CS 240 – Data Structures and Data Management

Module 3: Sorting, Average-case and Randomization

O. Veksler

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2024

Outline

- Sorting, Average-case, and Randomization
 - Analyzing average-case run-time
 - Randomized Algorithms
 - QuickSelect
 - QuickSort
 - Lower Bound for Comparison-Based Sorting
 - Non-Comparison-Based Sorting

Outline

- Sorting, Average-case, and Randomization
 - Analyzing average-case run-time
 - Randomized Algorithms
 - QuickSelect
 - QuickSort
 - Lower Bound for Comparison-Based Sorting
 - Non-Comparison-Based Sorting

Average Case Analysis: Motivation

- Worst-case run time is our default for analysis
- Best-case run time is also sometimes useful
- Sometimes, best-case and worst case runtimes are the same
- But for some algorithms best-case and worst case differ significantly
 - worst-case runtime too pessimistic, best-case too optimistic
 - average-case run time analysis is useful especially in such cases

Average Case Analysis

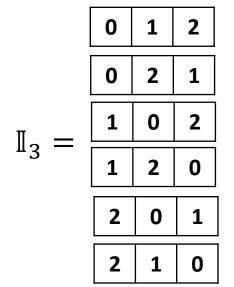
- Recall average case runtime definition
 - let \mathbb{I}_n be the set of all instances of size n

$$T^{avg}(n) = \frac{\sum_{I \in \mathbb{I}_n} T(I)}{|\mathbb{I}_n|}$$

- assume $|\mathbb{I}_n|$ is finite
- can achieve 'finiteness' in a natural way for many problems
- Pros: more accurate picture of how an algorithm performs in practice
 - provided all instances are equally likely
- Cons:
 - usually difficult to compute
 - average-case and worst case run times are often the same (asymptotically)

Average Case Analysis: Contrived Example

```
smallestFirst(A, n)
A: array storing n distinct integers in range \{0,1,\dots,n-1\}
if A[0] = 0 then
for j = 1 to n do
    print 'first is smallest'
else print 'first is not smallest'
```



- Best-case
 - $A[0] \neq 0$
 - runtime is O(1)
- Worst case
 - A[0] = 0
 - runtime is $\Theta(n)$

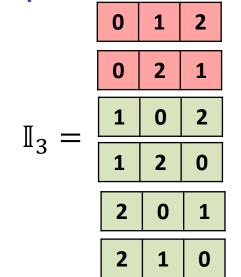
Average Case Analysis: Contrived Example

```
smallestFirst(A,n)
A: array storing n distinct integers in range <math>\{0,1,...,n-1\}
if A[0] = 0 \ then
for j = 1 \ to n \ do
print 'first is smallest'
else \ print 'first is not smallest'
```

- n! inputs in total
 - (n-1)! inputs have A[0] = 0
 - runtime for each is cn
 - n! (n-1)! inputs have $A[0] \neq 0$
 - runtime for each is c

$$T^{avg}(n) = \frac{1}{|\mathbb{I}_n|} \sum_{I \in \mathbb{I}_n} T(I) = \frac{1}{n!} \left(\frac{(n-1)!}{cn + \dots + cn} + \frac{n! - (n-1)!}{c + c + \dots c} \right)$$

$$= \frac{1}{n!} \left(cn(n-1)! + c(n! - (n-1)!) \right) = c + c - \frac{c}{n} \in O(1)$$



$$T^{avg}(n) = \frac{\sum_{I \in \mathbb{I}_n} T(I)}{|\mathbb{I}_n|}$$

sortednessTester(A, n)

A: array storing n distinct numbers

for
$$i \leftarrow 1$$
 to $n-1$ do
if $A[i-1] > A[i]$ then return false

return true

- Best-case is O(1), worst case is O(n)
- For average case, need to take average running time over all inputs
- How to deal with infinite \mathbb{I}_n ?
 - there are infinitely many arrays of n numbers

$$T^{avg}(n) = \frac{\sum_{I \in \mathbb{I}_n} T(I)}{|\mathbb{I}_n|}$$

sortednessTester(A, n)

A: array storing n distinct numbers

for
$$i \leftarrow 1$$
 to $n-1$ do
if $A[i-1] > A[i]$ then return false

return true

Observe: sortednessTester acts the same on two inputs below

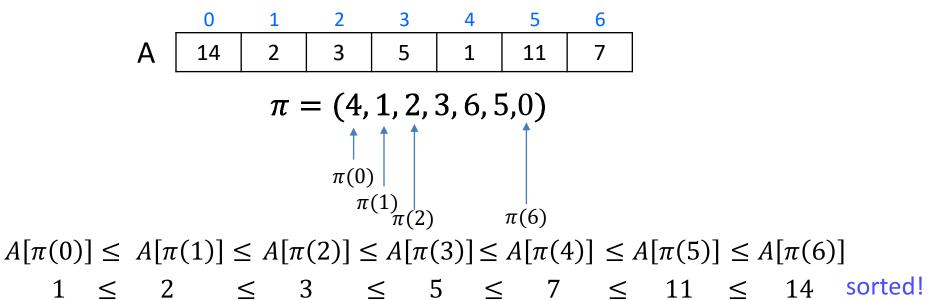
14	22	43	6	1	11	7
----	----	----	---	---	----	---

15 23	44	5	1	12	8
-------	----	---	---	----	---

- Only the relative order matters, not the actual numbers
 - true for many (but not all) algorithms
 - if true, can use this to simplify average case analysis

Sorting Permutations

- For simplicity, will assume array *A* stores unique numbers
- Characterize input by its sorting permutation π
 - sorting permutation tells us how to sort the array
 - stores array indexes in the order corresponding to the sorted array



Arrays with the same relative order have the same sorting permutations

_		2			_		
15	3	4	6	1	12	8	$\pi = (4, 1, 2, 3, 6, 5, 0)$

Average Time with Sorting Permutations

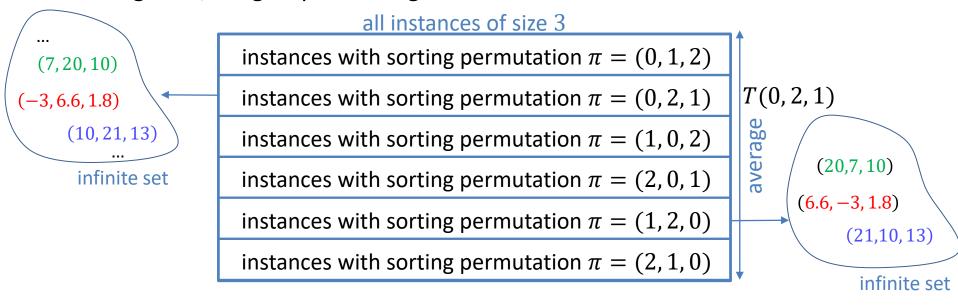
- There are n! sorting permutations for arrays with distinct numbers of size n
 - let Π_n be the set of all sorting permutations of size n

$$\Pi_3 = \{(0,1,2), (0,2,1), (1,0,2), (2,0,1), (1,2,0), (2,1,0)\}$$

Define average cost through permutations

$$T^{avg}(n) = \frac{1}{n!} \sum_{\pi \in \Pi_n} T(\pi)$$

• Intuitively, since all instances with sorting permutation π have exactly the same running time, we group them together



Average Case: Example 1

$$T^{avg}(n) = \frac{1}{n!} \sum_{\pi \in \Pi_n} T(\pi)$$

```
sortednessTester(A, n)
A: array storing n distinct numbers
for <math>i \leftarrow 1 \ to \ n-1 \ do
if \ A[i-1] > A[i] \ then \ return \ false
return \ true
C
```

- Runtime is cn + c
- Number of comparisons is n-1
- Runtime is $\Theta(\text{number of comparisons})$
- To get rid of the constant in all calculations, let us define

$$T(\pi) = number of comparisons$$

Average Case: Example 1

$$T^{avg}(n) = \frac{1}{n!} \sum_{\pi \in \Pi_n} T(\pi)$$

• $T(\pi) = number of comparisons$

```
sortednessTester(A, n)

A: array storing n distinct numbers

for i \leftarrow 1 to n-1 do

if A[i-1] > A[i] then return false
```

return true

- for some permutations π , do exactly 1 comparison: $T(\pi) = 1$
- for some permutations π , do exactly 2 comparisons: $T(\pi) = 2$
- **-** ...
- for some permutations π , do exactly n-1 comparisons: $T(\pi)=n-1$

$$T^{avg}(3) = \frac{1}{3!} (T(0,1,2) + T(0,2,1) + T(1,0,2) + T(2,0,1) + T(1,2,0) + T(2,1,0))$$

$$T^{avg}(3) = \frac{1}{3!} (T(1,0,2) + T(2,0,1) + T(2,1,0) + T(0,2,1) + T(1,2,0) + T(0,1,2))$$

$$= \frac{1}{6} (3 \cdot 1 + 2 \cdot 2 + 1 \cdot 3) = 10/6$$

$$T^{avg}(n) = \frac{1}{n!} \sum_{k=1}^{n-1} k \cdot (\text{#permutations with exactly } k \text{ comparisons})$$

$$T^{avg}(n) = \frac{1}{n!} \sum_{k=1}^{n-1} k \cdot (\text{#permutations with exactly } k \text{ comparisons})$$

```
# exactly k comp # exactly k+1 comp # exactly k+2 comp # exactly k+2 comp # exactly n-1 comp
```

 $T^{avg}(n) = \frac{1}{n!} \sum_{k=1}^{n-1} k \cdot (\text{\#perm with at least } k \text{ comp} - \text{\#perm with at least } k + 1 \text{ comp})$

#permutations with exactly k comparisons

```
sortednessTester(A, n)

A: array storing n distinct numbers

for i \leftarrow 1 to n-1 do

if A[i-1] > A[i] then return false

return true
```

$$T^{avg}(n) = \frac{1}{n!} \sum_{k=1}^{n-1} k \cdot (\text{\#perm with at least } k \text{ comp} - \text{\#perm with at least } k + 1 \text{ comp})$$

- Permutations with at least 1 comparison
 - all n! permutations

sortednessTester(
$$A$$
, n)

 A : array storing n distinct numbers

for $i \leftarrow 1$ to $n-1$ do

if $A[i-1] > A[i]$ then return false

return true

$$T^{avg}(n) = \frac{1}{n!} \sum_{k=1}^{n} k \cdot (\text{\#perm with at least } k \text{ comp} - \text{\#perm with at least } k + 1 \text{ comp})$$

- Permutations with at least 2 comparisons
 - A[0] < A[1]

0	1	2	3	4	5	6
3	15	4	6	1	20	8

$$\pi = (4, 0, 2, 3, 6, 1, 5)$$

- 0, 1 occur in sorted order: (4, 3, 2, 0, 1), (4, 3, 0, 2, 1), (4, 0, 3, 2, 1)
- $-\binom{n}{2}(n-2)$

sortednessTester
$$(A, n)$$

A: array storing n distinct numbers

for $i \leftarrow 1$ to $n-1$ do

if $A[i-1] > A[i]$ then return false

return true

$$T^{avg}(n) = \frac{1}{n!} \sum_{k=1}^{n-1} k \cdot (\text{\#perm with at least } k \text{ comp} - \text{\#perm with at least } k + 1 \text{ comp})$$

- Permutations with at least 3 comparisons
 - A[0] < A[1] < A[2]

$$\pi = (4, 0, 3, 6, 1, 5, 2)$$

- 0, 1, 2 occur in sorted order : (4, 3, 0, 1, 2), (4, 0, 3, 1, 2), (0, 1, 3, 4, 2)
- $\binom{n}{3}(n-3)!$

sortednessTester(A, n)

A: array storing n distinct numbers

for
$$i \leftarrow 1$$
 to $n-1$ do

if A[i-1] > A[i] then return false

return true

$$T^{avg}(n) = \frac{1}{n!} \sum_{k=1}^{n-1} k \cdot (\text{\#perm with at least } k \text{ comp} - \text{\#perm with at least } k + 1 \text{ comp})$$

- Permutations with at least k comparisons
 - A[0] < A[1] < A[2] ... < A[k-1]
 - $0, 1, \dots, k$ occur in sorted order

- Let π_k be # of permutations with at least k comparisons, $\pi_k = \frac{n!}{k!}$
- Taylor expansion: $\sum_{k=0}^{\infty} \frac{1}{k!} = e \approx 2.8$

$$T^{avg}(n) = \frac{1}{n!} \sum_{k=1}^{n-1} k \cdot (\pi_k - \pi_{k+1}) = \frac{1}{n!} \left(\sum_{k=1}^{n-1} k \cdot \pi_k - \sum_{k=1}^{n-1} k \cdot \pi_{k+1} \right)$$

$$= \frac{1}{n!} (1 \cdot \pi_1 + 2 \cdot \pi_2 + 3 \cdot \pi_3 + \dots + (n-1) \cdot \pi_{n-1}$$

$$-1 \cdot \pi_2 - 2 \cdot \pi_3 - \dots - (n-2) \cdot \pi_{n-1} - (n-1) \cdot \pi_n$$

$$= \frac{1}{n!} (\pi_1 + \pi_2 + \pi_3 + \dots + \pi_{n-1} - (n-1) \cdot \frac{1}{n-1})$$

$$= \frac{1}{n!} \sum_{k=1}^{n-1} \pi_k = \frac{1}{n!} \sum_{k=1}^{n-1} \frac{n!}{k!} = \sum_{k=1}^{n-1} \frac{1}{k!} < \sum_{k=1}^{\infty} \frac{1}{k!} < 2.8$$

- Average running time of sortednessTester(A, n) is O(1)
 - much better than the worst case $\Theta(n)$

```
avgCaseDemo(A,n) \\ A: \text{ array storing } n \text{ distinct numbers} \\ \text{if } n \leq 2 \text{ return} \\ \text{if } A[n-2] < A[n-1] \text{ then } avgCaseDemo(A[0, n/2-1], n/2) \text{ // good case} \\ \text{else } avgCaseDemo(A[0, n-3], n-2) \text{ // bad case} \\ \end{cases}
```

- Let T(n) be the number of recursions
 - proportional to the running time
- Best case (array sorted in increasing order)
 - always get the good case, array size is divided by 2 at each recursion

$$T(n) = \begin{cases} 0 & \text{if } n \le 2 \\ T(n/2) + 1 & \text{otherwise} \end{cases}$$

- resolves to $\Theta(\log(n))$
- Worst case (array sorted in decreasing order)
 - always get the bad case, array size decreases by 2 at each recursion
 - T(n) = T(n-2) + 1 (for n > 2)
 - resolves to $\Theta(n)$

```
avgCaseDemo(A,n) \\ A: array storing $n$ distinct numbers \\ \textbf{if } n \leq 2 \textbf{ return} \\ \textbf{if } A[n-2] < A[n-1] \textbf{ then } avgCaseDemo(A[0, n/2-1],n/2) \ // \textbf{ good case} \\ \textbf{else } avgCaseDemo(A[0, n-3], n-2) \ // \textbf{ bad case} \\ \end{cases}
```

- avgCaseDemo runtime is equal for instances with same relative element order
- Therefore can use sorting permutations for average running time

$$T^{avg}(n) = \frac{1}{n!} \sum_{\pi \in \Pi_n} T(\pi)$$

- Call permutation π is good if it leads to a good case
 - ex: (0, 1, 3, 2, 4)
- Call permutation π bad if it leads to a bad case
 - ex: (1, 4, 0, 2, 3)
- Exactly half of the permutations are good
 - $\bullet \quad (0,1,\frac{3}{2},2,4) \longleftrightarrow (0,1,4,2,\frac{3}{2})$
 - n!/2 good permutations, n!/2 bad permutations

```
good bad

(0,1,2) \leftrightarrow (0,2,1)

(1,0,2) \leftrightarrow (1,2,0)

(2,0,1) \leftrightarrow (2,1,0)
```

```
avgCaseDemo(A,n) \\ A: array storing $n$ distinct numbers \\ \textbf{if } n \leq 2 \textbf{ return} \\ \textbf{if } A[n-2] < A[n-1] \textbf{ then } avgCaseDemo(A[0, n/2-1], n/2) \ // \textbf{ good case} \\ \textbf{else } avgCaseDemo(A[0, n-3], n-2) \ // \textbf{ bad case} \\ \end{cases}
```

- For recursive algorithms, we typically derive recurrence equation and solve it
- Easy to derive recursive formula for one instance π

$$T(\pi) = \begin{cases} 1 + T(\text{first } \frac{n}{2} \text{ items}) & \text{if } \pi \text{ is good} \\ 1 + T(\text{first } n - 2 \text{ items}) & \text{if } \pi \text{ is bad} \end{cases}$$

Cannot conclude that
$$T^{avg}(n) = \begin{cases} 1 + T^{avg}(n/2) & \text{if } \pi \text{ is good} \\ 1 + T^{avg}(n-2) & \text{if } \pi \text{ is bad} \end{cases}$$

• Can derive formula for the sum of instances π (but it is not trivial, we omit it)

$$\sum_{\pi \in \Pi_n} T(\pi) = \sum_{\pi \in \Pi_n: \pi \text{ is good}} (1 + T^{avg}(n/2)) + \sum_{\pi \in \Pi_n: \pi \text{ is bad}} (1 + T^{avg}(n-2))$$

$$T^{avg}(n) = \frac{1}{n!} \sum_{\pi \in \Pi_n} T(\pi)$$

• Using formula for the sum of instances π from the previous slide

$$\sum_{\pi \in \Pi_n} T(\pi) = \sum_{\pi \in \Pi_n: \ \pi \text{ is good}} (1 + T^{avg}(n/2)) + \sum_{\pi \in \Pi_n: \ \pi \text{ is bad}} (1 + T^{avg}(n-2))$$

• Recall that there are n!/2 good permutations, n!/2 bad permutations

$$T^{avg}(n) = \frac{1}{n!} \left(\sum_{\pi \in \Pi_n : \pi \text{ is good}} (1 + T^{avg}(n/2)) + \sum_{\substack{\text{all elements in sum are equal}}} (1 + T^{avg}(n-2)) \right)$$

$$= \frac{1}{n!} \left(\frac{n!}{2} (1 + T^{avg}(n/2)) + \frac{n!}{2} (1 + T^{avg}(n-2)) \right)$$

• Simplifies to $T^{avg}(n) = 1 + \frac{1}{2}T^{avg}(n/2) + \frac{1}{2}T^{avg}(n-2)$

$$T^{avg}(n) = 1 + \frac{1}{2}T^{avg}(n/2) + \frac{1}{2}T^{avg}(n-2) \text{ if } n > 2$$

 $T^{avg}(n) = 0 \text{ if } n \le 2$

Theorem: $T^{avg}(n) \le 2 \log(n)$

Proof: (by induction)

- true for $n \le 2$ (no recursion in these cases, $T^{avg}(n) = 0$)
- assume $n \ge 3$ and the theorem holds for all m < n

$$T^{avg}(n) = 1 + \frac{1}{2} T^{avg}(n/2) + \frac{1}{2} T^{avg}(n-2)$$

induction hypothesis induction hypothesis

$$\leq 1 + \frac{1}{2}2\log(n/2) + \frac{1}{2}2\log(n-2)$$

$$\leq 1 + \frac{1}{2}2(\log(n) - 1) + \frac{1}{2}2\log(n)$$

$$= 2\log(n)$$

- This proves average-case running time is $O(\log(n))$
 - best case is $\Theta(\log(n))$
 - average case cannot be better than best case
 - therefore, average case is $\Theta(\log(n))$, much better than worst case $\Theta(n)$

Outline

- Sorting, average-case, and Randomization
 - Analyzing average-case run-time
 - Randomized Algorithms
 - QuickSelect
 - QuickSort
 - Lower Bound for Comparison-Based Sorting
 - Non-Comparison-Based Sorting

Randomized Algorithms: Motivation

```
avgCaseDemo(A, n)
A: array storing n distinct numbers
if n \le 2 return
if A[n-2] < A[n-1] then avgCaseDemo(A[0, n/2-1], n/2) // good case
else avgCaseDemo(A[0, n-3], n-2) // bad case
```

- Average case is $O(\log(n))$ and worst-case is O(n)
- Would hope that in practice, time averaged over **different runs** of avgCaseDemo is $O(\log(n))$
- However, recall average-cases analysis averages over instances, not runs
 - cannot average over runs, do not know the instances the user will choose
- Suppose all instances are equally likely to occur in practice
 - averaging over different runs in practice for many algorithms is equivalent to averaging over instances
 - can expect avgCaseDemo to have $O(\log(n))$ runtime averaged over runs
- But humans often generate instances that are far from equally likely
- For example, if user mostly calls avgCaseDemo on almost reverse sorted arrays, runtime averaged over **different runs** is $\Theta(n)$ in practice

Randomized Algorithms: Motivation

- Randomization improves runtime in practice when instances are not equally likely
 - makes sense to randomize algorithms which have better average-case than worstcase runtime

```
avgCaseDemo(A,n) \\ A: array storing $n$ distinct numbers \\ \textbf{if } n \leq 2 \textbf{ return} \\ \textbf{if } A[n-2] < A[n-1] \textbf{ then } avgCaseDemo(A[0, n/2-1], n/2) \text{ // good case} \\ \textbf{else } avgCaseDemo(A[0, n-3], n-2) \text{ // bad case} \\ \end{cases}
```

- Simple randomization: shuffle array A before calling avgCaseDemo, so that every instance is equally likely
 - now averaging over runs is the same as averaging over instances
 - $O(\log(n))$
 - shifted dependence from what we cannot control (user) to what we can control (random number generation)

Randomized Algorithms

- A randomized algorithm is one which relies on some random numbers in addition to the input
- Runtime depends on both input I and random numbers R used
- Goal: shift dependency of run-time from what we cannot control (user input), to what we can control (random numbers)
 - no more bad instances!
 - could still have unlucky numbers
 - if running time is long on some run, it is because we generated unlucky random numbers, not because of the instance itself
 - however, this is exceedingly rare, think of chances of sorting an array by a random sequence of swaps
- Side note: computers cannot generate truly random numbers
 - assume there is a pseudo-random number generator (PRNG), a deterministic program that uses an initial value or seed to generate a sequence of seemingly random numbers
 - quality of randomized algorithm depends on the quality of the PRNG

Expected Running Time

- How do we measure the runtime of a randomized algorithm?
 - \blacksquare depends on input I and on R, sequence of random numbers algorithm choses
- Define T(I,R) to be running time of randomized algorithm for instance I and R
- Expected runtime for instance I is expected value for T(I,R)

$$T^{exp}(I) = \mathbf{E}[T(I,R)] = \sum_{\substack{\text{all possible} \\ \text{sequences } R}} T(I,R) \cdot \Pr(R)$$

Worst-case expected runtime

$$T^{exp}(n) = \max_{I \in \mathbb{I}_n} T^{exp}(I)$$

- Best-case and average-case expected running time defined similarly
- Usually consider only worst-case expected running time
 - usually design a randomized algorithm so that all instances of size n have the same expected runtime
- Sometimes we also want to know the running time if we get really unlucky with the random numbers R, i.e. $\max_{R} \max_{I \in \mathbb{I}_n} T(I,R)$ worst case (or worst instance and worst random numbers case)

Randomized Algorithm: Simple

```
simple(A, n)
A: array storing n numbers
sum \leftarrow 0
if \ random(3) = 0 \ then \ return \ sum
else \ if \ random(3) > 0 \ then
for \ i \leftarrow 0 \ to \ n \ do
sum \leftarrow sum + A[i]
return \ sum
```

$$T^{exp}(I) = \sum_{\substack{\text{all possible} \\ \text{sequences } R}} T(I,R) \cdot \Pr(R)$$

$$T^{exp}(n) = \max_{I \in \mathbb{I}_n} T^{exp}(I)$$

- Function random(n) returns an integer sampled uniformly from $\{0, 1, ..., n-1\}$
- simple needs only one random number: $Pr(0) = Pr(1) = Pr(2) = \frac{1}{3}$

$$T^{exp}(I) = T(I,0) \cdot \Pr(0) + T(I,1) \cdot \Pr(1) + T(I,2) \cdot \Pr(2)$$

$$= T(I,0) \cdot \frac{1}{3} + T(I,1) \cdot \frac{1}{3} + T(I,2) \cdot \frac{1}{3}$$

$$= c \cdot \frac{1}{3} + c \cdot n \cdot \frac{1}{3} + c \cdot n \cdot \frac{1}{3} \in \Theta(n)$$

■ All instances have the same running time, so $T^{exp}(n) \in \Theta(n)$

Randomized Algorithm: Simple2

```
simple2(A, n)
A: array storing n distinct numbers
sum \leftarrow 0
for i \leftarrow 1 \ to \ random(n) \ do
for j \leftarrow 1 \ to \ random(n) \ do
sum \leftarrow sum + A[j]A[i]
return \ sum
```

$$T^{exp}(I) = \sum_{\substack{\text{all possible} \\ \text{sequences } R}} T(I,R) \cdot \Pr(R)$$

$$T^{exp}(n) = \max_{I \in \mathbb{I}_n} T^{exp}(I)$$

Uses 2 random numbers
$$R = \langle r_1, r_2 \rangle$$
: $\Pr(r_1 = 0) = \cdots = \Pr(r_1 = n - 1) = \frac{1}{n}$

$$\Pr[\langle 0, 0 \rangle] = \Pr[\langle 0, 1 \rangle] = \cdots = \Pr[\langle n - 1, n - 1 \rangle] = \left(\frac{1}{n}\right)^2$$

$$T^{exp}(I) = \sum_{\langle r_1, r_2 \rangle} T(I, \langle r_1, r_2 \rangle) \cdot \left(\frac{1}{n}\right)^2 = \left(\frac{1}{n}\right)^2 \sum_{\langle r_1, r_2 \rangle} c \cdot r_1 \cdot r_2$$

$$= \left(\frac{1}{n}\right)^2 \sum_{r_1} c \cdot r_1 \sum_{r_2} r_2 = \left(\frac{1}{n}\right)^2 \sum_{r_2} c \cdot r_1 \frac{n(n-1)}{2} = \left(\frac{1}{n}\right)^2 c \frac{n(n-1)}{2} \frac{n(n-1)}{2}$$

■ All instances have he same running time, so $T^{exp}(n) \in \Theta(n^2)$

Randomized Algorithm: expectedDemo

```
avgCaseDemo(A,n) \\ A: array storing $n$ distinct numbers \\ \textbf{if } n \leq 2 \textbf{ return} \\ \textbf{if } A[n-2] < A[n-1] \textbf{ then } avgCaseDemo(A[0, n/2-1], n/2) \text{ // good case} \\ \textbf{else } avgCaseDemo(A[0, n-3], n-2) \text{ // bad case} \\ \end{cases}
```

- To randomize avgCaseDemo, could shuffle array A and then call avgcaseDemo
- A better solution which avoids shuffling

```
\begin{aligned} & \textbf{expectedDemo}(A,n) \\ & A \text{: array storing } n \text{ distinct numbers} \\ & \textbf{if } n \leq 2 \textbf{ return} \\ & \textbf{if } random(2) \textbf{ swap } A[n-2] \textbf{ and } A[n-1] \\ & \textbf{if } A[n-2] < A[n-1] \textbf{ then } expectedDemo(A[0, \ n/2-1, \ n/2) \ // \ good case \\ & \textbf{else } expectedDemo(A[0, \ n-3, \ n-2) \ // \ bad \ case \end{aligned}
```

- Function random(n) returns an integer sampled uniformly from $\{0, 1, ..., n-1\}$
- For any array, $Pr(good case) = Pr(bad case) = \frac{1}{2}$

Randomized Algorithm *expectedDemo*

```
\begin{array}{l} \textit{expectedDemo}(A,n) \\ \textit{A} \colon \text{array storing } n \text{ distinct numbers} \\ \textit{if } n \leq 2 \text{ return} \\ \textit{if } random(2) \text{ swap } A[n-2] \text{ and } A[n-1] \\ \textit{if } A[n-2] < A[n-1] \text{ then } expectedDemo(A[0, n/2-1, n/2) // \text{ good case} \\ \textit{else } expectedDemo(A[0, n-3, n-2) // \text{ bad case} \\ \end{array}
```

- Running time depends **both** on the input array A and the sequence R of random numbers generated during the run of the algorithm
 - $A = [1, 5, 0, 3, 7, 3], R = \langle 1, 0, 0 \rangle$
 - Step 1:

$$A = [1, 5, 0, 3, 7, 3]$$
 $R = \langle 1, 0, 0 \rangle \Rightarrow A = [1, 5, 0, 3, 3, 7] \Rightarrow \text{good case}$

Step 2:

$$A = [1, 5, 0]$$
 $R = (1, 0, 0) \Rightarrow A = [1, 5, 0] \Rightarrow \text{bad case}$

Randomized Algorithm *expectedDemo*

```
\begin{aligned} & expectedDemo(A,n) \\ & A \text{: array storing } n \text{ distinct numbers} \\ & \text{if } n \leq 2 \text{ return} \\ & \text{if } random(2) \text{ swap } A[n-2] \text{ and } A[n-1] \\ & \text{if } A[n-2] < A[n-1] \text{ then } expectedDemo(A[0, n/2-1, n/2) // \text{ good case} \\ & \text{else } expectedDemo(A[0, n-3, n-2) // \text{ bad case} \end{aligned}
```

- Function random(n) returns an integer sampled uniformly from $\{0, 1, ..., n-1\}$
- For any array A, $Pr(good case) = Pr(bad case) = \frac{1}{2}$
- Let T(n) be the number of recursions
 - running time is proportional to the number of recursions

Expected running time of *expectedDemo*

```
\begin{aligned} & \textbf{expectedDemo}(A,n) \\ & A \text{: array storing } n \text{ distinct numbers} \\ & \textbf{if } n \leq 2 \textbf{ return} \\ & \textbf{if } random(2) \textbf{ swap } A[n-2] \textbf{ and } A[n-1] \\ & \textbf{if } A[n-2] < A[n-1] \textbf{ then } expectedDemo(A[0, n/2-1, n/2) // \textbf{ good case} \\ & \textbf{else } expectedDemo(A[0, n-3, n-2) // \textbf{ bad case} \end{aligned}
```

• Number of recursions on array A if random numbers are $R = \langle x, R' \rangle$

$$T(A,R) = T(A,\langle x,R'\rangle) = \begin{cases} 1 + T(A[0 \dots n/2 - 1], R') & \text{if } x \text{ is good} \\ 1 + T(A[0 \dots n - 3], R') & \text{if } x \text{ is bad} \end{cases}$$

examples

 $T([1,0,4,5,8,1],\langle 0,1,1,0\rangle) = T\big([1,0,4,5,8,1],\langle 0,\langle 1,1,0\rangle\big) = 1 + T\big([1,0,4,5],\langle 1,1,0\rangle\big)$ good case since 8 > 1 and we swap $T([1,0,4,5,8,1],\langle 1,0,1,0\rangle) = T\big([1,0,4,5,8,1],\langle 1,\langle 0,1,0\rangle\big) = 1 + T\big([1,0,4],\langle 0,1,0\rangle\big)$

Expected running time of *expectedDemo*

$$T^{exp}(A) = \sum_{R} T(A, R) \cdot \Pr(R)$$

Summing up over all sequences of random outcomes

$$\sum_{R} T(A,R) \cdot \Pr(R)$$

example

$$Pr(0) Pr(0) Pr(0) = \frac{111}{222}$$

$$\sum_{R} T([1,4,5,8,1],R) \cdot \mathbf{Pr}(R) = T([1,4,5,8,1],\langle \mathbf{0},\mathbf{0},\mathbf{0}\rangle) \cdot \mathbf{Pr}(\langle \mathbf{0},\mathbf{0},\mathbf{0}\rangle) + T([1,4,5,8,1],\langle \mathbf{0},\mathbf{0},\mathbf{1}\rangle) \cdot \mathbf{Pr}(\langle \mathbf{0},\mathbf{0},\mathbf{1}\rangle) + T([1,4,5,8,1],\langle \mathbf{0},\mathbf{1},\mathbf{0}\rangle) \cdot \mathbf{Pr}(\langle \mathbf{0},\mathbf{1},\mathbf{0}\rangle) + T([1,4,5,8,1],\langle \mathbf{0},\mathbf{1},\mathbf{1}\rangle) \cdot \mathbf{Pr}(\langle \mathbf{0},\mathbf{1},\mathbf{1}\rangle) + T([1,4,5,8,1],\langle \mathbf{1},\mathbf{1},\mathbf{0}\rangle) \cdot \mathbf{Pr}(\langle \mathbf{1},\mathbf{1},\mathbf{0}\rangle) + T([1,4,5,8,1],\langle \mathbf{1},\mathbf{0},\mathbf{1}\rangle) \cdot \mathbf{Pr}(\langle \mathbf{1},\mathbf{0},\mathbf{1}\rangle) + T([1,4,5,8,1],\langle \mathbf{1},\mathbf{0},\mathbf{0}\rangle) \cdot \mathbf{Pr}(\langle \mathbf{1},\mathbf{0},\mathbf{0}\rangle) + T([1,4,5,8,1],\langle \mathbf{1},\mathbf{1},\mathbf{1}\rangle) \cdot \mathbf{Pr}(\langle \mathbf{1},\mathbf{1},\mathbf{1}\rangle)$$

Summing up over all sequences of random outcomes

$$\sum_{R} T(A,R) \cdot \Pr(R) = \sum_{\langle x,R' \rangle} T(A,\langle x,R' \rangle) \cdot \Pr(x) \Pr(R')$$
example

$$\sum_{R} T([1,4,5,8,1],R) \cdot \Pr(R) = T([1,4,5,8,1],\langle 0,\langle 0,0\rangle\rangle) \cdot \Pr(0)\Pr(\langle 0,0\rangle) + T([1,4,5,8,1],\langle 0,\langle 0,1\rangle\rangle) \cdot \Pr(0)\Pr(\langle 0,1\rangle) + T([1,4,5,8,1],\langle 0,\langle 1,0\rangle\rangle) \cdot \Pr(0)\Pr(\langle 1,0\rangle) + T([1,4,5,8,1],\langle 0,\langle 1,1\rangle\rangle) \cdot \Pr(0)\Pr(\langle 1,0\rangle) + T([1,4,5,8,1],\langle 1,\langle 1,0\rangle\rangle) \cdot \Pr(1)\Pr(\langle 1,0\rangle) + T([1,4,5,8,1],\langle 1,\langle 0,1\rangle\rangle) \cdot \Pr(1)\Pr(\langle 0,1\rangle) + T([1,4,5,8,1],\langle 1,\langle 0,0\rangle\rangle) \cdot \Pr(1)\Pr(\langle 0,0\rangle) + T([1,4,5,8,1],\langle 1,\langle 1,1\rangle\rangle) \cdot \Pr(1)\Pr(\langle 0,0\rangle) + T([1,4,5,8,1],\langle 1,\langle 1,1\rangle\rangle) \cdot \Pr(1)\Pr(\langle 1,1\rangle)$$

Summing up over all sequences of random outcomes

$$\sum_{R} T(A,R) \cdot \Pr(R) = \sum_{\langle x,R' \rangle} T(A,\langle x,R' \rangle) \cdot \Pr(x) \Pr(R')$$

$$= \sum_{\langle x=0,R' \rangle} T(A,\langle x,R' \rangle) \cdot \Pr(x) \Pr(R') + \sum_{\langle x=1,R' \rangle} T(A,\langle x,R' \rangle) \cdot \Pr(x) \Pr(R')$$

example

$$\sum_{R} T([1,4,5,8,1],R) \cdot \Pr(R) = \frac{T([1,4,5,8,1],\langle 0,\langle 0,0\rangle\rangle) \cdot \Pr(0)\Pr(\langle 0,0\rangle)}{+T([1,4,5,8,1],\langle 0,\langle 0,1\rangle\rangle) \cdot \Pr(0)\Pr(\langle 0,1\rangle)} + T([1,4,5,8,1],\langle 0,\langle 1,0\rangle\rangle) \cdot \Pr(0)\Pr(\langle 1,0\rangle)}{+T([1,4,5,8,1],\langle 0,\langle 1,1\rangle\rangle) \cdot \Pr(0)\Pr(\langle 1,0\rangle)} + T([1,4,5,8,1],\langle 1,\langle 1,0\rangle\rangle) \cdot \Pr(1)\Pr(\langle 1,0\rangle)} + T([1,4,5,8,1],\langle 1,\langle 0,1\rangle\rangle) \cdot \Pr(1)\Pr(\langle 0,1\rangle)} + T([1,4,5,8,1],\langle 1,\langle 0,0\rangle\rangle) \cdot \Pr(1)\Pr(\langle 0,0\rangle)} + T([1,4,5,8,1],\langle 1,\langle 1,0\rangle\rangle) \cdot \Pr(1)\Pr(\langle 0,0\rangle)} + T([1,4,5,8,1],\langle 1,\langle 1,1\rangle\rangle) \cdot \Pr(1)\Pr(\langle 1,1\rangle)}$$

$$\sum_{R} T(A,R) \cdot \Pr(I$$

Summing up $\neq expectedDemo(A, n)$

A: array storing n distinct numbers

if $n \le 2$ return

if random(2) swap A[n-2] and A[n-1]

if A[n-2] < A[n-1] then expectedDemo(A[0, n/2-1, n/2) // good case)

else expected Demo(A[0, n-3, n-2)) // bad case

example

$$\sum_{R} T([1,4,5,8,1],R) \cdot \Pr(R) = \frac{T([1,4,5,8,1],\langle 0,\langle 0,0\rangle\rangle) \cdot \Pr(0)\Pr(\langle 0,0\rangle)}{+T([1,4,5,8,1],\langle 0,\langle 0,1\rangle\rangle) \cdot \Pr(0)\Pr(\langle 0,1\rangle)} + T([1,4,5,8,1],\langle 0,\langle 1,0\rangle\rangle) \cdot \Pr(0)\Pr(\langle 1,0\rangle)}{+T([1,4,5,8,1],\langle 0,\langle 1,1\rangle\rangle) \cdot \Pr(0)\Pr(\langle 1,0\rangle)} + T([1,4,5,8,1],\langle 1,\langle 1,0\rangle\rangle) \cdot \Pr(1)\Pr(\langle 1,0\rangle)}{+T([1,4,5,8,1],\langle 1,\langle 0,0\rangle\rangle) \cdot \Pr(1)\Pr(\langle 0,1\rangle)} = \frac{T([1,4,5,8,1],\langle 1,\langle 0,0\rangle\rangle) \cdot \Pr(1)\Pr(\langle 1,0\rangle)}{+T([1,4,5,8,1],\langle 1,\langle 0,0\rangle\rangle) \cdot \Pr(1)\Pr(\langle 0,0\rangle)} + T([1,4,5,8,1],\langle 1,\langle 1,0\rangle\rangle) \cdot \Pr(1)\Pr(\langle 0,0\rangle)}{+T([1,4,5,8,1],\langle 1,\langle 1,1\rangle\rangle) \cdot \Pr(1)\Pr(\langle 1,1\rangle)}$$

$$\sum_{R} T(A,R) \cdot \Pr(I$$

Summing up $\neq expectedDemo(A, n)$

A: array storing n distinct numbers

if $n \le 2$ return

if random(2) swap A[n-2] and A[n-1]

if A[n-2] < A[n-1] then expectedDemo(A[0, n/2-1, n/2) // good case)else expected Demo(A[0, n-3, n-2)) // bad case

example

$$\sum_{R} T([1,4,5,8,9],R) \cdot \Pr(R) = T([1,4,5,8,9],\langle 0,\langle 0,0\rangle\rangle) \cdot \Pr(0)\Pr(\langle 0,0\rangle) + T([1,4,5,8,9],\langle 0,\langle 0,1\rangle\rangle) \cdot \Pr(0)\Pr(\langle 0,1\rangle) + T([1,4,5,8,9],\langle 0,\langle 1,0\rangle\rangle) \cdot \Pr(0)\Pr(\langle 1,0\rangle) + T([1,4,5,8,9],\langle 0,\langle 1,1\rangle\rangle) \cdot \Pr(0)\Pr(\langle 1,0\rangle) + T([1,4,5,8,9],\langle 1,\langle 1,0\rangle\rangle) \cdot \Pr(1)\Pr(\langle 1,0\rangle)$$

good cases

bad cases

 $+T([1,4,5,8,9],\langle \mathbf{1},\langle 0,1\rangle\rangle)\cdot \Pr(\mathbf{1})\Pr(\langle 0,1\rangle)$ $+T([1,4,5,8,9],\langle \mathbf{1},\langle 0,0\rangle\rangle) \cdot \Pr(\mathbf{1}) \Pr(\langle 0,0\rangle)$

 $+T([1,4,5,8,9],\langle 1,\langle 1,1\rangle\rangle) \cdot Pr(1) Pr(\langle 1,1\rangle)$

Summing up over all sequences of random outcomes

$$\sum_{R} T(A,R) \cdot \Pr(R) = \sum_{\langle x,R' \rangle} T(A,\langle x,R' \rangle) \cdot \Pr(x) \Pr(x) \Pr(R')$$

$$= \sum_{\langle x=0,R' \rangle} T(A,\langle x,R' \rangle) \cdot \Pr(x) \Pr(R') + \sum_{\langle x=1,R' \rangle} T(A,\langle x,R' \rangle) \cdot \Pr(x) \Pr(R')$$
bad cases

$$= \sum_{\langle x=0,R'\rangle} T(A,\langle x,R'\rangle) \cdot \Pr(x) \Pr(R') + \sum_{\langle x=1,R'\rangle} T(A,\langle x,R'\rangle) \cdot \Pr(x) \Pr(R')$$

$$= \sum_{\langle x=0,R'\rangle} T(A,\langle x,R'\rangle) \cdot \Pr(x) \Pr(x) \Pr(R') + \sum_{\langle x=1,R'\rangle} T(A,\langle x,R'\rangle) \cdot \Pr(x) \Pr(R')$$

Summing up over all sequences of random outcomes

$$\sum_{R} T(A,R) \cdot \Pr(R) = \sum_{\langle x,R' \rangle} T(A,\langle x,R' \rangle) \cdot \Pr(x) \Pr(x) \Pr(R')$$

$$= \sum_{\langle x=0,R' \rangle} T(A,\langle x,R' \rangle) \cdot \frac{1}{2} \Pr(R') + \sum_{\langle x=1,R' \rangle} T(A,\langle x,R' \rangle) \cdot \frac{1}{2} \Pr(R')$$
bad cases

$$= \sum_{\langle x=0,R'\rangle} T(A,\langle x,R'\rangle) \cdot \frac{1}{2} \operatorname{Pr}(R') + \sum_{\langle x=1,R'\rangle} T(A,\langle x,R'\rangle) \cdot \frac{1}{2} \operatorname{Pr}(R')$$

Summing up over all sequences of random outcomes

$$\sum_{R} T(A,R) \cdot \Pr(R) = \sum_{\langle x,R' \rangle} T(A,\langle x,R' \rangle) \cdot \Pr(x) \Pr(R')$$

$$= \frac{1}{2} \sum_{\langle x=0,R' \rangle} T(A,\langle x,R' \rangle) \Pr(R') + \frac{1}{2} \sum_{\langle x=1,R' \rangle} T(A,\langle x,R' \rangle) \Pr(R')$$
bad cases

$$= \frac{1}{2} \sum_{\langle x=0,R' \rangle} T(A, \langle x,R' \rangle) \Pr(R') + \frac{1}{2} \sum_{\langle x=1,R' \rangle} T(A, \langle x,R' \rangle) \Pr(R')$$

$$= \frac{1}{2} \sum_{\langle x=1,R' \rangle} T(A, \langle x,R' \rangle) \Pr(R')$$
bad cases

Summing up over all sequences of random outcomes

$$\sum_{R} T(A,R) \cdot \Pr(R) = \sum_{\langle x,R' \rangle} T(A,\langle x,R' \rangle) \cdot \Pr(x) \Pr(R')$$

$$= \frac{1}{2} \sum_{\langle x=0,R' \rangle} (1 + T(A[0 \dots n-3], R') \Pr(R') + \frac{1}{2} \sum_{\langle x=1,R' \rangle} (1 + T(A[0 \dots n/2-1], R') \Pr(R')$$
bad cases

$$= \frac{1}{2} \sum_{\langle x=0,R' \rangle} (1 + T(A[0 \dots n/2 - 1], R') Pr(R') + \frac{1}{2} \sum_{\langle x=1,R' \rangle} (1 + T(A[0 \dots n-3], R') Pr(R')$$
bad cases

$$T(A,R) = T(A,\langle x,R'\rangle) = \begin{cases} 1 + T(A[0 ... n/2 - 1], R') & \text{if } x \text{ is good} \\ 1 + T(A[0 ... n - 3], R') & \text{if } x \text{ is bad} \end{cases}$$

Summing up over all sequences of random outcomes

$$\sum_{R} T(A,R) \cdot \Pr(R) = \sum_{\langle x,R' \rangle} T(A,\langle x,R' \rangle) \cdot \Pr(x) \Pr(R')$$

$$= \frac{1}{2} \sum_{R'} (1 + T(A[0 \dots n-3], R') \Pr(R') + \frac{1}{2} \sum_{R'} (1 + T(A[0 \dots n/2-1], R') \Pr(R')$$
bad cases
$$= \frac{1}{2} \sum_{R'} (1 + T(A[0 \dots n/2-1], R') \Pr(R')$$

or

two cases just differ in the order of elements

$$= \frac{1}{2} \sum_{R'} (1 + T(A[0 \dots n/2 - 1], R') Pr(R') + \frac{1}{2} \sum_{R'} (1 + T(A[0 \dots n - 3], R') Pr(R')$$
good cases
$$R' \quad \text{bad cases}$$

$$T(A,R) = T(A,\langle x,R'\rangle) = \begin{cases} 1 + T(A[0 ... n/2 - 1], R') & \text{if } x \text{ is good} \\ 1 + T(A[0 ... n - 3], R') & \text{if } x \text{ is bad} \end{cases}$$

Summing up over all sequences of random outcomes

$$\sum_{R} T(A,R) \cdot \Pr(R) = \sum_{\langle x,R' \rangle} T(A,\langle x,R' \rangle) \cdot \Pr(x) \Pr(R')$$

$$= \frac{1}{2} \sum_{R'} (1 + T(A[0 \dots n-3], R') \Pr(R') + \frac{1}{2} \sum_{R'} (1 + T(A[0 \dots n/2-1], R') \Pr(R')$$
bad cases
$$= \frac{1}{2} \sum_{R'} (1 + T(A[0 \dots n/2-1], R') \Pr(R')$$

or

two cases just differ in the order of elements

$$= \frac{1}{2} \sum_{R'} (1 + T(A[0 \dots n/2 - 1], R') Pr(R') + \frac{1}{2} \sum_{R'} (1 + T(A[0 \dots n - 3], R') Pr(R')$$
good cases
$$R' \quad \text{bad cases}$$

Replace both cases with

$$= \frac{1}{2} \sum_{R'} \left(1 + T(A[0 \dots n/2 - 1], R') \right) \cdot \Pr(R') + \frac{1}{2} \sum_{R'} \left(1 + T(A[0 \dots n - 3], R') \right) \cdot \Pr(R')$$

$$\sum_{R} T(A,R) \cdot \Pr(R) =$$

$$= \frac{1}{2} \sum_{R'} \left(1 + T(A[0 \dots n/2 - 1], R') \right) \cdot \Pr(R') + \text{second part}$$

$$= \frac{1}{2} \sum_{R'} 1 \cdot \Pr(R') + \frac{1}{2} \sum_{R'} T\left(A\left[0 \dots \frac{n}{2} - 1\right], R'\right) \cdot \Pr(R') + \text{second part}$$

$$= \frac{1}{2} + \frac{1}{2} \sum_{R'} T\left(A\left[0 \dots \frac{n}{2} - 1\right], R'\right) \cdot \Pr(R') + \text{second part}$$

$$\sum_{R} T(A,R) \cdot \Pr(R) =$$

$$= \frac{1}{2} \sum_{R'} \left(1 + T(A[0 \dots n/2 - 1], R') \right) \cdot \Pr(R') + \text{second part}$$

$$= \frac{1}{2} \sum_{R'} 1 \cdot \Pr(R') + \frac{1}{2} \sum_{R'} T\left(A\left[0 \dots \frac{n}{2} - 1\right], R' \right) \cdot \Pr(R') + \text{second part}$$

$$= \frac{1}{2} + \frac{1}{2} \sum_{R'} T\left(A\left[0 \dots \frac{n}{2} - 1\right], R' \right) \cdot \Pr(R') + \text{second part}$$

$$C \leq \max\{A, B, C, \dots, Z\}$$

$$\begin{split} \sum_{R} T(A,R) \cdot \Pr(R) &= \\ &= \frac{1}{2} \sum_{R'} \left(1 + T(A[0 \dots n/2 - 1], R') \right) \cdot \Pr(R') \quad + \text{second part} \\ &= \frac{1}{2} \sum_{R'} 1 \cdot \Pr(R') + \frac{1}{2} \sum_{R'} T\left(A\left[0 \dots \frac{n}{2} - 1\right], R' \right) \cdot \Pr(R') \quad + \text{second part} \\ &= \qquad \frac{1}{2} \qquad \qquad + \frac{1}{2} \sum_{R'} T\left(A\left[0 \dots \frac{n}{2} - 1\right], R' \right) \cdot \Pr(R') \quad + \text{second part} \\ &= \qquad \sum_{R'} \Pr(R') \cdot \Pr(R') \quad + \Pr(R') \quad$$

$$\begin{split} \sum_{R} T(A,R) \cdot \Pr(R) &= \\ &= \frac{1}{2} \sum_{R'} \left(1 + T(A[0 \dots n/2 - 1], R') \right) \cdot \Pr(R') \quad + \text{second part} \\ &= \frac{1}{2} \sum_{R'} 1 \cdot \Pr(R') + \frac{1}{2} \sum_{R'} T\left(A\left[0 \dots \frac{n}{2} - 1\right], R' \right) \cdot \Pr(R') \quad + \text{second part} \\ &= \frac{1}{2} \qquad + \frac{1}{2} \sum_{R'} T\left(A\left[0 \dots \frac{n}{2} - 1\right], R' \right) \cdot \Pr(R') \quad + \text{second part} \\ &\leq \frac{1}{2} \qquad + \frac{1}{2} \max_{A' \in \mathbb{I}_{n/2}} \sum_{R'} T(A', R') \cdot \Pr(R') \qquad + \text{second part} \end{split}$$

$$\sum_{R} T(A,R) \cdot \Pr(R) =$$

$$= \frac{1}{2} \sum_{R'} \left(1 + T(A[0 \dots n/2 - 1], R') \right) \cdot \Pr(R') + \text{second part}$$

$$= \frac{1}{2} \sum_{R'} 1 \cdot \Pr(R') + \frac{1}{2} \sum_{R'} T\left(A\left[0 \dots \frac{n}{2} - 1\right], R' \right) \cdot \Pr(R') + \text{second part}$$

$$= \frac{1}{2} + \frac{1}{2} \sum_{R'} T\left(A\left[0 \dots \frac{n}{2} - 1\right], R' \right) \cdot \Pr(R') + \text{second part}$$

$$\leq \frac{1}{2} + \frac{1}{2} \max_{A' \in \mathbb{I}_{n/2}} \sum_{R'} T(A', R') \cdot \Pr(R') + \frac{1}{2} \sum_{R'} \left(1 + T(A[0 \dots n - 3], R') \right) \cdot \Pr(R')$$

$$\leq \frac{1}{2} + \frac{1}{2} \max_{A' \in \mathbb{I}_{n/2}} \sum_{R'} T(A', R') \cdot \Pr(R') + \frac{1}{2} + \frac{1}{2} \max_{A' \in \mathbb{I}_{n-2}} \sum_{R'} T(A', R') \cdot \Pr(R')$$

$$T^{exp}(n/2)$$

$$T^{exp}(n-2)$$

• For any $A \in \mathbb{I}_n$, it holds

$$\sum_{R} T(A,R) \cdot \Pr(R) \le 1 + \frac{1}{2} T^{exp}(n/2) + \frac{1}{2} T^{exp}(n-2)$$

Therefore it also holds for A which maximizes this sum

$$T^{exp}(n) = \max_{A \in \mathbb{I}_n} \sum_{R} T(A, R) \cdot \Pr(R) \le 1 + \frac{1}{2} T^{exp}(n/2) + \frac{1}{2} T^{exp}(n-2)$$

- Same recurrence as for averCaseDemo
 - expected running time is $O(\log(n))$
- Is it a coincidence that expected time of randomized version is the same as average case of non-randomized version?
 - not in general (depends on randomization)
 - but yes if randomization is a shuffle
 - choose instance randomly with equal probability

Average-case vs. Expected runtime

Average case runtime and expected runtime are different concepts!

average case	expected				
$T^{avg}(n) = \frac{\sum_{I \in \mathbb{I}_n} T(I)}{ \mathbb{I}_n }$	$T^{exp}(I) = \sum_{\text{outcomes } R} T(I,R) \cdot \Pr(R)$				
average over instances	average over random outcomes				
usually applied to a deterministic (i.e. not randomized) algorithm	applied only to a randomized algorithm				

 Sometimes can relate average-case runtime of an algorithm to the expected runtime of its randomized version, but not always

Average-case vs. Expected runtime

ShuffledVersion of Useful Algoritm(n)

among all instances I of size n for U for U for U choose I randomly and uniformly

UsefulAlgorithm(I, n)

Ignoring time needed for the first two lines

$$T^{avg}(n) = \frac{1}{|\mathbb{I}_n|} \sum_{I \in \mathbb{I}_n} T(I) = \sum_{I \in \mathbb{I}_n} \frac{1}{|\mathbb{I}_n|} T(I) = \sum_{I \in \mathbb{I}_n} \Pr(I \text{ is chosen}) T(I) = T^{exp}(n)$$

- To compute average case for an algorithm, can compute the expected runtime of its shuffled version
 - usually easier than computing average case time

Outline

- Sorting, average-case, and Randomization
 - Analyzing average-case run-time
 - Randomized Algorithms
 - QuickSelect
 - QuickSort
 - Lower Bound for Comparison-Based Sorting
 - Non-Comparison-Based Sorting

Selection Problem

- Given array A of n numbers, and $0 \le k < n$, find the element that would be at position k if A was sorted
 - k elements are smaller or equal, n-1-k elements are larger or equal

	0	1	2	3	4	5	6	7	8	9
	30	60	10	0	50	80	90	20	40	70
sorted	0	10	20	30	40	50	60	70	80	90

$$select(2) = 20$$

- Special case: *MedianFinding* = select $(k = \left\lfloor \frac{n}{2} \right\rfloor)$
- Selection can be done with heaps in $\Theta(n + k \log n)$ time
 - this is $\Theta(n \log n)$ for median finding, not better than sorting
- Question: can we do selection in linear time?
 - yes, with quick-select (average case analysis)
 - subroutines for quick-select also useful for sorting algorithms

Two Crucial Subroutines for Quick-Select

- choose-pivot(A)
 - return an index p in A
 - v = A[p] is called *pivot value*

0	1	2	3	p=4	5	6	7	8	9
30	60	10	0	v = 50	80	90	20	40	70

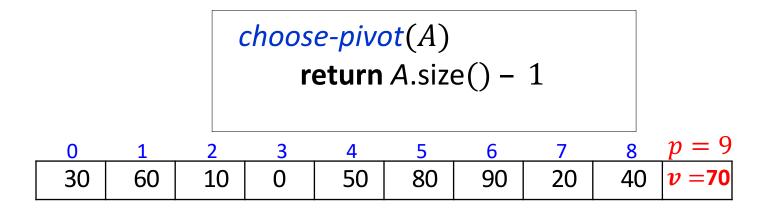
• partition (A, p) uses v = A[p] to rearranges A so that

0	1	2	3	4	i = 5	6	7	8	9
30	10	0	20	40	<i>v</i> =50	60	80	90	70

- items in A[0,...,i-1] are $\leq v$
- A[i] = v
- items in A[i+1,...,n-1] are $\geq v$
- index i is called *pivot-index* i
- partition(A, p) returns pivot-index i
 - i is a correct location of v in sorted A
 - if we were interested in select(i), then v would be the answer

Choosing Pivot

- Simplest idea for *choose-pivot*
 - always select rightmost element in array



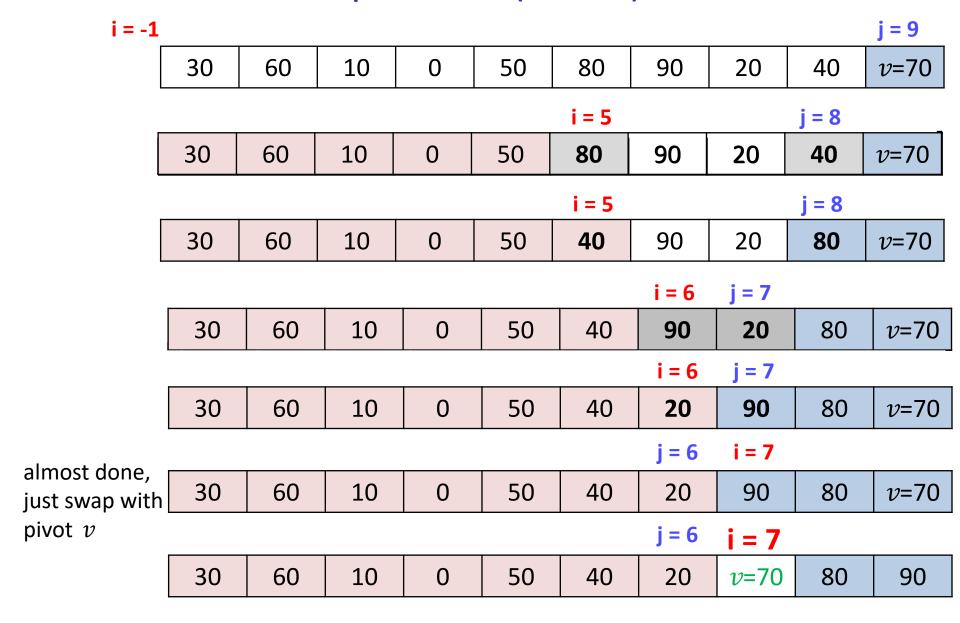
Will consider more sophisticated ideas later

Partition Algorithm

```
partition(A, p)
A: array of size n, p: integer s.t. 0 \le p < n
   create empty lists small, equal and large
    v \leftarrow A[p]
   for each element x in A
       if x < v then small.append(x)
       else if x > v then large.append(x)
       else equal. append(x)
    i \leftarrow small.size
   j \leftarrow equal.size
   overwrite A[0 ... i - 1] by elements in small
   overwrite A[i ... i + j - 1] by elements in equal
   overwrite A[i + j ... n - 1] by elements in large
   return i
```

- Easy linear-time implementation using extra (auxiliary) $\Theta(n)$ space
- More challenging: partition *in-place*, i.e. O(1) auxiliary space

Efficient In-Place partition (Hoare)



Efficient In-Place partition (Hoare)

• Idea Summary: keep swapping the outer-most wrongly-positioned pairs

One possible implementation

do
$$i \leftarrow i+1$$
 while $i < n$ and $A[i] \le v$ do $j \leftarrow j-1$ while $j \ge i$ and $A[j] \ge v$

More efficient (for quickselect and quicksort) when many repeating elements

do
$$i \leftarrow i+1$$
 while $i < n$ and $A[i] < v$
do $j \leftarrow j-1$ while $j > 0$ and $A[j] > v$

Simplify the loop bounds

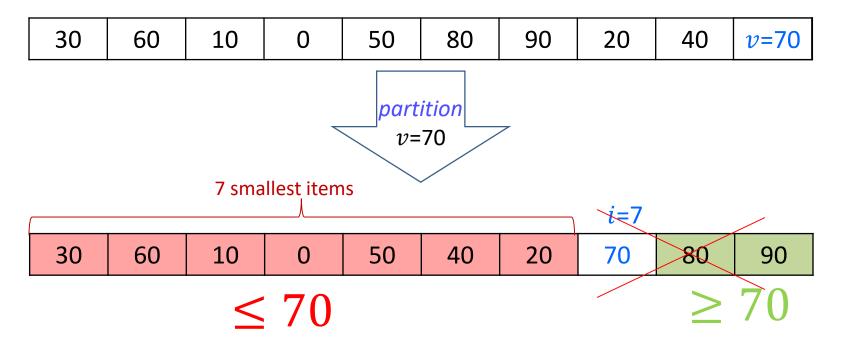
```
do i \leftarrow i+1 while A[i] < v // i will not run out of bounds as A[n-1] = v do j \leftarrow j-1 while j \ge i and A[j] > v // j will not run out of bounds as i \ge 0
```

Efficient In-Place partition (Hoare)

```
partition (A, p)
  A: array of size n
  p: integer s.t. 0 \le p < n
      swap(A[n-1], A[p]) // put pivot at the end
      i \leftarrow -1, j \leftarrow n-1, v \leftarrow A[n-1]
       loop
          do i \leftarrow i + 1 while A[i] < v
          do j \leftarrow j-1 while j \geq i and A[j] > v
          if i \ge j then break
          else swap(A[i], A[j])
      end loop
      swap(A[n-1], A[i]) // put pivot in correct position
      return i
```

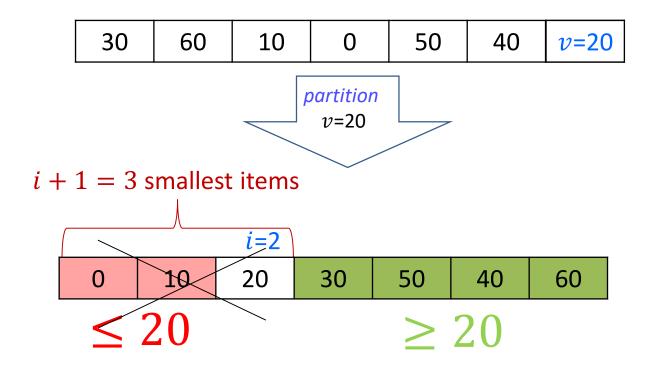
• Running time is $\Theta(n)$

- Find item that would be in A[k] if A was sorted
- Similar to quick-sort, but recurse only on one side ("quick-sort with pruning")
- Example: select(k = 4)



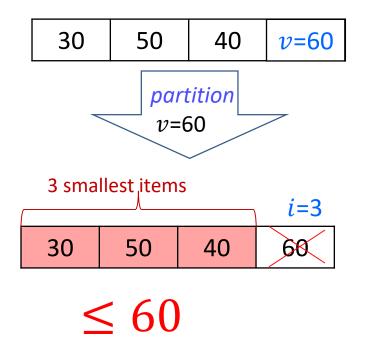
• i > k, search recursively in the left side to select k

• Example continued: select(k = 4)



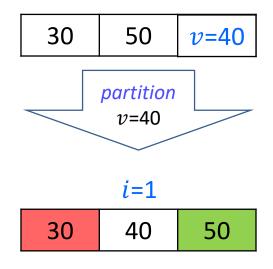
- i < k, search recursively on the right, select k (i + 1)
 - k = 1 in our example

• Example continued: select(k = 1)



• i > k, search on the left to select k

• Example continued: select(k = 1)



- i = k, found our item, done!
- In our example, we got to subarray of size 3
- Often stop much sooner than that

```
\begin{aligned} \textit{QuickSelect}(A,k) \\ \textit{A: array of size } n, & k: \text{integer s.t. } 0 \leq k < n \\ p \leftarrow \textit{choose-pivot}(A) \\ i \leftarrow \textit{partition}(A,p) & //\text{running time } \Theta(n) \\ \text{if } i = k & \text{then return } A[i] \\ \text{else if } i > k & \text{then return } \textit{QuickSelect}(A[0,1,\dots,i-1], \ k) \\ \text{else if } i < k & \text{then return } \textit{QuickSelect}(A[i+1,\dots,n-1], \ k-(i+1)) \end{aligned}
```

Best case

- first chosen pivot could have pivot-index k
- no recursive calls, total cost $\Theta(n)$

Worst case

- pivot-value is always the largest and k=0
- recurrence equation

$$T(n) = \begin{cases} cn + T(n-1) & n > 1 \\ c & n = 1 \end{cases}$$

- Worst case: recurrence equation $T(n) = \begin{cases} cn + T(n-1) & n > 1 \\ c & n = 1 \end{cases}$
- Solution: repeatedly expand until we see a pattern forming

$$T(n) = cn + T(n-1)$$

$$T(n-1) = c(n-1) + T(n-2)$$

$$T(n) = cn + c(n-1) + T(n-2)$$

$$T(n-2) = c(n-2) + T(n-3)$$

$$T(n) = cn + c(n-1) + c(n-2) + T(n-3)$$
after 2 expansions

After i expansions

$$T(n) = cn + c(n-1) + c(n-2) + \dots + c(n-i) + T(n-(i+1))$$

- Stop expanding when get to base case T(n-(i+1)) = T(1)
- Happens when n (i + 1) = 1, or, rewriting, i = n 2
- Thus $T(n) = cn + c(n-1) + c(n-2) + \dots + 2c + T(1)$ = $c[n + (n-1) + (n-2) + \dots + 2 + 1] \in \Theta(n^2)$

Average-Case Analysis of QuickSelect

- Runtime depends only on the order of the elements
- Therefore, can use sorting permutations

$$T^{avg}(n) = \frac{1}{n!} \sum_{\pi \in \Pi_n} T(\pi)$$

- Can show (complicated) that average-case runtime is $\Theta(n)$
 - better than the worst case runtime, $\Theta(n^2)$
- Therefore, can create a better algorithm in practice by randomizing QuickSelect
 - no more bad instances
 - if randomization is done with shuffling, the expected time randomizedQuickSelect is the same as average case runtime of nonrandomized QuickSelect
 - proved earlier
 - expected runtime is easier to derive
 - randomization leads to an easier analysis of average-case

Randomized QuickSelect: Shuffling

- First idea for randomization
- Shuffle the input then run quickSelect

```
\begin{array}{c} \textit{quickSelectShuffled}(A,k) \\ A: \mathsf{array} \ \mathsf{of} \ \mathsf{size} \ n \\ \quad \textit{for} \ i \leftarrow 1 \ \mathsf{to} \ n-1 \ \textit{do} \\ \quad \mathit{swap}(A[i], \ A[random(i+1)]) \\ \quad \mathit{QuickSelect}(A,k) \end{array}
```

- random(n) returns integer uniformly sampled from $\{0, 1, 2, ..., n-1\}$
- Can show that every permutation of A is equally likely after shuffle
- As shown before, expected time of quickSelectShuffled is the same as average case time of quickSelect
 - $\Theta(n)$

Randomized QuickSelect Algorithm

Second idea: change pivot selection

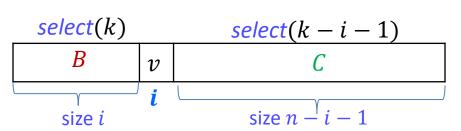
```
RandomizedQuickSelect(A, k)
 A: array of size n, k: integer s.t. 0 \le k < n
      p \leftarrow random(A.size)
      i \leftarrow partition(A, p)
      if i = k then return A[i]
      else if i > k then
             return RandomizedQuickSelect(A[0, 1, ..., i-1], k)
      else if i < k then
            return RandomizedQickSelect(A[i+1,...,n-1], k-(i+1))
```

- Advantage: no need to spend time shuffling
- It is possible to prove that RandomizedQuickSelect has the same expected runtime as quickSelectShuffled (no details)
- So expected runtime of *RandomizedQuickSelect* is $\Theta(n)$
- But it is actually not as hard to derive expected time for RandomizedQuickSelect

Randomized QuickSelect: Analysis

- Let T(A, k, R) be number of *key-comparisons* on array A of size n, selecting kth element, using random numbers R
 - asymptotically the same as running time

- RandomizedQuickSelect(A, k) $p \leftarrow random(A. size)$ $i \leftarrow partition(A, p)$
- Identify numbers p generated by random with pivot indexes i
 - one-one correspondence between generated numbers and pivot indexes
- So R is a sequence of randomly generated pivot indexes, $R = \langle \text{first, the rest of } R \rangle = \langle i, R' \rangle$
- Assume array elements are distinct
 - probability of any pivot-index i equal to 1/n
- Structure of array A after partition



• Recurse in array B or C or algorithms stops

$$T(A, k, \langle i, R' \rangle) = n + \begin{cases} T(B, k, R') & \text{if } i > k \\ T(C, k - i - 1, R') & \text{if } i < k \\ 0 & \text{otherwise} \end{cases}$$

$$T(A, k, \langle i, R' \rangle) = n + \begin{cases} T(B, k, R') & \text{if } i > k \\ T(C, k - i - 1, R') & \text{if } i < k \\ 0 & \text{otherwise} \end{cases}$$

For expectedDemo

$$T^{exp}(n) = \max_{A \in \mathbb{I}_n} \sum_{R} T(A, R) \Pr(R)$$

Runtime of RandomizedQuickSelect(A, k) also depends on k

$$T^{exp}(n) = \max_{A \in \mathbb{I}_n} \max_{k \in \{0, \dots n-1\}} \sum_{R} T(A, k, R) \Pr(R)$$

• First, let us work on $\sum_{R} T(A, k, R) \Pr(R)$

$$\sum_{R} T(A, k, R) \Pr(R) = T(A, k, \langle i, R' \rangle) = n + \begin{cases} T(B, k, R') & \text{if } i > k \\ T(C, k - i - 1, R') & \text{if } i < k \\ 0 & \text{otherwise} \end{cases}$$

$$= \sum_{R = \langle i, R' \rangle} T(A, k, \langle i, R' \rangle) \Pr(i) \Pr(R')$$

$$= \frac{1}{n} \sum_{R = \langle i, R' \rangle} T(A, k, \langle i, R' \rangle) \Pr(R')$$

$$= \sum_{R = \langle i, R' \rangle} T(A, k, \langle i, R' \rangle) \Pr(R')$$

$$= \sum_{R = \langle i, R' \rangle} T(A, k, \langle i, R' \rangle) \Pr(R')$$

$$= \sum_{R = \langle i, R' \rangle} T(A, k, \langle i, R' \rangle) \Pr(R')$$

$$= \frac{1}{n} \sum_{i = 0}^{n-1} \sum_{R'} T(A, k, \langle i, R' \rangle) \Pr(R')$$

$$= \frac{1}{n} \sum_{i = 0}^{n-1} \sum_{R'} T(A, k, \langle i, R' \rangle) \Pr(R')$$

$$= \frac{1}{n} \sum_{i = 0}^{n-1} \sum_{R'} T(A, k, \langle i, R' \rangle) \Pr(R')$$

$$= \frac{1}{n} \sum_{i = 0}^{n-1} \sum_{R'} T(A, k, \langle i, R' \rangle) \Pr(R')$$

$$= \frac{1}{n} \sum_{i = 0}^{n-1} \sum_{R'} T(A, k, \langle i, R' \rangle) \Pr(R')$$

$$T(A,k,(i,R')) = n + \begin{cases} T(B,k,R') & \text{if } i > k \\ T(C,k-i-1,R') & \text{if } i < k \\ 0 & \text{otherwise} \end{cases}$$

$$= \frac{1}{n} \sum_{i=0}^{k-1} \sum_{R'} T(A,k,\langle i,R'\rangle) \Pr(R') + 1 + \frac{1}{n} \sum_{i=k+1}^{n-1} \sum_{R'} T(A,k,\langle i,R'\rangle) \Pr(R')$$

$$= \frac{1}{n} \sum_{i=0}^{k-1} \sum_{R'} [n+T(C,k-i-1,R')] \Pr(R') + 1 + \frac{1}{n} \sum_{i=k+1}^{n-1} \sum_{R'} [n+T(B,k,R')] \Pr(R')$$

$$= \frac{1}{n} \sum_{i=0}^{k-1} \sum_{R'} [n+T(C,k-i-1,R')] \Pr(R') + \text{the rest}$$

$$= \frac{1}{n} \sum_{i=0}^{k-1} \sum_{R'} [n+T(C,k-i-1,R')] \Pr(R') + \text{the rest}$$

 $\sum T(A, k, R) \Pr(R) =$

$$T(A, k, \langle i, R' \rangle) = n + \begin{cases} T(B, k, R') & \text{if } i > k \\ T(C, k - i - 1, R') & \text{if } i < k \\ 0 & \text{otherwise} \end{cases}$$

$$= \frac{1}{n} \sum_{i=1}^{k-1} \sum_{R} T(A, k, \langle i, R' \rangle) \Pr(R') + 1 + \frac{1}{n} \sum_{i=1}^{n-1} \sum_{R} T(A, k, \langle i, R' \rangle) \Pr(R')$$

$$= \frac{1}{n} \sum_{i=0}^{k-1} \sum_{R'} [n + T(C, k - i - 1, R')] \Pr(R') + 1 + \frac{1}{n} \sum_{i=k+1}^{n-1} \sum_{R'} [n + T(B, k, R')] \Pr(R')$$
the rest

$$= \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{n} \left[n + T(C, k - i - 1, R') \right] \Pr(R') + \text{the rest}$$

$$= \frac{n}{n} \sum_{i=0}^{k-1} \sum_{Pr(R')} + \frac{1}{n} \sum_{i=0}^{k-1} \sum_{Pr} T(C, k-i-1, R') Pr(R') + \text{the rest}$$

$$= k + \frac{1}{n} \sum_{i=0}^{n} \sum_{R'} T(C, k-i-1, R') \Pr(R') + \text{the rest}$$

$$\sum_{R} T(A, k, R) \Pr(R) = \sum_{A \in \mathbb{I}_n} \max_{k \in \{0, \dots, n-1\}} \sum_{R} T(A, k, R) \Pr(R)$$
some instance C of size $n - i - 1$

some integer
$$k - i - 1 \in \{0, ..., k - 1\}$$

$$= k + \frac{1}{n} \sum_{i=0}^{k-1} \sum_{R'} T(C, k - i - 1, R') \Pr(R') + \text{the rest}$$

$$\max \text{ over all instances } D \text{ of size } n-i-1$$
 and all integers $\in \{0, \dots k-1\}$
$$\leq k + \frac{1}{n} \sum_{i=0}^{k-1} \max_{D \in \mathbb{I}_{n-i-1}, \ w \in \{0, \dots k-1\}} \sum_{R'} T(D, w, R') \Pr(R') + \text{the rest}$$

$$= k + \frac{1}{n} \sum_{i=0}^{k-1} T^{exp}(n-i-1) +$$
the rest

$$\sum_{R} T(A, k, R) \Pr(R) =$$

$$T^{exp}(n) = \max_{A \in \mathbb{I}_n} \max_{k \in \{0, \dots n-1\}} \sum_{R} T(A, k, R) \Pr(R)$$

$$= k + \frac{1}{n} \sum_{i=0}^{n-1} T^{exp}(n-i-1) +$$
the rest

$$= k + \frac{1}{n} \sum_{i=0}^{k-1} T^{exp} (n - i - 1)$$

$$= k + \frac{1}{n} \sum_{i=0}^{k-1} T^{exp}(n-i-1) + 1 + \frac{1}{n} \sum_{i=k+1}^{n-1} \sum_{R'} [n + T(B,k,R')] \Pr(R')$$

apply same steps as to first sum

$$\leq k + \frac{1}{n} \sum_{i=0}^{k-1} T^{exp}(n-i-1) + 1 + n-1-k + \frac{1}{n} \sum_{i=k+1}^{n-1} T^{exp}(i)$$

$$\leq n + \frac{1}{n} \sum_{i=0}^{\kappa-1} T^{exp}(n-i-1) + \frac{1}{n} \sum_{i=k+1}^{n-1} T^{exp}(i)$$

$$\sum_{R} T(A, k, R) \Pr(R)$$

$$T^{exp}(n) = \max_{A \in \mathbb{I}_n} \max_{k \in \{0, \dots, n-1\}} \sum_{R} T(A, k, R) \Pr(R)$$

 $\leq n + \frac{1}{n} \sum_{i=1}^{n} \max\{T^{exp}(n-i-1), T^{exp}(i)\} + \frac{1}{n} \sum_{i=1}^{n} \max\{T^{exp}(i), T^{exp}(n-i-1)\}$

$$\leq n + \frac{1}{n} \sum_{i=0}^{k-1} T^{exp}(n-i-1) + \frac{1}{n} \sum_{i=k+1}^{n-1} T^{exp}(i)$$

$$= n + \frac{1}{n} \sum_{i=1}^{n-1} \max\{T^{exp}(i), T^{exp}(n-i-1)\}\$$

Since above bound works for any A and k, it will work for the worst A and k

$$T^{exp}(n) = \max_{A \in \mathbb{I}_n} \max_{k \in \{0, \dots n-1\}} \sum_{R} T(A, k, R) \Pr(R) \le n + \frac{1}{n} \sum_{k=1}^{n-1} \max\{T^{exp}(i), T^{exp}(n-i-1)\}$$

Expected runtime for *RandomizedQuickSelect* satisfies

$$T^{exp}(n) \le n + \frac{1}{n} \sum_{i=0}^{n-1} \max\{T^{exp}(i), T^{exp}(n-i-1)\}$$

Randomized QuickSelect: Solving Recurrence

$$T(1) = 1 \text{ and } T(n) \le n + \frac{1}{n} \sum_{i=0}^{n-1} \max\{T(i), T(n-i-1)\}\$$

Theorem: $T(n) \in O(n)$

Proof:

- will prove $T(n) \le 4n$ by induction on n
- base case, n = 1: $T(1) = 1 \le 4 \cdot 1$
- induction hypothesis: assume $T(m) \leq 4m$ for all m < n
- need to show $T(n) \leq 4n$

eed to show
$$T(n) \le 4n$$
 induction hypothesis to each one of these
$$T(n) \le n + \frac{1}{n} \sum_{i=0}^{n-1} max\{T(i), T(n-i-1)\}$$

$$\leq n + \frac{1}{n} \sum_{i=0}^{n-1} max\{4i, 4(n-i-1)\}$$

$$\leq n + \frac{4}{n} \sum_{i=0}^{n-1} \max\{i, n-i-1\}$$

Randomized QuickSelect: Solving Recurrence

exactly what we need for the proof

Proof: (cont.)
$$T(n) \le n + \frac{4}{n} \sum_{i=0}^{n-1} max\{i, n-i-1\} \le n + \frac{4}{n} \cdot \frac{3}{4} n^2 = 4n$$

$$\sum_{i=0}^{n-1} max\{i, n-i-1\} = \sum_{i=0}^{\frac{n}{2}-1} max\{i, n-i-1\} + \sum_{i=\frac{n}{2}}^{n-1} max\{i, n-i-1\}$$

$$= max\{0, \underline{n-1}\} + max\{1, \underline{n-2}\} + max\{2, \underline{n-3}\} + \dots + max\{\frac{n}{2}-1, \frac{n}{2}\}$$

$$+ max\{\frac{n}{2}, \frac{n}{2}-1\} + max\{\frac{n}{2}+1, \frac{n}{2}-2\} + \dots + max\{\underline{n-1}, 0\}$$

$$= (n-1) + (n-2) + \dots + \frac{n}{2} + \frac{n}{2} + \left(\frac{n}{2} + 1\right) + \dots + (n-1) = \left(\frac{3n}{2} - 1\right) \frac{n}{2}$$

$$\left(\frac{3n}{2} - 1\right) \frac{n}{4}$$

$$\left(\frac{3n}{2} - 1\right) \frac{n}{4}$$

$$\leq \frac{3}{4} n^2$$

Summary of Selection

- Thus expected runtime of RandomizedQuickSelect is O(n)
 - it is also $\Theta(n)$, since the best case is O(n)
 - have to partition the array
- Therefore quickSelectShuffled ehas expected runtime O(n)
 - no details
- Therefore quickSelect has average case runtime O(n)
- RandomizedQuickSelect is generally the fastest implementation of selection algorithm
- There is a selection algorithm with worst-case running time O(n)
 - CS341
 - but it uses double recursion and is slower in practice

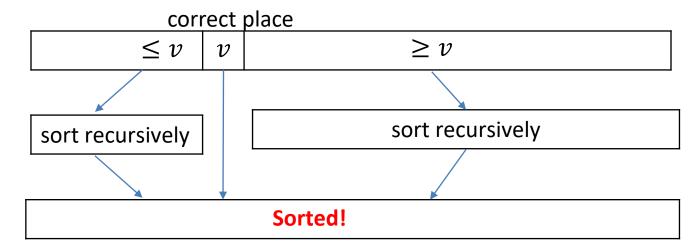
Outline

- Sorting, average-case, and Randomization
 - Analyzing average-case run-time
 - Randomized Algorithms
 - QuickSelect
 - QuickSort
 - Lower Bound for Comparison-Based Sorting
 - Non-Comparison-Based Sorting

QuickSort

- Hoare developed partition and quick-select in 1960
- He also used them to sort based on partitioning

```
\begin{aligned} \textit{QuickSort}(A) \\ &\text{Input: array $A$ of size $n$} \\ &\text{if $n \leq 1$ then return} \\ &p \leftarrow choose\text{-}pivot(A) \\ &i \leftarrow partition (A,p) \\ &\textit{QuickSort}(A[0,1,...,i-1]) \\ &\textit{QuickSort}(A[i+1,...,n-1]) \end{aligned}
```



QuickSort

```
\begin{aligned} \textit{QuickSort}(A) \\ &\text{Input: array $A$ of size $n$} \\ &\text{if $n \leq 1$ then return} \\ &p \leftarrow choose\text{-pivot}(A) \\ &i \leftarrow partition (A,p) \\ &\textit{QuickSort}(A[0,1,...,i-1]) \\ &\textit{QuickSort}(A[i+1,...,n-1]) \end{aligned}
```

- Let T(n) to be the number of comparisons on size n array
 - running time is $\Theta(\text{number of comparisons})$
- If we know pivot-index *i*, then T(n) = n + T(i) + T(n i 1)
- Worst case T(n) = T(n-1) + n
 - recurrence solved in the same way as quickSelect, $O(n^2)$
- Best case T(n) = T([n/2]) + T([n/2]) + n
 - solved in the same way as *mergeSort*, $\Theta(n \log n)$
- Average case?
 - through randomized version of QuickSort

Randomized QuickSort: Random Pivot

```
\begin{array}{c} \textit{RandomizedQuickSort}(A) \\ \dots \\ p \leftarrow \textit{random}(A.\,\textit{size}) \\ \dots \end{array}
```

- Let $T^{exp}(n) = \text{number of comparisons}$
- Analysis is similar to that of RandomizedQuickSelect
 - lacktriangle but recurse both in array of size i and array of size n-i-1
- Expected running time for RandomizedQuickSort
 - derived similarly to RandomizedQuickSelect

$$T^{exp}(n) \le \frac{1}{n} \sum_{i=0}^{n-1} (n + T^{exp}(i) + T^{exp}(n-i-1))$$

Randomized QuickSort: Expected Runtime

• Simpler recursive expression for $T^{exp}(n)$

$$T^{exp}(n) \le \frac{1}{n} \sum_{i=0}^{n-1} \left(n + T^{exp}(i) + T^{exp}(n-i-1) \right)$$

$$= n + \frac{1}{n} \sum_{i=0}^{n-1} T^{exp}(i) + \frac{1}{n} \sum_{i=0}^{n-1} T^{exp}(n-i-1)$$

$$T(0) + T(1) + \dots + T(n-1) \qquad T(n-1) + T(n-2) + \dots + T(0)$$

$$= n + \frac{2}{n} \sum_{i=0}^{n-1} T^{exp}(i)$$

Thus $T^{exp}(n) \le n + \frac{2}{n} \sum_{i=0}^{n-1} T^{exp}(i)$

Randomized QuickSort

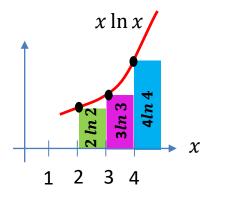
$$T^{exp}(n) \le n + \frac{2}{n} \sum_{i=2}^{n-1} T^{exp}(i)$$

- Claim $T^{exp}(n) \le 2n \ln n$ for all $n \ge 0$
- Proof (by induction on n):
 - $T^{exp}(0) = T^{exp}(1) = 0$ (no comparisons)
 - Suppose true for $2 \le m < n$
 - Let $n \geq 2$

$$T^{exp}(n) \le n + \frac{2}{n} \sum_{i=0}^{n-1} T^{exp}(i) \le n + \frac{2}{n} \sum_{i=0}^{n-1} 2i \ln i = n + \frac{4}{n} \sum_{i=0}^{n-1} i \ln i$$

by induction

Upper bound by integral, since is $x \ln x$ is monotonically increasing for x > 1



$$\sum_{i=2}^{n-1} i \ln i \le \int_{2}^{n} x \ln x \, dx = \frac{1}{2} n^{2} \ln n - \frac{1}{4} n^{2} - 2 \ln 2 + 1$$

$$\le 0$$

$$\leq \frac{1}{2}n^2 \ln n - \frac{1}{4}n^2$$

Randomized QuickSort

$$T^{exp}(n) \le n + \frac{2}{n} \sum_{i=2}^{n-1} T^{exp}(i)$$

- Claim $T^{exp}(n) \le 2n \ln n$ for all $n \ge 0$
- Proof (by induction on n):

$$T^{exp}(0) = T^{exp}(1) = 0$$

- Suppose true for $2 \le m < n$
- Let $n \ge 2$:

by induction
$$\sum_{i=2}^{n-1} i \ln i \le \frac{1}{2} n^2 \ln n - \frac{1}{4} n^2$$
by prophesis $n = 1$

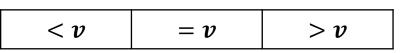
$$T^{exp}(n) \le n + \frac{2}{n} \sum_{i=2}^{n-1} T^{exp}(i) \le n + \frac{2}{n} \sum_{i=2}^{n-1} 2i \ln i = n + \frac{4}{n} \sum_{i=2}^{n-1} i \ln i$$

$$T^{exp}(n) \le n + \frac{4}{n} \left(\frac{1}{2} n^2 \ln n - \frac{1}{4} n^2 \right) = 2n \ln n$$

- Expected running time of *RandomizedQuickSort* is $O(n \log n)$
- Average case runtime of *QuickSelect* is $O(n \log n)$

Improvement ideas for QuickSort

- The auxiliary space is Ω (recursion depth)
 - $\Theta(n)$ in the worst case, $\Theta(\log n)$ average case
 - can be reduce to $\Theta(\log n)$ worst-case by
 - recurse in smaller sub-array first
 - replacing the other recursion by a while-loop (tail call elimination)
- Stop recursion when, say $n \leq 10$
 - array is not completely sorted, but almost sorted
 - at the end, run insertionSort, it sorts in just O(n) time since all items are within 10 units of the required position
- Arrays with many duplicates sorted faster by changing partition to produce three subsets



- Programming tricks
 - instead of passing full arrays, pass only the range of indices
 - avoid recursion altogether by keeping an explicit stack

QuickSort with Tricks

```
QuickSortImproves(A, n)
      initialize a stack S of index-pairs with \{(0, n-1)\}
      while S is not empty
                                            // get the next subproblem
                (l,r) \leftarrow S.pop()
                while r - l + 1 > 10 // work on it if it's larger than 10
                     p \leftarrow choose-pivot(A, l, r)
                     i \leftarrow partition(A, l, r, p)
                     if i-l>r-i do // is left side larger than right?
                          S.push((l, i-1)) // store larger problem in S for later
                          l \leftarrow i + 1 // next work on the right side
                    else
                         S.push((i+1,r)) // store larger problem in S for later
                         r \leftarrow i - 1
                                                // next work on the left side
      InsertionSort(A)
```

- This is often the most efficient sorting algorithm in practice
 - although worst-case is $\Theta(n^2)$

Outline

- Sorting, average-case, and Randomization
 - Analyzing average-case run-time
 - Randomized Algorithms
 - QuickSelect
 - QuickSort
 - Lower Bound for Comparison-Based Sorting
 - Non-Comparison-Based Sorting

Lower bounds for sorting

We have seen many sorting algorithms

Sort	Running Time	Analysis
Selection Sort	$\Theta(n^2)$	worst-case
Insertion Sort	$\Theta(n^2)$	worst-case
Merge Sort	$\Theta(n \log n)$	worst-case
Heap Sort	$\Theta(n \log n)$	worst-case
quickSort RandomizedQuickSort	$\Theta(n \log n)$ $\Theta(n \log n)$	average-case expected

- Question: Can one do better than $\Theta(n \log n)$ running time?
- Answer: It depends on what we allow
 - No: comparison-based sorting lower bound is $\Omega(n \log n)$
 - no restriction on input, just must be able to compare
 - Yes: non-comparison-based sorting can achieve O(n)
 - restrictions on input

The Comparison Model

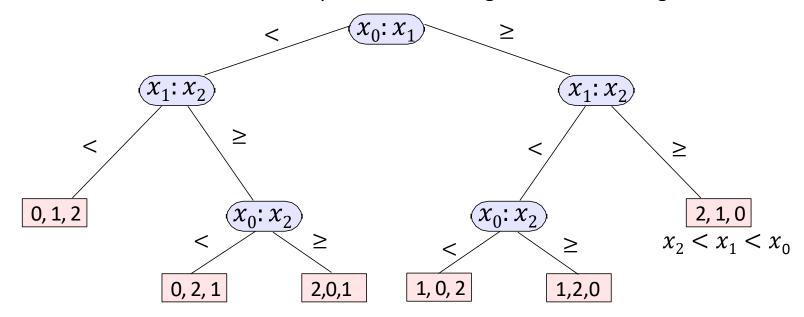
- All sorting algorithms seen so far are in the comparison model
- In the comparison model data can only be accessed in two ways
 - comparing two elements
 - moving elements around (e.g. copying, swapping)
- This makes very few assumptions on the things we are sorting
 - just count the number of above operations
- Under comparison model, will show that any sorting algorithm requires $\Omega(n\log n)$ comparisons
- This lower bound is not for an algorithm, it is for the sorting problem
- How can we talk about problem without algorithm?
 - count number of comparisons any sorting algorithm has to perform

Decision Tree

- Decision tree succinctly describes all decisions that are taken during the execution of an algorithm and the resulting outcome
- For each comparison-based sorting algorithm we can construct a corresponding decision tree
- Given decision tree, we can deduce the algorithm
- Can create decision trees for any comparison-based algorithm, not just sorting

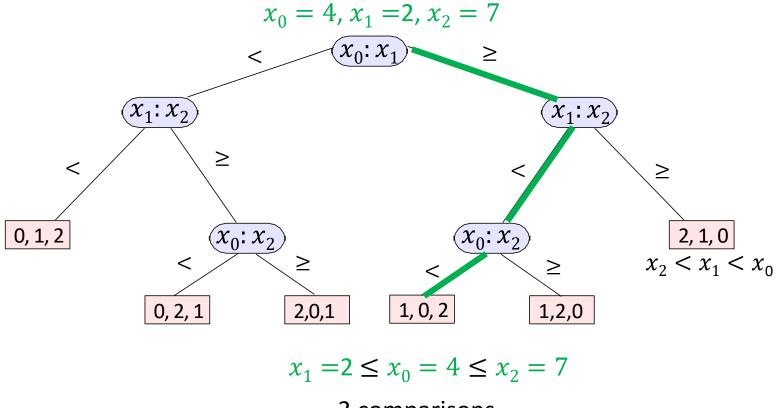
Decision Tree

Decision tree for a concrete comparison based algorithm for sorting 3 elements



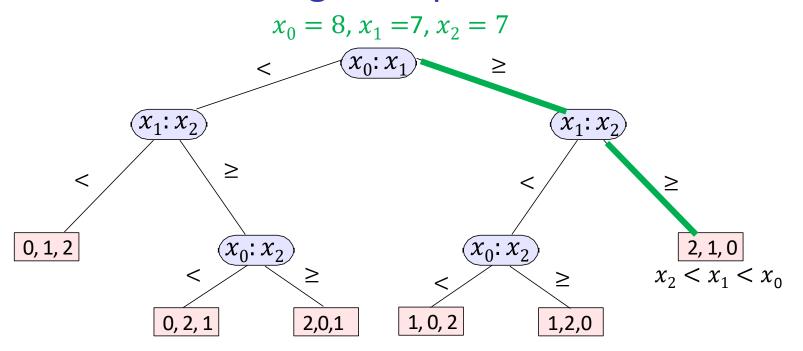
- Interior nodes are comparisons
 - root corresponds is the first comparison
- Each comparison has two outcomes: < and ≥</p>
- Each interior node has two children, links to the children are labeled with outcomes
- When algorithm makes no more comparisons, that node becomes a leaf
 - sorting permutation has been determined once we reach a leaf
 - label the leaf with the corresponding sorting permutation, if reachable

Decision Tree: Sorting Example



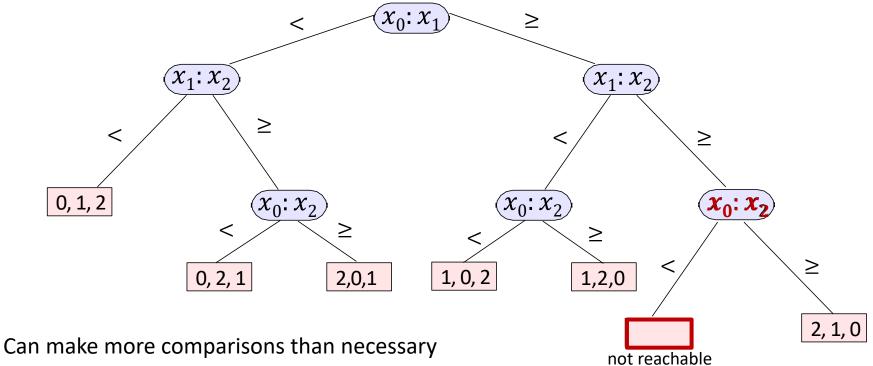
3 comparisons

Decision Tree: Sorting Example



$$x_2 = 7 \le x_1 = 7 \le x_0 = 8$$
2 comparisons

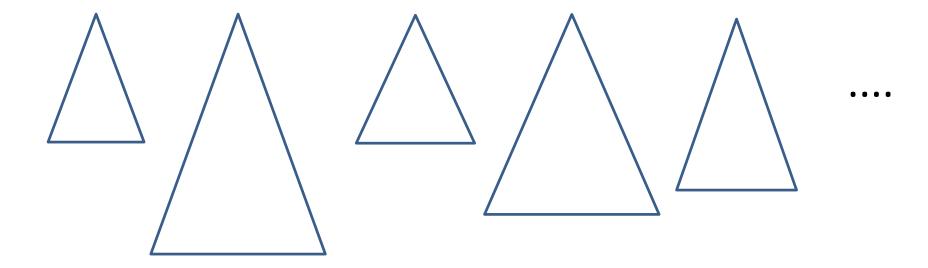
Decision Tree



- Can have leaves which are never reached
- Can have unreachable branches
- Unreachable branches/leaves make no difference for the runtime
 - algorithm never goes into unreachable structure
- So assume everything is reachable (i.e. prune unreachable branches from decision tree)
- Tree height h is the worst case number of comparisons

Decision Tree

- General case: comparison-based sort for n elements
- Many sorting algorithms, for each one we have its own decision tree

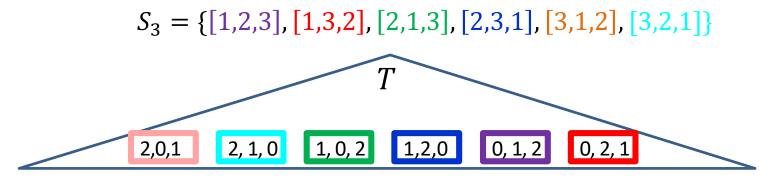


- Can prove that the height of **any** decision tree is at least $c \log n$
 - which is $\Omega(n \log n)$

Lower bound for sorting in the comparison model

Theorem: Comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons **Proof:**

- Let SortAlg be any comparison based sorting algorithm
- Since algorithm is comparison based, it has a decision tree



- SortAlg must sort correctly any array of n elements
- Let $S_n = \text{set of all arrays consisting of distinct integers in } \{1, ..., n\}$
- $|S_n| = n!$
- Let π_x denote the sorting permutation of $x \in S_n$
- When running x through T, we **must** end up at a leaf labeled with π_x
- $x, y \in S_n$ with $x \neq y$ have sorting permutations $\pi_x \neq \pi_y$
- Thus we determined n! instances which must go to distinct leaves
- Therefore, the tree must have at least *n*! leaves

Lower bound for sorting in the comparison model

Proof: (cont.)

- Therefore, the tree must have at least n! leaves
- Binary tree with height h has at most 2^h leaves
- Height h must be at least such that $2^h \ge n!$
- Taking logs of both sides

$$\geq \log \frac{n}{2}$$

$$h \geq \log(n!) = \log(n(n-1)\dots \cdot 1) = \frac{\log n + \dots + \log(\frac{n}{2} + 1) + \log \frac{n}{2} + \dots + \log 1 }{ \geq \log \frac{n}{2} + \dots + \log \frac{n}{2} }$$

$$\geq \log \frac{n}{2} + \dots + \log \frac{n}{2}$$

$$= \frac{n}{2} \log \frac{n}{2} = \frac{n}{2} \log n - \frac{n}{2} \in \Omega(n \log n)$$

- Notes about the proof
 - proof does not assume the algorithm sorts only distinct elements
 - proof does not assume the algorithms sorts only integers in range $\{1, ..., n\}$
 - lacktriangle poof is based on finding n! input instances that must go to distinct leaves
 - total number of inputs is infinite

Outline

- Sorting, average-case, and Randomization
 - Analyzing average-case run-time
 - Randomized Algorithms
 - QuickSelect
 - QuickSort
 - Lower Bound for Comparison-Based Sorting
 - Non-Comparison-Based Sorting

Non-Comparison-Based Sorting

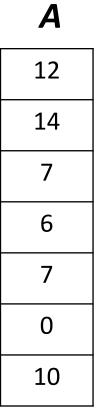
- Sort without comparing items to each other
- Non-comparison based sorting is less general than comparison based sorting
- In particular, we need to make assumptions about items we sort
 - unlike in comparison based sorting, which sorts any data, as long as it can be compared
- Will assume we are sorting non-negative integers
 - can adapt to negative integers
 - also to some other data types, such as strings
 - but cannot sort arbitrary data

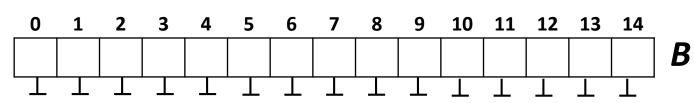
Non-Comparison-Based Sorting

- Suppose all keys in A are integers in range [0, ..., L-1]
- How would you sort if *L* is not too large?

Bucket Sort

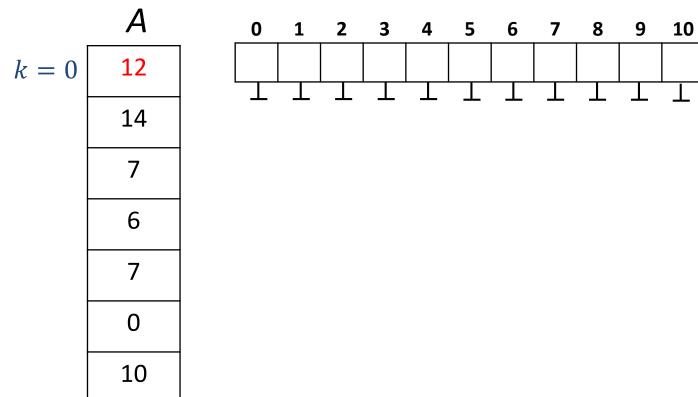
- Suppose all keys in A are integers in range [0, ..., L-1]
- How would you sort if L is not too large?
- Use an axillary bucket array B[0, ..., L-1] to sort
 - i.e. array of initially empty linked lists, initialization is $\Theta(L)$
- Example with L=15

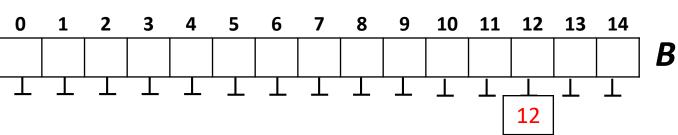




Bucket Sort

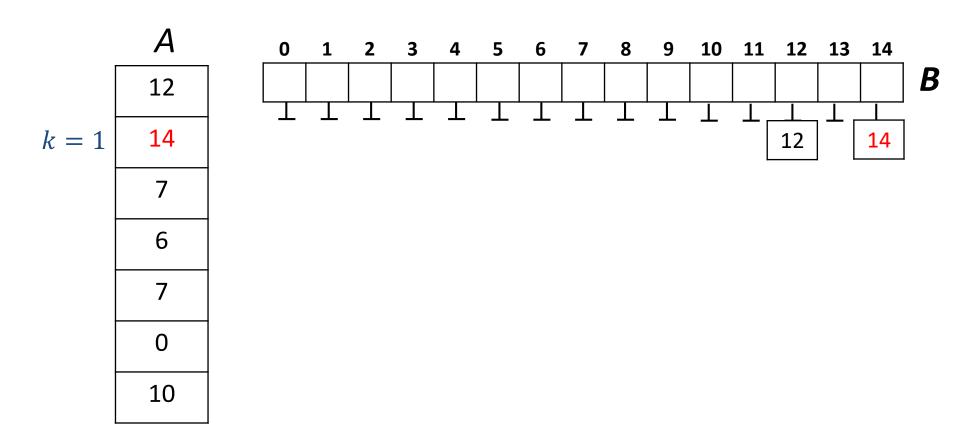
- Suppose all keys in A are integers in range [0, ..., L-1]
- Use an axillary bucket array B[0, ..., L-1] to sort
 - i.e. array of linked lists, initialization is $\Theta(L)$
- Example with L = 15



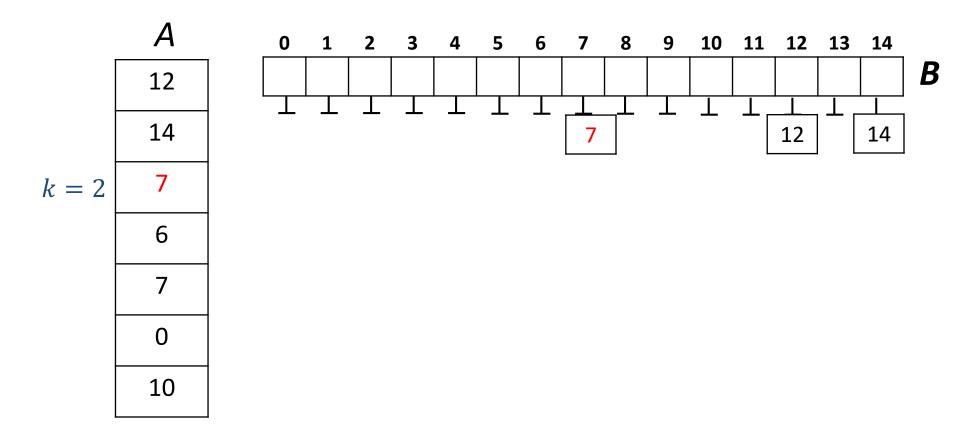


Bucket Sort

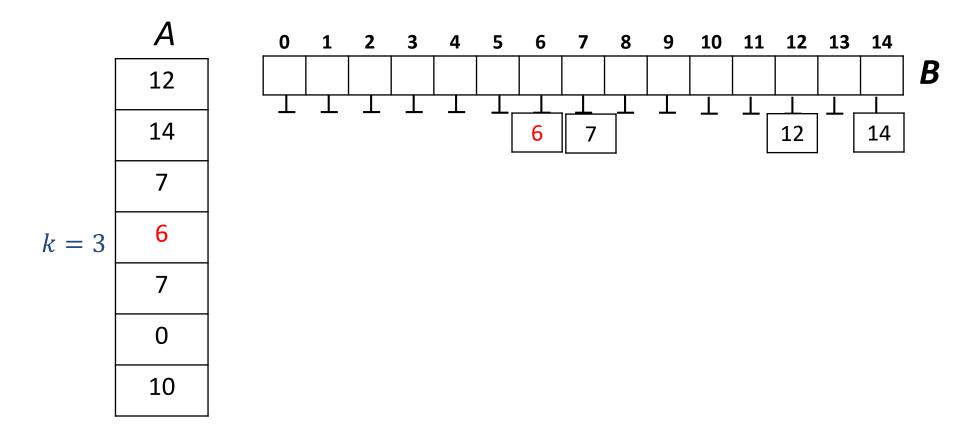
- Suppose all keys in A are integers in range [0, ..., L-1]
- Use an axillary bucket array B[0, ..., L-1] to sort
 - i.e. array of linked lists, initialization is $\Theta(L)$
- Example with L = 15



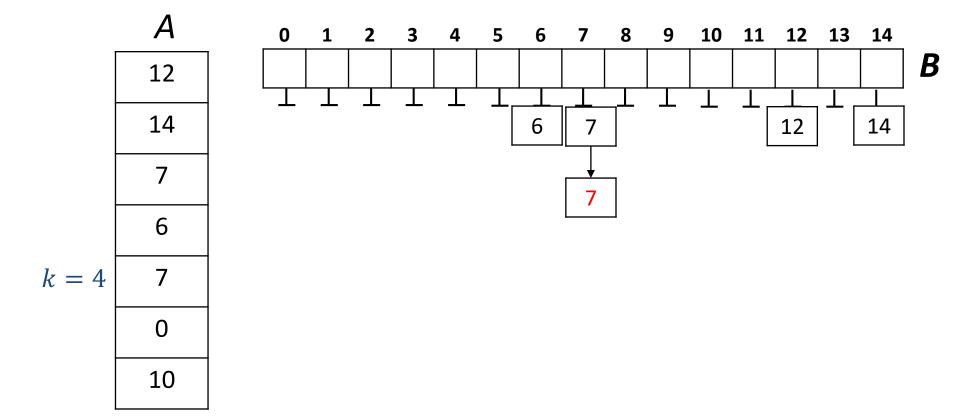
- Suppose all keys in A are integers in range [0, ..., L-1]
- Use an axillary bucket array B[0, ..., L-1] to sort
 - i.e. array of linked lists, initialization is $\Theta(L)$
- Example with L = 15



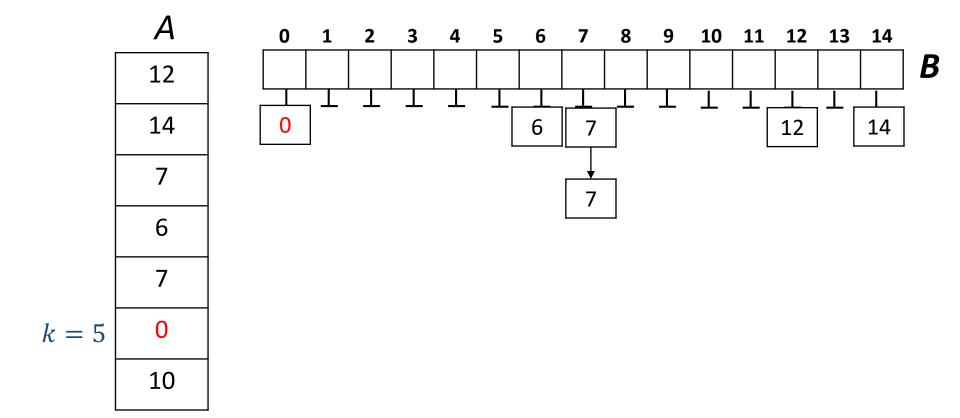
- Suppose all keys in A are integers in range [0, ..., L-1]
- Use an axillary bucket array B[0, ..., L-1] to sort
 - i.e. array of linked lists, initialization is $\Theta(L)$
- Example with L = 15



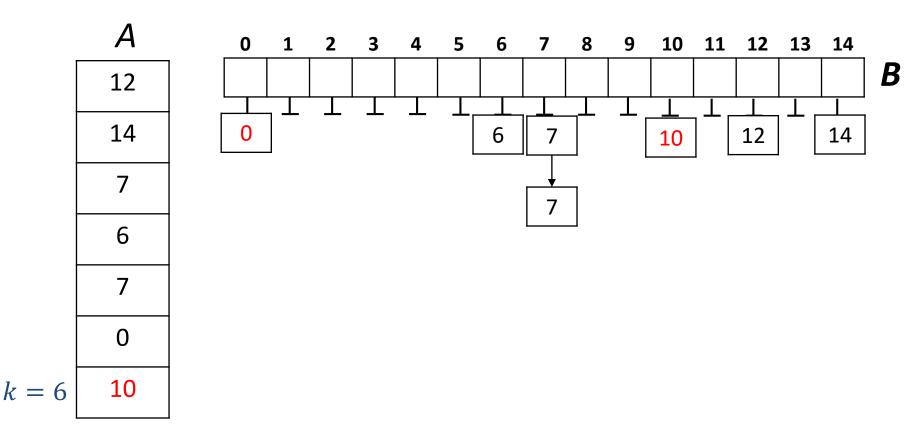
- Suppose all keys in A are integers in range [0, ..., L-1]
- Use an axillary bucket array B[0, ..., L-1] to sort
 - i.e. array of linked lists, initialization is $\Theta(L)$
- Example with L = 15



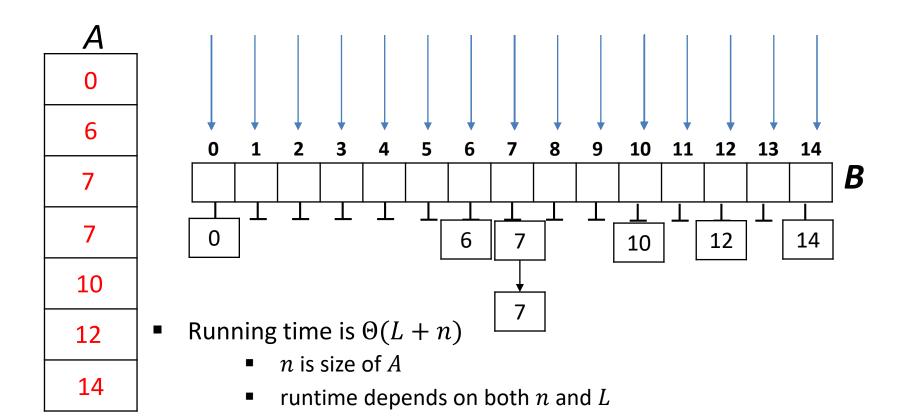
- Suppose all keys in A are integers in range [0, ..., L-1]
- Use an axillary bucket array B[0, ..., L-1] to sort
 - i.e. array of linked lists, initialization is $\Theta(L)$
- Example with L = 15



- Suppose all keys in A are integers in range [0, ..., L-1]
- Use an axillary bucket array B[0, ..., L-1] to sort
 - i.e. array of linked lists, initialization is $\Theta(L)$
- Example with L = 15



- Suppose all keys in A are integers in range [0, ..., L-1]
- Use an axillary bucket array B[0, ..., L-1] to sort
 - i.e. array of linked lists, initialization is $\Theta(L)$
- Example with L = 15
- Now iterate through B and copy non-empty buckets to A



Digit Based Non-Comparison-Based Sorting

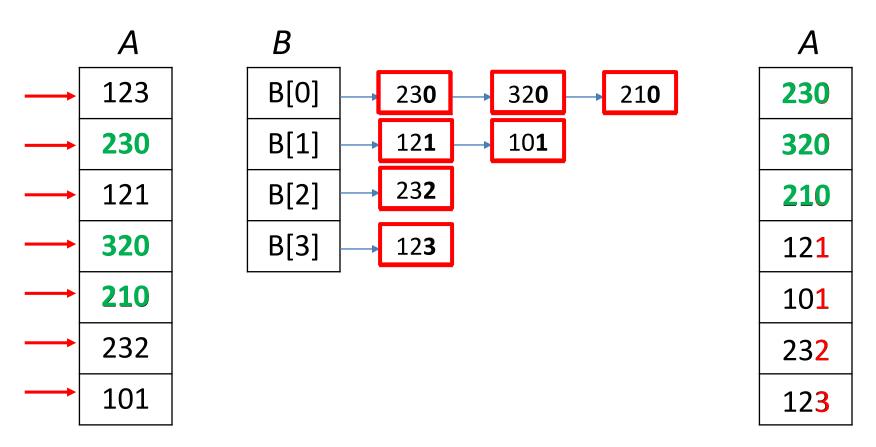
- Running time of bucket sort is $\Theta(L+n)$
 - \blacksquare *n* is size of *A*
 - L is range [0, L) of integers in A
- What if *L* is much larger than *n*?
 - i.e. A has size 100, range of integers in A is [0, ..., 99999]
 - Assume at most m digits in any key
 - pad with leading 0s

123 230 021 320 210 232 101

- Can sort 'digit by digit', can go
 - forward, from digit $1 \rightarrow m$ (more obvious)
 - backward, from from digit $m \to 1$ (less obvious)
- Bucketsort is perfect for sorting 'by digit'
- Example: A has size 100, range of integers in A is [0,...,99999]
 - integers have at most 5 digits, need only 5 iterations of bucketsort

Bucket Sort on Last Digit

- Equivalent to normal bucket sort if we redefine comparison
 - $a \le b$ if the last digit of a is smaller than (or equal) to the last digit of b



- Bucket sort is stable: equal items stay in original order
 - crucial for developing LSD radix sort later

Base R number representation

- Number of distinct digits gives the number of buckets R
- Useful to control number of buckets
 - larger R means less digits (less iterations), but more work per iteration (larger bucket array)
 - may want exactly 2, or 4, or even 128 buckets
- Can do so with base R representation
 - digits go from 0 to R-1
 - R buckets
 - numbers are in the range $\{0, 1, ..., R^m 1\}$
- From now on, assume keys are numbers in base R (R: radix)
 - R = 2, 10, 128, 256 are common
- Example (R = 4)

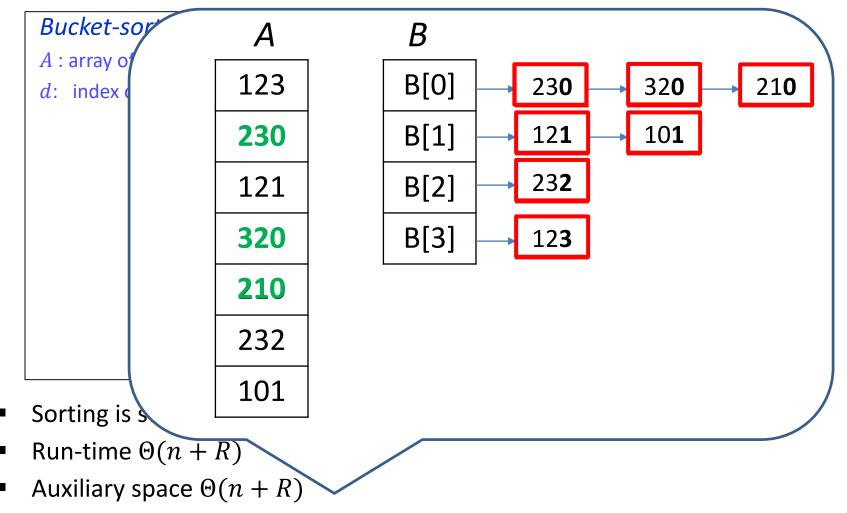
123 230 21 320 210 232 101
--

Single Digit Bucket Sort

```
Bucket-sort(A, d)
A: array of size n, contains numbers with digits in \{0, ..., R-1\}
d: index of digit by which we wish to sort
          initialize array B[0,...,R-1] of empty lists (buckets)
          for i \leftarrow 0 to n-1 do
                next \leftarrow A[i]
                append next at end of B[dth digit of <math>next]
          i \leftarrow 0
          for j \leftarrow 0 to R-1 do
                while B[j] is non-empty do
                      move first element of B[j] to A[i++]
```

- Sorting is stable: equal items stay in original order
- Run-time $\Theta(n+R)$
- Auxiliary space $\Theta(n+R)$
 - $\Theta(R)$ for array B, and linked lists are $\Theta(n)$

Single Digit Bucket Sort



- $\Theta(R)$ for array B, and linked lists are $\Theta(n)$
- Can replace lists by two auxiliary arrays of size R and n, resulting in *count-sort*
 - no details

- Sorts multi-digit numbers from the most significant to the least significant
- Start by sorting the whole array by the first digit

123
232
021
320
210
230
101

- Sorts multi-digit numbers from the most significant to the least significant
- Start by sorting the whole array by the first digit

<u>1</u>23

232

021

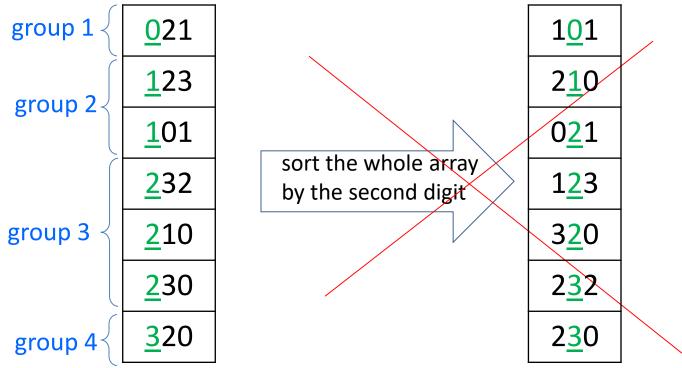
<u>3</u>20

210

230

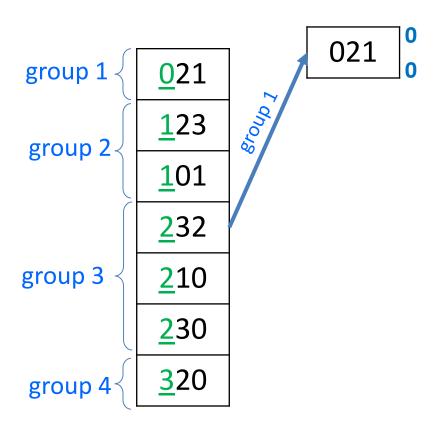
101

- Sorts multi-digit numbers from the most significant to the least significant
- Start by sorting the whole array by the first digit



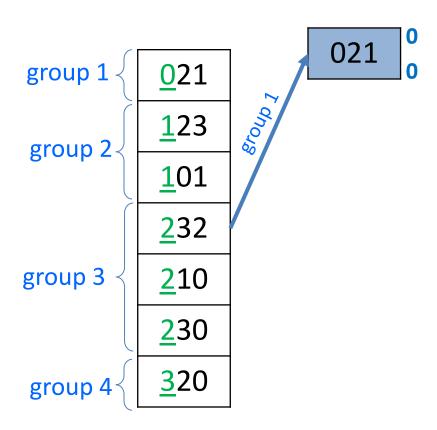
- Cannot sort the whole array by the second digit, will mess up the order
- Have to break down in groups by the first digit
 - each group can be safely sorted by the second digit
 - call sort recursively on each group, with appropriate array bounds

- Recursively sorts multi-digit numbers
 - sort by leading digit, group by next digit, then call sort recursively on each group



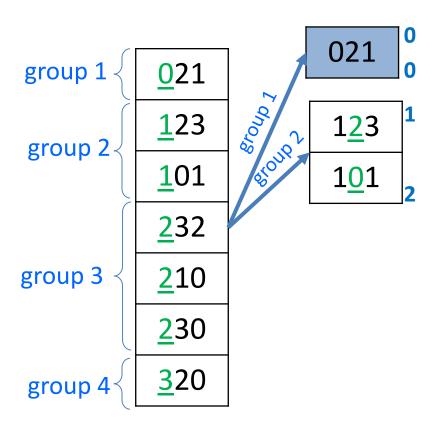
recursion depth 0

- Recursively sorts multi-digit numbers
 - sort by leading digit, group by next digit, then call sort recursively on each group



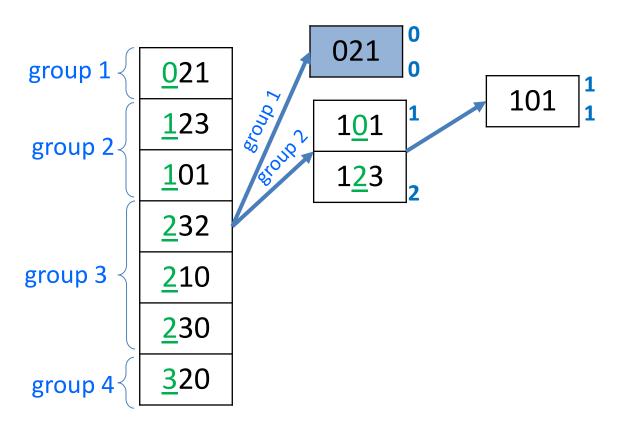
recursion depth 0

- Recursively sorts multi-digit numbers
 - sort by leading digit, group by next digit, then call sort recursively on each group



recursion depth 0

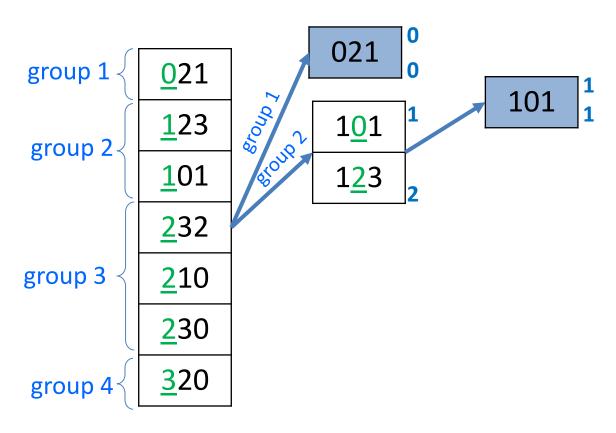
- Recursively sorts multi-digit numbers
 - sort by leading digit, group by next digit, then call sort recursively on each group



recursion depth 0

recursion depth 1

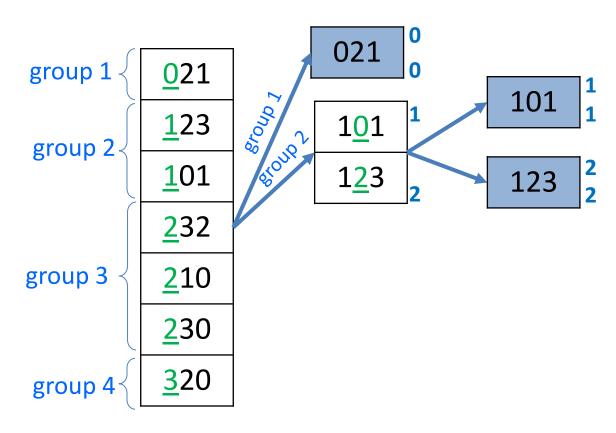
- Recursively sorts multi-digit numbers
 - sort by leading digit, group by next digit, then call sort recursively on each group



recursion depth 0

recursion depth 1

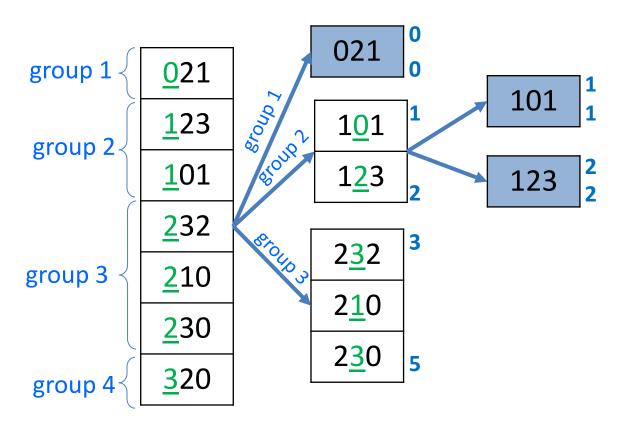
- Recursively sorts multi-digit numbers
 - sort by leading digit, group by next digit, then call sort recursively on each group



recursion depth 0

recursion depth 1

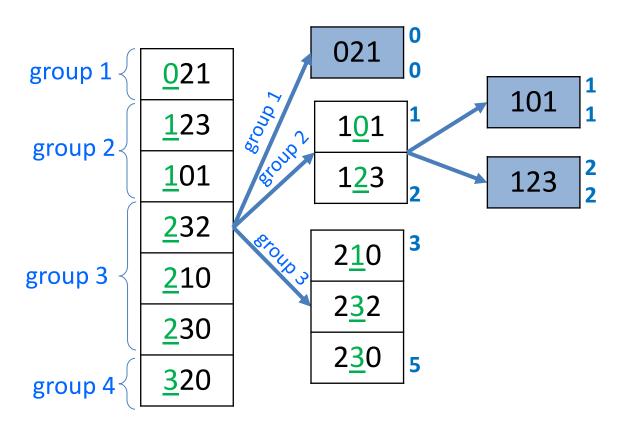
- Recursively sorts multi-digit numbers
 - sort by leading digit, group by next digit, then call sort recursively on each group



recursion depth 0

recursion depth 1

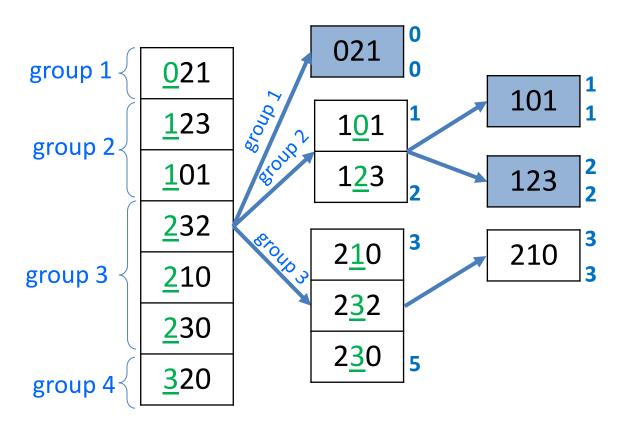
- Recursively sorts multi-digit numbers
 - sort by leading digit, group by next digit, then call sort recursively on each group



recursion depth 0

recursion depth 1

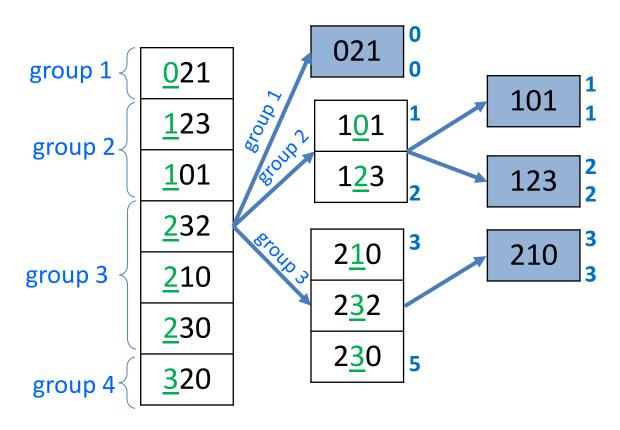
- Recursively sorts multi-digit numbers
 - sort by leading digit, group by next digit, then call sort recursively on each group



recursion depth 0

recursion depth 1

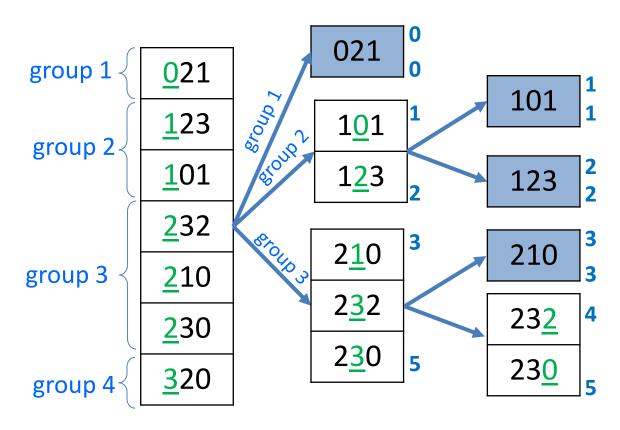
- Recursively sorts multi-digit numbers
 - sort by leading digit, group by next digit, then call sort recursively on each group



recursion depth 0

recursion depth 1

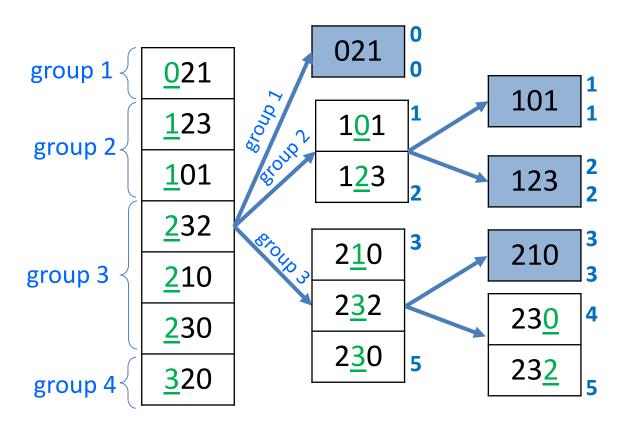
- Recursively sorts multi-digit numbers
 - sort by leading digit, group by next digit, then call sort recursively on each group



recursion depth 0

recursion depth 1

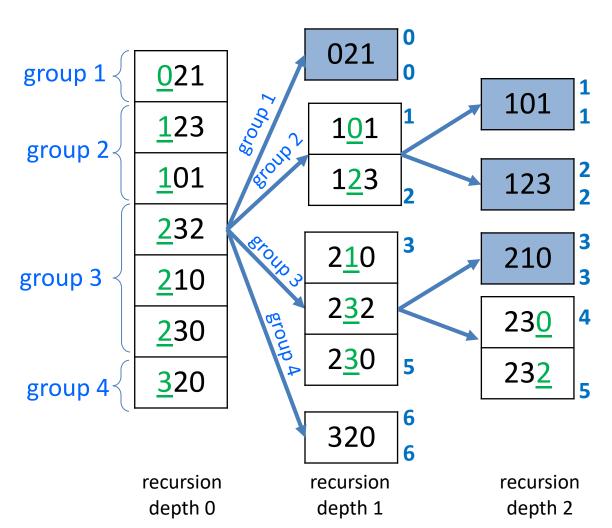
- Recursively sorts multi-digit numbers
 - sort by leading digit, group by next digit, then call sort recursively on each group



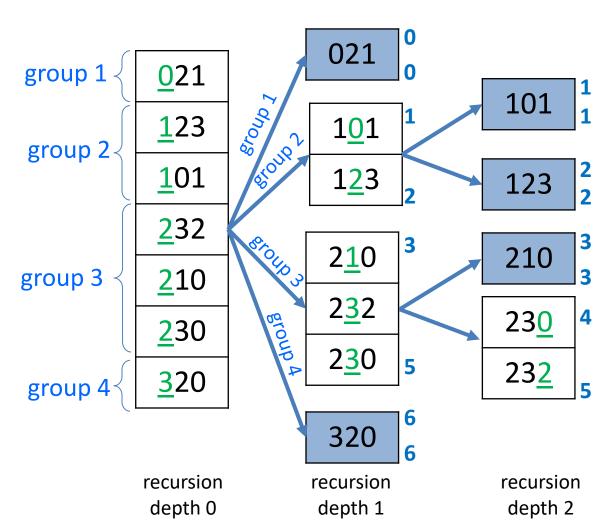
recursion depth 0

recursion depth 1

- Recursively sorts multi-digit numbers
 - sort by leading digit, group by next digit, then call sort recursively on each group



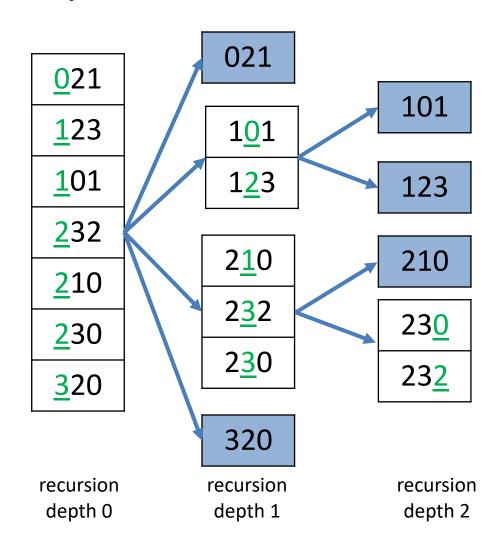
- Recursively sorts multi-digit numbers
 - sort by leading digit, group by next digit, then call sort recursively on each group



Note that many digits are never explored

MSD-Radix-Sort Space Analysis

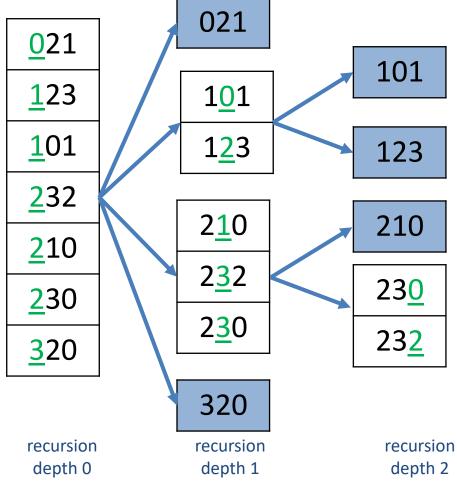
- Bucket-sort
 - auxiliary space $\Theta(n+R)$
- Recursion depth is m-1
 - auxiliary space $\Theta(m)$
- Total auxiliary space $\Theta(n+R+m)$



MSD-Radix-Sort Time Analysis

- Time spent for each recursion depth
 - Depth 0
 - one bucket sort on n items
 - $\Theta(n+R)$
 - All other depths
 - lets k be the number of bucket sorts at each depth
 - $k \leq n$
 - cannot have more bucket sorts than the array size
 - each bucket sort is on n_i items

 - each bucket sort is $n_i + R$
 - $\sum_{i=0}^{k} (n_i + R) \le n + \sum_{i=0}^{k} R \le n + nR$
 - total time at any depth is O(nR)
 - Number of depths is at most m-1
 - Total time O(mnR)
 - Space: $\Theta(n+R)$ for bucket sort, $\Theta(m)$ for recursion stack, total $\Theta(m+n+R)$



MSD-Radix-Sort Pseudocode

- Sorts array of m-digit radix-R numbers recursively
- Sort by leading digit, then each group by next digit, etc.

```
MSD-Radix-sort(A, l \leftarrow 0, r \leftarrow n-1, d \leftarrow leading digit index)
l, r: indexes between which to sort, 0 \le l, r \le n-1
    if l < r
        bucket-sort(A[l...r], d)
        if there are digits left
             l' \leftarrow l
             while (l' < r) do
                   let r' \ge l' be the maximal s.t A[l' ... r'] have the same dth digit
                  MSD-Radix-sort(A, l', r', d + 1)
                  l' \leftarrow r' + 1
```

- Run-time O(mnR), auxiliary space is $\Theta(m+n+R)$
- Advantage: many digits may remain unexamined
- Drawback: many recursions

MSD-Radix-Sort Time Analysis

- Total time O(mnR)
- This is O(n) if sort items in limited range
 - suppose R = 2, and we sort are n integers in the range $[0, 2^{10})$
 - then m = 10, R = 2, and sorting is O(n)
 - note that n, the number of items to sort, can be arbitrarily large
- This does not contradict $\Omega(n \log n)$ bound on the sorting problem, since the bound applies to comparison-based sorting

- Idea: apply single digit bucket sort from least significant digit to the most significant digit
- Observe that digit bucket sort is stable
 - equal elements stay in the original order
 - therefore, we can apply single digit bucket sort to the whole array, and the output will be sorted after iterations over all digits

123	230	230	101	101	101
230	32 <mark>0</mark>	320	210	210	121
12 <mark>1</mark>	210	210	320	320	1 23
320	12 <mark>1</mark>	121	121	1 21	210
210	101	101	123	1 23	230
232	23 <mark>2</mark>	232	230	230	232
101	123	123	232	232	3 20
prepare to sort by last digit	sorted by last digit	prepare to sort by middle digit	sorted by last two digits	prepare to sort by first digit	sorted by all three digits

- m bucket sorts, on n items each, one bucket sort is $\Theta(n+R)$
- Total time cost $\Theta(m(n+R))$

LSD-radix-sort(A)

A: array of size n, contains m-digit radix-R numbers for $d \leftarrow$ least significant down to most significant digit do bucket-sort(A, d)

- Loop invariant: after iteration i, A is sorted w.r.t. the last i digits of each entry
- Time cost $\Theta(m(n+R))$
- Auxiliary space $\Theta(n+R)$

Summary

- Sorting is an important and very well-studied problem
- Can be done in $\Theta(n \log n)$ time
 - faster is not possible for general input
- HeapSort is the only $\Theta(n \log n)$ time algorithm we have seen with O(1) auxiliary space
- MergeSort is also $\Theta(n \log n)$ time
- Selection and insertion sorts are $\Theta(n^2)$
- QuickSort is worst-case $\Theta(n^2)$, but often the fastest in practice
- BucketSort and RadixSort can achieve $o(n \log n)$ if the input is special
- Randomized algorithms can eliminate "bad cases"
- Best-case, worst-case, average-case can all differ, but for well designed randomizations of algorithms, the average case runtime of an algorithm is the same as expected runtime of its randomized version