Module 1: Introduction and Asymptotic Analysis

CS 240 – Data Structures and Data Management

O. Veksler

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2024

Outline

- CS240 overview
 - course objectives
 - course topics
- Introduction and Asymptotic Analysis
 - algorithm design
 - pseudocode
 - measuring efficiency
 - asymptotic analysis
 - analysis of algorithms
 - analysis of recursive algorithms
 - helpful formulas

Outline

- CS240 overview
 - course objectives
 - course topics
- Introduction and Asymptotic Analysis
 - algorithm design
 - pseudocode
 - measuring efficiency
 - asymptotic analysis
 - analysis of algorithms
 - analysis of recursive algorithms
 - helpful formulas

Course Objectives: What is this course about?

- Computer Science is mostly about problem solving
 - write program that converts given input to expected output
- When first learn to program, emphasize correctness
 - does program output the expected results?
- This course is also concerned with *efficiency*
 - does program use computer resources efficiently?
 - processor time, memory space
 - strong emphasis on mathematical analysis of efficiency
- Study efficient methods of storing, accessing, and organizing large collections of data
 - typical operations: inserting new data items, deleting data items, searching for specific data items, sorting

Course Objectives: What is this course about?

- New abstract data types (ADTs)
 - how to implement ADT efficiently using appropriate data structures
- New algorithms solving problems in data management
 - sorting, pattern matching, compression
- Algorithms
 - presented in pseudocode
 - analyzed using order notation (big-Oh, etc.)

Course Topics

٠	asymptotic (big-Oh) analysis	mathematical tool for efficiency
•	priority queues and heaps	,
-	sorting, selection	Data Structures and Algorithms
٠	binary search trees, AVL trees	
-	skip lists	
-	hashing	
٠	quadtrees, kd-trees, range search	
-	tries	
-	string matching	
٠	data compression	
	external memory	

CS Background

- Topics covered in previous courses with relevant sections [Sedgewick]
 - arrays, linked lists (Sec. 3.2–3.4)
 - strings (Sec. 3.6)
 - stacks, queues (Sec. 4.2–4.6)
 - abstract data types (Sec. 4-intro, 4.1, 4.8–4.9)
 - recursive algorithms (5.1)
 - binary trees (5.4–5.7)
 - basic sorting (6.1–6.4)
 - binary search (12.4)
 - binary search trees (12.5)
 - probability and expectation (Goodrich & Tamassia, Section 1.3.4)

Outline

- CS240 overview
 - Course objectives
 - Course topics
- Introduction and Asymptotic Analysis
 - algorithm design
 - pseudocode
 - measuring efficiency
 - asymptotic analysis
 - analysis of algorithms
 - analysis of recursive algorithms
 - helpful formulas

Algorithm Design Terminology

- Problem: description of input and required output
 - example: given an input array, rearrange elements in nondecreasing order
- Problem Instance: one possible input for specified problem
 - I = [5, 2, 1, 8, 2]
- Size of a problem instance size(I)
 - non-negative integer measuring size of instance I
 - size([5, 2, 1, 8, 2]) = 5
 - $\operatorname{size}([]) = 0$
- Often input is array, and instance size is array size

Algorithm Design Terminology

- Algorithm: step-by-step process (can be described in finite length) for carrying out a series of computations, given an arbitrary instance I
- Solving a problem: algorithm A solves problem Π if for every instance I of Π , A computes a valid output for instance I in finite time
- Program: implementation of an algorithm using a specified computer language
- In this course, the emphasis is on algorithms
 - as opposed to programs or programming

Algorithms and Programs

- From problem Π to program that solves it
 - 1. Algorithm Design: design algorithm(s) that solves Π
 - 2. Algorithm Analysis: assess correctness and efficiency of algorithm(s)
 - 3. Implementation: if acceptable (correct and efficient), implement algorithms(s)
 - for each algorithm, multiple implementations are possible
 - run experiments to determine a better solution
- CS240 focuses on the first two steps
 - the main point is to avoid implementing obviously bad algorithms

Outline

- CS240 overview
 - Course objectives
 - Course topics
- Introduction and Asymptotic Analysis
 - algorithm design
 - pseudocode
 - measuring efficiency
 - asymptotic analysis
 - analysis of algorithms
 - analysis of recursive algorithms
 - helpful formulas

Pseudocode

- Pseudocode is a method of communicating algorithm to a human
 - whereas program is a method of communicating algorithm to a computer

```
insertion-sort(A, n)

A: array of size n

1. for i \leftarrow 1 to n-1 do

2. j \leftarrow i

3. while j > 0 and A[j] < A[j-1] do

4. swap A[j] and A[j-1]

5. j \leftarrow j-1
```

- preferred language for describing algorithms
- omits obvious details, e.g. variable declarations
- sometimes uses English descriptions
- has limited if any error detection, e.g. assumes A is initialized
- sometimes uses mathematical notation
- indentation instead of braces to indicate the scope
- should use good variable names

Pseudocode Details

Control flow

```
if ... then ... [else ...]
while ... do ...
repeat ... until ...
for ... do ...
indentation replaces braces
```

Expressions

```
    assignment
    equality testing
```

n² superscripts and other mathematical formatting allowed

Method declaration

```
Algorithm method (arg, arg...)
Input ...
Output ...
```

```
Algorithm arrayMax(A, n)
Input: array A of n integers
Output: maximum element of A
currentMax \leftarrow A[0]
for i \leftarrow 1 to n - 1 do

if A[i] > currentMax then
currentMax \leftarrow A[i]
return currentMax
```

Outline

- CS240 overview
 - Course objectives
 - Course topics
- Introduction and Asymptotic Analysis
 - algorithm design
 - pseudocode
 - measuring efficiency
 - asymptotic analysis
 - analysis of algorithms
 - analysis of recursive algorithms
 - helpful formulas

Efficiency of Algorithms/Programs

- Efficiency
 - Running Time: amount of time program takes to run
 - Auxiliary Space: amount of additional memory program requires
 - additional to the memory needed for the input instance
- Primarily concerned with time efficiency in this course
 - but also look at space efficiency sometimes
 - same techniques as for time apply to space efficiency
- When we say efficiency, assume time efficiency
 - unless we explicitly say space efficiency

Efficiency is a Function of Input

- The amount of time and/or memory required by a program usually depends on the given instance
- T([3, -1, 4, 7, 10]) < T([3, 1, 4, 7, 0])
- So we express time or memory efficiency as a mathematical function of instances, i.e. T(I)

Algorithm *hasNegative*(*A*, *n*)

Input: array A of n integers

for $i \leftarrow 0$ to n - 1 do if A[i] < 0

return True

return False

Efficiency is a Function of Input

- The amount of time and/or memory required by a program usually depends on the given instance
- T([3, -1, 4, 7, 10]) < T([3, 1, 4, 7, 0])
- So we express time or memory efficiency as a mathematical function of instances, i.e. T(I)

```
Algorithm arraySum(A, n)
Input: array A of n integers
Output: sum of elements of A
sum \leftarrow 0
for i \leftarrow 0 \text{ to } n - 1 \text{ do}
sum \leftarrow sum + A[i]
return sum
T([3, -1, 4]) < T([3, 1, 4, 7, 0, 10])
```

- Deriving T(I) for each specific instance I is impractical
- Usually running time is longer for larger instances
- Group all instances of size n into set $I_n = \{I \mid size(I) = n\}$
 - I_4 is all arrays of size 4
- Measure over the set I_n : T(n) = "time for instances in I_n "
 - average over I_n ?
 - or take the best (smallest time) instance in I_n ?
 - or take the worst (largest time) instance in I_n ?
- Running time usually depends both on instance size and instance composition

Running Time of Algorithms/Programs

- One option: experimental studies
 - write program implementing the algorithm
 - run program with inputs of varying size and composition

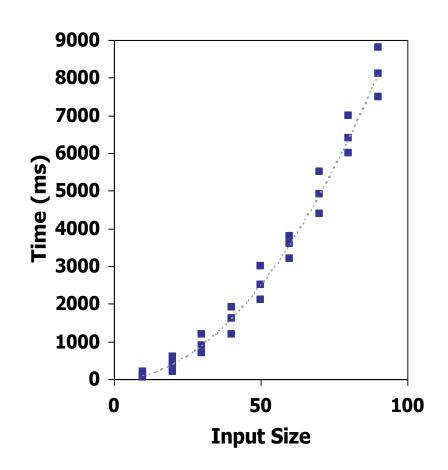
```
Algorithm hasNegative(A, n)
Input: array A of n integers
for i \leftarrow 0 to n - 1 do

if A[i] < 0

return True

return False
```

- can use clock() from time.h, to measure running time
- plot/compare results



Running Time of Algorithms/Programs

- Shortcomings of experimental studies
 - implementation may be complicated/costly
 - timings are affected by many factors
 - hardware (processor, memory)
 - software environment (OS, compiler, programming language)
 - human factors (programmer)
 - cannot test all inputs, hard to select good sample inputs
- Thus cannot easily compare two algorithms/programs

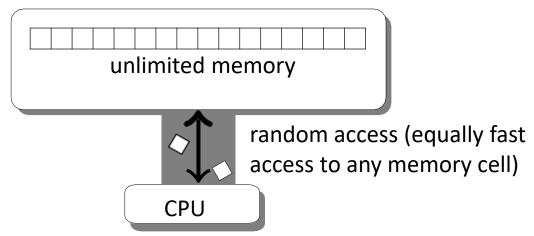
Theoretical Framework for Algorithm Analysis

- Want framework that
 - does not require implementing the algorithm
 - independent of hardware/software environment
 - takes into account all possible input instances
- Experimentation is still useful in practice
 - especially when theoretical analysis yields no useful results for deciding between multiple algorithms

Theoretical Framework for Algorithm Analysis

- To overcome dependency on hardware/software
 - write algorithms in pseudo-code
 - language independent
 - "run" algorithms on idealized computer model
 - allows to understand how to compute time and space complexity
 - i.e. states explicitly all the assumptions we make when computing time and space complexity

Idealized Computer Model



- Random Access Machine (RAM) Model
 - has a set of memory cells, each of which stores one data item
 - number, character, reference
 - memory cells are big enough to hold stored items
 - lacktriangle any *access to a memory location* takes the same constant time c
 - constant time means that time is independent of the input size
 - run primitive operations on this machine
 - primitive operation takes the same constant time c
- These assumptions may not be valid for a real computer

Theoretical Framework For Algorithm Analysis

- To overcome dependency on hardware/software
 - write algorithms in pseudo-code
 - language independent
 - "run" algorithms on idealized computer model
 - allows to reason about efficiency
 - for time efficiency, count # primitive operations and memory accesses
 - lacksquare as a function of problem size n
 - will call access to a memory cell a primitive operation as well
 - running time is proportional to number of primitive operations
 - assumed all primitive operations take constant time c
 - can get complicated functions like $99n^3 + 8n^2 + 43421$
 - measure time efficiency in terms of growth rate
 - avoids complicated functions and isolates the factor that effects the efficiency the most for large inputs
 - for space efficiency, count maximum # of memory cells ever in use
- This framework makes many simplifying assumptions
 - makes analysis of algorithms easier

- Pseudocode is a sequence of primitive operations
- A primitive operation is
 - independent of input size
- Examples of Primitive Operations
 - arithmetic: -, +, %, *, mod, round
 - xⁿ is not a primitive operation, runtime depends on input size n

$$x^n = x \cdot x \dots \cdot x$$

- assigning a value to a variable
- indexing into an array
- returning from a method
- comparisons, calling subroutine, entering a loop, breaking, etc.
- To find running time, count the number of primitive operations
 - lacksquare as a function of input size $m{n}$

```
Algorithm arrayMax(A, n)
Input: array A of n integers
Output: maximum element of A
currentMax \leftarrow A[0]
for i \leftarrow 1 to n - 1 do

if A[i] > currentMax then
currentMax \leftarrow A[i]
return currentMax
```

- To find running time, count the number of primitive operations T(n)
 - function of input size n

```
Algorithm arraySum(A, n) # operations
sum \leftarrow A[0] \qquad \qquad 2
for \ i \leftarrow 1 \ to \ n-1 \ do
sum \leftarrow sum + A[i]
\{ increment counter \ i \}
return \ sum
```

- To find running time, count the number of primitive operations T(n)
 - function of input size n

```
# operations
Algorithm arraySum(A, n)
  sum \leftarrow A[0]
  for i \leftarrow 1 to n-1 do
                                i \leftarrow 1
        sum \leftarrow sum + A[i]
  { increment counter i }
                                 i = 1, check i \le n - 1 (go inside loop)
                                 i = 2, check i \le n - 1 (go inside loop)
  return sum
                                 i = n - 1, check i \le n - 1(go inside loop)
                                 i = n, check i \le n - 1 (do not go inside loop)
                                 Total: 2+n
```

- To find running time, count the number of primitive operations T(n)
 - function of input size n

Algorithm arraySum(A, n)	# operations
$sum \leftarrow A[0]$	2
for $i \leftarrow 1$ to $n-1$ do	2 + n
$sum \leftarrow sum + A[i]$	3(n-1)
{ increment counter <i>i</i> }	2(n-1)
return sum	1

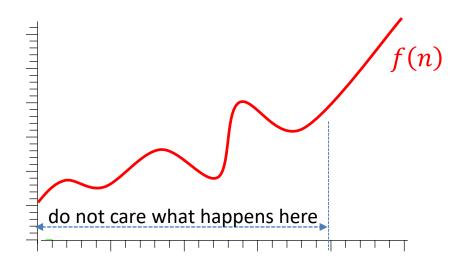
Total: 6n

Theoretical Analysis of Running time: Multiplicative factors

- Algorithm *arraySum* executes T(n) = 6n primitive operations
- On a real computer, primitive operations will have different runtimes
- Let a =time taken by fastest primitive operation b =time taken by slowest primitive operation
- Actual runtime is bounded by two linear functions $a(6n) \le \text{actual runtime} \le b(6n)$
- Changing hardware/software environment affects runtime by a multiplicative constant factor
 - ullet a and will b change, but the runtime is always, in essence, some constant multiplied by n
 - therefore, multiplicative constants are not important
- Want to say T(n) = 6n is essentially n
- Want to ignore constant multiplicative factors
 - in a theoretically justified way

Theoretical Analysis of Running time: Large Inputs

- We are not interested in smaller inputs (smaller n)
 - scientists work with data of ever increasing size
- Perform analysis for large n
 - this further simplifies analysis



Theoretical Analysis of Running time: Lower Order Terms

- Recall that we are interested in runtime for large inputs (large n)
- Consider $T(n) = n^2 + n$
- For large n, fastest growing factor contributes the most

$$T(100,000) = 10,000,000,000 + 100,000 \approx 10,000,000,000$$

- Want to ignore lower order terms
 - in a theoretically justified way

- Thus we want
 - 1) ignore multiplicative constant factors
 - 2) focus on behaviour for large n or 'eventual' behaviour
 - 3) ignore lower order terms
- This means focusing on the growth rate of the function
- We want to say
 - $f(n) = 10n^2 + 100n$ has growth rate of $g(n) = n^2$
 - f(n) = 10n + 10 has growth rate of g(n) = n
- Asymptotic analysis (i.e. order notation) gives tools to formally focus on the growth rate
- lacktriangle To say that function f(n) has growth rate expressed by g(n)
 - 1) upper bound: asymptotically bound f(n) from above by g(n)
 - 2) lower bound: asymptotically bound f(n) from below by g(n)
 - asymptotically means: for large enough n, ignoring constant multiplicative factors

Outline

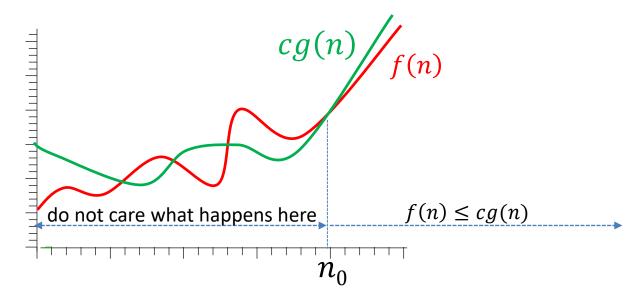
- CS240 overview
 - Course objectives
 - Course topics
- Introduction and Asymptotic Analysis
 - algorithm design
 - pseudocode
 - measuring efficiency
 - asymptotic analysis
 - analysis of algorithms
 - analysis of recursive algorithms
 - helpful formulas

Order Notation: big-Oh

functions

- Upper bound: asymptotically bound f(n) from above by g(n)
 - f(n) is running time, is function expressing growth rate g(n)

$$f(n) \in O(g(n))$$
 if there exist constants $c > 0$ and $n_0 \ge 0$ s.t. $|f(n)| \le c|g(n)|$ for all $n \ge n_0$



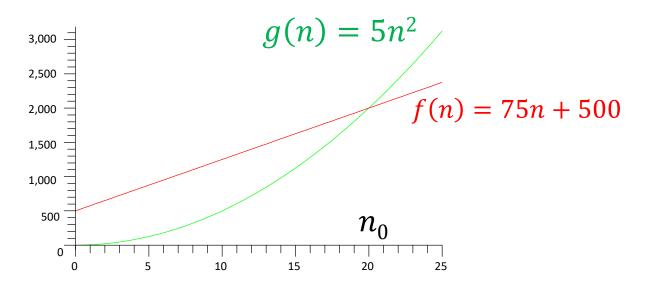
- Need c to "get rid" of multiplicative constant in the growth rate
 - cannot say $5n^2 \le n^2$, but can say $5n^2 \le cn^2$ for some constant c
- Absolute value not relevant for run-time or space, but useful in other applications
- Unless say otherwise, assume n (and n_0) are real numbers

big-Oh Example

O-notation

$$f(n) \in O(g(n))$$

 $f(n) \in O(g(n))$ if there exist constants c > 0 and $n_0 \ge 0$ s.t. $|f(n)| \le c|g(n)|$ for all $n \ge n_0$

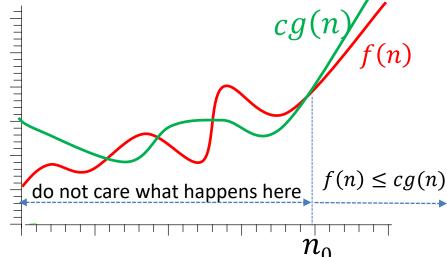


- Take c = 1, $n_0 = 20$
- Can also take $c = 10, n_0 = 30$
- Conclusion: f(n) = 75n + 500 has the same or slower growth rate as $g(n) = 5n^2$

Order Notation: big-Oh

$$f(n) \in O(g(n))$$

if there exist constants $c > 0$ and $n_0 \ge 0$
s.t. $|f(n)| \le c|g(n)|$ for all $n \ge n_0$

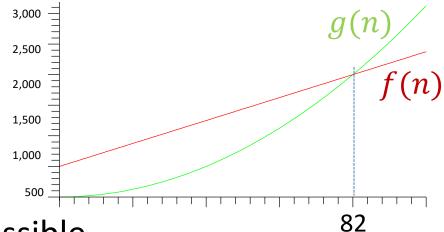


- Big-O gives asymptotic upper bound
 - $f(n) \in O(g(n))$ means function f(n) is "bounded" above by function g(n)
 - 1. eventually, for large enough n
 - 2. ignoring multiplicative constant
 - Growth rate of f(n) is slower or the same as growth rate of g(n)
- Use big-O to bound the growth rate of algorithm
 - f(n) for running time
 - g(n) for growth rate
 - should choose g(n) as simple as possible
- Saying f(n) is O(g(n)) is equivalent to saying $f(n) \in O(g(n))$

Order Notation: big-Oh

$$f(n) \in O(g(n))$$

if there exist constants $c > 0$ and $n_0 \ge 0$
s.t. $|f(n)| \le c|g(n)|$ for all $n \ge n_0$



- Choose g(n) as simple as possible
- Previous example: f(n) = 75n + 500, $g(n) = 5n^2$
- Simpler function for growth rate: $g(n) = n^2$
- Can show $f(n) \in O(g(n))$ as follows
 - set f(n) = g(n) and solve quadratic equation
 - intersection point is n = 82
 - take $c = 1, n_0 = 82$

Order Notation: big-Oh

$$f(n) \in O(g(n))$$
 if there exist constants $c > 0$ and $n_0 \ge 0$ s.t. $|f(n)| \le c|g(n)|$ for all $n \ge n_0$

Side note: for 0 < n < 1

 $75n > 75n \cdot n = 75n^2$

- Do not have to solve equations
- f(n) = 75n + 500, $g(n) = n^2$
- For all $n \ge 1$

$$75n \le 75n \cdot n = 75n^2$$
$$500 \le 500 \cdot n \cdot n = 500n^2$$

• Therefore, for all $n \ge 1$

$$75n + 500 \le 75n^2 + 500n^2 = 575n^2$$

• So take $c = 575, n_0 = 1$

Order Notation: big-Oh

$$f(n) \in O(g(n))$$
 if there exist constants $c > 0$ and $n_0 \ge 0$ s.t. $|f(n)| \le c|g(n)|$ for all $n \ge n_0$

- Better (i.e. "tighter") bound on growth
 - can bound f(n) = 75n + 500 by slower growth than n^2
- f(n) = 75n + 500, g(n) = n
- Show $f(n) \in O(g(n))$

$$75n + 500 \le 75n + 500n = 575n$$

for all $n \ge 1$

• So take $c = 575, n_0 = 1$

More big-O Examples

Prove that

$$2n^2 + 3n + 11 \in O(n^2)$$

■ Need to find c>0 and $n_0\geq 0$ s.t. $2n^2+3n+11\leq cn^2 \text{ for all } n\geq n_0$

$$2n^2 + 3n + 11 \le 2n^2 + 3n^2 + 11n^2 = 16n^2$$

for all $n \ge 1$

■ Take c = 16, $n_0 = 1$

More big-O Examples

Prove that

$$2n^2 - 3n + 11 \in O(n^2)$$

■ Need to find c > 0 and $n_0 \ge 0$ s.t.

$$2n^2 - 3n + 11 \le cn^2$$
 for all $n \ge n_0$

$$2n^2 - 3n + 11 \le 2n^2 + 0 + 11n^2 = 13n^2$$

for all $n \ge 1$

■ Take c = 13, $n_0 = 1$

More big-O Examples

- Be careful with logs
- Prove that

$$2n^2\log n + 3n \in O(n^2\log n)$$

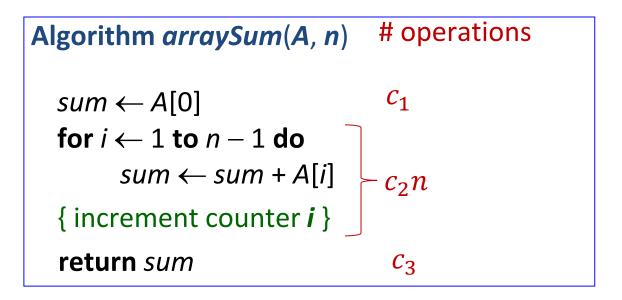
■ Need to find c > 0 and $n_0 \ge 0$ s.t. $2n^2 \log n + 3n \le cn^2 \log n$ for all $n \ge n_0$

$$\frac{2n^2 \log n + 3n}{- \log n} \le \frac{2n^2 \log n}{- \log n} \le \frac{5n^2 \log n}{- \log n}$$
for all $n \ge 2$

■ Take c = 5, $n_0 = 2$

Theoretical Analysis of Running time

- To find running time, count the number of primitive operations T(n)
 - function of input size n
- Last step: express the running time using asymptotic notation



Total: $c_1 + c_3 + c_2 n$ which is O(n)

Theoretical Analysis of Running time

- Distinguishing between c_1 c_2 c_3 has no influence on asymptotic running time
 - just use on constant c throughout

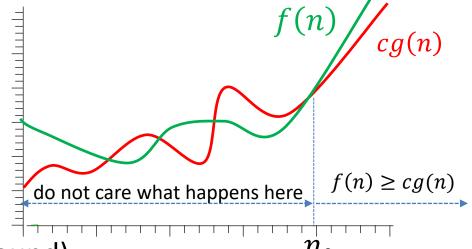
```
Algorithm arraySum(A, n) # operations
sum \leftarrow A[0]
for i \leftarrow 1 \text{ to } n - 1 \text{ do}
sum \leftarrow sum + A[i]
\{increment counter i\}
return sum
```

Total: c + cn which is O(n)

Need for Asymptotic Tight bound

- $2n^2 + 3n + 11 \in O(n^2)$
- But also $2n^2 + 3n + 11 \in O(n^{10})$
 - this is a true but hardly a useful statement
 - if I say I have less than a million \$ in my pocket, it is a true, but useless statement
 - i.e. this statement does not give a tight upper bound
 - upper bound is tight if it uses the slowest growing function possible
- Want an asymptotic notation that guarantees a tight upper bound
- For tight bound, also need asymptotic lower bound

Aymptotic Lower Bound



• Ω -notation (asymptotic lower bound)

$$f(n) \in \Omega(g(n))$$
 if there exist constants $c > 0$ and $n_0 \ge 0$

s.t.
$$|f(n)| \ge c|g(n)|$$
 for all $n \ge n_0$

- $f(n) \in \Omega(g(n))$ means function f(n) is asymptotically bounded below by function g(n)
 - 1. eventually, for large enough n
 - 2. ignoring multiplicative constant
- Growth rate of f(n) is larger or the same as growth rate of g(n)
- $f(n) \in O(g(n)), f(n) \in \Omega(g(n)) \Rightarrow f(n)$ has same growth as g(n)

Asymptotic Lower Bound

 $f(n) \in \Omega(g(n))$ if \exists constants c > 0, $n_0 \ge 0$ s.t. $|f(n)| \ge c|g(n)|$ for $n \ge n_0$

- Prove that $2n^2 + 3n + 11 \in \Omega(n^2)$
- Find c > 0 and $n_0 \ge 0$ s.t.

$$2n^2 + 3n + 11 \ge cn^2$$
 for all $n \ge n_0$
 $2n^2 + 3n + 11 \ge 2n^2$ for all $n \ge 0$

• Take c = 2, $n_0 = 0$

Asymptotic Lower Bound

$$f(n) \in \Omega(g(n))$$
 if \exists constants $c > 0$, $n_0 \ge 0$ s.t. $|f(n)| \ge c|g(n)|$ for $n \ge n_0$

- Prove that $\frac{1}{2}n^2 5n \in \Omega(n^2)$
 - $\frac{1}{2}n^2 5n < 0 \text{ for } 0 < n < 10$
 - we want to ignore absolute value in the derivation, so we need to ensure f(n) is positive for considered range, i.e. for $n \ge n_0$
 - for positivity of f(n), make sure to take $n_0 \ge 10$
 - Need to find c and n_0 s.t. $\frac{1}{2}n^2 5n \ge cn^2$ for all $n \ge n_0$
- Unlike before, cannot just drop lower growing term, as $\frac{1}{2}n^2 5n \le \frac{1}{2}n^2$

Need
$$\frac{1}{2}n^2 - 5n \ge cn^2$$

$$an^2 bn^2 \text{ positive for large enough } n$$

$$for large enough n$$

$$\frac{1}{2}n^2 - 5n \ge an^2 + (bn^2 - 5n) \ge an^2$$

for large enough n

Asymptotic Lower Bound

$$f(n) \in \Omega(g(n))$$
 if \exists constants $c > 0$, $n_0 \ge 0$ s.t. $|f(n)| \ge c|g(n)|$ for $n \ge n_0$

- For positivity of f(n), make sure to take $n_0 \ge 10$
- Need to find c and n_0 s.t. $\frac{1}{2}n^2 5n \ge cn^2$ for all $n \ge n_0$
- Rewrite

$$\frac{1}{2}n^2 - 5n = \frac{1}{4}n^2 + \frac{1}{4}n^2 - 5n = \frac{1}{4}n^2 + \left(\frac{1}{4}n^2 - 5n\right) \ge \frac{1}{4}n^2 \quad \text{if } n \ge 20$$

$$\ge 0, \text{ if } n \ge 20$$

- Take $c = \frac{1}{4}$, $n_0 = 20$
 - n_0 happened to be bigger than 10, as needed, automatically

Tight Asymptotic Bound

Θ-notation

$$f(n) \in \Theta(g(n))$$
 if there exist constants $c_1, c_2 > 0, n_0 \ge 0$ s.t. $c_1|g(n)| \le |f(n)| \le c_2|g(n)|$ for all $n \ge n_0$

- $f(n) \in \Theta(g(n))$ means f(n), g(n) have equal growth rates
 - typically f(n) is complicated, and g(n) is chosen to be simple
- Easy to prove that

$$f(n) \in \Theta(g(n)) \Leftrightarrow f(n) \in O(g(n)) \text{ and } f(n) \in \Omega(g(n))$$

- Therefore, to show that $f(n) \in \Theta(g(n))$, it is enough to show
 - 1. $f(n) \in O(g(n))$
 - 2. $f(n) \in \Omega(g(n))$

Tight Asymptotic Bound

- Proved previously that
 - $2n^2 + 3n + 11 \in O(n^2)$
 - $2n^2 + 3n + 11 \in \Omega(n^2)$
- Thus $2n^2 + 3n + 11 \in \Theta(n^2)$
- Ideally, should use Θ to determine growth rate of algorithm
 - f(n) for running time
 - g(n) for growth rate
- Sometimes determining tight bound is hard, so big-O is used

Tight Asymptotic Bound

Prove that $\log_b n \in \Theta(\log n)$ for b > 1

- $\quad \text{Find} \ \ c_1, c_2 > 0, n_0 \geq 0 \ \text{ s.t. } c_1 \log n \leq \log_b n \leq c_2 \log n \ \text{ for all } \ n \geq n_0$
- $\log_b n = \frac{\log n}{\log b} = \frac{1}{\log b} \log n$
- Since b > 1, $\log b > 0$
- Take $c_1 = c_2 = \frac{1}{\log h}$ and $n_0 = 1$
 - rarely $c_1 = c_2$, normally $c_1 < c_2$

Common Growth Rates

- Commonly encountered growth rates in increasing order of growth
 - \bullet $\Theta(1)$ constant complexity
 - note: here 1 stands for function f(n) = 1
 - $\Theta(\log n)$ logarithmic complexity
 - $\Theta(n)$ linear complexity
 - $\Theta(n \log n)$ linearithmic
 - $\Theta(n\log^k n)$ quasi-linear
 - note: k is constant, i.e. independent of the problem size
 - $\Theta(n^2)$ quadratic complexity
 - $\Theta(n^3)$ cubic complexity
 - $\Theta(2^n)$ exponential complexity

How Growth Rates Affect Running Time

- How running time affected when problem size doubles ($n \rightarrow 2n$)
 - constant complexity: T(n) = cT(2n) = c
 - logarithmic complexity: $T(n) = c \log n$ T(2n) = T(n) + c
 - T(2n) = 2T(n)linear complexity: T(n) = cn
 - linearithmic: $T(n) = cn \log n$
 - quadratic complexity: $T(n) = cn^2$
 - cubic complexity: $T(n) = cn^3$
 - exponential complexity: $T(n) = c2^n$

$$T(2n) = 2T(n) + 2cn$$

$$T(2n) = 4T(n)$$

$$T(2n) = 8T(n)$$

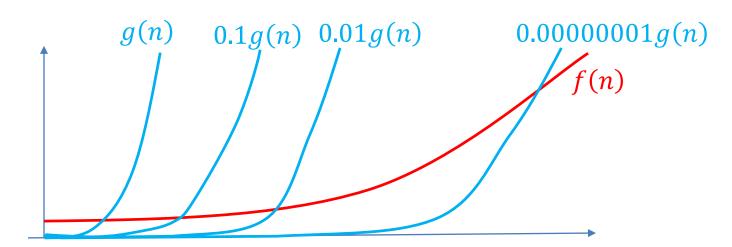
$$T(2n) = \frac{1}{c}T^2(n)$$

Growth Rate: Concrete Numbers

n	log(n)	n	nlog(n)	n ²	n ³	2 ⁿ
8	3	8	24	64	512	256
16	4	16	64	256	4096	65536
32	5	32	160	1024	32768	4.3x10 ⁹
64	6	64	384	4096	262144	1.8x10 ¹⁹
128	7	128	896	16384	2097152	3.4x10 ³⁸
256	8	256	2048	65536	16777218	1.2x10 ⁷⁷

Strictly Smaller Asymptotic Bound

- $f(n) = 2n^2 + 3n + 11 \in \Theta(n^2)$
- How to say f(n) is asymptotically strictly smaller than $g(n) = n^3$?



o-notation

$$f(n) \in o(g(n))$$
 if for any constant $c > 0$, there exists a constant $n_0 \ge 0$ s.t. $|f(n)| \le c|g(n)|$ for all $n \ge n_0$

- Think of *c* as being arbitrarily small
- No matter how small c is, $c \cdot g(n)$ is eventually larger than f(n)
- Meaning: f grows slower than g, or growth rate of f is less than growth rage of g
- Useful for certain statements
 - there is no general-purpose sorting algorithm with run-time $o(n \log n)$

Big-Oh vs. Little-o

■ Big-Oh, means f grows at the same rate or slower than g $f(n) \in O(g(n))$ if there **exist** constants c>0 and $n_0 \geq 0$ s. t. $|f(n)| \leq c|g(n)|$ for all $n \geq n_0$

Little-o, means f grows slower than g

```
f(n) \in o(g(n)) if for any constant c > 0, there exists a constant n_0 \ge 0 s.t. |f(n)| \le c|g(n)| for all n \ge n_0
```

- Main difference is the quantifier for c: exists vs. any
 - for big-Oh, you can choose any c you want
 - for little-o, you are given c, it can be arbitrarily small
 - in proofs for little-o, n_0 will normally depend on c, so it is really a function $n_0(c)$

Big-Oh vs. Little-o

Big-Oh, means f grows at the same rate or slower than a $0.1g(n) \ 0.01g(n)$ 0.0000001g(n)g(n)Little-o, m f(ncon Main diffe for

- for little-0, you are given c, it can be arbitrarily small
- in proofs for little-o, n_0 will normally depend on c, so it is really a function $n_0(c)$

Strictly Smaller Proof Example

 $f(n) \in o(g(n))$ if for any c > 0, there exists $n_0 \ge 0$ s.t. $|f(n)| \le c|g(n)|$ for all $n \ge n_0$

Prove that $5n \in o(n^2)$

• Given c > 0 need to find n_0 s.t.

$$5n \le cn^2 \text{ for all } n \ge n_0$$

$$5 \le cn$$
 for all $n \ge n_0$

$$n \geq \frac{5}{c}$$

C = C

■ Therefore,
$$5n \le cn^2$$
 for $n \ge \frac{5}{c}$

- $\blacksquare \quad \text{Take } n_0 = \frac{5}{c}$
 - n_0 is a function of c
 - noted before that for little-o proofs, n_0 is usually a function of c

divide both sides by n

solve for n

Strictly Larger Asymptotic Bound

• ω -notation

```
f(n) \in \omega(g(n)) if for any constant c > 0, there exists a constant n_0 \ge 0 s.t. |f(n)| \ge c|g(n)| for all n \ge n_0
```

- think of c as being arbitrarily large
- Meaning: f grows much faster than g

Strictly Larger Asymptotic Bound

- $f(n) \in \omega(g(n))$ if **for any constant** c>0, there exists constant $n_0 \ge 0$ s.t. $|f(n)| \ge c|g(n)|$ for all $n \ge n_0$
 - meaning: f grows much faster than g
- Claim: $f(n) \in \omega(g(n)) \Rightarrow g(n) \in o(f(n))$
- Proof: Given c > 0 need to find n_0 s.t.

$$g(n) \leq cf(n) \ \ \text{for all } n \geq n_0 \ \ \ \text{divide both sides by } c$$

$$\frac{1}{c}g(n) \le f(n)$$
 for all $n \ge n_0$

• Since $f(n) \in \omega(g(n))$, for any constant, in particular for constant $\frac{1}{c}$ there is m_0 s.t.

$$f(n) \ge \frac{1}{c}g(n)$$
 for all $n \ge m_0$

• $n_0 = m_0$ and we are done!

Relationship between Order Notations

One can prove the following relationships

•
$$f(n) \in \Theta(g(n)) \Leftrightarrow g(n) \in \Theta(f(n))$$

•
$$f(n) \in O(g(n)) \Leftrightarrow g(n) \in \Omega(f(n))$$

•
$$f(n) \in o(g(n)) \Leftrightarrow g(n) \in \omega(f(n))$$

•
$$f(n) \in o(g(n)) \Rightarrow f(n) \in O(g(n))$$

•
$$f(n) \in o(g(n)) \Rightarrow f(n) \notin \Omega(g(n))$$

•
$$f(n) \in \omega(g(n)) \Rightarrow f(n) \in \Omega(g(n))$$

•
$$f(n) \in \omega(g(n)) \Rightarrow f(n) \notin O(g(n))$$

Algebra of Order Notations (1)

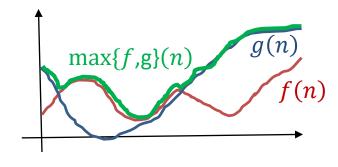
- The following rules are easy to prove [exercise]
- **1.** Identity rule: $f(n) \in \Theta(f(n))$

2. Transitivity

- if $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$ then $f(n) \in O(h(n))$
- if $f(n) \in \Omega(g(n))$ and $g(n) \in \Omega(h(n))$ then $f(n) \in \Omega(h(n))$
- if $f(n) \in O(g(n))$ and $g(n) \in o(h(n))$ then $f(n) \in o(h(n))$

Algebra of Order Notations (2)

$$max\{f,g\}(n) = \begin{cases} f(n) & \text{if } f(n) > g(n) \\ g(n) & \text{otherwise} \end{cases}$$



3. Maximum rules

Suppose that f(n) > 0 and g(n) > 0 for all $n \ge n_0$, then

- a) $f(n) + g(n) \in \Omega(\max\{f(n), g(n)\})$
- b) $f(n) + g(n) \in O(max\{f(n), g(n)\})$

Proof:

a)
$$f(n) + g(n) \ge \text{either } f(n) \text{ or } g(n) = \max\{f(n), g(n)\}$$

b)
$$f(n) + g(n) = max\{f(n), g(n)\} + min\{f(n), g(n)\}$$

 $\leq max\{f(n), g(n)\} + max\{f(n), g(n)\}$
 $= 2max\{f(n), g(n)\}$

Limit Theorem for Order Notation

- So far had proofs for order notation from the first principles
 - i.e. from the definition

Limit theorem for order notation

• Suppose for all $n \ge n_{0}$, f(n) > 0, g(n) > 0 and $L = \lim_{n \to \infty} \frac{f(n)}{g(n)}$

Then
$$f(n) \in \begin{cases} o(g(n)) & \text{if } L = 0 \\ \Theta(g(n)) & \text{if } 0 < L < \infty \\ \omega(g(n)) & \text{if } L = \infty \end{cases}$$

- Limit can often be computed using l'Hopital's rule
- Theorem gives sufficient but not necessary conditions
- Can use theorem unless asked to prove from the first principles

Let f(n) be a polynomial of degree $d \ge 0$ with $c_d > 0$

$$f(n) = c_d n^d + c_{d-1} n^{d-1} + \dots + c_1 n + c_0$$

Then $f(n) \in \Theta(n^d)$

Proof:

$$\lim_{n \to \infty} \frac{f(n)}{n^d} = \lim_{n \to \infty} \left(\frac{c_d n^d}{n^d} + \frac{c_{d-1} n^{d-1}}{n^d} + \dots + \frac{c_0}{n^d} \right)$$

$$= \lim_{n \to \infty} \left(\frac{c_d n^d}{n^d} \right) + \lim_{n \to \infty} \left(\frac{c_{d-1} n^{d-1}}{n^d} \right) + \dots + \lim_{n \to \infty} \left(\frac{c_0}{n^d} \right)$$

$$= c_d \qquad = 0$$

$$= c_d > 0$$

• Compare growth rates of $\log n$ and n

$$\lim_{n \to \infty} \frac{\log n}{n} = \lim_{n \to \infty} \frac{\frac{\ln n}{\ln 2}}{n} = \lim_{n \to \infty} \frac{\frac{1}{\ln 2 \cdot n}}{1} = \lim_{n \to \infty} \frac{1}{n \cdot \ln 2} = 0$$
L'Hopital rule

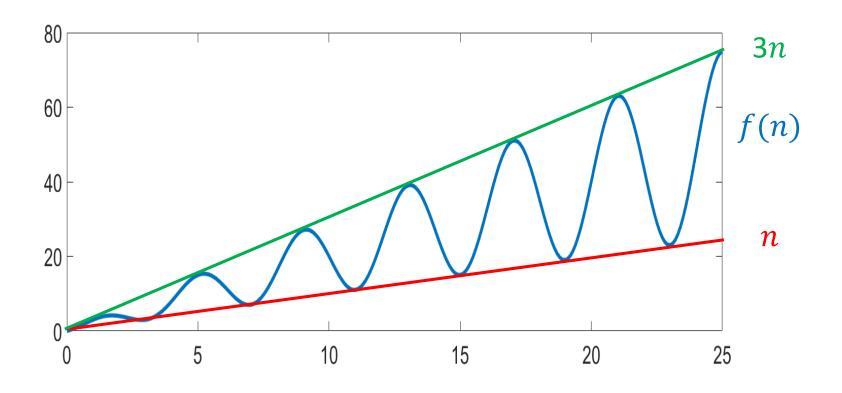
• $\log n \in o(n)$

- Prove $(\log n)^a \in \mathrm{o}(n^d)$, for any (big) a>0, (small) d>0
 - $\bullet \quad (\log n)^{1000000} \in o(n^{0.0000001})$
- 1) Prove (by induction):

$$\lim_{n\to\infty} \frac{\ln^k n}{n} = 0 \text{ for any integer } k$$

- Base case k = 1 is proven on previous slide
- Inductive step: suppose true for k-1
- $\lim_{n\to\infty} \frac{\ln^k n}{n} = \lim_{n\to\infty} \frac{\frac{1}{n}k \ln^{k-1} n}{1} = \lim_{n\to\infty} \frac{\ln^{k-1} n}{n} = 0$ L'Hopital rule
- 2) Prove $\lim_{n \to \infty} \frac{\ln^a n}{n^d} = 0$ $\lim_{n \to \infty} \frac{\ln^a n}{n^d} = \left(\lim_{n \to \infty} \frac{\ln^{a/d} n}{n}\right)^d \le \left(\lim_{n \to \infty} \frac{\ln^{\lceil a/d \rceil} n}{n}\right)^d = 0$
- 3) Finally $\lim_{n \to \infty} \frac{(\log n)^a}{n^d} = \lim_{n \to \infty} \frac{\left(\frac{\ln n}{\ln 2}\right)^a}{n^d} = \left(\frac{1}{\ln 2}\right)^a \lim_{n \to \infty} \frac{(\ln n)^a}{n^d} = 0$

- Sometimes limit does not exist, but can prove from first principles
- Let $f(n) = n(2 + \sin n\pi/2)$
- Prove that f(n) is $\Theta(n)$



- Let $f(n) = n(2 + \sin n\pi/2)$, prove that f(n) is $\Theta(n)$
- Proof:

$$-1 \le sin(any number) \le 1$$

$$f(n) \le n(2+1) = 3n$$
 for all $n \ge 0$

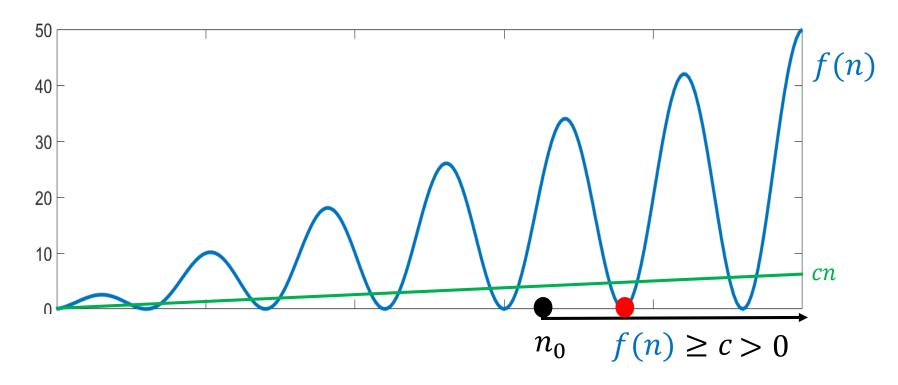
$$n = n(2-1) \le f(n) \qquad \text{for all } n \ge 0$$

$$n \le f(n) \le 3n$$
 for all $n \ge 0$

• Use $c_1 = 1, c_2 = 3, n_0 = 0$

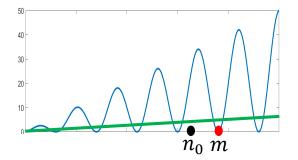
 $f(n) \in \Omega(g(n))$ if \exists constants c > 0, $n_0 \ge 0$ s.t. $|f(n)| \ge c|g(n)|$ for $n \ge n_0$

- Let $f(n) = n(1 + \sin n\pi/2)$, prove that f(n) is not $\Omega(n)$
- Intuition: f(n) = 0 infinitely many times



contradiction!

$$f(n) \in \Omega(g(n))$$
 if \exists constants $c > 0$, $n_0 \ge 0$ s.t. $|f(n)| \ge c|g(n)|$ for $n \ge n_0$



- Let $f(n) = n(1 + \sin n\pi/2)$, prove that f(n) is not $\Omega(n)$
- Proof: (by contradiction)
 - Suppose f(n) is $\Omega(n)$
 - Then there is $n_0 \ge 0$ and c > 0 s.t. $n(1 + \sin n\pi/2) \ge cn$ for all $n \ge n_0$

$$(1 + \sin n\pi/2) \ge c$$
 for all $n \ge n_0$

- $\sin\left(\frac{3\pi}{2} + 2\pi i\right) = -1$ for integer i
- Divide inside by $\frac{\pi}{2} \Rightarrow 3 + 4i \Rightarrow \text{take } m = 3 + 4 \lceil n_0 \rceil > n_0$

•
$$f(m) = m \left[1 + \sin \left(\frac{3\pi}{2} + 2\pi \lceil n_0 \rceil \right) \right] = 0 < c$$
 contradiction!

Order notation Summary

- $f(n) \in \Theta(g(n))$: growth rates of f and g are the same
- $f(n) \in o(g(n))$: growth rate of f is less than growth rate of g
- $f(n) \in \omega(g(n))$: growth rate of f is greater than growth rate of g
- $f(n) \in O(g(n))$: growth rate of f is the same or less than growth rate of g
- $f(n) \in \Omega(g(n))$: growth rate of f is the same or greater than growth rate of g

Abuse of Notation

- Normally, say $f(n) \in \Theta(g(n))$ because $\Theta(g(n))$ is a set
- Sometimes it is convenient to abuse notation
 - $f(n) = 2n^2 + \Theta(n)$
 - f(n) is $2n^2$ plus a linear term
 - nicer to read than $2n^2 + 30n + \log n$
 - does not hide the constant term 2, unlike if we said $O(n^2)$
 - $f(n) = n^2 + o(1)$
 - f(n) is n^2 plus a vanishing term (term goes to 0)
 - example: $f(n) = n^2 + 1/n$
- Use these sparingly, typically only for stating final result
- But avoid arithmetic with asymptotic notation, can go very wrong
- Instead, replace $\Theta(g(n))$ by $c \cdot g(n)$
 - still sloppy, but less dangerous
 - if $f(n) \in \Theta(g(n))$, more accurate statement is $c \cdot g(n) \le f(n) \le c' \cdot g(n)$ for large enough n

Outline

- CS240 overview
 - Course objectives
 - Course topics
- Introduction and Asymptotic Analysis
 - algorithm design
 - pseudocode
 - measuring efficiency
 - analysis of algorithms
 - analysis of recursive algorithms
 - helpful formulas

Techniques for Runtime Analysis

- Goal: Use asymptotic notation to simplify run-time analysis
- Running time of an algorithm depends on the input size n

```
Test1(n)

1. sum \leftarrow 0

2. for i \leftarrow 1 to n do

3. for j \leftarrow i to n do

4. sum \leftarrow sum + (i - j)^2

5. return sum
```

- Identify primitive operations: these require constant time
- Loop complexity expressed as <u>sum</u> of complexities of each iteration
- Nested loops: start with the innermost loop and proceed outwards
- This gives nested summations

Techniques for Runtime Analysis

- Goal: Use asymptotic notation to simplify run-time analysis
- Running time of an algorithm depends on the input size n

```
Test1(n)

1. sum \leftarrow 0

2. for i \leftarrow 1 to n do

3. for j \leftarrow i to n do

4. sum \leftarrow sum + (i - j)^2

5. return sum
```

- Identify primitive operations: these require constant time
- Loop complexity expressed as <u>sum</u> of complexities of each iteration
- Nested loops: start with the innermost loop and proceed outwards
- This gives nested summations

- Goal: Use asymptotic notation to simplify run-time analysis
- Running time of an algorithm depends on the input size n

```
Test1(n)

1. sum \leftarrow 0

2. for i \leftarrow 1 to n do

3. for j \leftarrow i to n do

4. sum \leftarrow sum + (i - j)^2

5. return sum

sum \leftarrow sum + (i - j)^2
```

- Identify primitive operations: these require constant time
- Loop complexity expressed as <u>sum</u> of complexities of each iteration
- Nested loops: start with the innermost loop and proceed outwards
- This gives nested summations

- Goal: Use asymptotic notation to simplify run-time analysis
- Running time of an algorithm depends on the input size n

```
Test1(n)

1. sum \leftarrow 0

2. for i \leftarrow 1 to n do

3. for j \leftarrow i to n do

4. sum \leftarrow sum + (i - j)^2

5. return sum

Test1(n)

1. sum \leftarrow 0

2. i = 1

Test1(n)

1. i = 1

Test1(n)

Test1(n)

Test1(n)

Test1(n)

Test1(n)

Test1(n)

Test1(
```

- Identify primitive operations: these require constant time
- Loop complexity expressed as <u>sum</u> of complexities of each iteration
- Nested loops: start with the innermost loop and proceed outwards
- This gives nested summations

- Goal: Use asymptotic notation to simplify run-time analysis
- Running time of an algorithm depends on the *input size* n

```
Test1(n)

1. sum \leftarrow 0

2. for i \leftarrow 1 to n do

3. for j \leftarrow i to n do

4. sum \leftarrow sum + (i - j)^2

5. return sum

\sum_{i=1}^{n} \sum_{j=i}^{n} c + c
```

- Identify primitive operations: these require constant time
- Loop complexity expressed as sum of complexities of each iteration
- Nested loops: start with the innermost loop and proceed outwards
- This gives nested summations

Test1(n) 1. $sum \leftarrow 0$ 2. $for i \leftarrow 1 to n do$ 3. $for j \leftarrow i to n do$ 4. $sum \leftarrow sum + (i - j)^2$

Derived complexity as

return sum

$$c + \sum_{i=1}^{n} \sum_{j=i}^{n} c$$

Some textbooks will write this as

$$c_1 + \sum_{i=1}^n \sum_{j=i}^n c_2$$

Or even as

$$1 + \sum_{i=1}^{n} \sum_{j=i}^{n} 1$$

Now need to work out the sum

summand

$$+1 = \eta$$

index of

summation

j = n

$$\sum_{j=i}^{n} (n - e^{x}) = n - e^{x} + n - e^{x} \dots + n - e^{x} = (n - i + 1)(n - e^{x})$$

$$j = i \qquad j = i + 1 \qquad \dots \quad j = n$$

$$S = \sum_{i=1}^{n} i = 1 + 2 + 3 + 3 + n$$

 $i = 1$ $i = 2$ $i = 3$... $i = n$

$$2S = (n+1)n$$

$$S = \sum_{i=1}^{n} i = \frac{1}{2}(n+1)n$$

$$S = \sum_{i=a}^{b} i = a + (a+1) + b$$

 $i = a$ $i = a+1$... $i = b$

$$S = a + b + a + b$$

$$S = a + (a+1)$$

$$S = b + (b-1)$$

$$\cdots$$

$$+ a$$

$$\cdots$$

$$2S = (a+b)(b-a+1)$$

$$S = \sum_{i=a}^{b} i = \frac{1}{2}(a+b)(b-a+1)$$

Test1(n)

1.
$$sum \leftarrow 0$$

2. $for i \leftarrow 1 to n do$

3. $for j \leftarrow i to n do$

4. $sum \leftarrow sum + (i - j)^2$

5. $return sum$

$$c + \sum_{i=1}^{n} \sum_{j=i}^{n} c = c + \sum_{i=1}^{n} c(n-i+1) = c + c \sum_{i=1}^{n} (n-i+1)$$

$$= c + c \sum_{i=1}^{n} n - c \sum_{i=1}^{n} i + c \sum_{i=1}^{n} 1$$

$$= c + cn^{2} - c \frac{(n+1)n}{2} + cn = c \frac{n^{2}}{2} + c \frac{n}{2} + c$$

• Complexity of algorithm Test1 is $\Theta(n^2)$

```
Test1(n)

1. sum \leftarrow 0

2. for i \leftarrow 1 to n do

3. for j \leftarrow i to n do

4. sum \leftarrow sum + (i - j)^2

5. return sum
```

Can use Θ-bounds earlier, before working out the sum

$$c + \sum_{i=1}^{n} \sum_{j=i}^{n} c \qquad \text{is} \quad \Theta\left(\sum_{i=1}^{n} \sum_{j=i}^{n} c\right)$$

Therefore, can drop the lower order term and work on

$$\sum_{i=1}^{n} \sum_{j=i}^{n} c$$

- Using Θ-bounds earlier makes final expressions simpler
- Complexity of algorithm Test1 is $\Theta(n^2)$

- Two general strategies
 - 1. Use Θ-bounds *throughout the analysis* and obtain Θ-bound for the complexity of the algorithm
 - used this strategy on previous slides for Test1 Θ-bound
 - 2. Prove a O-bound and a matching Ω -bound separately
 - use upper bounds (for O-bounds) and lower bounds (for Ω -bound) early and frequently
 - easier because upper/lower bounds are easier to sum

Second strategy: upper bound for Test1

$$\sum_{i=1}^{n} \sum_{j=i}^{n} c$$

Test1(n)

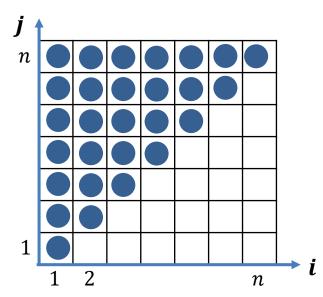
1. $sum \leftarrow 0$ 2. for $i \leftarrow 1$ to n do

3. for $j \leftarrow i$ to n do

4. $sum \leftarrow sum + (i - j)^2$ 5. return sum

Add more iterations to make sum easier to work out

$$\sum_{i=1}^{n} \sum_{j=i}^{n} c \leq \sum_{i=1}^{n} \sum_{j=1}^{n} c = \sum_{i=1}^{n} cn = c \sum_{i=1}^{n} n = cn^{2}$$



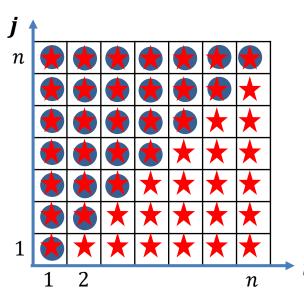
Second strategy: upper bound for Test1

$$\sum_{i=1}^{n} \sum_{j=i}^{n} c$$

Add more iterations to make sum easier to work out

$$\sum_{i=1}^{n} \sum_{j=i}^{n} c \leq \sum_{i=1}^{n} \sum_{j=1}^{n} c = \sum_{i=1}^{n} cn = c \sum_{i=1}^{n} n = cn^{2}$$

upper bound ★



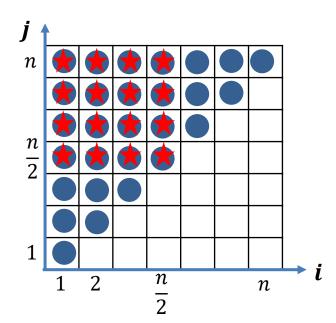
• Test1 is $O(n^2)$

Second strategy: lower bound for Test1

$$\sum_{i=1}^{n} \sum_{j=i}^{n} c$$

Remove iterations to make sum easier to work out

$$\sum_{i=1}^{n} \sum_{j=i}^{n} c \ge \sum_{i=1}^{n/2} \sum_{j=n/2}^{n} c = \sum_{i=1}^{n/2} c \frac{n}{2} = c \sum_{i=1}^{n/2} \frac{n}{2} = c \left(\frac{n}{2}\right)^{2}$$



• Test1 is $\Omega(n^2)$

Second strategy: lower bound for Test1

$$\sum_{i=1}^{n} \sum_{j=i}^{n} c$$

- Remove iterations to make sum easier to work out
- Can get the same result without visualization
- To remove iterations, increase lower or increase upper range bounds, or both

• Examples:
$$\sum_{k=10}^{100} c \ge \sum_{k=20}^{80} c$$
 $\sum_{k=i+1}^{j-1} 1 \ge \sum_{k=i+1}^{j-1} 1$

In our case:

$$\sum_{i=1}^{n} \sum_{j=i}^{n} c \ge \sum_{i=1}^{n/2} \sum_{j=i}^{n} c \ge \sum_{i=1}^{n/2} \sum_{j=n/2}^{n} c = c \left(\frac{n}{2}\right)^{2}$$

$$\text{now } i \le n/2$$

- Test1 is $\Omega(n^2)$, previously concluded that Test1 is $O(n^2)$
- Therefore Test1 is $\Theta(n^2)$

```
Test1(n)
      sum \leftarrow 0
2. for i \leftarrow 1 to n do
            for j \leftarrow i to n do
4. sum \leftarrow sum + (i - j)^2
5.
       return sum
```

Annoying to carry constants around $\sum_{i=1}^{n} c_i$

$$\sum_{i=1}^{n} \sum_{j=i}^{n} a_{i}$$

- Running time is proportional to the number of iterations
- Can first compute the number of iterations

$$\sum_{i=1}^{n} \sum_{j=i}^{n} 1 = \frac{n^2}{2} + \frac{n}{2} + 1$$

And then say running time is c times the number of iterations

Worst Case Time Complexity

Can have different running times on two instances of equal size

```
insertion-sort(A, n)

A: array of size n

1. for i \leftarrow 1 to n-1 do

2. j \leftarrow i

3. while j > 0 and A[j] < A[j-1] do

4. swap A[j] and A[j-1]

5. j \leftarrow j-1
```

- Let T(I) be running time of an algorithm on instance I
- Let $I_n = \{I : Size(I) = n\}$
- Worst-case complexity of an algorithm: take the worst I
- Formal definition: the worst-case running time of algorithm A is a function $f: Z^+ \to R$ mapping n (the input size) to the *longest* running time for any input instance of size n

$$T_{worst}(n) = \max_{I \in I_n} \{T(I)\}$$

Worst Case Time Complexity

Can have different running times on two instances of equal size

```
insertion-sort(A, n)

A: array of size n

1. for i \leftarrow 1 to n-1 do

2. j \leftarrow i

3. while j > 0 and A[j] < A[j-1] do

4. swap A[j] and A[j-1]

5. j \leftarrow j-1
```

$$\sum_{i=1}^{n-1} \sum_{j=1}^{i} c = \sum_{i=0}^{n-1} ci$$
$$= c(n-1)n/2$$

- Worst-case complexity of an algorithm: take worst instance I
- $T_{worst}(n) = c(n-1)n/2$
 - lacktriangle this is primitive operation count as a function of input size n
 - after primitive operation count, apply asymptotic analysis
 - $\Theta(n^2)$ or $O(n^2)$ or $\Omega(n^2)$ are all valid statements about the worst case running time of *insertion-sort*

Best Case Time Complexity

```
insertion-sort(A, n)
A: array of size n
1. for i \leftarrow 1 to n-1 do
2. j \leftarrow i
3. while j > 0 and A[j] < A[j-1] do
4. swap A[j] and A[j-1]
5. j \leftarrow j-1
```

best instance is sorted array

$$\sum_{i=1}^{n-1} c = c(n-1)$$

- Best-case complexity of an algorithm: take the best instance I
- Formal definition: the best-case running time of an algorithm A is a function $f: Z^+ \to R$ mapping n (the input size) to the *smallest* running time for any input instance of size n

$$T_{best}(n) = \min_{I \in I_n} \{T(I)\}$$

- $T_{best}(n) = c(n-1)$
 - this is primitive operation count as a function of input size n
 - after primitive operation count, apply asymptotic analysis
 - $\Theta(n)$ or O(n) or $\Omega(n)$ are all valid about best case running time

Best Case Time Complexity

- Note that best-case complexity is a function of input size n
- Think of the best instance of size n
- For insertion-sort, best instance is sorted (non-increasing) array A of size n
- Best instance is not an array of size 1
- Best-case complexity is $\Theta(n)$

- For *hasNegative*, best instance is array A of size n where A[0] < 0
- Best instance is not an array of size 1
- Best-case complexity is $\Theta(1)$

```
insertion-sort(A, n)
A: array of size n
1. for i \leftarrow 1 to n-1 do
2. j \leftarrow i
3. while j > 0 and A[j] < A[j-1] do
4. swap A[j] and A[j-1]
5. j \leftarrow j-1
```

```
hasNegative(A, n)

Input: array A of n integers

for i \leftarrow 0 to n - 1 do

if A[i] < 0

return True

return False
```

Best Case Running Time Exercise

$$T(n) = \begin{cases} c & \text{if } n = 5\\ cn & \text{otherwise} \end{cases}$$

```
Algorithm Mystery(A, n)
Input: array A of n integers
if n=5

return A[0]
else

for i \leftarrow 1 to n-1 do

print(A[i])
return
```

- Best case running time?
 - a) $\Theta(1)$
 - b) $\Theta(n)$

Average Case Time Complexity

Average-case complexity of an algorithm: The average-case running time of an algorithm A is function $f: Z^+ \to R$ mapping n (input size) to the *average* running time of A over all instances of size n

$$T_{avg}(n) = \frac{1}{|I_n|} \sum_{I \in I_n} T(I)$$

- Will assume $|I_n|$ is finite
- If all instances are equally often used, $T_{avg}(n)$ gives a good estimate of a running time of an algorithm on average in practice

Average vs. Worst vs. Best Case Time Complexity

- Sometimes, best, worst, average time complexities are the same
- If there is a difference, then best time complexity could be overly optimistic, worst time complexity could be overly pessimistic, and average time complexity is most useful
- However, average case time complexity is usually hard to compute
- Therefore, most often, use worst time complexity
 - worst time complexity is useful as it gives bound on the maximum amount of time one will have to wait for the algorithm to complete
 - default in this course
 - unless stated otherwise, whenever we mention time complexity, assume we mean worst case time complexity

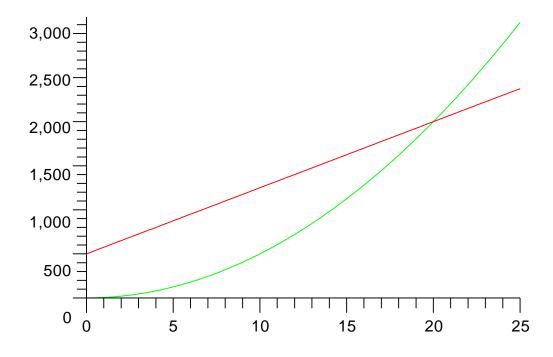
O-notation and Running Time of Algorithms

- It is important not to try make comparisons between algorithms using O-notation
- Suppose algorithm A and B both solve the same problem
 - A has worst-case runtime $O(n^3)$
 - **B** has worst-case runtime $O(n^2)$
- Cannot conclude that B is more efficient that A for all inputs
 - 1. the worst case runtime may only be achieved on some instances
 - 2. more importantly, O-notation is only an upper bound, A could have worst case runtime O(n)
- To compare algorithms, should use Θ notation

Running Time: Theory and Practice, Multiplicative Constants

- Algorithm **A** has runtime $T(n) = 10000n^2$
- Algorithm **B** has runtime $T(n) = 10n^2$
- Theoretical efficiency of **A** and **B** is the same, $\Theta(n^2)$
- In practice, algorithm B will run faster (for most implementations)
 - multiplicative constants matter in practice, given two algorithms with the same growth rate
 - but we will not talk about this issue more in this course

Running Time: Theory and Practice, Small Inputs



- Algorithm *A* running time T(n) = 75n + 500
- Algorithm *B* running time $T(n) = 5n^2$
- Then *B* is faster for $n \le 20$
 - will use this fact when talking about practical implementation of recursive sorting algorithms

Theoretical Analysis of Space

- To find space used by an algorithm, count total number of memory cells ever accessed (for reading or writing or both) by algorithm
 - as a function of input size n
 - space used must always be initialized, although it may not be stated explicitly in pseudocode
- Mostly interested in auxiliary space
 - space used in addition to the space used by the input data
- arrayMax uses 2 memory cells
 - T(n) = 2
 - Auxiliary space is O(1)

```
Algorithm arrayMax(A, n)
Input: array A of n integers
Output: maximum element of A
currentMax \leftarrow A[0]
for i \leftarrow 1 \text{ to } n - 1 \text{ do}
if A[i] > currentMax \text{ then}
currentMax \leftarrow A[i]
return currentMax
```

Theoretical Analysis of Space

- arrayMax uses 1 + n memory cells
 - T(n) = 1 + n
 - Auxiliary space is O(n)

Algorithm *arrayCumSum(A, n)*

Input: array A of n integers
initialize array B of size n to 0 $B[0] \leftarrow A[0]$ for $i \leftarrow 1$ to n - 1 do $B[i] \leftarrow B[i - 1] + A[i]$ return B

Outline

- CS240 overview
 - Course objectives
 - Course topics
- Introduction and Asymptotic Analysis
 - algorithm design
 - pseudocode
 - measuring efficiency
 - asymptotic analysis
 - analysis of algorithms
 - analysis of recursive algorithms
 - helpful formulas

MergeSort: Overall Idea

Input: Array *A* of *n* integers

1: split A into two subarrays

- A_L consists of the first $\left[\frac{n}{2}\right]$ elements
- A_R consists of the last $\left\lfloor \frac{n}{2} \right\rfloor$ elements
- 2: Recursively run MergeSort on A_L and A_R
- 3: After A_L and A_R are sorted, use function Merge to merge them into a single sorted array

MergeSort: Pseudo-code

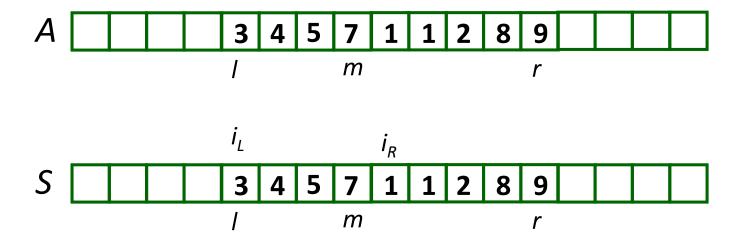
```
merge\text{-}sort(A, n, \ell \leftarrow 0, r \leftarrow n-1, S \leftarrow \text{NIL})A: array of size n, 0 \le \ell \le r \le n-11. if S is NIL initialize it as array S[0..n-1]2. if (r \le \ell) then3. return4. else5. m = \lfloor (r+\ell)/2 \rfloor6. merge\text{-}sort(A, n, \ell, m, S)7. merge\text{-}sort(A, n, m+1, r, S)8. merge(A, \ell, m, r, S)
```

```
merge-sort(A, n, l \leftarrow A: array of size n, 0 if r \leq l then return

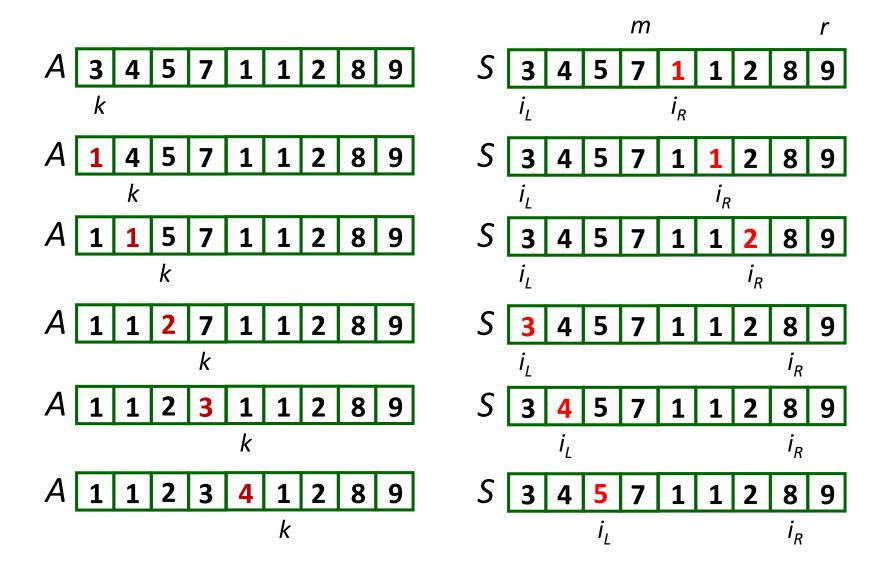
if S is NULL in m = \lfloor (l+r)/2 \rfloor merge-sort(A, n merge(A, l, n, n merge(A, l, n, n
```

- Two tricks to avoid copying/initializing too many arrays
 - recursion uses parameters that indicate the range of the array that needs to be sorted
 - array S used for merging is passed along as parameter

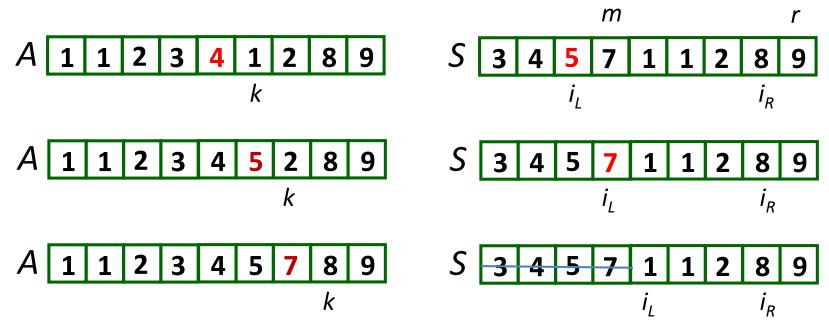
Merging Two Sorted Subarrays: Initialization



Merging Two Sorted Subarrays: Merging Starts



Merging Two Sorted Subarrays: Merging Cont.



 $i_i > m$, done with the first subarray

Merge: Pseudocode

```
Merge(A, \ell, m, r, S)
A[0..n-1] is an array, A[\ell..m] is sorted, A[m+1..r] is sorted
S[0..n-1] is an array
    copy A[\ell..r] into S[\ell..r]
2. (i_I, i_R) \leftarrow (\ell, m+1);
3. for (k \leftarrow \ell; k \leq r; k++) do
              if (i_l > m) A[k] \leftarrow S[i_R + +]
 4.
              else if (i_R > r) A[k] \leftarrow S[i_L + +]
 5.
              else if (S[i_L] \leq S[i_R]) A[k] \leftarrow S[i_L++]
6.
             else A[k] \leftarrow S[i_R + +]
 7.
```

- Merge takes $\Theta(r-l+1)$ time
 - this is $\Theta(n)$ time for merging n elements

Analysis of MergeSort

• Let T(n) be time to run *MergeSort* on an array of length n

```
merge-sort(A, n, l \leftarrow 0, r \leftarrow n - 1, S \leftarrow NULL)
A: array of size n, 0 \le l \le r \le n-1
     if r \leq l then \\ base case
           return
     if S is NULL initialize it as array S[0...n-1]
     m = \lfloor (l + r)/2 \rfloor
     merge-sort(A, n, l, m, S)
     merge-sort(A, n, m + 1, r, S)
      merge(A, l, m, r, S)
```

Recurrence relation for MergeSort

$$T(n) = \begin{cases} T\left(\left\lceil\frac{n}{2}\right\rceil\right) + T\left(\left\lceil\frac{n}{2}\right\rceil\right) + cn & \text{if } n > 1\\ c & \text{if } n = 1 \end{cases}$$

Analysis of MergeSort

Recurrence relation for MergeSort

$$T(n) = \begin{cases} T\left(\left\lceil\frac{n}{2}\right\rceil\right) + T\left(\left\lceil\frac{n}{2}\right\rceil\right) + cn & \text{if } n > 1\\ c & \text{if } n = 1 \end{cases}$$

Sloppy recurrence with floors and ceilings removed

$$T(n) = \begin{cases} 2T\left(\frac{n}{2}\right) + cn & \text{if } n > 1\\ c & \text{if } n = 1 \end{cases}$$

- Exact and sloppy recurrences are *identical* when n is a power of 2
- Recurrence easily solved when $n = 2^{j}$

Visual proof via Recursion Tree

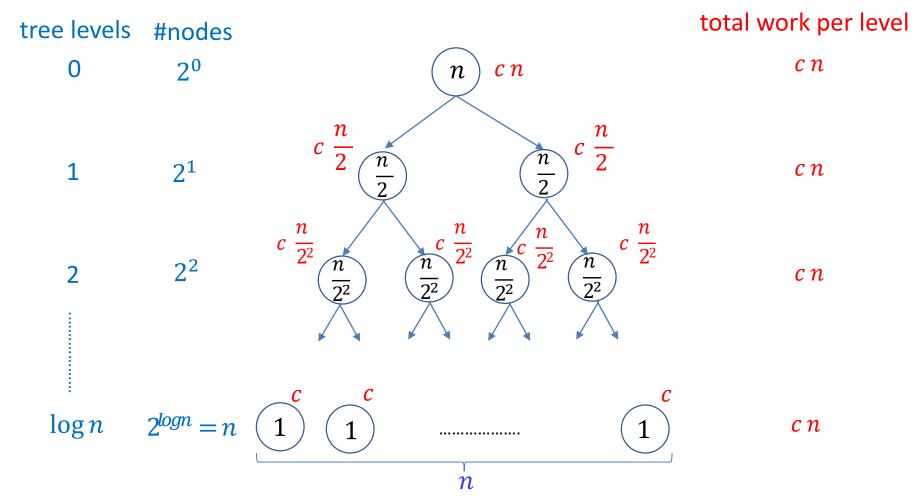
$$T(n) = \begin{cases} 2T\left(\frac{n}{2}\right) + cn & \text{if } n > 1 \\ c & \text{if } n = 1 \end{cases}$$

total work per level tree levels #nodes cn 2^{0} cn21 cncneach node is $\frac{n}{2^i}$ in size, $\frac{n}{2^i}$ operations at each node

- Stop recursion at height h when node size is 1
- Node size at height h is $\frac{n}{2^h} \Rightarrow \frac{n}{2^h} = 1 \Rightarrow n = 2^h \Rightarrow h = \log n$

Visual proof via Recursion Tree

$$T(n) = \begin{cases} 2T\left(\frac{n}{2}\right) + cn & \text{if } n > 1 \\ c & \text{if } n = 1 \end{cases}$$



• cn operations on each tree level, $\log n$ levels, total work is $cn \log n \in \Theta(n \log n)$

Analysis of MergeSort

• Can show $T(n) \in \Theta(n \log n)$ for all n by analyzing exact recurrence

Some Recurrence Relations

Recursion	resolves to	example
$T(n) \leq T(n/2) + O(1)$	$T(n) \in O(\log n)$	binary-search
$T(n) \leq 2T(n/2) + O(n)$	$T(n) \in O(n \log n)$	merge-sort
$T(n) \le 2T(n/2) + O(\log n)$	$T(n) \in O(n)$	heapify (*)
$T(n) \le cT(n-1) + O(1)$	$T(n) \in O(1)$	avg-case analysis (*)
for some $c < 1$		
$T(n) \leq 2T(n/4) + O(1)$	$T(n) \in O(\sqrt{n})$	range-search (*)
$T(n) \leq T(\sqrt{n}) + O(\sqrt{n})$	$T(n) \in O(\sqrt{n})$	interpol. search (*)
$T(n) \leq T(\sqrt{n}) + O(1)$	$T(n) \in O(\log \log n)$	interpol. search (*)

- Once you know the result, it is (usually) easy to prove by induction
- You can use these facts without a proof, unless asked otherwise
- Many more recursions, and some methods to solve, in cs341

Outline

- CS240 overview
 - Course objectives
 - Course topics
- Introduction and Asymptotic Analysis
 - algorithm design
 - pseudocode
 - measuring efficiency
 - asymptotic analysis
 - analysis of algorithms
 - analysis of recursive algorithms
 - helpful formulas

Useful Sums

Arithmetic

$$\sum_{i=0}^{n-1} i = \frac{n(n-1)}{2} \qquad \sum_{i=0}^{n-1} (a+di) = na + \frac{dn(n-1)}{2} \in \Theta(n^2) \text{ if } d \neq 0$$

Geometric

$$\sum_{i=0}^{n-1} 2^{i} = 2^{n} - 1$$

$$\sum_{i=0}^{n-1} ar^{i} = \begin{cases} a \frac{r^{n} - 1}{r - 1} \in \Theta(r^{n-1}) & \text{if } r > 1 \\ na \in \Theta(n) & \text{if } r = 1 \\ a \frac{1 - r^{n}}{1 - r} \in \Theta(1) & \text{if } 0 < r < 1 \end{cases}$$

Harmonic

$$\sum_{i=1}^{n} \frac{1}{i} = \ln n + \gamma + o(1) \in \Theta(\log n)$$

A few more

$$\sum_{i=1}^{\infty} \frac{1}{i^2} = \frac{\pi^2}{6} \in \Theta(1)$$

$$\sum_{i=1}^{n} i^k \in \Theta(n^{k+1}) \text{ for } k \ge 0$$

$$\sum_{i=1}^{\infty} \frac{i}{2^i} = \in \Theta(1)$$

$$\sum_{i=0}^{\infty} ip(1-p)^{i-1} = \frac{1}{p} \text{ for } 0$$

You can use these without a proof, unless asked otherwise

Useful Math Facts

Logarithms:

- $y = \log_b(x)$ means $b^y = x$. e.g. $n = 2^{\log n}$.
- $\log(x)$ (in this course) means $\log_2(x)$

- $\ln(x) = \text{natural log} = \log_e(x)$, $\frac{d}{dx} \ln x = \frac{1}{x}$

Factorial:

- $n! := n(n-1)(n-2)\cdots 2 \cdot 1 = \#$ ways to permute n elements
- $\log(n!) = \log n + \log(n-1) + \cdots + \log 2 + \log 1 \in \Theta(n \log n)$

(We will define Θ soon.)

Probability:

- E[X] is the expected value of X.
- E[aX] = aE[X], E[X + Y] = E[X] + E[Y] (linearity of expectation)