐෍
𝑘=10

100

𝑐 ෍
𝑘=𝑖

𝑗

1 ෍
𝑘=𝒊 + 𝟏

𝒋−𝟏

1≥

 In our case:

now 𝑖 ≤ 𝑛/2

Techniques for Algorithm Analysis

 And then say running time is 𝑐 times the number of iterations

 Annoying to carry constants around ෍
𝑖=1

𝑛

෍
𝑗=𝑖

𝑛

𝑐

 Running time is proportional to the number of iterations

 Can first compute the number of iterations

෍
𝑖=1

𝑛

෍
𝑗=𝑖

𝑛

1 =
𝑛2

2
+

𝑛

2
+ 1

Worst Case Time Complexity
 Can have different running times on two instances of equal size

 Let 𝑇(𝐼) be running time of an algorithm on instance 𝐼

 Let 𝐼𝑛 = 𝐼: 𝑆𝑖𝑧𝑒 𝐼 = 𝑛

 Worst-case complexity of an algorithm: take the worst 𝐼

 Formal definition: the worst-case running time of algorithm A is a
function f : Z+ → R mapping 𝑛 (the input size) to the longest running
time for any input instance of size 𝑛

𝑇𝑤𝑜𝑟𝑠𝑡 𝑛 = max
𝐼𝜖𝐼𝑛

𝑇 𝐼

Worst Case Time Complexity
 Can have different running times on two instances of equal size

 Worst-case complexity of an algorithm: take worst instance 𝐼

෍
𝑗=1

𝑖

𝑐෍
𝑖=1

𝑛−1

= ෍
𝑖=0

𝑛−1

𝑐𝑖

= 𝑐 𝑛 − 1 𝑛/2

 𝑇𝑤𝑜𝑟𝑠𝑡 𝑛 = 𝑐 𝑛 − 1 𝑛/2

 this is primitive operation count as a function of input size 𝑛

 after primitive operation count, apply asymptotic analysis
 Θ 𝑛2 or 𝑂 𝑛2 or Ω 𝑛2 are all valid statements about the

worst case running time of insertion-sort

Best Case Time Complexity

 Best-case complexity of an algorithm: take the best instance I
 Formal definition: the best-case running time of an algorithm A is a

function f : Z+ → R mapping 𝑛 (the input size) to the smallest running
time for any input instance of size 𝑛

෍
𝑖=1

𝑛−1

𝑐 = 𝑐(𝑛 − 1)

𝑇𝑏𝑒𝑠𝑡 𝑛 = min
𝐼𝜖𝐼𝑛

𝑇 𝐼

 𝑇𝑏𝑒𝑠𝑡 𝑛 = 𝑐 𝑛 − 1

 this is primitive operation count as a function of input size 𝑛

 after primitive operation count, apply asymptotic analysis

 Θ 𝑛 or 𝑂 𝑛 or Ω 𝑛 are all valid about best case running time

best instance is sorted array

Best Case Time Complexity

 For insertion-sort, best instance is sorted
(non-increasing) array 𝐴 of size 𝑛

 Best instance is not an array of size 1

 Best-case complexity is Θ(𝑛)

 Note that best-case complexity is a function of input size 𝑛

 Think of the best instance of size 𝑛

 For hasNegative, best instance is array 𝐴
of size 𝑛 where 𝐴[0] < 0

 Best instance is not an array of size 1

 Best-case complexity is Θ(1)
\\\\\\\\\\\

hasNegative(A, n)

Input: array A of n integers

for i  0 to n  1 do

if A[i] < 0

return True

return False

Best Case Running Time Exercise
Algorithm Mystery(A, n)

Input: array A of n integers

if 𝑛= 5

return 𝐴[0]

else

for i  1 to n  1 do

print(𝐴[𝑖])

return

 Best case running time?

a) Θ 1

b) Θ(𝑛)

𝑛 = 5

𝑐

𝑐𝑛

 𝑇 𝑛 = ቊ
𝑐 if 𝑛 = 5

𝑐𝑛 otherwise

√

Average Case Time Complexity

Average-case complexity of an algorithm: The average-case running
time of an algorithm A is function f : Z+ → R mapping 𝑛 (input size) to
the average running time of A over all instances of size 𝑛

𝑇𝑎𝑣𝑔 𝑛 =
1

𝐼𝑛
෍

𝐼𝜖𝐼𝑛

𝑇 𝐼

 Will assume 𝐼𝑛 is finite

 If all instances are equally often used, 𝑇𝑎𝑣𝑔 𝑛 gives a good

estimate of a running time of an algorithm on average in
practice

Average vs. Worst vs. Best Case Time Complexity

 Sometimes, best, worst, average time complexities are the same

 If there is a difference, then best time complexity could be overly
optimistic, worst time complexity could be overly pessimistic, and
average time complexity is most useful

 However, average case time complexity is usually hard to compute

 Therefore, most often, use worst time complexity
 worst time complexity is useful as it gives bound on the maximum

amount of time one will have to wait for the algorithm to complete

 default in this course

 unless stated otherwise, whenever we mention time complexity,
assume we mean worst case time complexity

O-notation and Running Time of Algorithms

 It is important not to try make comparisons between algorithms
using 𝑂-notation

 Suppose algorithm A and B both solve the same problem
 A has worst-case runtime 𝑂(𝑛3)
 B has worst-case runtime 𝑂(𝑛2)

 Cannot conclude that B is more efficient that A for all inputs
1. the worst case runtime may only be achieved on some

instances
2. more importantly, 𝑂-notation is only an upper bound, A

could have worst case runtime 𝑂(𝑛)
 To compare algorithms, should use Θ notation

Running Time: Theory and Practice, Multiplicative
Constants

 Algorithm A has runtime 𝑇 𝑛 = 10000𝑛2

 Algorithm B has runtime 𝑇 𝑛 = 10𝑛2

 Theoretical efficiency of A and B is the same, Θ 𝑛2

 In practice, algorithm B will run faster (for most implementations)

 multiplicative constants matter in practice, given two
algorithms with the same growth rate

 but we will not talk about this issue more in this course

Running Time: Theory and Practice, Small Inputs

 Algorithm A running time 𝑇 𝑛 = 75𝑛 + 500

 Algorithm B running time 𝑇 𝑛 = 5𝑛2

 Then B is faster for 𝑛 ≤ 20
 will use this fact when talking about practical implementation of

recursive sorting algorithms

15 205 100

3,000

2,500

2,000

1,500

1,000

500

0
25

Theoretical Analysis of Space

Algorithm arrayMax(A, n)

Input: array A of n integers

Output: maximum element of A

currentMax  A[0]

for i  1 to n  1 do

if A[i]  currentMax then

currentMax  A[i]

return currentMax

 To find space used by an algorithm, count total number of memory cells ever
accessed (for reading or writing or both) by algorithm

 as a function of input size 𝒏

 space used must always be initialized, although it may not be stated explicitly in
pseudocode

 Mostly interested in auxiliary space

 space used in addition to the space used by the input data

Algorithm arrayMax(A, n)

Input: array A of n integers

Output: maximum element of A

currentMax  A[0]

for i  1 to n  1 do

if A[i]  currentMax then

currentMax  A[i]

return currentMax

 arrayMax uses 2 memory cells

 𝑇 𝑛 = 2

 Auxiliary space is 𝑂(1)

Theoretical Analysis of Space

Algorithm arrayCumSum(A, n)

Input: array A of n integers

initialize array B of size n to 0

B[0]  A[0]

for i  1 to n  1 do

B[i]  B[i - 1] + A[i]

return B

 arrayMax uses 1 + 𝑛 memory cells

 𝑇 𝑛 = 1 + 𝑛

 Auxiliary space is 𝑂(𝑛)

Algorithm arrayCumSum(A, n)

Input: array A of n integers

initialize array B of size n to 0

B[0]  A[0]

for i  1 to n  1 do

B[i]  B[i - 1] + A[i]

return B

Outline

 CS240 overview
 Course objectives
 Course topics

 Introduction and Asymptotic Analysis
 algorithm design
 pseudocode
 measuring efficiency
 asymptotic analysis

 analysis of algorithms

 analysis of recursive algorithms
 helpful formulas

MergeSort: Overall Idea

Input: Array A of 𝑛 integers

1: split A into two subarrays

 AL consists of the first
𝑛

2
elements

 AR consists of the last
𝑛

2
elements

2: Recursively run MergeSort on AL and AR

3: After AL and AR are sorted, use function Merge to merge

them into a single sorted array

AL AR

A=

MergeSort: Pseudo-code

 Two tricks to avoid copying/initializing too many arrays
 recursion uses parameters that indicate the range of the array that needs

to be sorted

 array 𝑆 used for merging is passed along as parameter

merge-sort(𝐴, 𝑛, 𝑙 ←

𝐴: array of size 𝑛, 0

if 𝑟 ≤ 𝑙 then

return

if 𝑆 is 𝑁𝑈𝐿𝐿 initialize it as array

𝑚 = (𝑙 + 𝑟)/2

merge-sort(𝐴, 𝑛

merge-sort 𝐴, 𝑛

merge(𝐴, 𝑙, 𝑚, 𝑟

Merging Two Sorted Subarrays: Initialization

3 4 5 7 1 1 2 8 9A
l m r

l

3 4 5 7 1 1 2 8 9S
m r

iL iR

Merging Two Sorted Subarrays: Merging Starts

3 4 5 7 1 1 2 8 9A 3 4 5 7 1 1 2 8 9S
iL iRk

1 4 5 7 1 1 2 8 9A 3 4 5 7 1 1 2 8 9S
iL iRk

m r

1 1 5 7 1 1 2 8 9A 3 4 5 7 1 1 2 8 9S
iL iRk

1 1 2 7 1 1 2 8 9A 3 4 5 7 1 1 2 8 9S
iL iRk

1 1 2 3 1 1 2 8 9A 3 4 5 7 1 1 2 8 9S
iL iRk

1 1 2 3 4 1 2 8 9A 3 4 5 7 1 1 2 8 9S
iL iRk

Merging Two Sorted Subarrays: Merging Cont.
m r

1 1 2 3 4 1 2 8 9A 3 4 5 7 1 1 2 8 9S
iL iRk

1 1 2 3 4 5 2 8 9A 3 4 5 7 1 1 2 8 9S
iL iRk

1 1 2 3 4 5 7 8 9A 3 4 5 7 1 1 2 8 9S
iL iRk

1 1 2 3 4 5 7 8 9A 3 4 5 7 1 1 2 8 9S
iL iRk

1 1 2 3 4 5 7 8 9A 3 4 5 7 1 1 2 8 9S
iL iRk

iL > m, done with the first subarray

Merge: Pseudocode

 Merge takes Θ(𝑟 – 𝑙 + 1) time

 this is Θ(𝑛) time for merging 𝑛 elements

Analysis of MergeSort

 Recurrence relation for MergeSort

𝑇 𝑛 = ቐ
𝑇

𝑛

2
+ 𝑇

𝑛

2
+ 𝑐 𝑛 if 𝑛 > 1

𝑐 if 𝑛 = 1

 Let 𝑇 𝑛 be time to run MergeSort on an array of length 𝑛

𝑇
𝑛

2

𝑐𝑛

𝑐

𝑐

𝑇
𝑛

2
𝑐𝑛

\\ base case

𝑇 𝑛 = ቐ
𝑇

𝑛

2
+ 𝑇

𝑛

2
+ 𝑐 𝑛 if 𝑛 > 1

𝑐 if 𝑛 = 1

merge-sort(𝐴, 𝑛, 𝑙 ← 0, 𝑟 ← 𝑛 − 1, 𝑆 ← 𝑁𝑈𝐿𝐿)

𝐴: array of size 𝑛, 0 ≤ 𝑙 ≤ 𝑟 ≤ 𝑛 − 1

if 𝑟 ≤ 𝑙 then

return

if 𝑆 is 𝑁𝑈𝐿𝐿 initialize it as array 𝑆[0 … 𝑛 − 1]

𝑚 = (𝑙 + 𝑟)/2

merge-sort(𝐴, 𝑛, 𝑙, 𝑚, 𝑆)

merge-sort 𝐴, 𝑛, 𝑚 + 1, 𝑟, 𝑆

merge(𝐴, 𝑙, 𝑚, 𝑟, 𝑆)

Analysis of MergeSort

 Sloppy recurrence with floors and ceilings removed

 Exact and sloppy recurrences are identical when 𝑛 is a power of 2

 Recurrence easily solved when 𝑛 = 2𝑗

𝑇 𝑛 = ቐ
2𝑇

𝑛

2
+ 𝑐𝑛 if 𝑛 > 1

𝑐 if 𝑛 = 1

 Recurrence relation for MergeSort

𝑇 𝑛 = ቐ
𝑇

𝑛

2
+ 𝑇

𝑛

2
+ 𝑐 𝑛 if 𝑛 > 1

𝑐 if 𝑛 = 1

Visual proof via Recursion Tree 𝑻 𝒏 = ቐ
𝟐𝑻

𝒏

𝟐
+ 𝒄 𝒏 if 𝒏 > 𝟏

𝒄 if 𝒏 = 𝟏

𝑛𝑛

𝑛
𝑛

2
𝑛
𝑛

2

𝑐 𝑛

𝑛
𝑛

22
𝑛
𝑛

22

𝑐
𝑛

2
𝑐

𝑛

2

𝑛
𝑛

22
𝑛
𝑛

22

𝑐
𝑛

22
𝑐

𝑛

22
𝑐

𝑛

22 𝑐
𝑛

22

tree levels

0

1

2

total work per level

𝑐 𝑛

𝑐 𝑛

𝑐 𝑛

…
…

…
.

#nodes

20

21

22

𝑖 2𝑖 each node is
𝑛

2𝑖 in size, 𝑐
𝑛

2𝑖 operations at each node 𝑐 𝑛

 Stop recursion at height ℎ when node size is 1

 Node size at height ℎ is
𝑛

2ℎ
⇒ 𝑛 = 2ℎ

⇒ ℎ = log 𝑛⇒
𝑛

2ℎ
= 1

Visual proof via Recursion Tree

𝑛𝑛

𝑛
𝑛

2
𝑛
𝑛

2

𝑐 𝑛

𝑛
𝑛

22
𝑛
𝑛

22

𝑐
𝑛

2
𝑐

𝑛

2

𝑛
𝑛

22
𝑛
𝑛

22

𝑛1 𝑛1 𝑛1……………….

𝑐 𝑐 𝑐

𝑛
 𝑐𝑛 operations on each tree level, log 𝑛 levels, total work is 𝑐𝑛 log 𝑛 ∈ Θ 𝑛 log 𝑛

𝑐
𝑛

22
𝑐

𝑛

22
𝑐

𝑛

22 𝑐
𝑛

22

tree levels

0

1

2

log 𝑛

total work per level

𝑐 𝑛

𝑐 𝑛

𝑐 𝑛

𝑐 𝑛

…
…

…
…

…
…

.

#nodes

20

21

22

2𝑙𝑜𝑔𝑛 = 𝑛

𝑻 𝒏 = ቐ
𝟐𝑻

𝒏

𝟐
+ 𝒄 𝒏 if 𝒏 > 𝟏

𝒄 if 𝒏 = 𝟏

Analysis of MergeSort

 Can show 𝑇 𝑛 ∈ Θ 𝑛 log 𝑛 for all 𝑛 by analyzing exact
recurrence

Some Recurrence Relations

 Once you know the result, it is (usually) easy to prove by induction

 You can use these facts without a proof, unless asked otherwise

 Many more recursions, and some methods to solve, in cs341

Outline

 CS240 overview
 Course objectives

 Course topics

 Introduction and Asymptotic Analysis
 algorithm design

 pseudocode

 measuring efficiency

 asymptotic analysis

 analysis of algorithms

 analysis of recursive algorithms

 helpful formulas

Useful Sums
 Arithmetic

෍
𝑖=1

∞ 1

𝑖2 =
𝜋2

6
∈ Θ 1

෍
𝑖=1

𝑛

𝑖𝑘 ∈ Θ 𝑛𝑘+1 for 𝑘 ≥ 0

෍
𝑖=0

∞

𝑖𝑝(1 − 𝑝)𝑖−1 =
1

𝑝
for 0 < 𝑝 < 1

 You can use these without a proof, unless asked otherwise

෍
𝑖=0

𝑛−1

𝑖 =
𝑛(𝑛 − 1)

2

෍
𝑖=0

𝑛−1

2𝑖 = 2𝑛 − 1

 A few more

 Harmonic σ𝑖=1
𝑛 1

𝑖
= ln 𝑛 + γ + 𝑜(1) ∈ Θ log 𝑛

 Geometric

෍
𝑖=1

∞ 𝑖

2𝑖
=∈ Θ 1

෍
𝑖=0

𝑛−1

𝑎𝑟𝑖 =

𝑎
𝑟𝑛 − 1

𝑟 − 1
∈ Θ 𝑟𝑛−1 if 𝑟 > 1

𝑛𝑎 ∈ Θ 𝑛 if 𝑟 = 1

𝑎
1 − 𝑟𝑛

1 − 𝑟
∈ Θ 1 if 0 < 𝑟 < 1

෍
𝑖=0

𝑛−1

𝑎 + 𝑑𝑖 = 𝑛𝑎 +
𝑑𝑛(𝑛 − 1)

2
∈ Θ 𝑛2 if 𝑑 ≠ 0

Useful Math Facts

