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Average Case Analysis: Motivation
 Worst-case run time is our default for analysis

 Best-case run time is also sometimes useful 

 Sometimes, best-case and worst case runtimes are the same

 But for some algorithms best-case and worst case differ 
significantly

 worst-case runtime too pessimistic,  best-case too optimistic

 average-case run time analysis is useful especially in such cases



Average Case Analysis
 Recall average case runtime definition

 let 𝕀𝑛 be the set of all instances of size 𝑛

𝑇𝑎𝑣𝑔 𝑛 =
σ𝐼∈𝕀𝑛

𝑇(𝐼)

𝕀𝑛

 Pros:  more accurate picture of how an algorithm performs in 
practice

 provided all instances are equally likely

 Cons:
 usually difficult to compute

 average-case and worst case run times are often the same 
(asymptotically)

 assume 𝕀𝑛 is finite

 can achieve ‘finiteness’  in a natural way for many problems



Average Case Analysis: Contrived Example

 Best-case

 𝐴 0 ≠ 0

 runtime is O(1)

 Worst case 

 𝐴 0 = 0

 runtime is Θ(𝑛)

0 1 2

0 2 1

1 0 2

1 2 0

2 0 1

2 1 0

𝕀3 =

𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡𝐹𝑖𝑟𝑠𝑡(𝐴, 𝑛)

𝐴: array storing 𝑛 distinct integers in range 0,1, … , 𝑛 − 1

if 𝐴 0 = 0 then

for 𝑗 = 1 to 𝑛 do

print ‘first is smallest’

else print ‘first is not smallest’



 𝑛! inputs in total

 𝑛 − 1 ! inputs have 𝐴 0 = 0

 runtime for each is 𝑐𝑛

 𝑛! − 𝑛 − 1 ! inputs have 𝐴 0 ≠ 0

 runtime for each is 𝑐

𝑇𝑎𝑣𝑔 𝑛 =
1

𝕀𝑛


𝐼∈𝕀𝑛

𝑇(𝐼)

0 1 2

0 2 1

1 0 2

1 2 0

2 0 1

2 1 0

𝕀3 =

=
1

𝑛!
𝑐𝑛 +⋯+ 𝑐𝑛

𝑛 − 1 ! 𝑛! − 𝑛 − 1 !

=
1

𝑛! 𝑐𝑛 𝑛 − 1 !

Average Case Analysis: Contrived Example
𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡𝐹𝑖𝑟𝑠𝑡(𝐴, 𝑛)

𝐴: array storing 𝑛 distinct integers in range 0,1, … , 𝑛 − 1

if 𝐴 0 = 0 then

for 𝑗 = 1 to 𝑛 do

print ‘first is smallest’

else print ‘first is not smallest’

+𝑐 +⋯𝑐

+𝑐(𝑛! − 𝑛 − 1 !) = 𝑐 +𝑐 ∈ 𝑂(1)−
𝑐

𝑛



Average Case Analysis: Example 2

𝑇𝑎𝑣𝑔 𝑛 =
σ𝐼∈𝕀𝑛

𝑇(𝐼)

𝕀𝑛

s𝑜𝑟𝑡𝑒𝑑𝑛𝑒𝑠𝑠𝑇𝑒𝑠𝑡𝑒𝑟(𝐴, 𝑛)

𝐴: array storing 𝑛 distinct numbers

for 𝑖 ← 1 𝑡𝑜 𝑛 − 1 do

if 𝐴 𝑖 − 1 > 𝐴[𝑖] then return false

return true

 Best-case is O(1), worst case is Θ(𝑛)

 For average case, need to take average running time over all inputs

 How to deal with infinite 𝕀𝑛?

 there are infinitely many arrays of 𝑛 numbers



Average Case Analysis: Example 2

 Observe: s𝑜𝑟𝑡𝑒𝑑𝑛𝑒𝑠𝑠𝑇𝑒𝑠𝑡𝑒𝑟 acts the same on two inputs below

14 22 43 6 1 11 7 15 23 44 5 1 12 8

 Only the relative order matters, not the actual numbers

 true for many (but not all) algorithms 

 if true, can use this to simplify average case analysis

𝑇𝑎𝑣𝑔 𝑛 =
σ𝐼∈𝕀𝑛

𝑇(𝐼)

𝕀𝑛

14 22 43 6 1 11 7 15 23 44 5 1 12 8

s𝑜𝑟𝑡𝑒𝑑𝑛𝑒𝑠𝑠𝑇𝑒𝑠𝑡𝑒𝑟(𝐴, 𝑛)

𝐴: array storing 𝑛 distinct numbers

for 𝑖 ← 1 𝑡𝑜 𝑛 − 1 do

if 𝐴 𝑖 − 1 > 𝐴[𝑖] then return false

return true



0 1 2 3 4 5 6

Sorting Permutations
 For simplicity, will assume array 𝐴 stores unique numbers

 Characterize input by its sorting permutation 𝝅

 sorting permutation tells us how to sort the array

 stores array indexes in the order corresponding to the sorted array

14 2 3 5 1 11 7

𝜋 = (4, 1, 2, 3, 6, 5,0)

A

𝜋(0)
𝜋(1)

𝜋(2)

𝐴 𝜋 0 ≤ 𝐴 𝜋 1 ≤ 𝐴 𝜋 2 ≤ 𝐴 𝜋 3

1

≤ 𝐴 𝜋 4 ≤ 𝐴 𝜋 5 ≤ 𝐴 𝜋 6

≤ 2 ≤ 3 ≤ 5 ≤ 7 ≤ 11 ≤ 14 sorted!

𝜋(6)

𝜋 = (4, 1, 2, 3, 6, 5,0)𝜋 = (4, 1, 2, 3, 6, 5,0)𝜋 = (4, 1, 2, 3, 6, 5,0)𝜋 = (4, 1, 2, 3, 6, 5,0)𝜋 = (4, 1, 2, 3, 6, 5,0)𝜋 = (4, 1, 2, 3, 6, 5,0)

0 1 2 3 4 5 6
 Arrays with the same relative order have the same sorting permutations

15 3 4 6 1 12 8 𝜋 = (4, 1, 2, 3, 6, 5,0)



Average Time with Sorting Permutations

𝑇𝑎𝑣𝑔 𝑛 =
1

𝑛!


𝜋∈Π𝑛

𝑇(𝜋)

 There are 𝑛! sorting permutations for arrays with distinct numbers of size 𝑛

 let Π𝑛 be the set of all sorting permutations of size 𝑛

 Π3 = { 0,1,2 , 0,2,1 , 1,0,2 , 2,0,1 , 1,2,0 , (2,1,0)}

 Define average cost through permutations

 Intuitively, since all instances with sorting permutation 𝜋 have exactly the same 
running time, we group them together

all instances of size 3

instances with sorting permutation 𝜋 = (0, 1, 2)

instances with sorting permutation 𝜋 = (0, 2, 1)

instances with sorting permutation 𝜋 = (1, 0, 2)

𝑇(0, 2, 1)

instances with sorting permutation 𝜋 = (2, 0, 1)

instances with sorting permutation 𝜋 = (1, 2, 0)

instances with sorting permutation 𝜋 = (2, 1, 0)

7, 20, 10

−3, 6.6, 1.8

10, 21, 13
…

…

infinite set

infinite set

20,7, 10

6.6, −3, 1.8

21,10, 13

av
er

ag
e



Average Case: Example 1

s𝑜𝑟𝑡𝑒𝑑𝑛𝑒𝑠𝑠𝑇𝑒𝑠𝑡𝑒𝑟(𝐴, 𝑛)

𝐴: array storing 𝑛 distinct numbers

for 𝑖 ← 1 𝑡𝑜 𝑛 − 1 do

if 𝐴 𝑖 − 1 > 𝐴[𝑖] then return false

return true

 Run for loop 𝑖 times ⇒ perform 𝑖 comparisons

 Runtime is 𝑐 ∙ number of comparisons + 𝑐

 Runtime is Θ number of comparisons

 To get rid of the constant in all calculations, define

𝑇 𝜋 = number of comparisons

𝑇𝑎𝑣𝑔 𝑛 =
1

𝑛!


𝜋∈Π𝑛

𝑇(𝜋)



Average Case: Example 1 s𝑜𝑟𝑡𝑒𝑑𝑛𝑒𝑠𝑠𝑇𝑒𝑠𝑡𝑒𝑟(𝐴, 𝑛)

𝐴: array storing 𝑛 distinct numbers

for 𝑖 ← 1 𝑡𝑜 𝑛 − 1 do

if 𝐴 𝑖 − 1 > 𝐴[𝑖] then return false

return true 𝑇 𝜋 = number of comparisons

 for some permutations 𝜋, do exactly 1 comparison: 𝑇 𝜋 = 1

 for some permutations 𝜋, do exactly 2 comparisons: 𝑇 𝜋 = 2

 …

 for some permutations 𝜋, do exactly 𝑛 − 1 comparisons:  𝑇 𝜋 = 𝑛 − 1

𝑇𝑎𝑣𝑔 𝑛 =
1

𝑛!


𝜋∈Π𝑛

𝑇(𝜋)

𝑇𝑎𝑣𝑔 3 =
1

3!
(𝑇 0,1,2 + 𝑇 0,2,1 + 𝑇 1,0,2 + 𝑇 2,0,1 + 𝑇 1,2,0 + 𝑇(2,1,0))

1 comp 2 comp 1 comp1 comp2 comp2 comp

𝐴[1] smallest
𝐴[0] middle
𝐴[2] largest
𝐴 1 < 𝐴[0]

return false after the first comparison



Average Case: Example 1 s𝑜𝑟𝑡𝑒𝑑𝑛𝑒𝑠𝑠𝑇𝑒𝑠𝑡𝑒𝑟(𝐴, 𝑛)

𝐴: array storing 𝑛 distinct numbers

for 𝑖 ← 1 𝑡𝑜 𝑛 − 1 do

if 𝐴 𝑖 − 1 > 𝐴[𝑖] then return false

return true 𝑇 𝜋 = number of comparisons

 for some permutations 𝜋, do exactly 1 comparison: 𝑇 𝜋 = 1

 for some permutations 𝜋, do exactly 2 comparisons: 𝑇 𝜋 = 2

 …

 for some permutations 𝜋, do exactly 𝑛 − 1 comparisons:  𝑇 𝜋 = 𝑛 − 1

𝑇𝑎𝑣𝑔 𝑛 =
1

𝑛!


𝜋∈Π𝑛

𝑇(𝜋)

𝑇𝑎𝑣𝑔 3 =
1

3!
(𝑇 0,1,2 + 𝑇 0,2,1 + 𝑇 1,0,2 + 𝑇 2,0,1 + 𝑇 1,2,0 + 𝑇(2,1,0))(𝑇 0,1,2 + 𝑇 0,2,1 + 𝑇 1,0,2 + 𝑇 2,0,1 + 𝑇 1,2,0 + 𝑇(2,1,0))

1 comp 2 comp 1 comp1 comp2 comp2 comp

𝑇𝑎𝑣𝑔 3 =
1

3!
(𝑇 1,0,2 + 𝑇 1,2,0 + 𝑇(2,1,0) + 𝑇 0,1,2 + 𝑇 0,2,1 + 𝑇 2,0,1 )

=
1

3!
(#permut. with exactly 1 comp ∙ 1

= 9/6

𝑇𝑎𝑣𝑔 𝑛 =
1

𝑛!


𝑘=1

𝑛−1

𝑘 ∙ (#permutations with exactly 𝑘 comparisons)

=
1

6
(3 ∙ 1 + 3 ∙ 2)

+ #permut. with exactly 2 comp ∙ 2)



Average Case Analysis: Example 1

#permutations with exactly 𝑘 comparisons

#permutations with at least 𝑘 comparisons

#permutation with at least 𝑘 + 1 comparisons
−

𝑇𝑎𝑣𝑔 𝑛 =
1

𝑛!


𝑘=1

𝑛−1

𝑘 ∙ (#permutations with exactly 𝑘 comparisons)

# exactly 𝑘 comp 
# exactly 𝑘 + 1 comp 
# exactly 𝑘 + 2 comp 

…
# exactly 𝑛 − 1 comp

# exactly 𝑘 + 1 comp 
# exactly 𝑘 + 2 comp 

…
# exactly 𝑛 − 1 comp

𝑇𝑎𝑣𝑔 𝑛 =
1

𝑛!


𝑘=1

𝑛−1

𝑘 ∙ (#perm with at least 𝑘 comp − #perm with at least 𝑘 + 1 comp)

# exactly 𝑘 comp 



Average Case Analysis: Example 1

 Permutations with at least 1 comparison
 all 𝑛! permutations

𝑇𝑎𝑣𝑔 𝑛 =
1

𝑛!


𝑘=1

𝑛−1

𝑘 ∙ (#perm with at least 𝑘 comp − #perm with at least 𝑘 + 1 comp)

s𝑜𝑟𝑡𝑒𝑑𝑛𝑒𝑠𝑠𝑇𝑒𝑠𝑡𝑒𝑟(𝐴, 𝑛)

𝐴: array storing 𝑛 distinct numbers

for 𝑖 ← 1 𝑡𝑜 𝑛 − 1 do

if 𝐴 𝑖 − 1 > 𝐴[𝑖] then return false

return true



Average Case Analysis: Example 1

 Permutations with at least 2 comparisons
 𝐴 0 < 𝐴 1

𝑇𝑎𝑣𝑔 𝑛 =
1

𝑛!


𝑘=1

𝑛−1

𝑘 ∙ (#perm with at least 𝑘 comp − #perm with at least 𝑘 + 1 comp)

0 1 2 3 4 5 6

3 15 4 6 1 20 8

𝜋 = (4, 0, 2, 3, 6, 1, 5)

 0, 1 occur in sorted order : (4, 3, 2, 0, 1), (4, 3, 0, 2, 1), (4, 0, 3, 2, 1)


𝑛
2

𝑛 − 2 !

s𝑜𝑟𝑡𝑒𝑑𝑛𝑒𝑠𝑠𝑇𝑒𝑠𝑡𝑒𝑟(𝐴, 𝑛)

𝐴: array storing 𝑛 distinct numbers

for 𝑖 ← 1 𝑡𝑜 𝑛 − 1 do

if 𝐴 𝑖 − 1 > 𝐴[𝑖] then return false

return true



Average Case Analysis: Example 1

 Permutations with at least 3 comparisons
 𝐴 0 < 𝐴 1 < 𝐴[2]

𝑇𝑎𝑣𝑔 𝑛 =
1

𝑛!


𝑘=1

𝑛−1

𝑘 ∙ (#perm with at least 𝑘 comp − #perm with at least 𝑘 + 1 comp)

0 1 2 3 4 5 6

3 15 44 6 1 20 8

𝜋 = (4, 0, 3, 6, 1, 5, 2)

 0, 1, 2 occur in sorted order ∶ (4, 3, 0, 1, 2), (4, 0, 3, 1, 2), (0, 1, 3, 4, 2)


𝑛
3

𝑛 − 3 !

s𝑜𝑟𝑡𝑒𝑑𝑛𝑒𝑠𝑠𝑇𝑒𝑠𝑡𝑒𝑟(𝐴, 𝑛)

𝐴: array storing 𝑛 distinct numbers

for 𝑖 ← 1 𝑡𝑜 𝑛 − 1 do

if 𝐴 𝑖 − 1 > 𝐴[𝑖] then return false

return true



Average Case Analysis: Example 1

𝑇𝑎𝑣𝑔 𝑛 =
1

𝑛!


𝑘=1

𝑛−1

𝑘 ∙ (#perm with at least 𝑘 comp − #perm with at least 𝑘 + 1 comp)

 Permutations with at least 𝑘 comparisons
 𝐴 0 < 𝐴 1 < 𝐴 2 … < 𝐴[𝑘 − 1]

 0, 1, … , 𝑘 − 1 occur in sorted order


𝑛
𝑘

𝑛 − 𝑘 ! =
𝑛!

𝑛 − 𝑘 ! 𝑘!
𝑛 − 𝑘 ! =

𝑛!

𝑘!

s𝑜𝑟𝑡𝑒𝑑𝑛𝑒𝑠𝑠𝑇𝑒𝑠𝑡𝑒𝑟(𝐴, 𝑛)

𝐴: array storing 𝑛 distinct numbers

for 𝑖 ← 1 𝑡𝑜 𝑛 − 1 do

if 𝐴 𝑖 − 1 > 𝐴[𝑖] then return false

return true



Average Case Analysis: Example 1

 Let 𝜋𝑘 be # of permutations with at least 𝑘 comparisons, 𝜋𝑘= 
𝑛!

𝑘!

 Taylor expansion:   σ𝑘=0
∞ 1

𝑘!
= 𝑒 ≈ 2.8

𝑇𝑎𝑣𝑔 𝑛 =
1

𝑛!


𝑘=1

𝑛−1

𝑘 ∙ (𝜋𝑘 − 𝜋𝑘+1)

=
1

𝑛!
(1 ∙ 𝜋1 + 2 ∙ 𝜋2 + 3 ∙ 𝜋3 +⋯+ 𝑛 − 1 ∙ 𝜋𝑛−1

=
1

𝑛!
𝜋1 + 𝜋2 + 𝜋3 + … + 𝜋𝑛−1 − 𝑛 − 1 ∙ 𝜋𝑛

=
1

𝑛!


𝑘=1

𝑛−1

𝑘 ∙ 𝜋𝑘 − 

𝑘=1

𝑛−1

𝑘 ∙ 𝜋𝑘+1

−1 ∙ 𝜋2 − 2 ∙ 𝜋3 −⋯− 𝑛 − 2 ∙ 𝜋𝑛−1 − 𝑛 − 1 ∙ 𝜋𝑛

= 0

=
1

𝑛!


𝑘=1

𝑛−1

𝜋𝑘 =
1

𝑛!


𝑘=1

𝑛−1
𝑛!

𝑘!
= 

𝑘=1

𝑛−1
1

𝑘!
< 2.8

 Average running time of s𝑜𝑟𝑡𝑒𝑑𝑛𝑒𝑠𝑠𝑇𝑒𝑠𝑡𝑒𝑟(𝐴, 𝑛) is 𝑂(1)

 much better than the worst case Θ(𝑛)

< 

𝑘=1

∞
1

𝑘!



Average Case Analysis: Example 2
𝑎𝑣𝑔𝐶𝑎𝑠𝑒𝐷𝑒𝑚𝑜(𝐴, 𝑛)

𝐴: array storing 𝑛 distinct numbers

if 𝑛 ≤ 2 return

if 𝐴 𝑛 − 2 < 𝐴[𝑛 − 1] then 𝑎𝑣𝑔𝐶𝑎𝑠𝑒𝐷𝑒𝑚𝑜(𝐴[0, 𝑛/2 − 1], 𝑛/2)

else 𝑎𝑣𝑔𝐶𝑎𝑠𝑒𝐷𝑒𝑚𝑜(𝐴[0, 𝑛 − 3], 𝑛 − 2)

 Let 𝑇 𝑛 be the number of recursions

 proportional to the running time

 Best case (array sorted in increasing order)

 always get the good case, array size is divided by 2 at each recursion

 𝑇 𝑛 = ቊ
0 if 𝑛 ≤ 2

𝑇(𝑛/2) + 1 otherwise

 resolves to Θ log(𝑛)

 Worst case (array sorted in decreasing order)

 always get the bad case, array size decreases by 2 at each recursion

 𝑇 𝑛 = 𝑇(𝑛 − 2) + 1 (for 𝑛 > 2)

 resolves to Θ 𝑛

// good case

// bad case



Average Case Analysis: Example 2

 𝑎𝑣𝑔𝐶𝑎𝑠𝑒𝐷𝑒𝑚𝑜 runtime is equal for instances with same relative element order

 Therefore can use sorting permutations for average running time

𝑇𝑎𝑣𝑔 𝑛 =
1

𝑛!


𝜋∈Π𝑛

𝑇(𝜋)

 Call permutation 𝜋 is good if it leads to a good case

 ex: (0, 1, 3, 2, 4)

 Call permutation 𝜋 bad if it leads to a bad case

 ex: (1, 4, 0, 2, 3)

 Exactly half of the permutations are good

 (0, 1, 3, 2, 4) ⟷ (0, 1, 4, 2, 3)

 𝑛!/2 good permutations, 𝑛!/2 bad permutations

0, 1, 2 ⟷ 0, 2, 1
1, 0, 2 ⟷ 1, 2, 0
2, 0, 1 ⟷ 2, 1, 0

good bad

𝑎𝑣𝑔𝐶𝑎𝑠𝑒𝐷𝑒𝑚𝑜(𝐴, 𝑛)

𝐴: array storing 𝑛 distinct numbers

if 𝑛 ≤ 2 return

if 𝐴 𝑛 − 2 < 𝐴[𝑛 − 1] then 𝑎𝑣𝑔𝐶𝑎𝑠𝑒𝐷𝑒𝑚𝑜(𝐴[0, 𝑛/2 − 1], 𝑛/2)

else 𝑎𝑣𝑔𝐶𝑎𝑠𝑒𝐷𝑒𝑚𝑜(𝐴[0, 𝑛 − 3], 𝑛 − 2)

// good case

// bad case



Average Case Analysis: Example 2

 Cannot conclude that

 For recursive algorithms, we typically derive recurrence equation and solve it

 Easy to derive recursive formula for one instance 𝜋

𝑇 𝜋 = ቐ
1 + 𝑇(first

𝑛

2
items) if 𝜋 is good

1 + 𝑇(first 𝑛 − 2 items) if 𝜋 is bad

𝑇𝑎𝑣𝑔 𝑛 = ቊ
1 + 𝑇𝑎𝑣𝑔(𝑛/2) if 𝜋 is good
1 + 𝑇𝑎𝑣𝑔(𝑛 − 2) if 𝜋 is bad

 Can derive formula for the sum of instances 𝜋 (but it is not trivial, we omit it)



𝜋∈Π𝑛

𝑇 𝜋 = 

𝜋∈Π𝑛: 𝜋 is good

1 + 𝑇𝑎𝑣𝑔(𝑛/2) + 

𝜋∈Π𝑛: 𝜋 is bad

1 + 𝑇𝑎𝑣𝑔( 𝑛 − 2)

𝑎𝑣𝑔𝐶𝑎𝑠𝑒𝐷𝑒𝑚𝑜(𝐴, 𝑛)

𝐴: array storing 𝑛 distinct numbers

if 𝑛 ≤ 2 return

if 𝐴 𝑛 − 2 < 𝐴[𝑛 − 1] then 𝑎𝑣𝑔𝐶𝑎𝑠𝑒𝐷𝑒𝑚𝑜(𝐴[0, 𝑛/2 − 1], 𝑛/2)

else 𝑎𝑣𝑔𝐶𝑎𝑠𝑒𝐷𝑒𝑚𝑜(𝐴[0, 𝑛 − 3], 𝑛 − 2)

// good case

// bad case



Average Case Analysis: Example 2

 Recall that there are 𝑛!/2 good permutations, 𝑛!/2 bad permutations



𝜋∈Π𝑛

𝑇 𝜋 = 

𝜋∈Π𝑛: 𝜋 is good

1 + 𝑇𝑎𝑣𝑔(𝑛/2) + 

𝜋∈Π𝑛: 𝜋 is bad

1 + 𝑇𝑎𝑣𝑔(𝑛 − 2)

𝑇𝑎𝑣𝑔 𝑛 =
1

𝑛!


𝜋∈Π𝑛

𝑇(𝜋)

𝑇𝑎𝑣𝑔 𝑛 =
1

𝑛!


𝜋∈Π𝑛:𝜋 is good

1 + 𝑇𝑎𝑣𝑔( 𝑛/2) + 

𝜋∈Π𝑛:𝜋 is bad

1 + 𝑇𝑎𝑣𝑔( 𝑛 − 2)

=
1

𝑛!

𝑛!

2
(1 + 𝑇𝑎𝑣𝑔( 𝑛/2)) +

𝑛!

2
1 + 𝑇𝑎𝑣𝑔( 𝑛 − 2)

 Simplifies to    𝑇𝑎𝑣𝑔 𝑛 = 1 +
1

2
𝑇𝑎𝑣𝑔( 𝑛/2) +

1

2
𝑇𝑎𝑣𝑔( 𝑛 − 2)



𝜋∈Π𝑛:𝜋 is bad

1 + 𝑇𝑎𝑣𝑔( 𝑛 − 2)
all elements in 
sum are equal

all elements in 
sum are equal

 Using formula for the sum of instances 𝜋 from the previous slide



Average Case Analysis: Example 2
𝑇𝑎𝑣𝑔 𝑛 = 1 +

1

2
𝑇𝑎𝑣𝑔( 𝑛/2) +

1

2
𝑇𝑎𝑣𝑔( 𝑛 − 2) if 𝑛 > 2

Theorem: 𝑇𝑎𝑣𝑔 𝑛 ≤ 2 log(𝑛)

Proof:  (by induction)

 true for 𝑛 ≤ 2 (no recursion in these cases, 𝑇𝑎𝑣𝑔 𝑛 = 0)

 let 𝑛 ≥ 3 and assume the theorem holds for all 𝑚 < 𝑛

 𝑇𝑎𝑣𝑔 𝑛 = 1 +
1

2
𝑇𝑎𝑣𝑔(𝑛/2) +

1

2
𝑇𝑎𝑣𝑔(𝑛 − 2)

 This proves average-case running time is  𝑂(log 𝑛 )
 best case is Θ log 𝑛

 average case cannot be better than best case

 therefore, average case  is  Θ log 𝑛 , much better than worst case Θ 𝑛

induction hypothesis induction hypothesis

≤ 1 +
1

2
2log(𝑛/2) +

1

2
2log(𝑛 − 2)

= 2log(𝑛)

+
1

2
2log(𝑛)≤ 1 +

1

2
2(log 𝑛 − 1)

𝑇𝑎𝑣𝑔 𝑛 = 0 if 𝑛 ≤ 2



Outline

 Sorting, average-case, and Randomization

 Analyzing average-case run-time

 Randomized Algorithms

 QuickSelect

 QuickSort

 Lower Bound for Comparison-Based Sorting  

 Non-Comparison-Based Sorting



 Would hope that in practice, time averaged over different runs is 𝑂 log 𝑛

 However, average-cases analysis averages over instances, not runs

 cannot average over runs, do not know the instances the user will choose

 Suppose all instances are equally likely to occur in practice

 then averaging over different runs is equivalent to averaging over instances

 so can expect avgCaseDemo to have 𝑂 log 𝑛 runtime averaged over runs

 However humans often generate instances that are far from equally likely

 if user calls 𝑎𝑣𝑔𝐶𝑎𝑠𝑒𝐷𝑒𝑚𝑜 on almost reverse sorted arrays, runtime averaged 
over different runs is Θ 𝑛 in practice

 real-life example: humans invoke sorting algorithm most often on arrays that 
are already almost sorted

𝑎𝑣𝑔𝐶𝑎𝑠𝑒𝐷𝑒𝑚𝑜(𝐴, 𝑛)

𝐴: array storing 𝑛 distinct numbers

if 𝑛 ≤ 2 return

if 𝐴 𝑛 − 2 < 𝐴[𝑛 − 1] then 𝑎𝑣𝑔𝐶𝑎𝑠𝑒𝐷𝑒𝑚𝑜(𝐴[0, 𝑛/2 − 1], 𝑛/2)

else 𝑎𝑣𝑔𝐶𝑎𝑠𝑒𝐷𝑒𝑚𝑜(𝐴[0, 𝑛 − 3], 𝑛 − 2)

 Average case 𝑂 log 𝑛
 Worst-case  𝑂 𝑛

Randomized Algorithms: Motivation



Randomized Algorithms: Motivation

 Randomization can be used to improve runtime in practice when instances 
are not equally likely

 such randomization makes sense to apply to algorithms which have better 
average-case than worst-case runtime

 Simple randomization: shuffle array 𝐴 before calling 𝑎𝑣𝑔𝐶𝑎𝑠𝑒𝐷𝑒𝑚𝑜, so that 
every instance is equally likely

 now averaging over runs is the same as averaging over instances

 however, have to spend time shuffling the array

 shifted dependence from what we cannot control (user) to what we can control 
(random number generation)

𝑎𝑣𝑔𝐶𝑎𝑠𝑒𝐷𝑒𝑚𝑜(𝐴, 𝑛)

𝐴: array storing 𝑛 distinct numbers

if 𝑛 ≤ 2 return

if 𝐴 𝑛 − 2 < 𝐴[𝑛 − 1] then 𝑎𝑣𝑔𝐶𝑎𝑠𝑒𝐷𝑒𝑚𝑜(𝐴[0, 𝑛/2 − 1], 𝑛/2)

else 𝑎𝑣𝑔𝐶𝑎𝑠𝑒𝐷𝑒𝑚𝑜(𝐴[0, 𝑛 − 3], 𝑛 − 2)



Randomized Algorithms
 A randomized algorithm is one which relies on some random numbers  in 

addition to the input

 Runtime depends on both input 𝐼 and random numbers 𝑅 used

 Goal: shift dependency of run-time from what we cannot control (user input),  
to what we can control (random numbers)

 no more bad instances!

 could still have unlucky numbers

 if running time is long on some run, it is because we generated unlucky 
random numbers, not because of the instance itself

 exceedingly rare, think of chances of sorting array by a random swaps

 Side note: computers cannot generate truly random numbers

 assume there is pseudo-random number generator (PRNG), deterministic 
program that uses initial seed to generate sequence of seemingly random 
numbers

 quality of randomized algorithm depends on the quality of the PRNG



Expected Running Time
 How do we measure the runtime of a randomized algorithm?

 depends on input 𝐼 and on 𝑅, sequence of random numbers algorithm choses 

 Define 𝑇(𝐼, 𝑅) to be running time of randomized algorithm for instance 𝐼 and 𝑅

 Expected runtime for instance 𝐼 is expected value for 𝑇 𝐼, 𝑅

𝑇𝑒𝑥𝑝 𝐼 = 𝑬 𝑇(𝐼, 𝑅) = 

all possible
sequences 𝑅

𝑇 𝐼, 𝑅 ∙ Pr(𝑅)

 Worst-case expected runtime   

𝑇𝑒𝑥𝑝 𝑛 = max
𝐼∈𝕀𝑛

𝑇𝑒𝑥𝑝 𝐼

 Best-case and average-case expected running time defined similarly

 Usually consider only worst-case expected running time

 usually design a randomized algorithm so that all instances of size 𝑛 have the 
same expected runtime

 Sometimes also want to know running time if get really 
unlucky with random numbers 𝑅, i.e. worst case (or 
worst instance and worst random numbers case)

max
𝑅

max
𝐼∈𝕀𝑛

𝑇(𝐼, 𝑅)



Randomized Algorithm: Simple
𝑠𝑖𝑚𝑝𝑙𝑒(𝐴, 𝑛)

𝐴: array storing 𝑛 numbers

𝑠𝑢𝑚 ← 0

if 𝑟𝑎𝑛𝑑𝑜𝑚 3 = 0 then return 𝑠𝑢𝑚

else  if 𝑟𝑎𝑛𝑑𝑜𝑚 3 > 0 then 

for 𝑖 ← 0 𝑡𝑜 𝑛 − 1 do

𝑠𝑢𝑚 ← 𝑠𝑢𝑚 + 𝐴[𝑖]

return 𝑠𝑢𝑚

 Function 𝑟𝑎𝑛𝑑𝑜𝑚(𝑛) returns an integer sampled uniformly from {0, 1, … , 𝑛 − 1}

 𝑠𝑖𝑚𝑝𝑙𝑒 needs only one random number:  Pr 0 =Pr 1 =Pr 2 =
1

3

𝑇𝑒𝑥𝑝 𝐼 = 

all possible
sequences 𝑅

𝑇 𝐼, 𝑅 ∙ Pr(𝑅)

𝑇𝑒𝑥𝑝 𝐼 = 𝑇 𝐼, 0 ∙ Pr 0 +𝑇 𝐼, 1 ∙ Pr 1 +𝑇 𝐼, 2 ∙ Pr 2

= 𝑐 ∙
1

3 +𝑐 ∙ 𝑛 ∙
1

3
+𝑐 ∙ 𝑛 ∙

1

3

= 𝑇 𝐼, 0 ∙
1

3 +𝑇 𝐼, 1 ∙
1

3
+𝑇 𝐼, 2 ∙

1

3

∈ Θ(𝑛)

𝑇𝑒𝑥𝑝 𝑛 = max
𝐼∈𝕀𝑛

𝑇𝑒𝑥𝑝 𝐼

 All instances have the same running time, so 𝑇𝑒𝑥𝑝 𝑛 ∈ Θ(𝑛)



Randomized Algorithm: Simple2
𝑠𝑖𝑚𝑝𝑙𝑒2(𝐴, 𝑛)

𝐴: array storing 𝑛 numbers

𝑠𝑢𝑚 ← 0

for 𝑖 ← 1 𝑡𝑜 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛 do

for 𝑗 ← 1 𝑡𝑜 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛 do

𝑠𝑢𝑚 ← 𝑠𝑢𝑚 + 𝐴 𝑗 𝐴[𝑖]

return 𝑠𝑢𝑚

 Uses 2 random numbers 𝑅 =< 𝑟1, 𝑟2 >:

𝑇𝑒𝑥𝑝 𝐼 = 

all possible
sequences 𝑅

𝑇 𝐼, 𝑅 ∙ Pr(𝑅)

𝑇𝑒𝑥𝑝 𝐼

𝑇𝑒𝑥𝑝 𝑛 = max
𝐼∈𝕀𝑛

𝑇𝑒𝑥𝑝 𝐼

 All instances have he same running time, so 𝑇𝑒𝑥𝑝 𝑛 ∈ Θ(𝑛2)

Pr < 0,0 >

= 

<𝑟1, 𝑟2>

𝑇 𝐼, < 𝑟1, 𝑟2 > ∙
1

𝑛

2

=
1

𝑛

2



<𝑟1, 𝑟2>

𝑐 ∙ 𝑟1 ∙ 𝑟2

=
1

𝑛

2



𝑟1

𝑐 ∙ 𝑟1 

𝑟2∈{0,1,…,𝑛−1}

𝑟2 =
1

𝑛

2



𝑟1

𝑐 ∙ 𝑟1
𝑛(𝑛−1)

2
=

1

𝑛

2

𝑐
𝑛(𝑛−1)

2

𝑛(𝑛−1)

2

Pr 𝑟1 = 0 = ⋯ = Pr 𝑟1 = 𝑛 − 1 =
1

𝑛

= ⋯ = Pr < 𝑛 − 1, 𝑛 − 1 > =
1

𝑛

2

= Pr < 0,1 >



Randomized Algorithm: 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐷𝑒𝑚𝑜

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐷𝑒𝑚𝑜(𝐴, 𝑛)

𝐴: array storing 𝑛 distinct numbers

if 𝑛 ≤ 2 return

if 𝑟𝑎𝑛𝑑𝑜𝑚(2) swap 𝐴 𝑛 − 2 and 𝐴[𝑛 − 1]

if 𝐴 𝑛 − 2 < 𝐴[𝑛 − 1] then 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐷𝑒𝑚𝑜(𝐴[0, 𝑛/2 − 1, 𝑛/2) // good case

else 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐷𝑒𝑚𝑜(𝐴[0, 𝑛 − 3, 𝑛 − 2) // bad case

 For any array,  Pr good case = Pr bad case =
1

2

 To randomize avgCaseDemo, could shuffle array 𝐴 and then call avgcaseDemo

 A better solution which avoids shuffling

𝑎𝑣𝑔𝐶𝑎𝑠𝑒𝐷𝑒𝑚𝑜(𝐴, 𝑛)

𝐴: array storing 𝑛 distinct numbers

if 𝑛 ≤ 2 return

if 𝐴 𝑛 − 2 < 𝐴[𝑛 − 1] then 𝑎𝑣𝑔𝐶𝑎𝑠𝑒𝐷𝑒𝑚𝑜(𝐴[0, 𝑛/2 − 1], 𝑛/2)

else 𝑎𝑣𝑔𝐶𝑎𝑠𝑒𝐷𝑒𝑚𝑜(𝐴[0, 𝑛 − 3], 𝑛 − 2)

// good case

// bad case



Randomized Algorithm 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐷𝑒𝑚𝑜

 Running time depends both on the input array 𝐴 and the sequence 𝑅 of random 
numbers generated during the run of the algorithm

 𝐴 = 1, 5, 0, 3, 7, 3 , 𝑅 = 1,0,0

 Step 1: 

𝐴 = 1, 5, 0, 3, 7, 3 ⇒ good case𝑅 = 1,0,0 ⇒ 𝐴 = 1, 5, 0,3, 3, 7

 Step 2: 

𝐴 = 1, 5, 0 𝑅 = 1,0,0 ⇒ 𝐴 = 1, 5, 0 ⇒ bad case

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐷𝑒𝑚𝑜(𝐴, 𝑛)

𝐴: array storing 𝑛 distinct numbers

if 𝑛 ≤ 2 return

if 𝑟𝑎𝑛𝑑𝑜𝑚(2) swap 𝐴 𝑛 − 2 and 𝐴[𝑛 − 1]

if 𝐴 𝑛 − 2 < 𝐴[𝑛 − 1] then 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐷𝑒𝑚𝑜(𝐴[0, 𝑛/2 − 1, 𝑛/2) // good case

else 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐷𝑒𝑚𝑜(𝐴[0, 𝑛 − 3, 𝑛 − 2) // bad case



Randomized Algorithm 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐷𝑒𝑚𝑜

 For any array 𝐴, Pr good case = Pr bad case =
1

2

 Let 𝑇(𝑛) be the number of recursions 

 running time is proportional to the number of recursions

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐷𝑒𝑚𝑜(𝐴, 𝑛)

𝐴: array storing 𝑛 distinct numbers

if 𝑛 ≤ 2 return

if 𝑟𝑎𝑛𝑑𝑜𝑚(2) swap 𝐴 𝑛 − 2 and 𝐴[𝑛 − 1]

if 𝐴 𝑛 − 2 < 𝐴[𝑛 − 1] then 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐷𝑒𝑚𝑜(𝐴[0, 𝑛/2 − 1, 𝑛/2) // good case

else 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐷𝑒𝑚𝑜(𝐴[0, 𝑛 − 3, 𝑛 − 2) // bad case



Expected running time of 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐷𝑒𝑚𝑜

 Let 𝑇 𝐴, 𝑅 be number of recursions on 𝐴 if random numbers are 𝑅 = 𝑥, 𝑅’

𝑇 𝐴, 𝑅 = = ቊ
1 + 𝑇(𝐴 0… 𝑛/2 − 1 , 𝑅′) if 𝑥 is good

1 + 𝑇(𝐴 0…𝑛 − 3 , 𝑅′) if 𝑥 is bad
𝑇 𝐴, 𝑥, 𝑅’

examples

𝑇 1,0,4, 5, 8,1 , 0, 1,1,0 = 𝑇 1,0,4, 5, 8,1 , 0, 1,1,0 = 1 + 𝑇 1,0,4, 5 , 1,1,0

bad case since 8 > 1 and 
do not swap

𝑇 1,0,4, 5, 8,1 , 1, 0,1,0 = 𝑇 1,0,4, 5, 8,1 , 1, 0,1,0 = 1 + 𝑇 1,0,4 , 0,1,0

good case since 8 > 1 and 
we  swap

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐷𝑒𝑚𝑜(𝐴, 𝑛)

𝐴: array storing 𝑛 distinct numbers

if 𝑛 ≤ 2 return

if 𝑟𝑎𝑛𝑑𝑜𝑚(2) swap 𝐴 𝑛 − 2 and 𝐴[𝑛 − 1]

if 𝐴 𝑛 − 2 < 𝐴[𝑛 − 1] then 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐷𝑒𝑚𝑜(𝐴[0, 𝑛/2 − 1, 𝑛/2) // good case

else 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐷𝑒𝑚𝑜(𝐴[0, 𝑛 − 3, 𝑛 − 2) // bad case



Expected running time of 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐷𝑒𝑚𝑜

 Summing up over all sequences of random outcomes



𝑅

𝑇 𝐴, 𝑅 ∙ Pr(𝑅)

example



𝑅

𝑇 1,4, 5, 8,1 , 𝑅 ∙ 𝐏𝐫(𝑹) = 𝑇 1,4, 5, 8,1 , 𝟎, 𝟎, 𝟎 ∙ Pr( 𝟎, 𝟎, 𝟎 )

+𝑇 1,4, 5, 8,1 , 𝟎, 𝟎, 𝟏 ∙ Pr( 𝟎, 𝟎, 𝟏 )

+𝑇 1,4, 5, 8,1 , 𝟎, 𝟏, 𝟎 ∙ Pr( 𝟎, 𝟏, 𝟎 )

+𝑇 1,4, 5, 8,1 , 𝟏, 𝟎, 𝟎 ∙ Pr( 𝟏, 𝟎, 𝟎 )

+𝑇 1,4, 5, 8,1 , 𝟏, 𝟏, 𝟎 ∙ Pr( 𝟏, 𝟏, 𝟎 )

+𝑇 1,4, 5, 8,1 , 𝟏, 𝟎, 𝟏 ∙ Pr( 𝟏, 𝟎, 𝟏 )

+𝑇 1,4, 5, 8,1 , 𝟎, 𝟏, 𝟏 ∙ Pr( 𝟎, 𝟏, 𝟏 )

+𝑇 1,4, 5, 8,1 , 𝟏, 𝟏, 𝟏 ∙ Pr( 𝟏, 𝟏, 𝟏 )

Pr 0 Pr 0 Pr 0 =
1

2

1

2

1

2

𝑇𝑒𝑥𝑝 𝐴 =

𝑅

𝑇 𝐴, 𝑅 ∙ Pr(𝑅)



Expected running time of 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐷𝑒𝑚𝑜
 Summing up over all sequences of random outcomes

= 

𝑥,𝑅’

𝑇 𝐴, 𝑥, 𝑅’ ∙ Pr(𝑥)Pr(𝑅′)

𝑅

𝑇 𝐴, 𝑅 ∙ Pr(𝑅)

example



𝑅

𝑇 1,4, 5, 8,1 , 𝑅 ∙ Pr(𝑅) = 𝑇 1,4, 5, 8,1 , 0, 0,0 ∙ Pr( 0, 0,0 )

+𝑇 1,4, 5, 8,1 , 0, 0,1 ∙ Pr( 0, 0,1 )

+𝑇 1,4, 5, 8,1 , 0, 1,0 ∙ Pr( 0, 1,0 )

+𝑇 1,4, 5, 8,1 , 1, 0,0 ∙ Pr( 1, 0,0 )

+𝑇 1,4, 5, 8,1 , 1, 1,0 ∙ Pr( 1, 1,0 )

+𝑇 1,4, 5, 8,1 , 1,0,1 ∙ Pr( 1, 0,1 )

+𝑇 1,4, 5, 8,1 , 0,1,1 ∙ Pr( 0, 1,1 )

+𝑇 1,4, 5, 8,1 , 1,1,1 ∙ Pr( 1, 1,1 )

= 𝑇 1,4, 5, 8,1 , 0, 0,0 ∙ Pr(0)Pr( 0,0 )

+𝑇 1,4, 5, 8,1 , 0, 0,1 ∙ Pr(0)Pr( 0,1 )

+𝑇 1,4, 5, 8,1 , 0, 1,0 ∙ Pr(0)Pr( 1,0 )

+𝑇 1,4, 5, 8,1 , 1, 0,0 ∙ Pr 1 Pr( 0,0 )

+𝑇 1,4, 5, 8,1 , 1, 1,0 ∙ Pr 1 Pr( 1,0 )

+𝑇 1,4, 5, 8,1 , 1, 0,1 ∙ Pr 1 Pr( 0,1 )

+𝑇 1,4, 5, 8,1 , 0, 1,1 ∙ Pr 0 Pr 1,1 )

+𝑇 1,4, 5, 8,1 , 1, 1,1 ∙ Pr 1 Pr( 1,1 )



Expected running time of 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐷𝑒𝑚𝑜
 Summing up over all sequences of random outcomes

= 

𝑥,𝑅’

𝑇 𝐴, 𝑥, 𝑅’ ∙ Pr(𝑥)Pr(𝑅′)

𝑅

𝑇 𝐴, 𝑅 ∙ Pr(𝑅)

+ 

𝑥=1,𝑅’

𝑇 𝐴, 𝑥, 𝑅’ ∙ Pr(𝑥)Pr(𝑅′)= 

𝑥=0,𝑅’

𝑇 𝐴, 𝑥, 𝑅’ ∙ Pr(𝑥)Pr(𝑅′)

example



𝑅

𝑇 1,4, 5, 8,1 , 𝑅 ∙ Pr(𝑅) = 𝑇 1,4, 5, 8,1 , 0, 0,0 ∙ Pr(0)Pr( 0,0 )

+𝑇 1,4, 5, 8,1 , 0, 0,1 ∙ Pr(0)Pr( 0,1 )

+𝑇 1,4, 5, 8,1 , 0, 1,0 ∙ Pr(0)Pr( 1,0 )

+𝑇 1,4, 5, 8,1 , 1, 0,0 ∙ Pr 1 Pr( 0,0 )

+𝑇 1,4, 5, 8,1 , 1, 1,0 ∙ Pr 1 Pr( 1,0 )

+𝑇 1,4, 5, 8,1 , 1, 0,1 ∙ Pr 1 Pr( 0,1 )

+𝑇 1,4, 5, 8,1 , 0, 1,1 ∙ Pr 0 Pr 1,1 )

+𝑇 1,4, 5, 8,1 , 1, 1,1 ∙ Pr 1 Pr( 1,1 )

Σ Σ



Expected running time of 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐷𝑒𝑚𝑜
 Summing up over all sequences of random outcomes

= 

𝑥,𝑅’

𝑇 𝐴, 𝑥, 𝑅’ ∙ Pr(𝑥)Pr(𝑅′)

𝑅

𝑇 𝐴, 𝑅 ∙ Pr(𝑅)

+ 

𝑥=1,𝑅’

𝑇 𝐴, 𝑥, 𝑅’ ∙ Pr(𝑥)Pr(𝑅′)= 

𝑥=0,𝑅’

𝑇 𝐴, 𝑥, 𝑅’ ∙ Pr(𝑥)Pr(𝑅′)

example



𝑅

𝑇 1,4, 5, 8,1 , 𝑅 ∙ Pr(𝑅) = 𝑇 1,4, 5, 8,1 , 0, 0,0 ∙ Pr(0)Pr( 0,0 )

+𝑇 1,4, 5, 8,1 , 0, 0,1 ∙ Pr(0)Pr( 0,1 )

+𝑇 1,4, 5, 8,1 , 0, 1,0 ∙ Pr(0)Pr( 1,0 )

+𝑇 1,4, 5, 8,1 , 1, 0,0 ∙ Pr 1 Pr( 0,0 )

+𝑇 1,4, 5, 8,1 , 1, 1,0 ∙ Pr 1 Pr( 1,0 )

+𝑇 1,4, 5, 8,1 , 1, 0,1 ∙ Pr 1 Pr( 0,1 )

+𝑇 1,4, 5, 8,1 , 0, 1,1 ∙ Pr 0 Pr 1,1 )

+𝑇 1,4, 5, 8,1 , 1, 1,1 ∙ Pr 1 Pr( 1,1 )

Σ Σ

bad cases 

good cases

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐷𝑒𝑚𝑜(𝐴, 𝑛)

𝐴: array storing 𝑛 distinct numbers

if 𝑛 ≤ 2 return

if 𝑟𝑎𝑛𝑑𝑜𝑚(2) swap 𝐴 𝑛 − 2 and 𝐴[𝑛 − 1]

if 𝐴 𝑛 − 2 < 𝐴[𝑛 − 1] then 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐷𝑒𝑚𝑜(𝐴[0, 𝑛/2 − 1, 𝑛/2) // good case

else 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐷𝑒𝑚𝑜(𝐴[0, 𝑛 − 3, 𝑛 − 2) // bad case



Expected running time of 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐷𝑒𝑚𝑜
 Summing up over all sequences of random outcomes

= 

𝑥,𝑅’

𝑇 𝐴, 𝑥, 𝑅’ ∙ Pr(𝑥)Pr(𝑅′)

𝑅

𝑇 𝐴, 𝑅 ∙ Pr(𝑅)

+ 

𝑥=1,𝑅’

𝑇 𝐴, 𝑥, 𝑅’ ∙ Pr(𝑥)Pr(𝑅′)= 

𝑥=0,𝑅’

𝑇 𝐴, 𝑥, 𝑅’ ∙ Pr(𝑥)Pr(𝑅′)

example



𝑅

𝑇 1,4, 5, 8,9 , 𝑅 ∙ Pr(𝑅) = 𝑇 1,4, 5, 8,9 , 0, 0,0 ∙ Pr(0)Pr( 0,0 )

+𝑇 1,4, 5, 8,9 , 0, 0,1 ∙ Pr(0)Pr( 0,1 )

+𝑇 1,4, 5, 8,9 , 0, 1,0 ∙ Pr(0)Pr( 1,0 )

+𝑇 1,4, 5, 8,9 , 1, 0,0 ∙ Pr 1 Pr( 0,0 )

+𝑇 1,4, 5, 8,9 , 1, 1,0 ∙ Pr 1 Pr( 1,0 )

+𝑇 1,4, 5, 8,9 , 1, 0,1 ∙ Pr 1 Pr( 0,1 )

+𝑇 1,4, 5, 8,9 , 0, 1,1 ∙ Pr 0 Pr 1,1 )

+𝑇 1,4, 5, 8,9 , 1, 1,1 ∙ Pr 1 Pr( 1,1 )

Σ Σ

good cases 

bad cases

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐷𝑒𝑚𝑜(𝐴, 𝑛)

𝐴: array storing 𝑛 distinct numbers

if 𝑛 ≤ 2 return

if 𝑟𝑎𝑛𝑑𝑜𝑚(2) swap 𝐴 𝑛 − 2 and 𝐴[𝑛 − 1]

if 𝐴 𝑛 − 2 < 𝐴[𝑛 − 1] then 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐷𝑒𝑚𝑜(𝐴[0, 𝑛/2 − 1, 𝑛/2) // good case

else 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐷𝑒𝑚𝑜(𝐴[0, 𝑛 − 3, 𝑛 − 2) // bad case



Expected running time of 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐷𝑒𝑚𝑜
 Summing up over all sequences of random outcomes

= 

𝑥,𝑅’

𝑇 𝐴, 𝑥, 𝑅’ ∙ Pr(𝑥)Pr(𝑅′)

𝑅

𝑇 𝐴, 𝑅 ∙ Pr(𝑅)

+
1

2


𝑥=1,𝑅’

𝑇 𝐴, 𝑥, 𝑅’ ∙ Pr(𝑥)Pr(𝑅′)=
1

2


𝑥=0,𝑅’

𝑇 𝐴, 𝑥, 𝑅’ ∙ Pr(𝑥)Pr(𝑅′) Σ
bad cases good cases

or

+
1

2


𝑥=1,𝑅’

𝑇 𝐴, 𝑥, 𝑅’ ∙ Pr(𝑥)Pr(𝑅′)=
1

2


𝑥=0,𝑅’

𝑇 𝐴, 𝑥, 𝑅’ ∙ Pr(𝑥)Pr(𝑅′) Σ
good cases bad cases

Σ

Σ



Expected running time of 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐷𝑒𝑚𝑜
 Summing up over all sequences of random outcomes

= 

𝑥,𝑅’

𝑇 𝐴, 𝑥, 𝑅’ ∙ Pr(𝑥)Pr(𝑅′)

𝑅

𝑇 𝐴, 𝑅 ∙ Pr(𝑅)

+
1

2


𝑥=1,𝑅’

𝑇 𝐴, 𝑥, 𝑅’ ∙ Pr(𝑥)Pr(𝑅′)=
1

2


𝑥=0,𝑅’

𝑇 𝐴, 𝑥, 𝑅’ ∙ Pr(𝑥)Pr(𝑅′) Σ
or

+
1

2


𝑥=1,𝑅’

𝑇 𝐴, 𝑥, 𝑅’ ∙ Pr(𝑥)Pr(𝑅′)=
1

2


𝑥=0,𝑅’

𝑇 𝐴, 𝑥, 𝑅’ ∙ Pr(𝑥)Pr(𝑅′) Σ

Σ

Σ

1

2

1

2

1

2

1

2

bad cases good cases

good cases bad cases



Expected running time of 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐷𝑒𝑚𝑜
 Summing up over all sequences of random outcomes

= 

𝑥,𝑅’

𝑇 𝐴, 𝑥, 𝑅’ ∙ Pr(𝑥)Pr(𝑅′)

𝑅

𝑇 𝐴, 𝑅 ∙ Pr(𝑅)

+
1

2


𝑥=1,𝑅’

𝑇 𝐴, 𝑥, 𝑅’ Pr(𝑅′)=
1

2


𝑥=0,𝑅’

𝑇 𝐴, 𝑥, 𝑅’ Pr(𝑅′) Σ
or

+
1

2


𝑥=1,𝑅’

𝑇 𝐴, 𝑥, 𝑅’ Pr(𝑅′)=
1

2


𝑥=0,𝑅’

𝑇 𝐴, 𝑥, 𝑅’ Pr(𝑅′) Σ

Σ

Σ

bad cases good cases

good cases bad cases



Expected running time of 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐷𝑒𝑚𝑜
 Summing up over all sequences of random outcomes

= 

𝑥,𝑅’

𝑇 𝐴, 𝑥, 𝑅’ ∙ Pr(𝑥)Pr(𝑅′)

𝑅

𝑇 𝐴, 𝑅 ∙ Pr(𝑅)

+
1

2


𝑥=1,𝑅’

𝑇 𝐴, 𝑥, 𝑅’ Pr(𝑅′)=
1

2


𝑥=0,𝑅’

𝑇 𝐴, 𝑥, 𝑅’ Pr(𝑅′) Σ
or

+
1

2


𝑥=1,𝑅’

𝑇 𝐴, 𝑥, 𝑅’ Pr(𝑅′)=
1

2


𝑥=0,𝑅’

𝑇 𝐴, 𝑥, 𝑅’ Pr(𝑅′) Σ

𝑇 𝐴, 𝑅 = = ቊ
1 + 𝑇(𝐴 0… 𝑛/2 − 1 , 𝑅′) if 𝑥 is good

1 + 𝑇(𝐴 0…𝑛 − 3 , 𝑅′) if 𝑥 is bad
𝑇 𝐴, 𝑥, 𝑅’

(1 + 𝑇(𝐴 0… 𝑛/2 − 1 , 𝑅′) Pr(𝑅′)(1 + 𝑇(𝐴 0… 𝑛 − 3 , 𝑅′) Pr(𝑅′)

(1 + 𝑇(𝐴 0… 𝑛/2 − 1 , 𝑅′)Pr(𝑅′) (1 + 𝑇(𝐴 0… 𝑛 − 3 , 𝑅′)Pr(𝑅′)

Σ

Σ

bad cases good cases

good cases bad cases



Expected running time of 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐷𝑒𝑚𝑜
 Summing up over all sequences of random outcomes

= 

𝑥,𝑅’

𝑇 𝐴, 𝑥, 𝑅’ ∙ Pr(𝑥)Pr(𝑅′)

𝑅

𝑇 𝐴, 𝑅 ∙ Pr(𝑅)

+
1

2


𝑥=1,𝑅’

𝑇 𝐴, 𝑥, 𝑅’ Pr(𝑅′)=
1

2


𝑥=0,𝑅’

𝑇 𝐴, 𝑥, 𝑅’ Pr(𝑅′) Σ
or

+
1

2


𝑥=1,𝑅’

𝑇 𝐴, 𝑥, 𝑅’ Pr(𝑅′)=
1

2


𝑥=0,𝑅’

𝑇 𝐴, 𝑥, 𝑅’ Pr(𝑅′) Σ

(1 + 𝑇(𝐴 0… 𝑛/2 − 1 , 𝑅′) Pr(𝑅′)(1 + 𝑇(𝐴 0… 𝑛 − 3 , 𝑅′) Pr(𝑅′)

(1 + 𝑇(𝐴 0… 𝑛/2 − 1 , 𝑅′)Pr(𝑅′)

two cases  just differ in the order of elements

Σ

Σ

bad cases good cases

good cases bad cases

𝑅’ 𝑅’

𝑅’ 𝑅’

(1 + 𝑇(𝐴 0… 𝑛 − 3 , 𝑅′)Pr(𝑅′)



Expected running time of 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐷𝑒𝑚𝑜
 Summing up over all sequences of random outcomes

= 

𝑥,𝑅’

𝑇 𝐴, 𝑥, 𝑅’ ∙ Pr(𝑥)Pr(𝑅′)

𝑅

𝑇 𝐴, 𝑅 ∙ Pr(𝑅)

+
1

2


𝑥=1,𝑅’

𝑇 𝐴, 𝑥, 𝑅’ Pr(𝑅′)=
1

2


𝑥=0,𝑅’

𝑇 𝐴, 𝑥, 𝑅’ Pr(𝑅′) Σ
or

+
1

2


𝑥=1,𝑅’

𝑇 𝐴, 𝑥, 𝑅’ Pr(𝑅′)=
1

2


𝑥=0,𝑅’

𝑇 𝐴, 𝑥, 𝑅’ Pr(𝑅′) Σ

(1 + 𝑇(𝐴 0… 𝑛/2 − 1 , 𝑅′) Pr(𝑅′)(1 + 𝑇(𝐴 0… 𝑛 − 3 , 𝑅′) Pr(𝑅′)

(1 + 𝑇(𝐴 0… 𝑛/2 − 1 , 𝑅′)Pr(𝑅′) (1 + 𝑇(𝐴 0… 𝑛 − 3 , 𝑅′)Pr(𝑅′)

two cases  just differ in the order of elements

Σ

Σ

bad cases good cases

good cases bad cases

 Replace both cases with

=
1

2


𝑅′

1 + 𝑇 𝐴 0… 𝑛/2 − 1 , 𝑅′ ∙ Pr(𝑅′) +
1

2


𝑅′

1 + 𝑇 𝐴 0…𝑛 − 3 , 𝑅′ ∙ Pr(𝑅′)

𝑅’ 𝑅’

𝑅’ 𝑅’



Expected running time of 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐷𝑒𝑚𝑜



𝑅

𝑇 𝐴, 𝑅 ∙ Pr 𝑅 =

=
1

2


𝑅′

1 ∙ Pr 𝑅′ +
1

2


𝑅′

𝑇 𝐴 0…
𝑛

2
− 1 , 𝑅′ ∙ Pr(𝑅′)

+
1

2


𝑅′

𝑇 𝐴 0…
𝑛

2
− 1 , 𝑅′ ∙ Pr 𝑅′

=
1

2


𝑅′

1 + 𝑇 𝐴 0… 𝑛/2 − 1 , 𝑅′ ∙ Pr(𝑅′)+
1

2


𝑅′

1 + 𝑇 𝐴 0…𝑛 − 3 , 𝑅′ ∙ Pr(𝑅′)

=
1

2

+ second part

+ second part

+ second part



Expected running time of 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐷𝑒𝑚𝑜



𝑅

𝑇 𝐴, 𝑅 ∙ Pr 𝑅 =

=
1

2


𝑅′

1 ∙ Pr 𝑅′ +
1

2


𝑅′

𝑇 𝐴 0…
𝑛

2
− 1 , 𝑅′ ∙ Pr(𝑅′)

=
1

2


𝑅′

1 + 𝑇 𝐴 0… 𝑛/2 − 1 , 𝑅′ ∙ Pr(𝑅′)

𝐶 ≤ max{𝐴, 𝐵, 𝐶, … , 𝑍}

+ second part

+ second part

+
1

2


𝑅′

𝑇 𝐴 0…
𝑛

2
− 1 , 𝑅′ ∙ Pr 𝑅′=

1

2
+ second part



Expected running time of 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐷𝑒𝑚𝑜



𝑅

𝑇 𝐴, 𝑅 ∙ Pr 𝑅 =

=
1

2


𝑅′

1 ∙ Pr 𝑅′ +
1

2


𝑅′

𝑇 𝐴 0…
𝑛

2
− 1 , 𝑅′ ∙ Pr(𝑅′)

=
1

2


𝑅′

1 + 𝑇 𝐴 0… 𝑛/2 − 1 , 𝑅′ ∙ Pr(𝑅′)



𝑅′

𝑇 1,4 , 𝑅′ ∙ Pr 𝑅′ 𝑚𝑎𝑥

instance 𝐼 = [1,4]
of size 2



𝑅′

𝑇 4,5 , 𝑅′ ∙ Pr 𝑅′



𝑅′

𝑇 1,4 , 𝑅′ ∙ Pr 𝑅′



𝑅′

𝑇 1,3 , 𝑅′ ∙ Pr 𝑅′

…

𝕀2 =all instances of size 2

+ second part

+ second part

≤

+
1

2


𝑅′

𝑇 𝐴 0…
𝑛

2
− 1 , 𝑅′ ∙ Pr 𝑅′=

1

2
+ second part



Expected running time of 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐷𝑒𝑚𝑜



𝑅

𝑇 𝐴, 𝑅 ∙ Pr 𝑅 =

=
1

2


𝑅′

1 ∙ Pr 𝑅′ +
1

2


𝑅′

𝑇 𝐴 0…
𝑛

2
− 1 , 𝑅′ ∙ Pr(𝑅′)

=
1

2


𝑅′

1 + 𝑇 𝐴 0… 𝑛/2 − 1 , 𝑅′ ∙ Pr(𝑅′)



𝑅′

𝑇 1,4 , 𝑅′ ∙ Pr 𝑅′ 𝑚𝑎𝑥

instance 𝐼 = [1,4]
of size 2



𝑅′

𝑇 4,5 , 𝑅′ ∙ Pr 𝑅′



𝑅′

𝑇 1,4 , 𝑅′ ∙ Pr 𝑅′



𝑅′

𝑇 1,3 , 𝑅′ ∙ Pr 𝑅′

…

𝕀2 =all instances of size 2

+ second part

+ second part

+
1

2


𝑅′

𝑇 𝐴 0…
𝑛

2
− 1 , 𝑅′ ∙ Pr 𝑅′=

1

2
+ second part

𝑆([1,4])
𝐵 ∈ 𝕀2

𝑆(𝐵)≤



Expected running time of 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐷𝑒𝑚𝑜

+
1

2
max
𝐴′∈𝕀𝒏/𝟐



𝑅′

𝑇 𝐴′, 𝑅′ ∙ Pr 𝑅′≤
1

2

=
1

2


𝑅′

1 ∙ Pr 𝑅′ +
1

2


𝑅′

𝑇 𝐴 0…
𝑛

2
− 1 , 𝑅′ ∙ Pr(𝑅′)

=
1

2


𝑅′

1 + 𝑇 𝐴 0… 𝑛/2 − 1 , 𝑅′ ∙ Pr(𝑅′) + second part

+ second part

+
1

2


𝑅′

𝑇 𝐴 0…
𝑛

2
− 1 , 𝑅′ ∙ Pr 𝑅′=

1

2
+ second part



𝑅

𝑇 𝐴, 𝑅 ∙ Pr 𝑅 =

+ second part



Expected running time of 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐷𝑒𝑚𝑜

+
1

2
max
𝐴′∈𝕀𝑛/2



𝑅′

𝑇 𝐴′, 𝑅′ ∙ Pr 𝑅′≤
1

2

=
1

2


𝑅′

1 ∙ Pr 𝑅′ +
1

2


𝑅′

𝑇 𝐴 0…
𝑛

2
− 1 , 𝑅′ ∙ Pr(𝑅′)

=
1

2


𝑅′

1 + 𝑇 𝐴 0… 𝑛/2 − 1 , 𝑅′ ∙ Pr(𝑅′) + second part

+ second part

+
1

2


𝑅′

𝑇 𝐴 0…
𝑛

2
− 1 , 𝑅′ ∙ Pr 𝑅′=

1

2
+ second part



𝑅

𝑇 𝐴, 𝑅 ∙ Pr 𝑅 =

+
1

2


𝑅′

1 + 𝑇 𝐴 0…𝑛 − 3 , 𝑅′ ∙ Pr(𝑅′)

≤
1

2
+
1

2
max
𝐴′∈𝕀𝑛/2



𝑅′

𝑇 𝐴′, 𝑅′ ∙ Pr 𝑅′ +
1

2
max

𝐴′∈𝕀𝑛−2


𝑅′

𝑇 𝐴′, 𝑅′ ∙ Pr 𝑅′+
1

2

𝑇𝑒𝑥𝑝 𝑛/2 𝑇𝑒𝑥𝑝 𝑛 − 2



Expected running time of 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐷𝑒𝑚𝑜



𝑅

𝑇 𝐴, 𝑅 ∙ Pr 𝑅 ≤ 1 +
1

2
𝑇𝑒𝑥𝑝 𝑛/2 +

1

2
𝑇𝑒𝑥𝑝 𝑛 − 2

 Therefore it also holds for 𝐴 which maximizes this sum

max
𝐴∈𝕀𝑛



𝑅

𝑇 𝐴, 𝑅 ∙ Pr 𝑅 ≤ 1 +
1

2
𝑇𝑒𝑥𝑝 𝑛/2 +

1

2
𝑇𝑒𝑥𝑝 𝑛 − 2

 For any 𝐴 ∈ 𝕀𝑛, it holds

 Same recurrence as for 𝑎𝑣𝑒𝑟𝐶𝑎𝑠𝑒𝐷𝑒𝑚𝑜

 expected running time is 𝑂(log 𝑛 )

 Is expected time of randomized version always the same as average case time of 
non-randomized version?

 not in general (depends on randomization)

 but yes if randomization is a shuffle 

 choose instance randomly with equal probability

𝑇𝑒𝑥𝑝 𝑛 =



Average-case vs. Expected runtime

 Ignoring time needed for the first two lines

AlgoritmShuffled(𝑛)

among all instances 𝐼 of size 𝒏 for Algorithm

choose 𝐼 randomly and uniformly

Algorithm(𝐼, 𝑛)

𝑇𝑎𝑣𝑔 𝑛 =
1

𝕀𝑛


𝐼∈𝕀𝑛

𝑇(𝐼)= 𝑇𝑒𝑥𝑝 𝑛

=
𝐼∈𝕀𝑛

1

𝕀𝑛
𝑇(𝐼)𝑇𝑒𝑥𝑝 𝑛 =

𝐼∈𝕀𝑛

Pr 𝐼 is chosen 𝑇(𝐼)

 Expected runtime of AlgorithmShuffled is equal to the average case time of 
Algorithm

 Computing expected runtime of AlgorithmShuffled is usually easier than 
computing average case time of Algorithm



Average-case vs. Expected runtime
 Average case runtime and expected runtime are different concepts!

average case expected

𝑇𝑒𝑥𝑝 𝐼 = 

outcomes 𝑅

𝑇 𝐼, 𝑅 ∙ Pr(𝑅)
𝑇𝑎𝑣𝑔 𝑛 =

σ𝐼∈𝕀𝑛
𝑇(𝐼)

𝕀𝑛

sum is over instances sum is over random outcomes

applied only to a randomized algorithm



Outline

 Sorting, average-case, and Randomization

 Analyzing average-case run-time

 Randomized Algorithms

 QuickSelect

 QuickSort

 Lower Bound for Comparison-Based Sorting  

 Non-Comparison-Based Sorting



Selection Problem

0 1 2 3 4 5 6 7 8 9

30 60 10 0 50 80 90 20 40 70

 Special case: MedianFinding = select(𝑘 =
𝑛

2
)

 Selection can be done with heaps in Θ(𝑛 + 𝑘 log 𝑛) time

 this is Θ 𝑛 log 𝑛 for median finding, not better than sorting

 Question: can we do selection in linear time?

 yes, with quick-select (average case analysis)

 subroutines for quick-select also useful for sorting algorithms

select 2 = 20

 Given array 𝐴 of 𝑛 numbers, and  0 ≤ 𝑘 < 𝑛, find the element that 
would be at position 𝑘 if 𝐴 was sorted

 𝑘 elements are smaller or equal, 𝑛 − 1 − 𝑘 elements are larger or equal

 select(𝑘) returns 𝑘 + 1 smallest element

0 10 20 30 40 50 60 70 80 90sorted

20



Two Crucial Subroutines for Quick-Select
 choose-pivot(𝐴)

 return an index 𝑝 in A 

 𝑣 = 𝐴[𝑝] is called pivot value

0 1 2 3 4 5 6 7 8 9

30 60 10 0 50 80 90 20 40 70

𝑝 = 4
𝒗 =50

0 1 2 3 4 5 6 7 8 9𝑖 = 5

30 10 0 20 40 𝒗 =50 60 80 90 70

 items in 𝐴 [𝑖 + 1,… , 𝑛 − 1] are ≥ 𝑣

 partition (𝐴, 𝑝) uses 𝑣 = 𝐴[𝑝] to rearranges 𝐴 so that

 items in 𝐴 [0, … , 𝑖 − 1] are  ≤ 𝑣

 𝐴 𝑖 = 𝑣

 𝑖 is a correct location of 𝑣 in sorted  𝐴

 index 𝑖 is called  pivot-index 𝑖

 partition 𝐴, 𝑝 returns  pivot-index 𝑖

 𝑣 would be the answer if 𝑖 = 𝑘



Choosing Pivot

choose-pivot(𝐴)
return A.size() – 1

 Will consider more sophisticated ideas later

 Simplest idea for choose-pivot

 always select rightmost element in array

0 1 2 3 4 5 6 7 8 9

30 60 10 0 50 80 90 20 40 70
𝑝 = 9
𝒗 =70



Partition Algorithm

 More challenging: partition in-place, i.e. O(1) auxiliary space

 Easy linear-time implementation using extra (auxiliary) Θ(𝑛) space 

partition(𝐴, 𝑝)

A: array of size 𝑛, 𝑝: integer s.t. 0 ≤ 𝑝 < 𝑛

create empty lists 𝑠𝑚𝑎𝑙𝑙, 𝑒𝑞𝑢𝑎𝑙 and 𝑙𝑎𝑟𝑔𝑒

𝑣 ← 𝐴[𝑝]

for each element 𝑥 in 𝐴

if 𝑥 < 𝑣 then 𝑠𝑚𝑎𝑙𝑙. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑥)

else if 𝑥 > 𝑣 then 𝑙𝑎𝑟𝑔𝑒. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑥)

else 𝑒𝑞𝑢𝑎𝑙. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑥)

𝑖 ← 𝑠𝑚𝑎𝑙𝑙. 𝑠𝑖𝑧𝑒

𝑗 ← 𝑒𝑞𝑢𝑎𝑙. 𝑠𝑖𝑧𝑒

overwrite 𝐴[0 . . . 𝑖 − 1] by   elements in 𝑠𝑚𝑎𝑙𝑙

overwrite  𝐴[𝑖 … 𝑖 + 𝑗 − 1] by elements in  𝑒𝑞𝑢𝑎𝑙

overwrite 𝐴[𝑖 + 𝑗 . . . 𝑛 − 1] by elements in 𝑙𝑎𝑟𝑔𝑒

return i



i = -1 j = 9

Efficient In-Place partition (Hoare)

30 60 10 0 50 80 90 20 40 𝑣=70

30 60 10 0 50 80 90 20 40 𝑣=70

i = 0 j = 9

30 60 10 0 50 80 90 20 40 𝑣=70

i = 1 j = 9

30 60 10 0 50 80 90 20 40 𝑣=70

i = 2 j = 9

30 60 10 0 50 80 90 20 40 𝑣=70

i = 3 j = 9

30 60 10 0 50 80 90 20 40 𝑣=70

i = 4 j = 9

30 60 10 0 50 80 90 20 40 𝑣=70

i = 5 j = 9i = 5 j = 8

30 60 10 0 50 80 90 20 40 𝑣=70

i = 5 j = 8

30 60 10 0 50 40 90 20 80 𝑣=70

i = 5 j = 8

30 60 10 0 50 40 90 20 80 𝑣=70

i = 6 j = 7

30 60 10 0 50 40 90 20 80 𝑣=70

i = 6 j = 7

30 60 10 0 50 40 20 90 80 𝑣=70

j = 6 i = 7

j = 6 i = 7
30 60 10 0 50 40 20 𝑣=70 80 90

almost done, 
just swap with  
pivot 𝑣

30 60 10 0 50 40 20 90 80 𝑣=70



Efficient In-Place partition (Hoare)

 One possible implementation

do 𝑖 ← 𝑖 + 1 while  𝑖 < 𝑛 and 𝐴 𝑖 ≤ 𝑣

do 𝑗 ← 𝑗 − 1 while 𝑗 ≥ 𝑖 and  𝐴 𝑗 ≥ 𝑣

 More efficient (for quickselect and quicksort) when many repeating elements

do 𝑖 ← 𝑖 + 1 while 𝑖 < 𝑛 and  𝐴 𝑖 < 𝑣

do 𝑗 ← 𝑗 − 1 while 𝑗 ≥ 𝑖 and  𝐴 𝑗 > 𝑣

≤ v ? ≥ v v

i j

 Idea Summary: keep swapping the outer-most wrongly-positioned pairs

 Simplify the loop bounds 

do 𝑖 ← 𝑖 + 1 while  𝐴 𝑖 < 𝑣

do 𝑗 ← 𝑗 − 1 while 𝑗 ≥ 𝑖 and 𝐴 𝑗 > 𝑣

// 𝑖 will not run out of bounds as 𝐴[𝑛 − 1] = 𝑣

// 𝑗 will not run out of bounds as 𝑖 ≥ 0



Efficient In-Place partition (Hoare)

partition (𝐴, 𝑝)

𝐴: array of size 𝑛

𝑝: integer s.t. 0 ≤ 𝑝 < 𝑛

swap 𝐴 𝑛 − 1 , 𝐴 𝑝
𝑖 ← −1, 𝑗 ← 𝑛 − 1, 𝑣 ← 𝐴 𝑛 − 1

loop

do 𝑖 ← 𝑖 + 1 while 𝐴 𝑖 < 𝑣

do 𝑗 ← 𝑗 − 1 while 𝑗 ≥ 𝑖 and  𝐴 𝑗 > 𝑣

if  𝑖 ≥ 𝑗 then break

else  swap(𝐴 𝑖 , 𝐴[𝑗])

end loop

swap(𝐴 𝑛 − 1 , 𝐴[𝑖])

return   𝑖

 Running time is Θ(𝑛)

// put pivot in correct position

// put pivot at the end



Quick Select Algorithm

30 60 10 0 50 80 90 20 40 70

 Find item that would be in 𝐴[𝑘] if 𝐴 was sorted

 Similar to quick-sort, but recurse only on one side (“quick-sort with pruning”)

 Example: select(𝑘 = 4)

𝑣=70

𝑖=7

30 60 10 0 50 40 20 70 80 90

≤ 70 ≥ 70
 𝑖 > 𝑘, search recursively in the left side to select 𝑘

7 smallest items 

partition 
𝑣=70



Quick Select Algorithm

 Example continued: select(𝑘 = 4)

𝑖=2

≤ 20 ≥ 20

 𝑖 < 𝑘, search recursively on the right, select 𝒌 − (𝒊 + 𝟏)
 𝑘 = 1 in our example

𝑖 + 1 = 3 smallest items 

30 60 10 0 50 40 20𝑣=20

partition
𝑣=20

0 10 20 30 50 40 60



Quick Select Algorithm

 Example continued: select(𝑘 = 1)

𝑖=3

≤ 60
 𝑖 > 𝑘, search on the left to select 𝑘

partition
𝑣=60

30 50 40 60𝑣=60

30 50 40 60

3 smallest items 



Quick Select Algorithm

 Example continued: select(𝑘 = 1)

𝑖=1

partition
𝑣=40

30 50 40𝑣=40

30 40 50

 𝑖 = 𝑘, found our item, done!

 In our example, we got to subarray of size 3

 Often stop much sooner than that



QuickSelect Algorithm
QuickSelect(𝐴, 𝑘)

𝐴: array of size 𝑛,  𝑘: integer s.t. 0 ≤ 𝑘 < 𝑛

𝑝 ← choose-pivot(𝐴)

𝑖 ← partition(𝐴, 𝑝)

if 𝑖 = 𝑘 then return 𝐴[𝑖]

else if 𝑖 > 𝑘 then return QuickSelect(𝐴 0, 1, … , 𝑖 − 1 , 𝑘)

else if 𝑖 < 𝑘 then return QuickSelect(𝐴 𝑖 + 1,… , 𝑛 − 1 , 𝑘 − (𝑖 + 1))

𝑇 𝑛 = ቊ
𝑐𝑛 + 𝑇 𝑛 − 1 𝑛 > 1

𝑐 𝑛 = 1

 Worst case

 pivot-value is always the largest and 𝑘 = 0

 recurrence equation

 Best case

 first chosen pivot could have pivot-index 𝑘

 no recursive calls, total cost Θ(𝑛)

//running time Θ(𝑛)



QuickSelect Algorithm 𝑇 𝑛 = ቊ𝑐𝑛 + 𝑇 𝑛 − 1 𝑛 > 1
𝑐 𝑛 = 1

 Solution:  repeatedly expand until we see a pattern forming

𝑇 𝑛 = 𝑐𝑛 + 𝑐 𝑛 − 1 + 𝑇 𝑛 − 2

𝑇 𝑛 − 2 = 𝑐(𝑛 − 2) + 𝑇 𝑛 − 3

𝑇 𝑛 = 𝑐𝑛 + 𝑐 𝑛 − 1 + 𝑐(𝑛 − 2) + 𝑇 𝑛 − 3

𝑇 𝑛 = 𝑐𝑛 + 𝑐 𝑛 − 1 +⋯+ 𝑐 𝑛 − 𝑖 + 𝑇 𝑛 − (𝑖 + 1)

 Stop expanding when get to base case   

𝑇 𝑛 − (𝑖 + 1) = 𝑇 1

 Thus  𝑇 𝑛 = 𝑐𝑛 + 𝑐 𝑛 − 1 + 𝑐 𝑛 − 2 +⋯+ 2𝑐 + 𝑇 1

= 𝑐[𝑛 + 𝑛 − 1 + 𝑛 − 2 +⋯+ 2 + 1] ∈ Θ(𝑛2)

𝑇 𝑛 = 𝑐𝑛 + 𝑐 𝑛 − 1 + 𝑇 𝑛 − 2

𝑇 𝑛 = 𝑐𝑛 + 𝑇 𝑛 − 1𝑇 𝑛 = 𝑐𝑛 + 𝑇 𝑛 − 1

𝑇 𝑛 − 1 = 𝑐(𝑛 − 1)+𝑇 𝑛 − 2

after 2 expansions:

after 1 expansion:

after 𝑖 expansions:                                                                                   

⇒ 𝑛 − (𝑖 + 1) = 1 ⇒ 𝑖 = 𝑛 − 2



Average-Case Analysis of QuickSelect
 Runtime depends only on the order of the elements

 Therefore, can use sorting permutations

𝑇𝑎𝑣𝑔 𝑛 =
1

𝑛!


𝜋∈Π𝑛

𝑇(𝜋)

 Can show (complicated) that average-case runtime is Θ 𝑛

 better than the worst case runtime, Θ(𝑛2)

 Create a better algorithm in practice by randomizing QuickSelect

 no more bad instances

 if randomization is done with shuffling, the expected time 
randomizedQuickSelect is the same as average case runtime of non-
randomized QuickSelect

 expected runtime is easier to derive

 randomization is useful for practical application, and also leads to an 

easier analysis of average-case



Randomized QuickSelect: Shuffling
 First idea for randomization

 Shuffle the input then run quickSelect

quickSelectShuffled(𝐴, 𝑘)

𝐴 : array of size 𝑛

for 𝑖 ⟵ 1  to  𝑛 − 1 do

swap(𝐴 𝑖 , 𝐴[𝑟𝑎𝑛𝑑𝑜𝑚 𝑖 + 1 ])

QuickSelect(𝐴, 𝑘)

 𝑟𝑎𝑛𝑑𝑜𝑚(𝑛) returns integer uniformly sampled from 0, 1, 2, … , 𝑛 − 1

 Can show that every permutation of 𝐴 is equally likely after shuffle

 As shown before, expected time of quickSelectShuffled is the same as average  
…. case time of quickSelect

 Θ 𝑛

// shuffle



Randomized QuickSelect Algorithm

RandomizedQuickSelect(𝐴, 𝑘)
𝐴: array of size 𝑛,  𝑘: integer s.t. 0 ≤ 𝑘 < 𝑛

𝑝 ← random(𝐴. 𝑠𝑖𝑧𝑒)

𝑖 ← partition(𝐴, 𝑝)

if 𝑖 = 𝑘 then return 𝐴[𝑖]

else if 𝑖 > 𝑘 then 

return RandomizedQuickSelect(𝐴 0, 1, … , 𝑖 − 1 , 𝑘)

else if 𝑖 < 𝑘 then 

return RandomizedQickSelect(𝐴 𝑖 + 1, … , 𝑛 − 1 , 𝑘 − (𝑖 + 1))

 Second idea: change pivot selection

 Just one line change from QuickSelect

 It is possible to prove that RandomizedQuickSelect has the same expected 
runtime as quickSelectShuffled (no details)

 Therefore expected time for RandomizedQuickSelect is the same as the average 
case runtime of QuickSelect

 easier to compute



Randomized QuickSelect: Analysis

 Let 𝑇(𝐴, 𝑘, 𝑅) be number of key-comparisons on array 𝐴 of 
size 𝑛, selecting 𝑘th element, using random numbers 𝑅

 asymptotically the same as running time

RandomizedQuickSelect(𝐴, 𝑘)

𝑝 ← random(𝐴. 𝑠𝑖𝑧𝑒)

𝑖 ← partition(𝐴, 𝑝)
⋯

𝑇 𝐴, 𝑘, 𝑖, 𝑅′ = 𝑛 + ቐ
𝑇(𝐵, 𝑘, 𝑅′) if 𝑖 > 𝑘

𝑇(𝐶, 𝑘 − 𝑖 − 1, 𝑅′) if 𝑖 < 𝑘
0 otherwise

𝑣

𝒊

𝐶𝐵

select(𝑘) select(𝑘 − 𝑖 − 1)

size 𝑖 size 𝑛 − 𝑖 − 1

 Identify numbers 𝑝 generated by random with pivot indexes 𝑖

 one-one correspondence between generated numbers and pivot indexes 

 So 𝑅 is a sequence of randomly generated pivot indexes, 𝑅 =⟨first, the rest of 𝑅⟩= 𝑖, 𝑅′

 Assume  array elements are distinct

 probability of any pivot-index 𝑖 equal to 1/𝑛

 Structure of array 𝐴 after partition

 Recurse in array 𝐵 or 𝐶 or algorithms stops



Randomized QuickSelect: Analysis



𝑅

𝑇 𝐴, 𝑘, 𝑅 Pr(𝑅)

𝑇𝑒𝑥𝑝 𝑛 = max
𝐴∈𝕀𝑛

max
𝑘∈{0,…𝑛−1}



𝑅

𝑇 𝐴, 𝑘, 𝑅 Pr(𝑅)

max
𝐴∈𝕀𝑛



𝑅

𝑇 𝐴, 𝑅 Pr(𝑅)𝑇𝑒𝑥𝑝 𝑛 =

 For expectedDemo

 Runtime of RandomizedQuickSelect(𝐴, 𝑘) also depends on 𝑘

 First, let us work on 



Randomized QuickSelect: Analysis



𝑅

𝑇 𝐴, 𝑘, 𝑅 Pr 𝑅 =

= 

𝑅= 𝑖,𝑅′

𝑇 𝐴, 𝑘, 𝑖, 𝑅′ Pr 𝑖 Pr(𝑅′)

= 

𝑅= 𝟎,𝑅′

□ + 

𝑅= 𝟏,𝑅′

□ +⋯+ 

𝑅= 𝒌−𝟏,𝑅′

□ + 

𝑅= 𝒌,𝑅′

□ +⋯+ 

𝑅= 𝒏−𝟏,𝑅′

□

𝑖 < 𝑘: recurse on 𝐶 𝑖 > 𝑘: recurse on 𝐵base case

=
1

𝑛


𝑖=0

𝑘−1



𝑅′

𝑇 𝐴, 𝑘, 𝑖, 𝑅′ Pr(𝑅′) +
1

𝑛
∙ 𝑛 +

1

𝑛


𝑖=𝑘+1

𝑛−1



𝑅′

𝑇 𝐴, 𝑘, 𝑖, 𝑅′ Pr(𝑅′)

=
1

𝑛


𝑅= 𝑖,𝑅′

𝑇 𝐴, 𝑘, 𝑖, 𝑅′ Pr(𝑅′)

Pr 𝑖

=
1

𝑛


𝑖=0

𝑘−1



𝑅′

𝑇 𝐴, 𝑘, 𝑖, 𝑅′ Pr(𝑅′) + 1 +
1

𝑛


𝑖=𝑘+1

𝑛−1



𝑅′

𝑇 𝐴, 𝑘, 𝑖, 𝑅′ Pr(𝑅′)

Pr 𝑖 =
1

𝑛

+ 

𝑅= 𝒌+𝟏,𝑅′

□

𝑇 𝐴, 𝑘, 𝑖, 𝑅′ = 𝑛 + ቐ
𝑇(𝐵, 𝑘, 𝑅′) if 𝑖 > 𝑘

𝑇(𝐶, 𝑘 − 𝑖 − 1, 𝑅′) if 𝑖 < 𝑘
0 otherwise



Randomized QuickSelect: Analysis



𝑅

𝑇 𝐴, 𝑘, 𝑅 Pr 𝑅 =

=
1

𝑛


𝑖=0

𝑘−1



𝑅′

𝑇 𝐴, 𝑘, 𝑖, 𝑅′ Pr(𝑅′) +1 +
1

𝑛


𝑖=𝑘+1

𝑛−1



𝑅′

𝑇 𝐴, 𝑘, 𝑖, 𝑅′ Pr(𝑅′)

=
1

𝑛


𝑖=0

𝑘−1



𝑅′

𝑛 + 𝑇(𝐶, 𝑘 − 𝑖 − 1, 𝑅′) Pr(𝑅′) +1 +
1

𝑛


𝑖=𝑘+1

𝑛−1



𝑅′

𝑛 + 𝑇(𝐵, 𝑘, 𝑅′) Pr(𝑅′)

𝑇 𝐴, 𝑘, 𝑖, 𝑅′ = 𝑛 + ቐ
𝑇(𝐵, 𝑘, 𝑅′) if 𝑖 > 𝑘

𝑇(𝐶, 𝑘 − 𝑖 − 1, 𝑅′) if 𝑖 < 𝑘
0 otherwise

=
1

𝑛


𝑖=0

𝑘−1



𝑅′

𝑛 + 𝑇(𝐶, 𝑘 − 𝑖 − 1, 𝑅′) Pr(𝑅′) + the rest

=
1

𝑛


𝑖=0

𝑘−1



𝑅′

𝑛Pr(𝑅′) +
1

𝑛


𝑖=0

𝑘−1



𝑅′

𝑇(𝐶, 𝑘 − 𝑖 − 1, 𝑅′)Pr(𝑅′) + the rest

the rest



Randomized QuickSelect: Analysis



𝑅

𝑇 𝐴, 𝑘, 𝑅 Pr 𝑅 =

=
1

𝑛


𝑖=0

𝑘−1



𝑅′

𝑇 𝐴, 𝑘, 𝑖, 𝑅′ Pr(𝑅′) +1 +
1

𝑛


𝑖=𝑘+1

𝑛−1



𝑅′

𝑇 𝐴, 𝑘, 𝑖, 𝑅′ Pr(𝑅′)

=
1

𝑛


𝑖=0

𝑘−1



𝑅′

𝑛 + 𝑇(𝐶, 𝑘 − 𝑖 − 1, 𝑅′) Pr(𝑅′)

=
1

𝑛


𝑖=0

𝑘−1



𝑅′

𝑛 + 𝑇(𝐶, 𝑘 − 𝑖 − 1, 𝑅′) Pr(𝑅′) + the rest

+ the rest

= 𝑘 +
1

𝑛


𝑖=0

𝑘−1



𝑅′

𝑇(𝐶, 𝑘 − 𝑖 − 1, 𝑅′)Pr(𝑅′) + the rest

𝑇 𝐴, 𝑘, 𝑖, 𝑅′ = 𝑛 + ቐ
𝑇(𝐵, 𝑘, 𝑅′) if 𝑖 > 𝑘

𝑇(𝐶, 𝑘 − 𝑖 − 1, 𝑅′) if 𝑖 < 𝑘
0 otherwise

+1 +
1

𝑛


𝑖=𝑘+1

𝑛−1



𝑅′

𝑛 + 𝑇(𝐵, 𝑘, 𝑅′) Pr(𝑅′)

the rest

=
1

𝑛


𝑖=0

𝑘−1



𝑅′

𝑛Pr(𝑅′)
𝑛

𝑛


𝑖=0

𝑘−1



𝑅′

𝑛Pr(𝑅′)

= 1

+
1

𝑛


𝑖=0

𝑘−1



𝑅′

𝑇(𝐶, 𝑘 − 𝑖 − 1, 𝑅′)Pr(𝑅′)



max over all instances 𝐷 of size 𝑛 − 𝑖 − 1
and all integers ∈ {0,…𝑘 − 1}

some instance 𝐶 of size 𝑛 − 𝑖 − 1
some integer 𝑘 − 𝑖 − 1 ∈ {0,…𝑘 − 1}

𝑇𝑒𝑥𝑝 𝑛 = max
𝐴∈𝕀𝑛

max
𝑘∈{0,…𝑛−1}



𝑅

𝑇 𝐴, 𝑘, 𝑅 Pr(𝑅)

Randomized QuickSelect: Analysis



𝑅

𝑇 𝐴, 𝑘, 𝑅 Pr 𝑅 =

= 𝑘 +
1

𝑛


𝑖=0

𝑘−1



𝑅′

𝑇(𝐶, 𝑘 − 𝑖 − 1, 𝑅′)Pr(𝑅′) + the rest

≤ 𝑘 +
1

𝑛


𝑖=0

𝑘−1

max
𝐷∈𝕀𝑛−𝑖−1, 𝑤∈{0,…𝑘−1}



𝑅′

𝑇(𝐷,𝑤, 𝑅′)Pr(𝑅′) + the rest

= 𝑘 +
1

𝑛


𝑖=0

𝑘−1

𝑇𝑒𝑥𝑝 𝑛 − 𝑖 − 1 + the rest



the rest

Randomized QuickSelect: Analysis



𝑅

𝑇 𝐴, 𝑘, 𝑅 Pr 𝑅 =

= 𝑘 +
1

𝑛


𝑖=0

𝑘−1

𝑇𝑒𝑥𝑝 𝑛 − 𝑖 − 1 + the rest

+1 +
1

𝑛


𝑖=𝑘+1

𝑛−1



𝑅′

𝑛 + 𝑇(𝐵, 𝑘, 𝑅′) Pr(𝑅′)= 𝑘 +
1

𝑛


𝑖=0

𝑘−1

𝑇𝑒𝑥𝑝 𝑛 − 𝑖 − 1

≤ 𝑘 +
1

𝑛


𝑖=0

𝑘−1

𝑇𝑒𝑥𝑝 𝑛 − 𝑖 − 1 +𝑛 − 1 − 𝑘 +
1

𝑛


𝑖=𝑘+1

𝑛−1

𝑇𝑒𝑥𝑝 𝑖

≤ 𝑛 +
1

𝑛


𝑖=0

𝑘−1

𝑇𝑒𝑥𝑝 𝑛 − 𝑖 − 1 +
1

𝑛


𝑖=𝑘+1

𝑛−1

𝑇𝑒𝑥𝑝 𝑖

apply same 
steps as to  
first sum

+1

𝑇𝑒𝑥𝑝 𝑛 = max
𝐴∈𝕀𝑛

max
𝑘∈{0,…𝑛−1}



𝑅

𝑇 𝐴, 𝑘, 𝑅 Pr(𝑅)



Randomized QuickSelect: Analysis

≤ 𝑛 +
1

𝑛


𝑖=0

𝑘

max{𝑇𝑒𝑥𝑝 𝑛 − 𝑖 − 1 , 𝑇𝑒𝑥𝑝 𝑖 }+
1

𝑛


𝑖=𝑘+1

𝑛−1

max{𝑇𝑒𝑥𝑝 𝑖 , 𝑇𝑒𝑥𝑝 𝑛 − 𝑖 − 1 }

= 𝑛 +
1

𝑛


𝑖=0

𝑛−1

max{𝑇𝑒𝑥𝑝 𝑖 , 𝑇𝑒𝑥𝑝 𝑛 − 𝑖 − 1 }

max
𝐴∈𝕀𝑛

max
𝑘∈{0,…𝑛−1}



𝑅

𝑇 𝐴, 𝑘, 𝑅 Pr(𝑅)𝑇𝑒𝑥𝑝 𝑛 = ≤ 𝑛 +
1

𝑛


𝑖=0

𝑛−1

max{𝑇𝑒𝑥𝑝 𝑖 , 𝑇𝑒𝑥𝑝 𝑛 − 𝑖 − 1 }

 Since above bound works for any 𝐴 and 𝑘, it will work for the worst 𝐴 and 𝑘



𝑅

𝑇 𝐴, 𝑘, 𝑅 Pr(𝑅)

≤ 𝑛 +
1

𝑛


𝑖=0

𝑘−1

𝑇𝑒𝑥𝑝 𝑛 − 𝑖 − 1 +
1

𝑛


𝑖=𝑘+1

𝑛−1

𝑇𝑒𝑥𝑝 𝑖

𝑇𝑒𝑥𝑝 𝑛 = max
𝐴∈𝕀𝑛

max
𝑘∈{0,…𝑛−1}



𝑅

𝑇 𝐴, 𝑘, 𝑅 Pr(𝑅)

 Expected runtime for RandomizedQuickSelect satisfies

𝑇𝑒𝑥𝑝 𝑛 ≤ 𝑛 +
1

𝑛


𝑖=0

𝑛−1

max{𝑇𝑒𝑥𝑝 𝑖 , 𝑇𝑒𝑥𝑝 𝑛 − 𝑖 − 1 }



Theorem: 𝑇 𝑛 ϵ Ο(𝑛)

Proof: 

 will prove 𝑇 𝑛 ≤ 4𝑛 by induction on 𝑛

 base case, 𝑛 = 1:  𝑇 1 = 1

𝑇 1 = 1 and 𝑇(𝑛) ≤ 𝑛 +
1

𝑛


𝑖=0

𝑛−1

𝑚𝑎𝑥 𝑇 𝑖 , 𝑇(𝑛 − 𝑖 − 1)

≤ 𝑛 +
1

𝑛


𝑖=0

𝑛−1

𝑚𝑎𝑥 4𝑖, 4(𝑛 − 𝑖 − 1)

𝑇(𝑛) ≤ 𝑛 +
1

𝑛


𝑖=0

𝑛−1

𝑚𝑎𝑥 𝑇 𝑖 , 𝑇(𝑛 − 𝑖 − 1)

induction hypothesis applies 
to each one of these

≤ 𝑛 +
4

𝑛


𝑖=0

𝑛−1

𝑚𝑎𝑥 𝑖, 𝑛 − 𝑖 − 1

Randomized QuickSelect: Solving Recurrence

≤ 4 ⋅ 1

 induction hypothesis: assume  𝑇 𝑚 ≤ 4𝑚 for all 𝑚 < 𝑛

 need to show  𝑇 𝑛 ≤ 4𝑛



Proof: (cont.) 𝑇(𝑛) ≤ 𝑛 +
4

𝑛


𝑖=0

𝑛−1

𝑚𝑎𝑥 𝑖, 𝑛 − 𝑖 − 1



𝑖=0

𝑛−1

𝑚𝑎𝑥 𝑖, 𝑛 − 𝑖 − 1 = +

𝑖=
𝑛
2

𝑛−1

𝑚𝑎𝑥 𝑖, 𝑛 − 𝑖 − 1

𝑖=0

𝑛
2−1

𝑚𝑎𝑥 𝑖, 𝑛 − 𝑖 − 1

+𝑚𝑎𝑥 1, 𝑛 − 2=𝑚𝑎𝑥 0, 𝑛 − 1 +𝑚𝑎𝑥 2, 𝑛 − 3 +⋯+𝑚𝑎𝑥
𝑛

2
− 1,

𝑛

2

+𝑚𝑎𝑥
𝑛

2
+ 1,

𝑛

2
− 2+𝑚𝑎𝑥

𝑛

2
,
𝑛

2
− 1 +⋯+𝑚𝑎𝑥 𝑛 − 1,0

= 𝑛 − 1 + (𝑛 − 2) + ⋯+
𝑛

2
+
𝑛

2
+

𝑛

2
+ 1 +⋯ 𝑛 − 1

3𝑛

2
− 1

𝑛

4

3𝑛

2
− 1

𝑛

4

=

≤
3

4
𝑛2

3𝑛

2
− 1

𝑛

2

≤ 𝑛 +
4

𝑛
∙
3

4
𝑛2 = 4𝑛

exactly what we 
need for the proof

Randomized QuickSelect: Solving Recurrence



 Thus expected runtime of RandomizedQuickSelect is 𝑂(𝑛)
 it is also  Θ(𝑛), since the best case is 𝑂(𝑛)

 have to partition the array

 Therefore quickSelectShuffled has expected runtime 𝑂(𝑛)

 no details

 Therefore quickSelect has average case runtime 𝑂(𝑛)

 RandomizedQuickSelect is generally the fastest implementation of 
selection algorithm

 There is a selection algorithm with worst-case running time Ο(𝑛)
 CS341

 but it uses double recursion and is slower in practice

Summary of Selection
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QuickSort
 Hoare developed partition and 

quick-select in 1960

 Also used them to sort based on
partitioning

QuickSort(𝐴)

Input: array A of size 𝑛

if 𝑛 ≤ 1 then return

𝑝 ← choose-pivot(𝐴)

𝑖 ← partition (𝐴 ,𝑝)

QuickSort(𝐴 0, 1, … , 𝑖 − 1 )

QuickSort(𝐴 𝑖 + 1,… , 𝑛 − 1 )

𝑣≤ 𝑣 ≥ 𝑣
correct place

sort recursively sort recursively

Sorted!𝑣



QuickSort

 Let 𝑇 𝑛 to be the number of comparisons on size 𝑛 array

 running time is Θ(number of comparisons)

 Recurrence for pivot-index 𝑖:  𝑇 𝑛 = 𝑛 + 𝑇 𝑖 + 𝑇(𝑛 − 𝑖 − 1)

 Worst case   𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑛

 recurrence solved in the same way as quickSelect, 𝑂 𝑛2

 Best case 𝑇 𝑛 = 𝑇 𝑛/2 + 𝑇 𝑛/2 + 𝑛

 solved in the same way as mergeSort, Θ 𝑛 log𝑛

 Average case?

 through randomized version of QuickSort

QuickSort(𝐴)

Input: array A of size 𝑛

if 𝑛 ≤ 1 then return

𝑝 ← choose-pivot(𝐴)

𝑖 ← partition (𝐴 ,𝑝)

QuickSort(𝐴 0, 1, … , 𝑖 − 1 )

QuickSort(𝐴 𝑖 + 1,… , 𝑛 − 1 )



Randomized QuickSort: Random Pivot

 Let 𝑇𝑒𝑥𝑝 𝑛 = number of comparisons 

 Analysis is similar to that of RandomizedQuickSelect

 but  recurse both in array of size 𝑖 and array of size 𝑛 − 𝑖 − 1

 Expected running time for RandomizedQuickSort

 derived similarly to RandomizedQuickSelect

RandomizedQuickS𝑜𝑟𝑡(𝐴)

…

𝑝 ← random(𝐴. 𝑠𝑖𝑧𝑒)

…

𝑇𝑒𝑥𝑝 𝑛 ≤
1

𝑛


𝑖=0

𝑛−1

𝑛 + 𝑇𝑒𝑥𝑝 𝑖 + 𝑇𝑒𝑥𝑝 𝑛 − 𝑖 − 1



Randomized QuickSort: Expected Runtime

𝑇𝑒𝑥𝑝 𝑛 ≤
1

𝑛


𝑖=0

𝑛−1

𝑛 + 𝑇𝑒𝑥𝑝 𝑖 + 𝑇𝑒𝑥𝑝 𝑛 − 𝑖 − 1

𝑇 0 + 𝑇 1 + ⋯+ 𝑇 𝑛 − 1

= 𝑛 +
2

𝑛


𝑖=0

𝑛−1

𝑇𝑒𝑥𝑝 𝑖

 Simpler recursive expression for 𝑇𝑒𝑥𝑝 𝑛

 Thus 𝑇𝑒𝑥𝑝 𝑛 ≤ 𝑛 +
2

𝑛


𝑖=0

𝑛−1

𝑇𝑒𝑥𝑝 𝑖

= 𝑛 +
1

𝑛


𝑖=0

𝑛−1

𝑇𝑒𝑥𝑝 𝑖 +
1

𝑛


𝑖=0

𝑛−1

𝑇𝑒𝑥𝑝 𝑛 − 𝑖 − 1

𝑇 𝑛 − 1 + 𝑇 𝑛 − 2 +⋯+ 𝑇 0



Randomized QuickSort: Solve Recurrence Relation

 Claim 𝑇 𝑛 ≤ 2𝑛 ln𝑛 for all 𝑛 > 0

 Proof (by induction on 𝑛):

 𝑇 1 = 0 (no comparisons)

 Suppose true for 2 ≤ 𝑚 < 𝑛

 Let 𝑛 ≥ 2

𝑇 1 = 0 and 𝑇 𝑛 ≤ 𝑛 +
2

𝑛


𝑖=2

𝑛−1

𝑇 𝑖

𝑇 𝑛 ≤ 𝑛 +
2

𝑛


𝑖=2

𝑛−1

𝑇 𝑖 ≤ 𝑛 +
2

𝑛


𝑖=2

𝑛−1

2𝑖 ln 𝑖

induction 
hypothesis

 Upper bound by integral, since is 𝑥 ln 𝑥 is monotonically increasing for 𝑥 > 1

= 𝑛 +
4

𝑛


𝑖=2

𝑛−1

𝑖 ln 𝑖

𝟐
𝒍𝒏

𝟐

3
𝒍𝒏

𝟑

4
𝒍𝒏

𝟒

1 2 3 4

𝑥 ln 𝑥

𝑥



𝑖=2

𝑛−1

𝑖 ln 𝑖 ≤ න
2

𝑛

𝑥 ln 𝑥 𝑑𝑥 =
1

2
𝑛2 ln 𝑛 −

1

4
𝑛2 − 2 ln 2 + 1

≤
1

2
𝑛2 ln 𝑛 −

1

4
𝑛2

≤ 0



Randomized QuickSort: Solve Recurrence Relation

 Claim 𝑇 𝑛 ≤ 2𝑛 ln𝑛 for all 𝑛 > 0

 Proof (by induction on 𝑛):

 𝑇 1 = 0 (no comparisons)

 Suppose true for 2 ≤ 𝑚 < 𝑛

 Let 𝑛 ≥ 2

𝑇 𝑛 ≤ 𝑛 +
4

𝑛

1

2
𝑛2 ln 𝑛 −

1

4
𝑛2

≤
1

2
𝑛2 ln 𝑛 −

1

4
𝑛2

= 2𝑛 ln𝑛

 Expected running time of RandomizedQuickSort is 𝑂 𝑛 log𝑛

 Average case runtime of QuickSelect is 𝑂 𝑛 log𝑛

𝑇 1 = 0 and 𝑇 𝑛 ≤ 𝑛 +
2

𝑛


𝑖=2

𝑛−1

𝑇 𝑖

𝑇 𝑛 ≤ 𝑛 +
2

𝑛


𝑖=2

𝑛−1

𝑇 𝑖 ≤ 𝑛 +
2

𝑛


𝑖=2

𝑛−1

2𝑖 ln 𝑖

induction 
hypothesis

= 𝑛 +
4

𝑛


𝑖=2

𝑛−1

𝑖 ln 𝑖



Improvement ideas for QuickSort
 The auxiliary space is Ω(recursion depth)

 Θ 𝑛 in the worst case, Θ log𝑛 average case 

 can be reduce to Θ log𝑛 worst-case by

 recurse in smaller  sub-array first 

 replacing the other recursion by a while-loop (tail call elimination)

 Stop recursion when, say  𝑛 ≤ 10

 array is not completely sorted, but almost sorted 

 at the end, run insertionSort, it sorts in just 𝑂 𝑛 time since all items 
are within 10 units of the required position

 Arrays with many duplicates sorted faster by 
changing  partition to produce three subsets

 Programming tricks

 instead of passing full arrays, pass only the range of indices

 avoid recursion altogether by keeping an explicit stack

< 𝒗 = 𝒗 > 𝒗



QuickSort with Tricks

QuickSortImproves(𝐴, 𝑛)
initialize a stack 𝑆 of index-pairs with { 0, 𝑛 − 1 }

while 𝑆 is not empty

𝑙, 𝑟 ← 𝑆. 𝑝𝑜𝑝()

while 𝑟 − 𝑙 + 1 > 10

𝑝 ← choose-pivot(𝐴, 𝑙, 𝑟)

𝑖 ← partition (𝐴, 𝑙, 𝑟, 𝑝)
if 𝑖 − 𝑙 > 𝑟 − 𝑖 do

𝑆. 𝑝𝑢𝑠ℎ 𝑙, 𝑖 − 1

𝑙 ← 𝑖 + 1
else

𝑆. 𝑝𝑢𝑠ℎ 𝑖 + 1, 𝑟

𝑟 ← 𝑖 − 1
InsertionSort(𝐴)

 This is often the most efficient sorting algorithm in practice

 although worst-case is Θ 𝑛2

// store larger  problem in 𝑆 for later

// store larger problem in 𝑆 for later

// next work on the right side

// next work on the left side

// is left side larger than right?

// work on it if it’s larger than 10

// get the next subproblem
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Lower bounds for sorting

 Question: Can one do better than Θ 𝑛 log 𝑛 running time?

 Answer: It depends on what we allow

 No: comparison-based sorting lower bound is Ω 𝑛 log 𝑛
 no restriction on input, just must be able to compare 

 Yes: non-comparison-based sorting can achieve O(𝑛)
 restrictions on input

 We have seen many sorting algorithms

Sort Running Time Analysis

Selection Sort Θ(𝑛2) worst-case

Insertion Sort Θ(𝑛2) worst-case

Merge Sort Θ(𝑛 log 𝑛) worst-case

Heap Sort Θ(𝑛 log 𝑛) worst-case

quickSort
RandomizedQuickSort

Θ 𝑛 log𝑛
Θ(𝑛 log 𝑛)

average-case
expected



The Comparison Model

 All sorting algorithms seen so far are in the comparison model

 In the comparison model data can only be accessed in two ways

 comparing two elements
 𝐴[𝑖] ≤ 𝐴[𝑗]

 moving elements around (e.g. copying, swapping)

 This makes very few assumptions on the things we are sorting

 Under comparison model, will show that any sorting algorithm 
requires Ω(𝑛log 𝑛) comparisons

 This lower bound is not for an algorithm, it is for the sorting 
problem

 How can we talk about problem without algorithm?
 count number of comparisons any sorting algorithm has to perform



Decision Tree

 Decision tree succinctly describes all decisions that are taken during 
the execution of an algorithm and the resulting outcome

 For each comparison-based sorting algorithm we can construct a 
corresponding decision tree

 Given decision tree, we can deduce the algorithm

 Can create decision trees for any comparison-based algorithm, not 
just sorting



Decision Tree for Concrete Algorithm Sorting 3 items 

if 𝑥0 < 𝑥1 then
if 𝑥1 < 𝑥2 then print(𝑥0, 𝑥1, 𝑥2)
else if 𝑥0 < 𝑥2 then print(𝑥0, 𝑥2, 𝑥1)
else print(𝑥2, 𝑥0, 𝑥1)

else 
if 𝑥1 < 𝑥2 then

if 𝑥0 < 𝑥2 then print(𝑥1, 𝑥0, 𝑥2)
else print(𝑥1, 𝑥2, 𝑥0)

else print(𝑥2, 𝑥1, 𝑥0)

0, 1, 2 2, 1, 0

0, 2, 1 2,0,1 1, 0, 2 1,2,0

< 𝑥0: 𝑥1

𝑥1: 𝑥2

𝑥0: 𝑥2 𝑥0: 𝑥2

𝑥1: 𝑥2

<

<

<

<

≥

≥
≥

≥≥



Decision Tree: Sorting Example
𝑥0 = 4, 𝑥1 =2, 𝑥2 = 7

0, 1, 2 2, 1, 0

0, 2, 1 2,0,1 1, 0, 2 1,2,0

< 𝑥0: 𝑥1

𝑥1: 𝑥2

𝑥0: 𝑥2 𝑥0: 𝑥2

𝑥1: 𝑥2

<

<

<

<

≥

≥
≥

≥≥

𝑥1 =2 ≤ 𝑥0 = 4 ≤ 𝑥2 = 7

3 comparisons



Decision Tree: Sorting Example
𝑥0 = 8, 𝑥1 =7, 𝑥2 = 7

0, 1, 2 2, 1, 0

0, 2, 1 2,0,1 1, 0, 2 1,2,0

< 𝑥0: 𝑥1

𝑥1: 𝑥2

𝑥0: 𝑥2 𝑥0: 𝑥2

𝑥1: 𝑥2

<

<

<

<

≥

≥
≥

≥≥

𝑥2 =7 ≤ 𝑥1 = 7 ≤ 𝑥0 = 8

2 comparisons



Decision Tree

0, 1, 2 2, 1, 0

0, 2, 1 2,0,1 1, 0, 2 1,2,0

< 𝑥0: 𝑥1

𝑥1: 𝑥2

𝑥0: 𝑥2 𝑥0: 𝑥2

𝑥1: 𝑥2

<

<

<

<

≥

≥
≥

≥≥

 Interior nodes are comparisons
 root corresponds is the first comparison

 Each comparison has two outcomes: < and  ≥

 Each interior node has two children, links to the children are labeled with outcomes

 When algorithm makes no more comparisons, that node becomes a leaf

 sorting permutation has been determined once we reach a leaf

 label the leaf with the corresponding sorting  permutation, if reachable



Decision Tree

0, 1, 2

2, 1, 0

0, 2, 1 2,0,1 1, 0, 2 1,2,0

< 𝑥0: 𝑥1

𝑥1: 𝑥2

𝑥0: 𝑥2 𝑥0: 𝑥2

𝑥1: 𝑥2

<

<

<

<

≥

≥
≥

≥≥

 Can make more comparisons than necessary

 Can have leaves which are never reached

 Can have unreachable branches

 Unreachable branches/leaves make no difference for the runtime
 algorithm never goes into unreachable structure

 So assume everything is reachable (i.e. prune unreachable branches from decision tree)

𝑥0: 𝑥2

< ≥

not reachable

𝒙𝟎: 𝒙𝟐



Decision Tree

0, 1, 2

2, 1, 0

0, 2, 1 2,0,1 1, 0, 2 1,2,0

< 𝑥0: 𝑥1

𝑥1: 𝑥2

𝑥0: 𝑥2 𝑥0: 𝑥2

𝑥1: 𝑥2

<

<

<

<

≥

≥
≥

≥≥

 Can make more comparisons than necessary

 Can have leaves which are never reached

 Can have unreachable branches

 Unreachable branches/leaves make no difference for the runtime
 algorithm never goes into unreachable structure

 So assume everything is reachable (i.e. prune unreachable branches from decision tree)

 Tree height ℎ is the worst case number of comparisons

𝑥0: 𝑥2

≥

𝒙𝟎: 𝒙𝟐



Decision Tree
 General case:  comparison-based sort for 𝑛 elements

 Many sorting algorithms, for each one we have its own decision tree

....

 Can prove that the height of any decision tree is at least 𝑐𝑛log𝑛

 which is Ω(𝑛log 𝑛)



 Let SortAlg be any comparison based sorting algorithm

 Since SortAlg is comparison based, it has a decision tree

 SortAlg must sort correctly any array of 𝑛 elements

 Let 𝑆𝑛 = set of arrays storing not-repeating integers 1,… , 𝑛

 𝑆𝑛 = 𝑛!

 Let 𝜋𝑥 denote the sorting permutation of 𝑥 ϵ 𝑆𝑛
 When we run  𝑥 through 𝑇, we must end up at a leaf labeled with 𝜋𝑥
 𝑥, 𝑦 ϵ 𝑆𝑛 with 𝑥 ≠ 𝑦 have sorting permutations 𝜋𝑥 ≠ 𝜋𝑦

 𝑛! instances in  𝑆𝑛 must go to distinct leaves

𝑇

Lower bound for sorting in the comparison model
Theorem: Comparison-based sorting algorithm requires Ω(𝑛log 𝑛) comparisons

Proof:

0, 1, 22, 1, 0 0, 2, 12,0,1 1, 0, 2 1,2,0

𝑆3 = { 1,2,3 , 1,3,2 , 2,1,3 , 2,3,1 , 3,1,2 , [3,2,1]}

⇒ tree must have at least 𝒏! leaves



 Therefore, the tree must have at least 𝑛! leaves

 Binary tree with height ℎ has at most 2ℎ leaves

 Height ℎ must be at least such that 2ℎ ≥ 𝑛!

Lower bound for sorting in the comparison model
Proof: (cont.)

 Taking logs of both sides

log(𝑛!) = log(𝑛 𝑛 − 1 … ⋅ 1)= log𝑛 +⋯+ log(
𝑛

2
+ 1) + log

𝑛

2
+⋯+ log 1

≥ log
𝑛

2
+⋯+ log

𝑛

2
=
𝑛

2
log

𝑛

2
=
𝑛

2
log𝑛 −

𝑛

2
∈ Ω(𝑛log 𝑛)

ℎ ≥

> log
𝑛

2

𝑛

2
terms

 Notes about the proof

 proof does not assume the algorithm sorts only distinct elements

 proof does not assume the algorithms sorts only integers in range 1,… , 𝑛

 poof is based on finding 𝑛! input instances that must go to distinct leaves

 total number of inputs is infinite

□



Outline

 Sorting, average-case, and Randomization

 Analyzing average-case run-time

 Randomized Algorithms

 QuickSelect

 QuickSort

 Lower Bound for Comparison-Based Sorting 

 Non-Comparison-Based Sorting



Non-Comparison-Based Sorting

 Sort without comparing items to each other

 Non-comparison based sorting is less general than comparison 
based sorting

 In particular, need to make assumptions about items we sort
 unlike in comparison based sorting, which sorts any data, as long as it 

can be compared

 Will assume we are sorting non-negative integers
 can adapt to negative integers 

 also to some other data types, such as strings

 but cannot sort arbitrary data



Non-Comparison-Based Sorting

 Suppose all keys in 𝐴 of size 𝑛 are integers in range [0, … , 𝐿 − 1]

 How would you sort if 𝐿 is not too large?



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Bucket Sort
 Suppose all keys in 𝐴 of size 𝑛 are integers in range [0, … , 𝐿 − 1]

 How would you sort if 𝐿 is not too large?

 Use an axillary bucket array 𝐵[0,… , 𝐿 − 1] to sort

 i.e. array of initially empty linked lists, initialization is Θ(𝐿)

 Example with 𝐿 = 15

A

12

14

7

6

7

0

10

B



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Bucket Sort
 Suppose all keys in 𝐴 of size 𝑛 are integers in range [0, … , 𝐿 − 1]

 Use an axillary bucket array 𝐵[0,… , 𝐿 − 1] to sort

 i.e. array of linked lists, initialization is Θ(𝐿)

 Example with 𝐿 = 15

A
12

14

7

6

7

0

10

12

𝑘 = 0 B



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Bucket Sort
 Suppose all keys in 𝐴 of size 𝑛 are integers in range [0, … , 𝐿 − 1]

 Use an axillary bucket array 𝐵[0,… , 𝐿 − 1] to sort

 i.e. array of linked lists, initialization is Θ(𝐿)

 Example with 𝐿 = 15

A
12

14

7

6

7

0

10

12 14𝑘 = 1

B



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Bucket Sort
 Suppose all keys in 𝐴 of size 𝑛 are integers in range [0, … , 𝐿 − 1]

 Use an axillary bucket array 𝐵[0,… , 𝐿 − 1] to sort

 i.e. array of linked lists, initialization is Θ(𝐿)

 Example with 𝐿 = 15

A
12

14

7

6

7

0

10

12 14

𝑘 = 2

7

B



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Bucket Sort
 Suppose all keys in 𝐴 of size 𝑛 are integers in range [0, … , 𝐿 − 1]

 Use an axillary bucket array 𝐵[0,… , 𝐿 − 1] to sort

 i.e. array of linked lists, initialization is Θ(𝐿)

 Example with 𝐿 = 15

A
12

14

7

6

7

0

10

12 14

𝑘 = 3

76

B



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Bucket Sort
 Suppose all keys in 𝐴 of size 𝑛 are integers in range [0, … , 𝐿 − 1]

 Use an axillary bucket array 𝐵[0,… , 𝐿 − 1] to sort

 i.e. array of linked lists, initialization is Θ(𝐿)

 Example with 𝐿 = 15

A
12

14

7

6

7

0

10

12 14

𝑘 = 4

76

7

B



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Bucket Sort
 Suppose all keys in 𝐴 of size 𝑛 are integers in range [0, … , 𝐿 − 1]

 Use an axillary bucket array 𝐵[0,… , 𝐿 − 1] to sort

 i.e. array of linked lists, initialization is Θ(𝐿)

 Example with 𝐿 = 15

A
12

14

7

6

7

0

10

12 14

𝑘 = 5

760

7

B



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Bucket Sort
 Suppose all keys in 𝐴 of size 𝑛 are integers in range [0, … , 𝐿 − 1]

 Use an axillary bucket array 𝐵[0,… , 𝐿 − 1] to sort

 i.e. array of linked lists, initialization is Θ(𝐿)

 Example with 𝐿 = 15

A
12

14

7

6

7

0

10

12 14

𝑘 = 6

760 10

7

B



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Bucket Sort

 Running time is Θ(𝐿 + 𝑛)

 runtime depends on both 𝑛 and 𝐿

 Auxiliary space is Θ(𝐿 + 𝑛)

A
12

14

7

6

7

0

10

12 14760 10

7

0

6

7

7

10

12

14

 Suppose all keys in 𝐴 of size 𝑛 are integers in range [0, … , 𝐿 − 1]

 Use an axillary bucket array 𝐵[0,… , 𝐿 − 1] to sort

 i.e. array of linked lists, initialization is Θ(𝐿)

 Example with 𝐿 = 15

 Now iterate through 𝐵 and copy non-empty buckets to 𝐴

B



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Bucket Sort

 Running time is Θ(𝐿 + 𝑛)

 𝑛 is size of 𝐴, runtime depends on both 𝑛 and 𝐿

 Auxiliary space is Θ(𝑳 + 𝑛)

A
12

14

7

6

7

0

10

12 14760 10

7

0

6

7

7

10

12

14

 Suppose all keys in 𝐴 are integers in range [0, … , 𝐿 − 1]

 Use an axillary bucket array 𝐵[0,… , 𝐿 − 1] to sort

 i.e. array of linked lists, initialization is Θ(𝐿)

 Example with 𝐿 = 15

 Now iterate through 𝐵 and copy non-empty buckets to 𝐴

B

𝑛

12 14760 10

7



Digit Based Non-Comparison-Based Sorting

123 230 21 320 210 232 101

 Running time of bucket sort is Θ(𝐿 + 𝑛)

 𝑛 is size of 𝐴

 𝐿 is range [0, 𝐿) of integers in 𝐴

 What if 𝐿 is much larger than 𝑛?

 i.e. 𝐴 has size 100, range of integers in 𝐴 is [0,… , 99999]

 Can sort ‘digit by digit’

021

 pad with leading 0s to get keys of equal length 𝑚
 Assume keys have length of 𝑚 digits

123
230
021
320

MSD-Radix-Sort: forward

123
230
021
320

LSD-Radix-Sort: backward

1 → 𝑚 1 ⟵ 𝑚

 Bucketsort is perfect for sorting ‘by digit’

 Need 𝑚 rounds of bucketsort



Base 𝑅 number representation
 Can represent numbers in any base 𝑅 representation

 digits go from 0 to 𝑅 − 1

 𝑅 buckets

 numbers are in the range {0, 1, … , 𝑅𝑚 − 1}

 Number of distinct digits gives the number of buckets 𝑅

 Useful to control number of buckets

 larger 𝑅 ⇒ smaller 𝑚

 less iterations but more work per iteration (larger bucket array)

 (100010)2 = (34)10

 From now on, assume keys are numbers in base 𝑅 (𝑅: radix)

 𝑅 = 2, 10, 128, 256 are common

123 230 21 320 210 232 101

 Example (𝑅 = 4)



Bucket Sort on Last Digit
 Equivalent to normal bucket  sort if we redefine comparison 

 𝑎 ≤ 𝑏 if the last digit of 𝑎 is smaller than (or equal) to the last digit of 𝑏

 example: 21𝟏 < 12𝟑

A

123

230

121

320

210

232

101

B

123

230

121

320 210

232

101

A

230

320

210

121

101

232

123

0

1

2

3

123

230

121

320

210

232

101



Bucket Sort on Last Digit
 Equivalent to normal bucket  sort if we redefine comparison 

 𝑎 ≤ 𝑏 if the last digit of 𝑎 is smaller than (or equal) to the last digit of 𝑏

 example: 211 < 123

 Bucket sort is stable: equal items stay in original order

 crucial for developing LSD radix sort later

A

123

230

121

320

210

232

101

B

123

230

121

320 210

232

101

A

230

320

210

121

101

232

123

0

1

2

3

123

230

121

320

210

232

101

230

320

210

230

320

210



Single Digit Bucket Sort
Bucket-sort(𝐴, 𝑑)
𝐴 : array of size  𝑛, contains numbers with digits in {0, … , 𝑅 − 1}

𝑑:   index of digit by which we wish to sort

initialize array 𝐵 0,… , 𝑅 − 1 of empty lists (buckets)

for 𝑖 ⟵ 0 to 𝑛 − 1 do

𝑛𝑒𝑥𝑡 ⟵ 𝐴[𝑖]

append 𝑛𝑒𝑥𝑡 at end of 𝐵[𝑑th digit of 𝑛𝑒𝑥𝑡]

𝑖 ⟵ 0

for 𝑗 ⟵ 0 to 𝑅 − 1 do

while 𝐵[𝑗] is non-empty do

move first element of 𝐵[𝑗] to 𝐴[𝑖++]

 Sorting is stable: equal items stay in original order

 Run-time Θ(𝑛 + 𝑅)

 Auxiliary space Θ(𝑛 + 𝑅)
 Θ(𝑅) for array 𝐵, and linked lists are  Θ 𝑛



MSD-Radix-Sort
 Sorts multi-digit numbers from the most significant to the least significant

 Start by sorting the whole array by the first digit

123

232

021

320

210

230

101



MSD-Radix-Sort

123

232

021

320

210

230

101

 Sorts multi-digit numbers from the most significant to the least significant

 Start by sorting the whole array by the first digit



MSD-Radix-Sort

021

123

101

232

210

230

320

 Cannot sort the whole array by the second digit, will mess up the order

 Have to break down in groups by the first digit

 each group can be safely sorted by the second digit

 call sort recursively on each group, with appropriate array bounds

sort the whole array 
by the second digit

group 1

group 2

group 3

group 4

 Sorts multi-digit numbers from the most significant to the least significant

 Start by sorting the whole array by the first digit

101

210

021

123

320

232

230



MSD-Radix-Sort

021

123

101

232

210

230

320

021
0

0

recursion 
depth 1

recursion 
depth 0

 Recursively sorts multi-digit numbers

 sort by leading digit, group by next digit, then call sort recursively on each group

group 1

group 2

group 3

group 4



MSD-Radix-Sort

021

123

101

232

210

230

320

021
0

0

recursion 
depth 1

recursion 
depth 0

group 1

group 2

group 3

group 4

 Recursively sorts multi-digit numbers

 sort by leading digit, group by next digit, then call sort recursively on each group



MSD-Radix-Sort

021

123

101

232

210

230

320

021

123

101

0

0

1

2

recursion 
depth 1

recursion 
depth 0

group 1

group 2

group 3

group 4

 Recursively sorts multi-digit numbers

 sort by leading digit, group by next digit, then call sort recursively on each group



MSD-Radix-Sort

021

123

101

232

210

230

320

021

101

123

0

0

1

2

101
1
1

recursion 
depth 1

recursion 
depth 0

recursion 
depth 2

group 1

group 2

group 3

group 4

 Recursively sorts multi-digit numbers

 sort by leading digit, group by next digit, then call sort recursively on each group



MSD-Radix-Sort

021

123

101

232

210

230

320

021

101

123

0

0

1

2

101
1
1

recursion 
depth 1

recursion 
depth 0

recursion 
depth 2

group 1

group 2

group 3

group 4

 Recursively sorts multi-digit numbers

 sort by leading digit, group by next digit, then call sort recursively on each group



MSD-Radix-Sort

021

123

101

232

210

230

320

021

101

123

0

0

1

2

101

123

1
1

2
2

recursion 
depth 1

recursion 
depth 0

recursion 
depth 2

group 1

group 2

group 3

group 4

 Recursively sorts multi-digit numbers

 sort by leading digit, group by next digit, then call sort recursively on each group



MSD-Radix-Sort

021

123

101

232

210

230

320

021

101

123

0

0

1

2

101

123

1
1

2
2

232

210

230

3

5

recursion 
depth 1

recursion 
depth 0

recursion 
depth 2

group 1

group 2

group 3

group 4

 Recursively sorts multi-digit numbers

 sort by leading digit, group by next digit, then call sort recursively on each group



MSD-Radix-Sort

021

123

101

232

210

230

320

021

101

123

0

0

1

2

101

123

1
1

2
2

3

5

210

232

230

recursion 
depth 1

recursion 
depth 0

recursion 
depth 2

group 1

group 2

group 3

group 4

 Recursively sorts multi-digit numbers

 sort by leading digit, group by next digit, then call sort recursively on each group



MSD-Radix-Sort

021

123

101

232

210

230

320

021

101

123

0

0

1

2

101

123

1
1

2
2

3

5

210

232

230

210
3

3

recursion 
depth 1

recursion 
depth 0

recursion 
depth 2

group 1

group 2

group 3

group 4

 Recursively sorts multi-digit numbers

 sort by leading digit, group by next digit, then call sort recursively on each group



MSD-Radix-Sort

021

123

101

232

210

230

320

021

101

123

0

0

1

2

101

123

1
1

2
2

3

5

210

232

230

210
3

3

recursion 
depth 1

recursion 
depth 0

recursion 
depth 2

group 1

group 2

group 3

group 4

 Recursively sorts multi-digit numbers

 sort by leading digit, group by next digit, then call sort recursively on each group



MSD-Radix-Sort

021

123

101

232

210

230

320

021

101

123

0

0

1

2

101

123

1
1

2
2

3

5

210

232

230

210
3

3

232

230

4

5

recursion 
depth 1

recursion 
depth 0

recursion 
depth 2

group 1

group 2

group 3

group 4

 Recursively sorts multi-digit numbers

 sort by leading digit, group by next digit, then call sort recursively on each group



MSD-Radix-Sort

021

123

101

232

210

230

320

021

101

123

0

0

1

2

101

123

1
1

2
2

3

5

210

232

230

210
3

3

230

232

4

5

recursion 
depth 1

recursion 
depth 0

recursion 
depth 2

group 1

group 2

group 3

group 4

 Recursively sorts multi-digit numbers

 sort by leading digit, group by next digit, then call sort recursively on each group

done, no more digits to sort



MSD-Radix-Sort

021

123

101

232

210

230

320

021

101

123

0

0

1

2

101

123

1
1

2
2

3

5

210

232

230

210
3

3

230

232

4

5

320
6

6
recursion 
depth 1

recursion 
depth 0

recursion 
depth 2

group 1

group 2

group 3

group 4

 Recursively sorts multi-digit numbers

 sort by leading digit, group by next digit, then call sort recursively on each group



MSD-Radix-Sort

021

123

101

232

210

230

320

021

101

123

320

210

232

230

0

0

1

2

3

5

6

6

101

123

210

230

232

1
1

2
2

3

3

4

5

recursion 
depth 1

recursion 
depth 0

recursion 
depth 2

group 1

group 2

group 3

group 4

 Recursively sorts multi-digit numbers

 sort by leading digit, group by next digit, then call sort recursively on each group

many digits are 
never examined

21

20



MSD-Radix-Sort Space Analysis

021

123

101

232

210

230

320

021

101

123

320

210

232

230

101

123

210

230

232

recursion 
depth 1

recursion 
depth 0

recursion 
depth 2

 Bucket-sort 

 auxiliary space  Θ 𝑛 + 𝑅

 Recursion depth is 𝑚 − 1

 auxiliary space  Θ 𝑚

 Total auxiliary space Θ 𝑛 + 𝑅 +𝑚



MSD-Radix-Sort Time Analysis
 Time spent for each recursion depth

 Depth 𝑑 = 0

 one bucket sort on 𝑛 items

 Θ 𝑛 + 𝑅

 At depth 𝑑 > 0

 lets 𝑘 be number of bucket sorts 

 𝑘 ≤ 𝑛

 have bucketsort 1, 2, … , 𝑖 … , 𝑘

 bucketsort 𝑖 involves 𝑛𝑖 keys

 bucket sort 𝑖 takes 𝑛𝑖 + 𝑅 time

recursion 
depth 1

recursion 
depth 0

recursion 
depth 2

𝐴

1 bucket 
sort

𝑅 bucket 
sorts

𝑅2 bucket 
sorts

at any depth, number of  bucketsorts ≤ 𝑛

each bucket 
sort needs at 
least 𝟏 number 
from array 𝐴

 total time at depth 𝑑 is 𝑂 𝑛𝑅

 Number of depths is at most 𝑚− 1

 Total time 𝑂 𝑚𝑛𝑅



𝑖=1

𝑘

(𝑛𝑖+𝑅) +𝑛𝑅=

𝑖=1

𝑘

𝑛𝑖 +

𝑖=1

𝑘

𝑅 ≤ 𝑛



MSD-Radix-Sort Pseudocode
 Sorts array of 𝑚-digit radix-𝑅 numbers recursively

 Sort by leading digit, then each group by next  digit, etc.

MSD-Radix-sort 𝐴, 𝑙 ← 0, 𝑟 ← 𝑛 − 1, 𝑑 ← 𝑙𝑒𝑎𝑑𝑖𝑛𝑔 𝑑𝑖𝑔𝑖𝑡 𝑖𝑛𝑑𝑒𝑥

𝑙, 𝑟 :  indexes between which to sort, 0 ≤ 𝑙, 𝑟 ≤ 𝑛 − 1

if 𝑙 < 𝑟

bucket-sort(𝐴 𝑙 … 𝑟 , 𝑑)

if  there are digits left

𝑙′ ← 𝑙

while 𝑙′ < 𝑟 do

let 𝑟′ ≥ 𝑙′be the maximal s.t 𝐴 𝑙′… 𝑟′ have the same 𝑑th digit

MSD-Radix-sort 𝐴, 𝑙′, 𝑟′, 𝑑 + 1

𝑙′ ← 𝑟′ + 1

 Run-time 𝑂(𝑚𝑛𝑅), auxiliary space is  Θ 𝑚 + 𝑛 + 𝑅

 Advantage: many digits may remain unexamined

 Drawback:  many recursions



MSD-Radix-Sort Time Analysis
 Total time 𝑂 𝑚𝑛𝑅

 This is 𝑂 𝑛 if sort items in limited range 
 suppose  𝑅 = 2, and we sort are 𝑛 integers in the range [0, 210)

 then 𝑚 = 10, 𝑅 = 2, and sorting is 𝑂 𝑛

 note that 𝑛, the number of items to sort, can be arbitrarily large

 This does not contradict Ω(𝑛log 𝑛) bound on the sorting problem, 
since the bound applies to comparison-based sorting



LSD-Radix-Sort

 Idea: apply single digit bucket sort from least significant digit 
to the most significant digit

 Observe that digit bucket sort is stable

 equal elements stay in the original order

 therefore, we can apply single digit bucket sort to the 
whole array, and the output will be sorted after 
iterations over all digits



LSD-Radix-Sort
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sorted by 
last digit

sorted by 
last two 

digits

sorted by 
all three 

digits

prepare 
to sort by 
last digit

prepare to 
sort by 

middle digit

prepare 
to sort by 
first digit

 𝑚 bucket sorts, on 𝑛 items each, one bucket sort is Θ(𝑛 + 𝑅)

 Total time cost Θ(𝑚 𝑛 + 𝑅 )



LSD-Radix-Sort

LSD-radix-sort(𝐴)

𝐴: array of size n, contains m-digit radix-R numbers

for 𝑑 ← least significant down to most significant digit  do

bucket-sort(𝐴, 𝑑)

 Loop invariant: after iteration 𝑖,  𝐴 is sorted w.r.t. the last  𝑖 digits of each entry

 Time cost Θ(𝑚 𝑛 + 𝑅 )

 Auxiliary space Θ(𝑛 + 𝑅)



Summary
 Sorting is an important and very well-studied problem

 Can be done in Θ 𝑛log 𝑛 time

 faster is not possible for general input  

 HeapSort is the only Θ 𝑛log𝑛 time algorithm we have seen with Ο 1
auxiliary space

 MergeSort is also Θ 𝑛log𝑛 time

 Selection and insertion sorts are Θ 𝑛2

 QuickSort is worst-case Θ 𝑛2 , but often the fastest in practice  

 BucketSort and RadixSort can achieve o 𝑛log 𝑛 if the input is special

 Randomized algorithms can eliminate “bad instances”

 Best-case, worst-case, average-case can all differ, but for well designed 
randomizations of algorithms, the average case  runtime of an algorithm is the 
same as expected runtime of its randomized version


