CS 240 — Data Structures and Data Management
Module 2: Priority Queues
O. Veksler

Based on lecture notes by many previous ¢s240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2024

Outline

= Priority Queues
= Review: Abstract Data Types
= ADT Priority Queue
= Binary Heaps
= Operations in Binary Heaps
= PQ-Sort and Heapsort
" Intro for the Selection Problem

Outline

= Priority Queues
= Abstract Data Types

Abstract Data Type (ADT)

= A description of information and a collection of operations on
that information

* The information accessed only through the operations

= ADT describes what is stored and what can be done with it,
but not how it is implemented

= Can have various realizations of an ADT, which specify
= how the information is stored (data structure)
= how the operations are performed (algorithms)

Stack ADT K
. o)

ADT consisting of a collection of items removed in LIF
(last in first out order)

= (QOperations
= push insert an item

= pop remove and return the most recently inserted item

" [tems enter at the top and are removed from the top

= Extra operations

" size, isEmpty, and top
= Applications

= addresses of recently visited sites in a Web browser, procedure calls
= Realizations of Stack ADT

= arrays
= |inked lists

* both have constant time push/pop

Queue ADT .

= ADT consisting of a collection of items removed in FIFO
(first-in first-out) order

= (QOperations

= enqueue insert an item

= dequeue remove and return the least recently inserted
" [tems enter queue at the rear and are removed from front
= Extra operations

" size, isEmpty, and peek

= Realizations of Queue ADT
= (circular) arrays
= |inked lists

» both have constant time enqueue /dequeue

Outline
= Priority Queues

= ADT Priority Queue

Priority Queue ADT

* Collection of items each having a priority
= (priority, other info) or (priority, value)
= priority is also called key
= (QOperations
= jnsert: insert an item tagged with a priority

= deleteMax: remove and return the item of highest priority

= also called extractMax
= Definition is for a maximum-oriented priority queue

" To define minimum-oriented priority queue, replace deleteMax
by deleteMin
= Applications
= typical “todo” list

= sorting, etc.

= Question: How to simulate a stack/queue with a priority queue?

Using Priority Queue to Sort

PQ-Sort(A[0 ..n — 1])
1 initialize PQ to an empty priority queue
2 fori <0 ton —1do

4, PQ.insert(A[i])

5 fori « n — 1 downtoOdo

6 Ali] < PQ.deleteMax ()

= Ali] is item with priority A[{]
" Run-time depends on priority queue implementation

= Can write as O(initialization+n -insert+n -deleteMax)

Realizations of Priority Queues

show only priorities

= Attempt 1: unsorted arrays more accurate

picVSO\ 7|2

 priority = 50, <other info>|

= assume dynamic arrays
= expand by doubling when needed
* happens rarely, so amortized time over all insertions is O(1)

= jnsert: O(1)

= deleteMax: ©(n)

= PQ sort becomes ©(n?) in the worst and in the best cases
" equivalent to selection-sort

= Attempt 2: unsorted linked lists 5

°
N
°
~N

= efficiency identical to Attempt 1

Realizations of Priority Queues

= Attempt 3: sorted arrays 2/5|8

= store items in order of increasing priority
= deleteMax: ©(1)
= jnsert: O(n)

= in 0(1) in the best case (how?)

= PQ-sort equivalent to insertion-sort
= O(n?) worst case
= Q(n) best case

= Attempt 4: sorted linked-lists p)

A 4

= similar to Attempt 3

Outline

= Priority Queues

= Binary Heaps

Binary Tree Review

" Abinary tree is either
" empty, or
= consists of three parts

= node))
leaf lea

= two binary trees
= |eft subtree
= right subtree
" Terminology

root, leaf, parent, child, level, sibling, ancestor, descendant

level I: all noes with distance [from the root (root is on level 0)
= height of the tree is the longest path in the tree

Binary Tree Review

Consider tree with n nodes of smallest possible height h
= all levels must be as full as possible, except possibly the last level h

level 0 20

= Jevel i has 2! nodes
level 1 21 = Jevel h has between 1 and 2" nodes

/N /
level 2 @ @ Q sz
/
level h at least 1
(last level) @ O at most 27 25 \g\+§\ 4 ... 4 h+1
= 2° +\2\ +\ +\2\

S =2"1 1

n< 20421 422 ... 42071 40k
Therefore n < 2**1 —1
Simplifying, h = log(n + 1) — 1
Binary tree height is ((logn)
» heightis betweenn — 1 and log(n + 1) — 1, which is Q(logn)

= note use of asymptotics for function other than time complexity

Heaps: Definition

A max-oriented binary heap is a binary
tree with the following two properties @

1. Structural Property

= all levels of a heap are completely
filled, except (possibly) the last level

2. Heap-order Property

= for any node i, key|[parent of i] > key][i]

= |ast level is left-justified

A min-heap is the same, but with opposite order property
Heaps are ideal for implementing priority queues

Heap Height
Lemma: Height of a heap with n nodes is ©(logn)
= heapis abinary tree = height h € Q(logn)
= needtoshow h € O(logn)
= heap has all levels full except possibly level h

" 2lnodesatlevel 0 <i<h-—1
" Thus

at least last
node at level h

n > 20421422 4+... 42071 41
n>2"-1 +1
n > 2"
h <logn
= Thus h € O(logn)

Storing Heaps in Arrays

Using linked structure for heaps wastes space

Let H be a heap of n items and let A be an array of size n

= store rootin A[O]

= continue storing level-by-level from top to bottom, in each level left-to-right

Last heap nodeisin A[n — 1]

Al4] Al5] e
0 1 2 3 4 5 6 7 8
50 | 29| 34| 27 | 15 8110 | 23 | 26
level 0 level 1 level 2 level 3

Heaps in Arrays: Navigation

Use node and index interchangeably
Root is at index 0

Last nodeisn — 1

m n is the size

Left child of i, if exists, is2i + 1
Right child of i, if exists, is 2i + 2 @

. . . i1
Parent of i, if exists, is VT‘

These nodes exist if index falls into range {0, ...n — 1}

Hide implementation details using helper-function

= functions root(), parent(i), left(i), right(i), last()
= some helper functions need to know n

m left(i), right(i), last()
= assume data structure stores n explicitly

Outline

= Priority Queues

= Operations in Binary Heaps

Insertion in Heaps

= Place new key at the first free leaf

= Heap-order property might be violated

50
/\

Sode

= Perform a fix-up

fix-up example

fix-up example

fix-up example

fix-up pseudocode

fix-up(A4, i)
L. an index corresponding to heap node
while parent(i) exists and A|parent(i)]. key < Ali]. key do
swap Ali] and A[parent(i)]
[« parent(i) // move toone level up

= Time: O(heap height) = O(logn)

Insert Pseudocode

54

32

15

17

44

= (Class for heap

= Storeitemsinarray A

= jnsertis O(logn)

size=5

fix up

variable size is a class variable to
keep track of the number of items

54

44

15

17

32

heap::insert(x)

increase size

[< last()

All] « x

fix-up (4, 1)

deleteMax in Heaps

" The root has the maximum item
= Replace root by the last leaf and remove last leaf

/\

B \

2

deleteMax in Heaps

" The root has the maximum item
= Replace root by the last leaf and remove last leaf

deleteMax in Heaps

" The root has the maximum item
= Replace root by the last leaf and remove last leaf

X
@ ®

= The heap-order property might be violated
= perform fix-down

fix-down example

fix-down example

fix-down example

Fix-Down

fix-down(A4, i,n)

A: array that stores a heap of size n in locations 0...n — 1
L: index corresponding to a heap node,
while i is not a leaf do

J < left child of i

if i has right child and A[right child of i]. key > A[j |. key then
J <« right child of i

if A[i]l.key > A[j]. key // right child has larger key

break // order is fixed, done
swap A[i] and A[j]
i« // move to one level down

Pass n because for some usages of fix-down, A stores heap only in the front part

54 44 15 17 32 99 100
\

)

hgap
Time: O (heap height) = O(logn)

|
not heap

Pseudocode for deleteMax

deleteMax ()
[« last()
toReturn = A[root()]
Al[root()] = All]
decrease size
fix-down(A, root(), size)
return toReturn

54

32

15

size=4
toReturn = 54

Pseudocode for deleteMax

deleteMax ()
[« last()
toReturn = A[root()]
Al[root()] = All]
decrease size
fix-down(A, root(), size)
return toReturn

17

32

15

size=4
toReturn = 54

Pseudocode for deleteMax

deleteMax ()
[« last()
toReturn = A[root()]
Al[root()] = All]
decrease size
fix-down(A, root(), size)
return toReturn

17 32 15
fix
down
32 17 15

= deleteMaxis O(logn)

size=13
toReturn = 54

Outline

= Priority Queues

= PQ-Sort and Heapsort

Sorting using Heaps

= Time to sort with priority queue is O(init + n - insert + n - deleteMax)

PQsortWithtieaps(4) = simple heap building
H < empty heap = uses additional array of size n for heap H
fori <~ 0 to n—1do = insert uses fix-up
H.insert(Ali]) = worst-case time is O(nlogn)
fork <« n — 1 downto O do = insertitems in increasing order
Ali] « H.deleteMax() 20

n<2°4+2t 4. 4201420
all Ieveleexcept last 21

/A /

1 n 4+ n
n-zl_lszh :nl_ SZh-l@ ©E>2h 1>Z

= In the worst case, for n/const nodes do logn work, total work

n

logn

const

Sorting using Heaps

= Can sort with priority queue in O(init + n - insert + n - deleteMax)
PQ-SortWithHeaps(A)
H < empty heap

= simple heap building

= uses additional array of size n for storing
fork <0 to n—1do heap H

H.insert(Alk]) = insertuses fix-up
fork «n —1 downto Odo | * Worst-casetimeis ®@(nlogn)
Alk] « H.deleteMax()

= PQ-Sort with heap is O(nlogn) and not in place
* need 0(n) additional space for heap array H

= Heapsort: improvement to PQ-Sort with two added tricks
1. usethe inputarray A to store the heap!
2. heap can be built in linear time if know all items in advance
= heapsortis in-place, needs 0(1) additional (or auxiliary) space

Building Heap Directly In Input Array

Al17 (132 |15|54| 2 | 25| 3

4

Alsa| 253217 2 |15 3

Problem statement: build a heap from n items in 4]0, ..., n — 1]
without using additional space

= j.e. putitemsinA[O,...,n — 1] in heap-order

Building Heap Directly In Input Array

Al17 (3215|554 | 2 | 25| 3 /

{ 8 @ @

Problem statement: build a heap from n items in 4]0, ..., n — 1]
without using additional space

= j.e. putitemsin A[O,...,n — 1] in heap-order
" Look at array A4 as a binary tree
= Heap-order (most likely) does not hold

= But we can change the order to obey heap-order
= can use either fix-down or fix-up for each node
= both work, but fix-down is more efficient

Building Heap Directly In Input Array: Fix-Up vs. Fix-Down

" At least % nodes at level h — 1 I O 20
= For each such node
= fix-up takes O(logn) time 5 21
= fix-down takes O(1) time ={ A /
S
n
S verees O 2h=14 —
‘lg 4

= Fix-up called for all % nodes at level h — 1 takes O(nlogn) time

= Fix-down for all % nodes at level h — 1 takes O(n) time

Heapify Example A |10

80

50

30

20

60

10

40

70

/

Q

e

/

" No need to call fix-down on the leaves

no harm, but fix-down will do nothing for the leaves

\

= Start calling fix-down with the parent of last node

this is the deepest and rightmost non-leaf node

Heapify Example

/\

s W

o

3
£

/

Heapify Example

/\
yd
o \

\

Heapify Example

Heapify Example

‘/\
e
&

no need to do anything

Heapify Example

DR \

/

/

3
£

Heapify Example

/‘\
e
o \

\

Heapify Example

Heapify Example

e
o \

/0

done!

Heapify Pseudocode

heapify (A)
A :an array
for i < parent (last()) downto 0 do

fix-down (A4, i)

= Straightforward analysis yields complexity O(nlogn)
= Careful analysis yields complexity ©(n)
= A heap can be built in linear time if we know all items in advance

Heapify Analysis

k d
depth nodes work per node

0 20 h
Lz S L

i 2 ‘/ \‘ -
h—1 2n1 & “ “ ‘ ,
))

hll(h (h

1=0
h h-— 1 1
— 2h (2 SR _|_?)
h h<logn
z C < Zlognc — cn
=1 2(i+1) 1

conver ent series llm . ——

HeapSort

30 54 15

32 6

17 5
l heapify

n=7]| 54 30 32 17 5 15 6

l swap root and heap end

n=7| 6 30 | 32 | 17 5 15 | 54

l decrease n
17 5 15 54

l fix-down(root)

n=6| 32130 | 15 | 17 5 6 54

HeapSort

n==~6
n=>5
n=4
n=3
n=>2
n=1

1 swap root and heap end, decrease n and fix-down(root)

l swap root and heap end, decrease n and fix-down(root)

decrease n and fix-down(root)

1 swap root and heap end, decrease n and fix-down(root)

1 swap root and heap end, decrease n and fix-down(root)

32 30 15 17 5 6 54
30 17 15 6 5 32 54
17 6 15 5 30 32 54
l swap root and heap end,
15 6 5 17 30 32 54
6 5 15 17 30 32 54
5 6 15 17 30 32 54

Sorted!

HeapSort

HeapSort(A)
n « A.size()
for i « parent (last()) downto 0 do heapify

fix-down (A, i,n) O(n)
while n > 1

swap items A[root()] and A[last()]
decreasen

fix-down(A, root(), n)

O(nlogn)

= Similar to PQ-Sort with heaps, but uses input array A for
storing heap

" |n-place, i.e. only O(1) extra space

Heap Summary

Binary heap: binary tree that satisfies structural property and
heap order property

Heaps are one possible realization of ADT PriorityQueue
* jnsert takes O(logn) time
= deleteMax takes O(logn) time
= also supports findMax in O(1) time

A binary heap can be built in linear time, if all elements are
known beforehand

With binary heaps leads to an in-place sorting algorithm
with O (nlogn) worst case time

We have seen max-oriented version of heaps

There exists a symmetric min-oriented version supporting
insert and deleteMin with same run times

Outline

= Priority Queues

= |ntro for the Selection Problem

Selection

Define

kth smallest item = item that would be in A[k] if A was sorted nondecreasing

sorted

10

10

Select(k) problem find kth smallest item in array A of n numbers
= example: select(3) =5

Solution 1

" make k + 1 passes through A, deleting minimum each time

= Q(kn) time

= k =n/2, time complexity is @(n?)

= efficient solution is harder to obtain if k is a median

Solution 2

= sort A and return A[k]

* O(nlogn)

" time does not depend on k

Selection
0 1 2 3 4 5 6 7 8

3 6 10| O 5 4 9 2 1

= Solution 3
" make A into a min-heap by calling heapify(A)
= Q(n) time
= call deleteMin(4) k + 1 times
* O(n + klogn)
= if k =n/2,thissolution is ©(nlogn)

= can we do better?

