CS 240 - Data Structures and Data Management

Module 3: Sorting, Average-case and Randomization

O. Veksler

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2024

Outline

- Sorting, Average-case, and Randomization
- Analyzing average-case run-time
- Randomized Algorithms
- QuickSelect
- QuickSort
- Lower Bound for Comparison-Based Sorting
- Non-Comparison-Based Sorting

Outline

- Sorting, Average-case, and Randomization
- Analyzing average-case run-time
- Randomized Algorithms
- QuickSelect
- QuickSort
- Lower Bound for Comparison-Based Sorting
- Non-Comparison-Based Sorting

Average Case Analysis: Motivation

- Worst-case run time is our default for analysis
- Best-case run time is also sometimes useful
- Sometimes, best-case and worst case runtimes are the same
- But for some algorithms best-case and worst case differ significantly
- worst-case runtime too pessimistic, best-case too optimistic
- average-case run time analysis is useful especially in such cases

Average Case Analysis

- Recall average case runtime definition
- let \mathbb{I}_{n} be the set of all instances of size n

$$
T^{a v g}(n)=\frac{\sum_{I \in \mathbb{I}_{n}} T(I)}{\left|\mathbb{I}_{n}\right|}
$$

- assume $\left|\mathbb{I}_{n}\right|$ is finite
- can achieve 'finiteness' in a natural way for many problems
- Pros: more accurate picture of how an algorithm performs in practice
- provided all instances are equally likely
- Cons:
- usually difficult to compute
- average-case and worst case run times are often the same (asymptotically)

Average Case Analysis: Contrived Example

smallestFirst (A, n)

A : array storing n distinct integers in range $\{0,1, \ldots, n-1\}$
if $A[0]=0$ then
for $j=1$ to n do
print 'first is smallest'
else print 'first is not smallest'

$\mathbb{I}_{3}=$| 0 | 1 | 2 |
| :--- | :--- | :--- |
| 0 | 2 | 1 |
| 1 | 0 | 2 |
| 1 | 2 | 0 |
| 2 | 0 | 1 |
| 2 | 1 | 0 |

- Best-case
- $A[0] \neq 0$
- runtime is $\mathrm{O}(1)$
- Worst case
- $A[0]=0$
- runtime is $\Theta(n)$

Average Case Analysis: Contrived Example

smallestFirst (A, n)

A : array storing n distinct integers in range $\{0,1, \ldots, n-1\}$
if $A[0]=0$ then

$$
\text { for } j=1 \text { to } n \text { do }
$$

print 'first is smallest'
else print 'first is not smallest'

$\mathbb{I}_{3}=$| 0 | 1 | 2 |
| :--- | :--- | :--- |
| 0 | 2 | 1 |
| 1 | 0 | 2 |
| 1 | 2 | 0 |
| 2 | 0 | 1 |
| 2 | 1 | 0 |

- $(n-1)$! inputs have $A[0]=0$
- runtime for each is $c n$
- $n!-(n-1)$! inputs have $A[0] \neq 0$
- runtime for each is C

$$
\begin{aligned}
T^{\operatorname{avg}}(n)=\frac{1}{\left|\mathbb{I}_{n}\right|} \sum_{I \in \mathbb{I}_{n}} T(I) & =\frac{1}{n!}(c n+\cdots+c n+c+\cdots c) \\
& =\frac{1}{n!}\left(\operatorname{nn-1)!} \stackrel{n-1)!}{(n-1)!+c(n!-(n-1)!))=c+c-\frac{c}{n} \in O(1)}\right.
\end{aligned}
$$

Average Case Analysis: Example 2

$$
T^{\operatorname{avg}}(n)=\frac{\sum_{I \in \mathbb{I}_{n}} T(I)}{\left|\mathbb{I}_{n}\right|}
$$

```
sortednessTester (A,n)
    A: array storing }n\mathrm{ distinct numbers
    for }i\leftarrow1\mathrm{ to }n-1\mathrm{ do
        if }A[i-1]>A[i] then return fals
    return true
```

- Best-case is $O(1)$, worst case is $\Theta(n)$
- For average case, need to take average running time over all inputs
- How to deal with infinite \mathbb{I}_{n} ?
- there are infinitely many arrays of n numbers

Average Case Analysis: Example 2

$$
T^{\operatorname{avg}}(n)=\frac{\sum_{I \in \mathbb{I}_{n}} T(I)}{\left|\mathbb{I}_{n}\right|}
$$

```
sortednessTester (A,n)
    A: array storing }n\mathrm{ distinct numbers
    for }i\leftarrow1\mathrm{ to }n-1\mathrm{ do
    if }A[i-1]>A[i] then return fals
    return true
```

- Observe: sortednessTester acts the same on two inputs below

| 14 | 22 | 43 | 6 | 1 | 11 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 15 | 23 | 44 | 5 | 1 | 12 | 8 |

- Only the relative order matters, not the actual numbers
- true for many (but not all) algorithms
- if true, can use this to simplify average case analysis

Sorting Permutations

- For simplicity, will assume array A stores unique numbers
- Characterize input by its sorting permutation $\boldsymbol{\pi}$
- sorting permutation tells us how to sort the array
- stores array indexes in the order corresponding to the sorted array

$$
\begin{aligned}
& \pi=(4,1,2,3,6,5,0) \\
& \underset{\pi(0)}{\uparrow(1)} \uparrow_{\pi(2)} \uparrow \quad{ }_{\pi(6)} \\
& A[\pi(0)] \leq A[\pi(1)] \leq A[\pi(2)] \leq A[\pi(3)] \leq A[\pi(4)] \leq A[\pi(5)] \leq A[\pi(6)] \\
& 1 \leq 2 \leq 3 \leq 5 \leq 7 \leq 11 \leq 14 \text { sorted! }
\end{aligned}
$$

- Arrays with the same relative order have the same sorting permutations

0	1	2	3	4	5	6
15	3	4	6	1	12	8

Average Time with Sorting Permutations

- There are n ! sorting permutations for arrays with distinct numbers of size n
- let Π_{n} be the set of all sorting permutations of size n
- $\quad \Pi_{3}=\{(0,1,2),(0,2,1),(1,0,2),(2,0,1),(1,2,0),(2,1,0)\}$
- Define average cost through permutations

$$
T^{\operatorname{avg}}(n)=\frac{1}{n!} \sum_{\pi \in \Pi_{n}} T(\pi)
$$

- Intuitively, since all instances with sorting permutation π have exactly the same running time, we group them together

$\begin{gathered} \ldots \\ (7,20,10) \\ (-3,6.6,1.8) \\ (10,21,13) \\ \ldots \end{gathered}$	all instances of size 3	$T(0,2,1)$
	instances with sorting permutation $\pi=(0,1,2)$	
	instances with sorting permutation $\pi=(0,2,1)$	
	instances with sorting permutation $\pi=(1,0,2)$	$\begin{gathered} (20,7,10) \\ (6.6,-3,1.8) \end{gathered}$
infinite set	instances with sorting permutation $\pi=(2,0,1)$	
	instances with sorting permutation $\pi=(1,2,0)$	$(21,10,13)$
	instances with sorting permutation $\pi=(2,1,0)$	

Average Case: Example 1

$$
T^{a v g}(n)=\frac{1}{n!} \sum_{\pi \in \Pi_{n}} T(\pi)
$$

```
sortednessTester(A,n)
    A: array storing n distinct numbers
    for }i\leftarrow1\mathrm{ to n - 1 do
        if }A[i-1]>A[i] then return fals
    return true
```

- Run for loop i times \Rightarrow perform i comparisons
- Runtime is c - number of comparisons $+c$
- Runtime is Θ (number of comparisons)
- To get rid of the constant in all calculations, define

$$
T(\pi)=\text { number of comparisons }
$$

Average Case: Example 1

$$
\operatorname{Tavg}(n)=\frac{1}{n!} \sum_{\pi \in \Pi_{n}} T(\pi)
$$

- $\quad T(\pi)=$ number of comparisons
sortednessTester (A, n)
A : array storing n distinct numbers for $i \leftarrow 1$ to $n-1$ do
if $A[i-1]>A[i]$ then return false return true
- for some permutations π, do exactly 1 comparison: $T(\pi)=1$
- for some permutations π, do exactly 2 comparisons: $T(\pi)=2$
- for some permutations π, do exactly $n-1$ comparisons: $T(\pi)=n-1$
$T^{\text {avg }}(3)=\frac{1}{3!}(T(0,1,2)+T(0,2,1)+T(1,0,2)+T(2,0,1)+T(1,2,0)+T(2,1,0))$
$A[1]$ smallest
$A[0]$ middle
$A[2]$ largest
$A[1]<A[0]$
return false after the first comparison

Average Case: Example 1

$$
\operatorname{Tavg}(n)=\frac{1}{n!} \sum_{\pi \in \Pi_{n}} T(\pi)
$$

- $\quad T(\pi)=$ number of comparisons
sortednessTester (A, n)
A : array storing n distinct numbers for $i \leftarrow 1$ to $n-1$ do if $A[i-1]>A[i]$ then return false return true
- for some permutations π, do exactly 1 comparison: $T(\pi)=1$
- for some permutations π, do exactly 2 comparisons: $T(\pi)=2$
- for some permutations π, do exactly $n-1$ comparisons: $T(\pi)=n-1$

$$
\begin{aligned}
& \operatorname{Tavg}(3)=\frac{1}{3!}(T(0,1,2)+T(0,2,1)+T(1,0,2)+T(2,0,1)+T(1,2,0)+T(2,1,0)) \\
& T^{a v g}(3)=\frac{1}{3!}(1,0,2)+T(1,2,0)+T(2,1,0)+T(0,1,2)+T(0,2,1)+T(2,0,1) \\
& =\frac{1}{3!}(\# \text { permut. with exactly } 1 \text { comp } \cdot 1+\# \text { permut. with exactly } 2 \text { comp } \cdot 2 \text {) } \\
& =\frac{1}{6}(3 \cdot 1+3 \cdot 2)=9 / 6 \\
& \operatorname{Tavg}(n)=\frac{1}{n!} \sum_{k=1}^{n-1} k \cdot(\# \text { permutations with exactly } k \text { comparisons })
\end{aligned}
$$

Average Case Analysis: Example 1

$$
T^{a v g}(n)=\frac{1}{n!} \sum_{k=1}^{n-1} k \cdot(\text { \#permutations with exactly } k \text { comparisons })
$$

```
# exactly k comp
```

\#permutations with at least k comparisons

$$
\text { \#permutation with at least } k+1 \text { comparisons }
$$

\#permutations with exactly k comparisons

$$
T^{\operatorname{avg}}(n)=\frac{1}{n!} \sum_{k=1}^{n-1} k \cdot(\# \text { perm with at least } k \text { comp }- \text { \#perm with at least } k+1 \text { comp })
$$

Average Case Analysis: Example 1

```
sortednessTester (A,n)
    A: array storing }n\mathrm{ distinct numbers
    for }i\leftarrow1\mathrm{ to }n-1\mathrm{ do
        if }A[i-1]>A[i] then return fals
    return true
```

$T^{\text {avg }}(n)=\frac{1}{n!} \sum_{k=1}^{n-1} k \cdot(\#$ perm with at least k comp $-\#$ perm with at least $k+1$ comp $)$

- Permutations with at least 1 comparison
- all n ! permutations

Average Case Analysis: Example 1

sortednessTester (A, n)

A : array storing n distinct numbers for $i \leftarrow 1$ to $n-1$ do if $A[i-1]>A[i]$ then return false
return true
$T^{\operatorname{avg}}(n)=\frac{1}{n!} \sum_{k=1}^{n-1} k \cdot(\#$ perm with at least k comp - \#perm with at least $k+1$ comp $)$

- Permutations with at least 2 comparisons
- $A[0]<A[1]$

0	1	2	3	4	5	6
3	15	4	6	1	20	8
$\pi=(4,0,2,3,6,1,5)$						

- 0,1 occur in sorted order : $(4,3,2,0,1),(4,3,0,2,1),(4,0,3,2,1)$
- $\binom{n}{2}(n-2)$!

Average Case Analysis: Example 1

sortednessTester (A, n)

A : array storing n distinct numbers for $i \leftarrow 1$ to $n-1$ do if $A[i-1]>A[i]$ then return false
return true
$T^{\operatorname{avg}}(n)=\frac{1}{n!} \sum_{k=1}^{n-1} k \cdot(\#$ perm with at least k comp - \#perm with at least $k+1$ comp $)$

- Permutations with at least 3 comparisons
- $A[0]<A[1]<A[2]$

0	1	2	3	4	5	6
3	15	44	6	1	20	8
$\pi=(4,0,3,6,1,5,2)$						

- $0,1,2$ occur in sorted order : $(4,3,0,1,2),(4,0,3,1,2),(0,1,3,4,2)$
- $\binom{n}{3}(n-3)$!

Average Case Analysis: Example 1

sortednessTester (A, n)

A : array storing n distinct numbers for $i \leftarrow 1$ to $n-1$ do if $A[i-1]>A[i]$ then return false
return true
$\operatorname{T}^{\operatorname{avg}}(n)=\frac{1}{n!} \sum_{k=1}^{n-1} k \cdot(\#$ perm with at least k comp - \#perm with at least $k+1$ comp $)$

- Permutations with at least k comparisons
- $A[0]<A[1]<A[2] \ldots<A[k-1]$
- $0,1, \ldots, k-1$ occur in sorted order
- $\binom{n}{k}(n-k)!=\frac{n!}{(n-k)!k!}(n-k)!=\frac{n!}{k!}$

Average Case Analysis: Example 1

- Let π_{k} be \# of permutations with at least k comparisons, $\pi_{k}=\frac{n!}{k!}$
- Taylor expansion: $\sum_{k=0}^{\infty} \frac{1}{k!}=e \approx 2.8$

$$
\begin{aligned}
& T^{a v g}(n)= \frac{1}{n!} \sum_{k=1}^{n-1} k \cdot\left(\pi_{k}-\pi_{k+1}\right)=\frac{1}{n!}\left(\sum_{k=1}^{n-1} k \cdot \pi_{k}-\sum_{k=1}^{n-1} k \cdot \pi_{k+1}\right) \\
&= \frac{1}{n!}\left(1 \cdot \pi_{1}+2 \cdot \pi_{2}+3 \cdot \pi_{3}+\cdots+(n-1) \cdot \pi_{n-1}\right. \\
&-1 \cdot \pi_{2}-2 \cdot \pi_{3}-\cdots-(n-2) \cdot \pi_{n-1}-(n-1) \cdot \pi_{n} \\
&= \frac{1}{n!}\left(\quad \pi_{1}+\pi_{2}+\pi_{3}+\ldots \quad+\pi_{n-1}-(n-1) \cdot \pi_{n}\right)
\end{aligned}
$$

- Average running time of sortednessTester (A, n) is $O(1)$
- much better than the worst case $\Theta(n)$

Average Case Analysis: Example 2

$\operatorname{avgCaseDemo}(A, n)$

A : array storing n distinct numbers
if $n \leq 2$ return
if $A[n-2]<A[n-1]$ then $\operatorname{avgCaseDemo~}(A[0, n / 2-1], n / 2) / /$ good case
else $\operatorname{avg} \operatorname{CaseDemo}(A[0, n-3], n-2) \quad / /$ bad case

- Let $T(n)$ be the number of recursions
- proportional to the running time
- Best case (array sorted in increasing order)
- always get the good case, array size is divided by 2 at each recursion
- $T(n)=\left\{\begin{array}{c}0 \text { if } n \leq 2 \\ T(n / 2)+1 \text { otherwise }\end{array}\right.$
- resolves to $\Theta(\log (n))$
- Worst case (array sorted in decreasing order)
- always get the bad case, array size decreases by 2 at each recursion
- $\quad T(n)=T(n-2)+1$ (for $n>2)$
- resolves to $\Theta(n)$

Average Case Analysis: Example 2

avgCaseDemo (A, n)

A : array storing n distinct numbers
if $n \leq 2$ return
if $A[n-2]<A[n-1]$ then $\operatorname{avgCaseDemo}(A[0, n / 2-1], n / 2) \quad / /$ good case
else $a v g \operatorname{CaseDemo}(A[0, n-3], n-2) \quad / /$ bad case

- avgCaseDemo runtime is equal for instances with same relative element order
- Therefore can use sorting permutations for average running time

$$
T^{\operatorname{avg}}(n)=\frac{1}{n!} \sum_{\pi \in \Pi_{n}} T(\pi)
$$

- Call permutation π is good if it leads to a good case
- ex: $(0,1,3,2,4)$
- Call permutation π bad if it leads to a bad case
- ex: $(1,4,0,2,3)$
- Exactly half of the permutations are good
- $(0,1,3,2,4) \leftrightarrow(0,1,4,2,3)$
- n !/2 good permutations, n !/ 2 bad permutations

$$
\begin{array}{cc}
\text { good } & \text { bad } \\
(0,1,2) \leftrightarrow(0,2,1) \\
(1,0,2) \leftrightarrow(1,2,0) \\
(2,0,1) \leftrightarrow(2,1,0)
\end{array}
$$

Average Case Analysis: Example 2

$\operatorname{avgCaseDemo~}(A, n)$
A : array storing n distinct numbers
if $n \leq 2$ return
if $A[n-2]<A[n-1]$ then $\operatorname{avgCaseDemo~}(A[0, n / 2-1], n / 2) / /$ good case else avgCaseDemo $(A[0, n-3], n-2) \quad / /$ bad case

- For recursive algorithms, we typically derive recurrence equation and solve it
- Easy to derive recursive formula for one instance π

$$
T(\pi)=\left\{\begin{array}{cc}
1+T\left(\text { first } \frac{n}{2}\right. \text { items) } & \text { if } \pi \text { is good } \\
1+T(\text { first } n-2 \text { items }) & \text { if } \pi \text { is bad }
\end{array}\right.
$$

- Cannot conclude that $\quad T^{\operatorname{avg}(n)}=\left\{\begin{array}{cc}1+\operatorname{Tavg}(n / 2) & \text { if } \pi \text { is good } \\ 1+\operatorname{Tavg}(n-2) & \text { if } \pi \text { is bad }\end{array}\right.$
- Can derive formula for the sum of instances π (but it is not trivial, we omit it)

$$
\sum_{\pi \in \Pi_{n}} T(\pi)=\sum_{\pi \in \Pi_{n}: \pi \text { is good }}\left(1+T^{\text {avg }}(n / 2)\right)+\sum_{\pi \in \Pi_{n}: \pi \text { is bad }}\left(1+T^{\operatorname{avg}}(n-2)\right)
$$

Average Case Analysis: Example 2

$$
T^{\operatorname{avg}}(n)=\frac{1}{n!} \sum_{\pi \in \Pi_{n}} T(\pi)
$$

- Using formula for the sum of instances π from the previous slide

$$
\sum_{\pi \in \Pi_{n}} T(\pi)=\sum_{\pi \in \Pi_{n}: \pi \text { is good }}\left(1+T^{\operatorname{avg}(n / 2))+\sum_{\pi \in \Pi_{n}: \pi \text { is bad }}\left(1+T^{\operatorname{avg}}(n-2)\right),{ }^{2}(n)}\right.
$$

- Recall that there are $n!/ 2$ good permutations, $n!/ 2$ bad permutations

$$
\begin{aligned}
T^{\text {avg }}(n) & =\frac{1}{n!}\left(\sum_{\pi \in \Pi_{n}: \pi \text { is good }}\left(1+T_{\begin{array}{c}
\text { ave } \\
\text { alements in } \\
\text { sum are equal }
\end{array}}(n / 2)\right)+\sum_{\pi \in \Pi_{n}: \pi \text { is bad }}\left(1+T_{\substack{\text { avg } \\
\text { all elements in } \\
\text { sum are equal }}}\right)\right. \\
& =\frac{1}{n!}\left(\frac{n!}{2}\left(1+T^{\text {avg }}(n / 2)\right)+\frac{n!}{2}\left(1+T^{\text {avg }}(n-2)\right)\right)
\end{aligned}
$$

- Simplifies to $T^{\text {avg }}(n)=1+\frac{1}{2} T^{\text {avg }}(n / 2)+\frac{1}{2} T^{\text {avg }}(n-2)$

Average Case Analysis: Example 2

$$
\begin{aligned}
& T^{\operatorname{avg}}(n)=1+\frac{1}{2} T^{\operatorname{avg}}(n / 2)+\frac{1}{2} T^{\text {avg }}(n-2) \text { if } n>2 \\
& T^{\operatorname{avg}}(n)=0 \text { if } n \leq 2
\end{aligned}
$$

Theorem: $T^{\operatorname{avg}}(n) \leq 2 \log (n)$
Proof: (by induction)

- true for $n \leq 2$ (no recursion in these cases, $\operatorname{T}^{\operatorname{avg}}(n)=0$)
- let $n \geq 3$ and assume the theorem holds for all $m<n$
- $\operatorname{Tavg}(n)=1+\frac{1}{2} \underbrace{\operatorname{Tavg}(n / 2)}+\frac{1}{2} \underbrace{\operatorname{Tavg}(n-2)}$

$$
\begin{aligned}
& \quad \text { induction hypothesis induction hypothesis } \\
& \leq 1+\frac{1}{2} 2 \log (n / 2)+\frac{1}{2} 2 \log (n-2) \\
& \leq 1+\frac{1}{2} 2(\log (n)-1)+\frac{1}{2} 2 \log (n) \\
& =2 \log (n)
\end{aligned}
$$

- This proves average-case running time is $O(\log (n))$
- best case is $\Theta(\log (n))$
- average case cannot be better than best case
- therefore, average case is $\Theta(\log (n))$, much better than worst case $\Theta(n)$

Outline

- Sorting, average-case, and Randomization
- Analyzing average-case run-time
- Randomized Algorithms
- QuickSelect
- QuickSort
- Lower Bound for Comparison-Based Sorting
- Non-Comparison-Based Sorting

Randomized Algorithms: Motivation

- Average case $O(\log (n))$
- Worst-case $O(n)$

```
avgCaseDemo(A,n)
    A: array storing }n\mathrm{ distinct numbers
    if }n\leq2\mathrm{ return
    if }A[n-2]<A[n-1] then avgCaseDemo(A[0,n/2 - 1],n/2
    else avgCaseDemo(A[0,n-3], n-2)
```

- Would hope that in practice, time averaged over different runs is $O(\log (n))$
- However, average-cases analysis averages over instances, not runs
- cannot average over runs, do not know the instances the user will choose
- Suppose all instances are equally likely to occur in practice
- then averaging over different runs is equivalent to averaging over instances
- so can expect avgCaseDemo to have $O(\log (n))$ runtime averaged over runs
- However humans often generate instances that are far from equally likely
- if user calls avgCaseDemo on almost reverse sorted arrays, runtime averaged over different runs is $\Theta(n)$ in practice
- real-life example: humans invoke sorting algorithm most often on arrays that are already almost sorted

Randomized Algorithms: Motivation

```
avgCaseDemo(A,n)
    A: array storing }n\mathrm{ distinct numbers
    if }n\leq2\mathrm{ return
    if }A[n-2]<A[n-1] then avgCaseDemo(A[0,n/2 - 1],n/2
    else avgCaseDemo(A[0,n-3], n-2)
```

- Randomization can be used to improve runtime in practice when instances are not equally likely
- such randomization makes sense to apply to algorithms which have better average-case than worst-case runtime
- Simple randomization: shuffle array A before calling avgCaseDemo, so that every instance is equally likely
- now averaging over runs is the same as averaging over instances
- however, have to spend time shuffling the array
- shifted dependence from what we cannot control (user) to what we can control (random number generation)

Randomized Algorithms

- A randomized algorithm is one which relies on some random numbers in addition to the input
- Runtime depends on both input I and random numbers R used
- Goal: shift dependency of run-time from what we cannot control (user input), to what we can control (random numbers)
- no more bad instances!
- could still have unlucky numbers
- if running time is long on some run, it is because we generated unlucky random numbers, not because of the instance itself
- exceedingly rare, think of chances of sorting array by a random swaps
- Side note: computers cannot generate truly random numbers
- assume there is pseudo-random number generator (PRNG), deterministic program that uses initial seed to generate sequence of seemingly random numbers
- quality of randomized algorithm depends on the quality of the PRNG

Expected Running Time

- How do we measure the runtime of a randomized algorithm?
- depends on input I and on R, sequence of random numbers algorithm choses
- Define $T(I, R)$ to be running time of randomized algorithm for instance I and R
- Expected runtime for instance I is expected value for $T(I, R)$

$$
T^{\exp }(I)=E[T(I, R)]=\sum_{\substack{\text { all possible } \\ \text { sequences } R}} T(I, R) \cdot \operatorname{Pr}(R)
$$

- Worst-case expected runtime

$$
T^{\exp }(n)=\max _{I \in \mathbb{I}_{n}} T^{e x p}(I)
$$

- Best-case and average-case expected running time defined similarly
- Usually consider only worst-case expected running time
- usually design a randomized algorithm so that all instances of size n have the same expected runtime
- Sometimes also want to know running time if get really unlucky with random numbers R, i.e. worst case (or worst instance and worst random numbers case)

$$
\max _{R} \max _{I \in \mathbb{I}_{n}} T(I, R)
$$

Randomized Algorithm: Simple

simple (A, n)

A : array storing n numbers

$$
\text { sum } \leftarrow 0
$$

if random (3) $=0$ then return sum
else if $\operatorname{random}(3)>0$ then
for $i \leftarrow 0$ to $n-1$ do
sum $\leftarrow \operatorname{sum}+A[i]$
return sum

$$
\begin{gathered}
T^{\exp }(I)=\sum_{\substack{\text { all possible } \\
\text { sequences } R}} T(I, R) \cdot \operatorname{Pr}(R) \\
T^{\exp }(n)=\max _{I \in \mathbb{I}_{n}} T^{\exp }(I)
\end{gathered}
$$

- Function random (n) returns an integer sampled uniformly from $\{0,1, \ldots, n-1\}$
- simple needs only one random number: $\operatorname{Pr}(0)=\operatorname{Pr}(1)=\operatorname{Pr}(2)=\frac{1}{3}$

$$
\begin{aligned}
T_{\exp }(I) & =T(I, 0) \cdot \operatorname{Pr}(0)+T(I, 1) \cdot \operatorname{Pr}(1)+T(I, 2) \cdot \operatorname{Pr}(2) \\
& =T(I, 0) \cdot \frac{1}{3} \quad+T(I, 1) \cdot \frac{1}{3} \quad+T(I, 2) \cdot \frac{1}{3} \\
& =c \cdot \frac{1}{3}+c \cdot n \cdot \frac{1}{3}+c \cdot n \cdot \frac{1}{3} \in \Theta(n)
\end{aligned}
$$

- All instances have the same running time, so $T^{\exp }(n) \in \Theta(n)$

Randomized Algorithm: Simple2

simple2 (A,n)

A : array storing n numbers

```
sum}\leftarrow
for }i\leftarrow1\mathrm{ to random(n) do
        for }j\leftarrow1\mathrm{ to random(n) do
        sum}\leftarrow\operatorname{sum}+A[j]A[i
```

 return sum
 $$
T^{\exp }(I)=\sum_{\substack{\text { all possible } \\ \text { sequences } R}} T(I, R) \cdot \operatorname{Pr}(R)
$$

return sum

$$
T^{\exp }(n)=\max _{I \in \mathbb{I}_{n}} T^{\exp }(I)
$$

- Uses 2 random numbers $R=<r_{1}, r_{2}>$: $\operatorname{Pr}\left(r_{1}=0\right)=\cdots=\operatorname{Pr}\left(r_{1}=n-1\right)=\frac{1}{n}$

$$
\begin{aligned}
& \operatorname{Pr}[<0,0>]=\operatorname{Pr}[<0,1>]=\cdots=\operatorname{Pr}[<n-1, n-1>]=\left(\frac{1}{n}\right)^{2} \\
& T^{\exp }(I)=\sum_{<r_{1}, r_{2}>} T\left(I,<r_{1}, r_{2}>\right) \cdot\left(\frac{1}{n}\right)^{2}=\left(\frac{1}{n}\right)^{2} \sum_{\left\langle r_{1}, r_{2}\right\rangle} c \cdot r_{1} \cdot r_{2} \\
&=\left(\frac{1}{n}\right)^{2} \sum_{r_{1}} c \cdot r_{1} \sum_{r_{2} \in\{0,1, \ldots, n-1\}} r_{2}=\left(\frac{1}{n}\right)^{2} \sum_{r_{1}} c \cdot r_{1} \frac{n(n-1)}{2}=\left(\frac{1}{n}\right)^{2} c \frac{n(n-1)}{2} \frac{n(n-1)}{2}
\end{aligned}
$$

- All instances have he same running time, so $T^{\exp }(n) \in \Theta\left(n^{2}\right)$

Randomized Algorithm: expectedDemo

$\operatorname{avgCaseDemo}(A, n)$

A : array storing n distinct numbers
if $n \leq 2$ return
if $A[n-2]<A[n-1]$ then $\operatorname{avgCaseDemo}(A[0, n / 2-1], n / 2) / /$ good case
else $\operatorname{avg} \operatorname{CaseDemo}(A[0, n-3], n-2) \quad / /$ bad case

- To randomize avgCaseDemo, could shuffle array A and then call avgcaseDemo
- A better solution which avoids shuffling
expectedDemo (A, n)
A : array storing n distinct numbers
if $n \leq 2$ return
if random (2) swap $A[n-2]$ and $A[n-1]$
if $A[n-2]<A[n-1]$ then expectedDemo $(A[0, n / 2-1, n / 2) / /$ good case else expectedDemo $(A[0, n-3, n-2) / /$ bad case
- For any array, $\operatorname{Pr}($ good case $)=\operatorname{Pr}($ bad case $)=\frac{1}{2}$

Randomized Algorithm expectedDemo

expectedDemo (A, n)
A : array storing n distinct numbers

if $n \leq 2$ return

if random (2) swap $A[n-2]$ and $A[n-1]$
if $A[n-2]<A[n-1]$ then expectedDemo $(A[0, n / 2-1, n / 2) / /$ good case else expectedDemo $(A[0, n-3, n-2) / /$ bad case

- Running time depends both on the input array A and the sequence R of random numbers generated during the run of the algorithm
- $A=[1,5,0,3,7,3], R=\langle 1,0,0\rangle$
- Step 1:

$$
A=[1,5,0,3,7,3] \quad R=\langle 1,0,0\rangle \Rightarrow A=[1,5,0,3,3,7] \Rightarrow \text { good case }
$$

- Step 2:

$$
A=[1,5,0] \quad R=\langle 1,0,0\rangle \Rightarrow A=[1,5,0] \Rightarrow \text { bad case }
$$

Randomized Algorithm expectedDemo

expectedDemo (A, n)
A : array storing n distinct numbers
if $n \leq 2$ return
if random (2) $\operatorname{swap} A[n-2]$ and $A[n-1]$
if $A[n-2]<A[n-1]$ then expectedDemo $(A[0, n / 2-1, n / 2) / /$ good case else expectedDemo $(A[0, n-3, n-2) / /$ bad case

- For any array $A, \operatorname{Pr}($ good case $)=\operatorname{Pr}($ bad case $)=\frac{1}{2}$
- Let $T(n)$ be the number of recursions
- running time is proportional to the number of recursions

Expected running time of expectedDemo

```
expectedDemo(A,n)
A: array storing n distinct numbers
if }n\leq2\mathrm{ return
if random(2) swap }A[n-2] \mathrm{ and }A[n-1
if A[n-2]<A[n-1] then expectedDemo (A[0,n/2-1,n/2) // good case
else expectedDemo(A[0,n-3,n-2) // bad case
```

- Let $T(A, R)$ be number of recursions on A if random numbers are $R=\left\langle x, R^{\prime}\right\rangle$

$$
T(A, R)=T\left(A,\left\langle x, R^{\prime}\right\rangle\right)=\left\{\begin{array}{cl}
1+T\left(A[0 \ldots n / 2-1], R^{\prime}\right) & \text { if } x \text { is good } \\
1+T\left(A[0 \ldots n-3], R^{\prime}\right) & \text { if } x \text { is bad }
\end{array}\right.
$$

examples

bad case since $8>1$ and
$T([1,0,4,5,8,1],\langle 0,1,1,0\rangle)=T([1,0,4,5,8,1],\langle 0,\langle 1,1,0\rangle\rangle)=1+T([1,0,4,5],\langle 1,1,0\rangle)$
good case since $8>1$ and
$T([1,0,4,5,8,1],\langle 1,0,1,0\rangle)=T([1,0,4,5,8,1],\langle 1,\langle 0,1,0\rangle\rangle) \stackrel{\text { we swap }}{=} 1+T([1,0,4],\langle 0,1,0\rangle)$

Expected running time of expectedDemo

$$
T^{\exp }(A)=\sum_{R} T(A, R) \cdot \operatorname{Pr}(R)
$$

- Summing up over all sequences of random outcomes

$$
\sum_{R} T(A, R) \cdot \operatorname{Pr}(R)
$$

$$
\operatorname{Pr}(0) \operatorname{Pr}(0) \operatorname{Pr}(0)=\frac{1}{2} \frac{1}{2} \frac{1}{2}
$$

$$
\begin{aligned}
\sum_{R} T([1,4,5,8,1], R) \cdot \operatorname{Pr}(\boldsymbol{R})= & T([1,4,5,8,1],\langle\mathbf{0}, \mathbf{0}, \mathbf{0}\rangle) \cdot \operatorname{Pr}(\langle\mathbf{0}, \mathbf{0}, \mathbf{0}\rangle) \\
& +T([1,4,5,8,1],\langle\mathbf{0}, \mathbf{0}, \mathbf{1}\rangle) \cdot \operatorname{Pr}(\langle\mathbf{0}, \mathbf{0}, \mathbf{1}\rangle) \\
& +T([1,4,5,8,1],\langle\mathbf{0}, \mathbf{1}, \mathbf{0}\rangle) \cdot \operatorname{Pr}(\langle\mathbf{0}, \mathbf{1}, \mathbf{0}\rangle) \\
& +T([1,4,5,8,1],\langle\mathbf{0}, \mathbf{1}, \mathbf{1}\rangle) \cdot \operatorname{Pr}(\langle\mathbf{0}, \mathbf{1}, \mathbf{1}\rangle) \\
& +T([1,4,5,8,1],\langle\mathbf{1}, \mathbf{1}, \mathbf{0}\rangle) \cdot \operatorname{Pr}(\langle\mathbf{1}, \mathbf{1}, \mathbf{0}\rangle) \\
& +T([1,4,5,8,1],\langle\mathbf{1}, \mathbf{0}, \mathbf{1}\rangle) \cdot \operatorname{Pr}(\langle\mathbf{1}, \mathbf{0}, \mathbf{1}\rangle) \\
& +T([1,4,5,8,1],\langle\mathbf{1}, \mathbf{0}, \mathbf{0}\rangle) \cdot \operatorname{Pr}(\langle\mathbf{1}, \mathbf{0}, \mathbf{0}\rangle) \\
& +T([1,4,5,8,1],\langle\mathbf{1}, \mathbf{1}, \mathbf{1}\rangle) \cdot \operatorname{Pr}(\langle\mathbf{1}, \mathbf{1}, \mathbf{1}\rangle)
\end{aligned}
$$

Expected running time of expectedDemo

- Summing up over all sequences of random outcomes

$$
\sum_{R} T(A, R) \cdot \operatorname{Pr}(R)=\sum_{\left\langle x, R^{\prime}\right\rangle} T\left(A,\left\langle x, R^{\prime}\right\rangle\right) \cdot \operatorname{Pr}(x) \operatorname{Pr}\left(R^{\prime}\right)
$$

$$
\begin{aligned}
\sum_{R} T([1,4,5,8,1], R) \cdot \operatorname{Pr}(R)= & T([1,4,5,8,1],\langle 0,\langle 0,0\rangle\rangle) \cdot \operatorname{Pr}(0) \operatorname{Pr}(\langle 0,0\rangle) \\
& +T([1,4,5,8,1],\langle 0,\langle 0,1\rangle\rangle) \cdot \operatorname{Pr}(0) \operatorname{Pr}(\langle 0,1\rangle) \\
& +T([1,4,5,8,1],\langle 0,\langle 1,0\rangle\rangle) \cdot \operatorname{Pr}(0) \operatorname{Pr}(\langle 1,0\rangle) \\
& +T([1,4,5,8,1],\langle 0,\langle 1,1\rangle\rangle) \cdot \operatorname{Pr}(0) \operatorname{Pr}\langle 1,1\rangle) \\
& +T([1,4,5,8,1],\langle 1,\langle 1,0\rangle\rangle) \cdot \operatorname{Pr}(1) \operatorname{Pr}(\langle 1,0\rangle) \\
& +T([1,4,5,8,1],\langle 1,\langle 0,1\rangle\rangle) \cdot \operatorname{Pr}(1) \operatorname{Pr}(\langle 0,1\rangle) \\
& +T([1,4,5,8,1],\langle 1,\langle 0,0\rangle\rangle) \cdot \operatorname{Pr}(1) \operatorname{Pr}(\langle 0,0\rangle) \\
& +T([1,4,5,8,1],\langle 1,\langle 1,1\rangle\rangle) \cdot \operatorname{Pr}(1) \operatorname{Pr}(\langle 1,1\rangle)
\end{aligned}
$$

Expected running time of expectedDemo

- Summing up over all sequences of random outcomes

$$
\begin{aligned}
& \sum_{R} T(A, R) \cdot \operatorname{Pr}(R)= \sum_{\left\langle x, R^{\prime}\right\rangle} T\left(A,\left\langle x, R^{\prime}\right\rangle\right) \cdot \operatorname{Pr}(x) \operatorname{Pr}\left(R^{\prime}\right) \\
&= \sum_{\left\langle x=0, R^{\prime}\right\rangle} T\left(A,\left\langle x, R^{\prime}\right\rangle\right) \cdot \operatorname{Pr}(x) \operatorname{Pr}\left(R^{\prime}\right)+\sum_{\left\langle x=1, R^{\prime}\right\rangle} T\left(A,\left\langle x, R^{\prime}\right\rangle\right) \cdot \operatorname{Pr}(x) \operatorname{Pr}\left(R^{\prime}\right) \\
& \quad \text { example }
\end{aligned}
$$

$$
\begin{aligned}
\sum_{R} T([1,4,5,8,1], R) \cdot \operatorname{Pr}(R)= & \begin{array}{|}
T([1,4,5,8,1],\langle 0,\langle 0,0\rangle\rangle) \cdot \operatorname{Pr}(0) \operatorname{Pr}(\langle 0,0\rangle) \\
+T([1,4,5,8,1],\langle 0,\langle 0,1\rangle\rangle) \cdot \operatorname{Pr}(0) \operatorname{Pr}(\langle 0,1\rangle) \\
+ & T([1,4,5,8,1],\langle 0,\langle 1,0\rangle\rangle) \cdot \operatorname{Pr}(0) \operatorname{Pr}(\langle 1,0\rangle) \\
+T([1,4,5,8,1],\langle 0,\langle 1,1\rangle\rangle) \cdot \operatorname{Pr}(0) \operatorname{Pr}\langle 1,1\rangle)
\end{array} \\
& \begin{array}{l}
+T([1,4,5,8,1],\langle 1,\langle 1,0\rangle\rangle) \cdot \operatorname{Pr}(1) \operatorname{Pr}(\langle 1,0\rangle) \\
+T([1,4,5,8,1],\langle 1,\langle 0,1\rangle\rangle) \cdot \operatorname{Pr}(1) \operatorname{Pr}(\langle 0,1\rangle) \\
+T([1,4,5,8,1],\langle 1,\langle 0,0\rangle\rangle) \cdot \operatorname{Pr}(1) \operatorname{Pr}(\langle 0,0\rangle) \\
+T([1,4,5,8,1],\langle 1,\langle 1,1\rangle\rangle) \cdot \operatorname{Pr}(1) \operatorname{Pr}(\langle 1,1\rangle)
\end{array}
\end{aligned}
$$

Expected running time of expectedDemo

- Summing up cexpectedDemo (A, n)

$$
\sum_{R} T(A, R) \cdot \operatorname{Pr}\left(1 \left\lvert\, \begin{array}{l}
A: \text { array storing } n \text { distinct numbers } \\
\text { if } n \leq 2 \text { return } \\
\text { if } \text { } \text { andom }(2) \text { swap } A[n-2] \text { and } A[n-1] \\
\text { if } A[n-2]<A[n-1] \text { then } \text { expectedDemo }(A[0, n / 2-1, n / 2) / / \text { good case } \\
\text { else } \text { expectedDemo }(A[0, n-3, n-2) / / \text { bad case }
\end{array}\right.\right.
$$

example

$$
\begin{aligned}
\sum_{R} T([1,4,5,8,1], R) \cdot \operatorname{Pr}(R)= & \begin{array}{r}
T([1,4,5,8,1],\langle 0,\langle 0,0\rangle\rangle) \cdot \operatorname{Pr}(0) \operatorname{Pr}(\langle 0,0\rangle) \\
+T([1,4,5,8,1],\langle 0,\langle 0,1\rangle\rangle) \cdot \operatorname{Pr}(0) \operatorname{Pr}(\langle 0,1\rangle) \\
+T([1,4,5,8,1],\langle 0,\langle 1,0\rangle\rangle) \cdot \operatorname{Pr}(0) \operatorname{Pr}(\langle 1,0\rangle) \\
+T([1,4,5,8,1],\langle 0,\langle 1,1\rangle\rangle) \cdot \operatorname{Pr}(0) \operatorname{Pr}\langle 1,1\rangle)
\end{array} \\
& \begin{array}{l}
+T([1,4,5,8,1],\langle 1,\langle 1,0\rangle\rangle) \cdot \operatorname{Pr}(1) \operatorname{Pr}(\langle 1,0\rangle) \\
+T([1,4,5,8,1],\langle 1,\langle 0,1\rangle\rangle) \cdot \operatorname{Pr}(1) \operatorname{Pr}(\langle 0,1\rangle) \\
\\
\\
\\
\\
\\
+T([1,4,5,8,1],\langle 1,\langle 0,0\rangle\rangle) \cdot \operatorname{Pr}(1) \operatorname{Pr}(\langle 0,0\rangle) \\
+T([1,4,5,8,1],\langle 1,\langle 1,1\rangle\rangle) \cdot \operatorname{Pr}(1) \operatorname{Pr}(\langle 1,1\rangle)
\end{array} \quad \text { good cases }
\end{aligned}
$$

Expected running time of expectedDemo

- Summing up cexpectedDemo (A, n)

$$
\sum_{R} T(A, R) \cdot \operatorname{Pr}\left(1 \begin{array}{l}
A: \text { array storing } n \text { distinct numbers } \\
\text { if } n \leq 2 \text { return } \\
\text { if } \text { } \text { andom }(2) \text { swap } A[n-2] \text { and } A[n-1] \\
\text { if } A[n-2]<A[n-1] \text { then } \text { expectedDemo }(A[0, n / 2-1, n / 2) / / \text { good case } \\
\text { else } \text { expectedDemo }(A[0, n-3, n-2) / / \text { bad case }
\end{array}\right.
$$

example

$$
\begin{aligned}
& \sum_{R} T([1,4,5,8,9], R) \cdot \operatorname{Pr}(R)= \begin{array}{r}
T([1,4,5,8,9],\langle 0,\langle 0,0\rangle\rangle) \cdot \operatorname{Pr}(0) \operatorname{Pr}(\langle 0,0\rangle) \\
+T([1,4,5,8,9],\langle 0,\langle 0,1\rangle\rangle) \cdot \operatorname{Pr}(0) \operatorname{Pr}(\langle 0,1\rangle) \\
+T([1,4,5,8,9],\langle 0,\langle 1,0\rangle\rangle) \cdot \operatorname{Pr}(0) \operatorname{Pr}(\langle 1,0\rangle) \\
+T([1,4,5,8,9],\langle 0,\langle 1,1\rangle\rangle) \cdot \operatorname{Pr}(0) \operatorname{Pr}\langle 1,1\rangle)
\end{array} \\
& \begin{array}{l}
+T([1,4,5,8,9],\langle 1,\langle 1,0\rangle\rangle) \cdot \operatorname{Pr}(1) \operatorname{Pr}(\langle 1,0\rangle) \\
+T([1,4,5,8,9],\langle 1,\langle 0,1\rangle\rangle) \cdot \operatorname{Pr}(1) \operatorname{Pr}(\langle 0,1\rangle) \\
+T([1,4,5,8,9],\langle 1,\langle 0,0\rangle\rangle) \cdot \operatorname{Pr}(1) \operatorname{Pr}(\langle 0,0\rangle) \\
\\
\\
\\
\\
\end{array} \quad \text { bood cases cases } \\
&
\end{aligned}
$$

Expected running time of expectedDemo

- Summing up over all sequences of random outcomes

$$
\begin{aligned}
& \sum_{R} T(A, R) \cdot \operatorname{Pr}(R)=\sum_{\left\langle x, R^{\prime}\right\rangle} T\left(A,\left\langle x, R^{\prime}\right\rangle\right) \cdot \operatorname{Pr}(x) \operatorname{Pr}\left(R^{\prime}\right) \\
& =\sum_{\left\langle x=0, R^{\prime}\right\rangle} T\left(A,\left\langle x, R^{\prime}\right\rangle\right) \cdot \operatorname{Pr}(x) \operatorname{Pr}\left(R^{\prime}\right)+\sum_{\left\langle x=1, R^{\prime}\right\rangle} T\left(A,\left\langle x, R^{\prime}\right\rangle\right) \cdot \operatorname{Pr}(x) \operatorname{Pr}\left(R^{\prime}\right)
\end{aligned}
$$

or

$$
=\sum_{\left\langle x=0, R^{\prime}\right\rangle} T\left(A,\left\langle x, R^{\prime}\right\rangle\right) \cdot \operatorname{Pr}(x) \operatorname{Pr}\left(R^{\prime}\right)+\sum_{\left\langle x=1, R^{\prime}\right\rangle} T\left(A,\left\langle x, R^{\prime}\right\rangle\right) \cdot \operatorname{Pr}(x) \operatorname{Pr}\left(R^{\prime}\right)
$$

Expected running time of expectedDemo

- Summing up over all sequences of random outcomes

$$
\begin{aligned}
& \sum_{R} T(A, R) \cdot \operatorname{Pr}(R)=\sum_{\left\langle x, R^{\prime}\right\rangle} T\left(A,\left\langle x, R^{\prime}\right\rangle\right) \cdot \operatorname{Pr}(x) \operatorname{Pr}\left(R^{\prime}\right) \\
&= \sum_{\left\langle x=0, R^{\prime}\right\rangle} T\left(A,\left\langle x, R^{\prime}\right\rangle\right) \cdot \frac{1}{2}_{\text {bad cases }} \operatorname{Pr}\left(R^{\prime}\right)+\sum_{\left\langle x=1, R^{\prime}\right\rangle} T\left(A,\left\langle x, R^{\prime}\right\rangle\right) \cdot \frac{1}{2} \operatorname{Pr}\left(R^{\prime}\right)
\end{aligned}
$$

Or

$$
=\sum_{\left\langle x=0, R^{\prime}\right\rangle} T\left(A,\left\langle x, R^{\prime}\right\rangle\right) \cdot \frac{1}{\text { good cases }} \operatorname{Pr} \operatorname{Pr}\left(R^{\prime}\right)+\sum_{\left\langle x=1, R^{\prime}\right\rangle} T\left(A,\left\langle x, R^{\prime}\right\rangle\right) \cdot \frac{1}{2} \operatorname{Pr} \operatorname{Pr}\left(R^{\prime}\right)
$$

Expected running time of expectedDemo

- Summing up over all sequences of random outcomes

$$
\begin{aligned}
& \sum_{R} T(A, R) \cdot \operatorname{Pr}(R)=\sum_{\left\langle x, R^{\prime}\right\rangle} T\left(A,\left\langle x, R^{\prime}\right\rangle\right) \cdot \operatorname{Pr}(x) \operatorname{Pr}\left(R^{\prime}\right) \\
& =\frac{1}{2} \sum_{\left\langle x=0, R^{\prime}\right\rangle} T\left(A,\left\langle x, R^{\prime}\right\rangle\right) \operatorname{Pr}\left(R^{\prime}\right) \\
& +\frac{1}{2} \sum_{\left\langle x=1, R^{\prime}\right\rangle} T\left(A,\left\langle x, R^{\prime}\right\rangle\right) \operatorname{Pr}\left(R^{\prime}\right)
\end{aligned}
$$

or

$$
=\frac{1}{2} \sum_{\left\langle x=0, R^{\prime}\right\rangle} T\left(A,\left\langle x, R^{\prime}\right\rangle\right) \operatorname{Pr}\left(R^{\prime}\right) \quad+\frac{1}{2} \sum_{\left\langle x=1, R^{\prime}\right\rangle} T\left(A,\left\langle x, R^{\prime}\right\rangle\right) \operatorname{Pr}\left(R^{\prime}\right)
$$

Expected running time of expectedDemo

- Summing up over all sequences of random outcomes

$$
\begin{aligned}
& \sum_{R} T(A, R) \cdot \operatorname{Pr}(R)=\sum_{\left\langle x, R^{\prime}\right\rangle} T\left(A,\left\langle x, R^{\prime}\right\rangle\right) \cdot \operatorname{Pr}(x) \operatorname{Pr}\left(R^{\prime}\right) \\
& =\frac{1}{2} \sum_{\left\langle x=0, R^{\prime}\right\rangle}\left(1+T\left(A\left[0 \ldots n_{i} \quad n-3\right], R^{\prime}\right) \operatorname{Pr}\left(R^{\prime}\right)+\frac{1}{2} \sum_{\left\langle x=1, R^{\prime}\right\rangle}\left(1+T\left(A[0 \ldots n / 2-1], R^{\prime}\right) \operatorname{Pr}\left(R^{\prime}\right)\right.\right. \\
& \text { good cases cases }
\end{aligned}
$$

or

$$
=\frac{1}{2} \sum_{\left\langle x=0, R^{\prime}\right\rangle}\left(1+T\left(A[0 \ldots n / 2-1], R^{\prime}\right) \operatorname{Pr}\left(R^{\prime}\right)+\frac{1}{2} \sum_{\left\langle x=1, R^{\prime}\right\rangle}\left(1+T\left(A[0 \ldots n-3], R^{\prime}\right) \operatorname{Pr}\left(R^{\prime}\right)\right.\right.
$$

$$
T(A, R)=T\left(A,\left\langle x, R^{\prime}\right\rangle\right)=\left\{\begin{array}{cl}
1+T\left(A[0 \ldots n / 2-1], R^{\prime}\right) & \text { if } x \text { is good } \\
1+T\left(A[0 \ldots n-3], R^{\prime}\right) & \text { if } x \text { is bad }
\end{array}\right.
$$

Expected running time of expectedDemo

- Summing up over all sequences of random outcomes

$$
\begin{aligned}
\sum_{R} T(A, R) \cdot \operatorname{Pr}(R)=\sum_{\left\langle x, R^{\prime}\right\rangle} T\left(A,\left\langle x, R^{\prime}\right\rangle\right) \cdot \operatorname{Pr}(x) \operatorname{Pr}\left(R^{\prime}\right) \\
=\frac{1}{2} \sum_{R^{\prime}}\left(1+T\left(A[0 \ldots n-3], R^{\prime}\right) \operatorname{Pr}\left(R^{\prime}\right)+\frac{1}{2} \sum_{\text {bad cases }} \begin{array}{l}
\left(1+T\left(A[0 \ldots n / 2-1], R^{\prime}\right) \operatorname{Pr}\left(R^{\prime}\right)\right.
\end{array}\right.
\end{aligned}
$$

or two cases just differ in the order of elements

$$
=\frac{1}{2} \sum_{R^{\prime}}\left(1+T\left(A[0 \ldots n / 2-1], R^{\prime}\right) \operatorname{Pr}\left(R^{\prime}\right)+\frac{1}{2} \sum_{R^{\prime}}\left(1+T\left(A[0 \ldots n-3], R^{\prime}\right) \operatorname{Pr}\left(R^{\prime}\right)\right.\right.
$$

Expected running time of expectedDemo

- Summing up over all sequences of random outcomes

$$
\begin{aligned}
\sum_{R} T(A, R) \cdot \operatorname{Pr}(R)=\sum_{\left\langle x, R^{\prime}\right\rangle} T\left(A,\left\langle x, R^{\prime}\right\rangle\right) \cdot \operatorname{Pr}(x) \operatorname{Pr}\left(R^{\prime}\right) \\
=\frac{1}{2} \sum_{R^{\prime}}\left(1+T\left(A \left[0 \ldots \begin{array}{l}
\left.n-3], R^{\prime}\right) \operatorname{Pr}\left(R^{\prime}\right)
\end{array} \quad+\frac{1}{2} \sum_{\text {bad cases }} \begin{array}{l}
\left(1+T\left(A[0 \ldots n / 2-1], R^{\prime}\right) \operatorname{Pr}\left(R^{\prime}\right)\right.
\end{array}\right.\right.\right.
\end{aligned}
$$

or
two cases just differ in the order of elements

$$
=\frac{1}{2} \sum_{R^{\prime}}\left(1+T\left(A[0 \ldots n / 2-1], R^{\prime}\right) \operatorname{Pr}\left(R^{\prime}\right)+\frac{1}{2} \sum_{R^{\prime}} \underset{\text { bood cases }}{ }\left(1+T\left(A[0 \ldots n-3], R^{\prime}\right) \operatorname{Pr}\left(R^{\prime}\right)\right.\right.
$$

- Replace both cases with

$$
=\frac{1}{2} \sum_{R^{\prime}}\left(1+T\left(A[0 \ldots n / 2-1], R^{\prime}\right)\right) \cdot \operatorname{Pr}\left(R^{\prime}\right)+\frac{1}{2} \sum_{R^{\prime}}\left(1+T\left(A[0 \ldots n-3], R^{\prime}\right)\right) \cdot \operatorname{Pr}\left(R^{\prime}\right)
$$

Expected running time of expectedDemo

$$
\begin{array}{rl}
\sum_{R} T & T(A, R) \cdot \operatorname{Pr}(R)= \\
& =\frac{1}{2} \sum_{R^{\prime}}\left(1+T\left(A[0 \ldots n / 2-1], R^{\prime}\right)\right) \cdot \operatorname{Pr}\left(R^{\prime}\right) \quad \text { + second part } \\
& =\frac{1}{2} \sum_{R^{\prime}} 1 \cdot \operatorname{Pr}\left(R^{\prime}\right)+\frac{1}{2} \sum_{R^{\prime}} T\left(A\left[0 \ldots \frac{n}{2}-1\right], R^{\prime}\right) \cdot \operatorname{Pr}\left(R^{\prime}\right) \quad \text { + second part } \\
& =\frac{1}{2} \quad+\frac{1}{2} \sum_{R^{\prime}} T\left(A\left[0 \ldots \frac{n}{2}-1\right], R^{\prime}\right) \cdot \operatorname{Pr}\left(R^{\prime}\right) \quad \text { + second part }
\end{array}
$$

Expected running time of expectedDemo

$$
\begin{aligned}
\sum_{R} T & (A, R) \cdot \operatorname{Pr}(R)= \\
& =\frac{1}{2} \sum_{R^{\prime}}\left(1+T\left(A[0 \ldots n / 2-1], R^{\prime}\right)\right) \cdot \operatorname{Pr}\left(R^{\prime}\right) \quad \text { + second part } \\
& =\frac{1}{2} \sum_{R^{\prime}} 1 \cdot \operatorname{Pr}\left(R^{\prime}\right)+\frac{1}{2} \sum_{R^{\prime}} T\left(A\left[0 \ldots \frac{n}{2}-1\right], R^{\prime}\right) \cdot \operatorname{Pr}\left(R^{\prime}\right) \quad+\text { second part } \\
& =\frac{1}{2} \quad+\frac{1}{2} \sum_{R^{\prime}} T\left(A\left[0 \ldots \frac{n}{2}-1\right], R^{\prime}\right) \cdot \operatorname{Pr}\left(R^{\prime}\right) \quad+\text { second part }
\end{aligned}
$$

$$
C \leq \max \{A, B, C, \ldots, Z\}
$$

Expected running time of expectedDemo

$$
\begin{aligned}
\sum_{R} T & (A, R) \cdot \operatorname{Pr}(R)= \\
& =\frac{1}{2} \sum_{R^{\prime}}\left(1+T\left(A[0 \ldots n / 2-1], R^{\prime}\right)\right) \cdot \operatorname{Pr}\left(R^{\prime}\right) \quad+\text { second part } \\
& =\frac{1}{2} \sum_{R^{\prime}} 1 \cdot \operatorname{Pr}\left(R^{\prime}\right)+\frac{1}{2} \sum_{R^{\prime}} T\left(A\left[0 \ldots \frac{n}{2}-1\right], R^{\prime}\right) \cdot \operatorname{Pr}\left(R^{\prime}\right) \quad+\text { second part } \\
& =\frac{1}{2} \quad+\frac{1}{2} \sum_{R^{\prime}} T\left(A\left[0 \ldots \frac{n}{2}-1\right], R^{\prime}\right) \cdot \operatorname{Pr}\left(R^{\prime}\right) \quad \text { + second part }
\end{aligned}
$$

$\mathbb{I}_{2}=$ all instances of size 2

$$
\begin{gathered}
\text { instance } I=[1,4] \\
\text { of size } 2
\end{gathered} \sum_{R^{\prime}} T\left([1,4], R^{\prime}\right) \cdot \operatorname{Pr}\left(R^{\prime}\right) \leq \max \left\{\begin{array}{c}
\sum_{R^{\prime}} T\left([4,5], R^{\prime}\right) \cdot \operatorname{Pr}\left(R^{\prime}\right) \\
\sum_{R^{\prime}} T\left([1,4], R^{\prime}\right) \cdot \operatorname{Pr}\left(R^{\prime}\right) \\
\sum_{R^{\prime}} T\left([1,3], R^{\prime}\right) \cdot \operatorname{Pr}\left(R^{\prime}\right)
\end{array}\right]
$$

Expected running time of expectedDemo

$$
\begin{aligned}
\sum_{R} T & (A, R) \cdot \operatorname{Pr}(R)= \\
& =\frac{1}{2} \sum_{R^{\prime}}\left(1+T\left(A[0 \ldots n / 2-1], R^{\prime}\right)\right) \cdot \operatorname{Pr}\left(R^{\prime}\right) \quad \text { + second part } \\
& =\frac{1}{2} \sum_{R^{\prime}} 1 \cdot \operatorname{Pr}\left(R^{\prime}\right)+\frac{1}{2} \sum_{R^{\prime}} T\left(A\left[0 \ldots \frac{n}{2}-1\right], R^{\prime}\right) \cdot \operatorname{Pr}\left(R^{\prime}\right) \quad+\text { second part } \\
& =\frac{1}{2} \quad+\frac{1}{2} \sum_{R^{\prime}} T\left(A\left[0 \ldots \frac{n}{2}-1\right], R^{\prime}\right) \cdot \operatorname{Pr}\left(R^{\prime}\right) \quad \text { + second part }
\end{aligned}
$$

$$
S([1,4]) \quad \leq \max _{B \in \mathbb{I}_{2}} S(B)
$$

Expected running time of expectedDemo

$$
\begin{aligned}
\sum_{R} T & (A, R) \cdot \operatorname{Pr}(R)= \\
& =\frac{1}{2} \sum_{R^{\prime}}\left(1+T\left(A[0 \ldots n / 2-1], R^{\prime}\right)\right) \cdot \operatorname{Pr}\left(R^{\prime}\right) \quad \text { + second part } \\
& =\frac{1}{2} \sum_{R^{\prime}} 1 \cdot \operatorname{Pr}\left(R^{\prime}\right)+\frac{1}{2} \sum_{R^{\prime}} T\left(A\left[0 \ldots \frac{n}{2}-1\right], R^{\prime}\right) \cdot \operatorname{Pr}\left(R^{\prime}\right) \quad \text { + second part } \\
& =\frac{1}{2} \quad+\frac{1}{2} \sum_{R^{\prime}} T\left(A\left[0 \ldots \frac{n}{2}-1\right], R^{\prime}\right) \cdot \operatorname{Pr}\left(R^{\prime}\right) \quad \text { + second part } \\
& \leq \frac{1}{2} \quad+\frac{1}{2} \max _{A^{\prime} \in \mathbb{I}_{n / 2}} \sum_{R^{\prime}} T\left(A^{\prime}, R^{\prime}\right) \cdot \operatorname{Pr}\left(R^{\prime}\right) \quad \text { + second part }
\end{aligned}
$$

Expected running time of expectedDemo

$$
\begin{aligned}
\sum_{R} T & T A, R) \cdot \operatorname{Pr}(R)= \\
& =\frac{1}{2} \sum_{R^{\prime}}\left(1+T\left(A[0 \ldots n / 2-1], R^{\prime}\right)\right) \cdot \operatorname{Pr}\left(R^{\prime}\right) \quad \text { + second part } \\
& =\frac{1}{2} \sum_{R^{\prime}} 1 \cdot \operatorname{Pr}\left(R^{\prime}\right)+\frac{1}{2} \sum_{R^{\prime}} T\left(A\left[0 \ldots \frac{n}{2}-1\right], R^{\prime}\right) \cdot \operatorname{Pr}\left(R^{\prime}\right) \quad \text { + second part } \\
& =\frac{1}{2} \quad+\frac{1}{2} \sum_{R^{\prime}} T\left(A\left[0 \ldots \frac{n}{2}-1\right], R^{\prime}\right) \cdot \operatorname{Pr}\left(R^{\prime}\right) \quad \text { + second part } \\
& \leq \frac{1}{2}+\frac{1}{2} \max _{A^{\prime} \in \mathbb{I}_{n / 2}}^{\sum_{R^{\prime}}} T\left(A^{\prime}, R^{\prime}\right) \cdot \operatorname{Pr}\left(R^{\prime}\right)+\frac{1}{2} \sum_{R^{\prime}}\left(1+T\left(A[0 \ldots n-3], R^{\prime}\right)\right) \cdot \operatorname{Pr}\left(R^{\prime}\right) \\
& \leq \underbrace{}_{A_{A^{\prime} \in \mathbb{I}_{n / 2}} \sum_{R^{\prime}} T\left(A^{\prime}, R^{\prime}\right) \cdot \operatorname{Pr}\left(R^{\prime}\right)+\frac{1}{2}+\frac{1}{2} \underbrace{\sum_{R^{\prime}}}_{A^{\prime} \in \mathbb{I}_{n-2}} T\left(A^{\prime}, R^{\prime}\right) \cdot \operatorname{Pr}\left(R^{\prime}\right)}
\end{aligned}
$$

Expected running time of expectedDemo

- For any $A \in \mathbb{I}_{n}$, it holds

$$
\sum_{R} T(A, R) \cdot \operatorname{Pr}(R) \leq 1+\frac{1}{2} T^{e x p}(n / 2)+\frac{1}{2} T^{e x p}(n-2)
$$

- Therefore it also holds for A which maximizes this sum

$$
T^{\exp }(n)=\max _{A \in I_{n}} \sum_{R} T(A, R) \cdot \operatorname{Pr}(R) \leq 1+\frac{1}{2} T^{\exp }(n / 2)+\frac{1}{2} T^{e x p}(n-2)
$$

- Same recurrence as for averCaseDemo
- expected running time is $O(\log (n))$
- Is expected time of randomized version always the same as average case time of non-randomized version?
- not in general (depends on randomization)
- but yes if randomization is a shuffle
- choose instance randomly with equal probability

Average-case vs. Expected runtime

AlgoritmShuffled(n)

among all instances I of size \boldsymbol{n} for Algorithm choose I randomly and uniformly
Algorithm (I,n)

- Ignoring time needed for the first two lines

$$
\begin{aligned}
& T^{\exp }(n)=\sum_{I \in \mathbb{I}_{n}} \operatorname{Pr}(I \text { is chosen }) T(I)=\sum_{I \in \mathbb{I}_{n}} \frac{1}{\left|\mathbb{I}_{n}\right|} T(I) \\
& T^{\operatorname{avg}}(n)=\frac{1}{\left|\mathbb{I}_{n}\right|} \sum_{I \in \mathbb{I}_{n}} T(I)=T^{\exp }(n)
\end{aligned}
$$

- Expected runtime of AlgorithmShuffled is equal to the average case time of Algorithm
- Computing expected runtime of AlgorithmShuffled is usually easier than computing average case time of Algorithm

Average-case vs. Expected runtime

- Average case runtime and expected runtime are different concepts!

average case	expected
$T^{\text {avg }}(n)=\frac{\sum_{I \in \mathbb{I}_{n}} T(I)}{\left\|\mathbb{I}_{n}\right\|}$	$T^{\exp }(I)=\sum_{\text {outcomes } R} T(I, R) \cdot \operatorname{Pr}(R)$
sum is over instances	sum is over random outcomes
	applied only to a randomized algorithm

Outline

- Sorting, average-case, and Randomization
- Analyzing average-case run-time
- Randomized Algorithms
- QuickSelect
- QuickSort
- Lower Bound for Comparison-Based Sorting
- Non-Comparison-Based Sorting

Selection Problem

- Given array A of n numbers, and $0 \leq k<n$, find the element that would be at position k if A was sorted
- $\quad k$ elements are smaller or equal, $n-1-k$ elements are larger or equal
- $\quad \operatorname{select}(k)$ returns $k+1$ smallest element

	$0 \quad 1$		2	3	4	5	6	7	8	9
	30	60	10	0	50	80	90	20	40	70
sorted	0	10	20	30	40	50	60	70	80	90

$$
\operatorname{select}(2)=20
$$

- Special case: MedianFinding $=\operatorname{select}\left(k=\left\lfloor\frac{n}{2}\right\rfloor\right)$
- Selection can be done with heaps in $\Theta(n+k \log n)$ time
- this is $\Theta(n \log n)$ for median finding, not better than sorting
- Question: can we do selection in linear time?
- yes, with quick-select (average case analysis)
- subroutines for quick-select also useful for sorting algorithms

Two Crucial Subroutines for Quick-Select

- choose-pivot(A)
- return an index p in A
- $v=A[p]$ is called pivot value

0	1	2	3	$p=4$	5	6	7	8	9
30	60	10	0	$v=50$	80	90	20	40	70

- partition (A, p) uses $v=A[p]$ to rearranges A so that

0	1	2	3	4	$i=5$	6	7	8	9
30	10	0	20	40	$v=50$	60	80	90	70

- items in $A[0, \ldots, i-1]$ are $\leq v$
- $A[i]=v$
- items in $A[i+1, \ldots, n-1]$ are $\geq v$
- index i is called pivot-index i
- partition (A, p) returns pivot-index i
- $\quad i$ is a correct location of v in sorted A
- v would be the answer if $i=k$

Choosing Pivot

- Simplest idea for choose-pivot
- always select rightmost element in array

- Will consider more sophisticated ideas later

Partition Algorithm

```
partition( }A,p
A: array of size n, p: integer s.t. 0 \leq p < n
    create empty lists small, equal and large
    v}\leftarrowA[p
    for each element }x\mathrm{ in }
        if }x<v\mathrm{ then small.append(x)
        else if }x>v\mathrm{ then large.append(x)
        else equal.append(x)
    i}\leftarrow\mathrm{ small.size
    j}\leftarrowequal.size
    overwrite A[0\ldotsi-1] by elements in small
    overwrite A[i ...i+j-1] by elements in equal
    overwrite }A[i+j\ldotsn-1] by elements in larg
    return i
```

- Easy linear-time implementation using extra (auxiliary) $\Theta(n)$ space
- More challenging: partition in-place, i.e. $\mathrm{O}(1)$ auxiliary space

Efficient In-Place partition (Hoare)

Efficient In-Place partition (Hoare)

- Idea Summary: keep swapping the outer-most wrongly-positioned pairs

$\leq v$	$?$	$\geq v$	v
j			j

- One possible implementation

```
do }i\leftarrowi+1\mathrm{ while }i<n\mathrm{ and }A[i]\leq
do j\leftarrowj-1 while j\geqi and }A[j]\geqv\quad//j\mathrm{ will not run out of bounds as i}\geq
```

- More efficient (for quickselect and quicksort) when many repeating elements

$$
\begin{aligned}
& \text { do } i \leftarrow i+1 \text { while } i<n \text { and } A[i]<v \\
& \text { do } j \leftarrow j-1 \text { while } j \geq i \text { and } A[j]>v
\end{aligned}
$$

- Simplify the loop bounds

$$
\begin{aligned}
& \text { do } i \leftarrow i+1 \text { while } A[i]<v \quad / / i \text { will not run out of bounds as } A[n-1]=v \\
& \text { do } j \leftarrow j-1 \text { while } j \geq i \text { and } A[j]>v
\end{aligned}
$$

Efficient In-Place partition (Hoare)

```
partition (A,p)
    A: array of size n
    p: integer s.t. 0 \leq p<n
        swap}(A[n-1],A[p])// put pivot at the end
        i\leftarrow-1,\quadj\leftarrown-1,\quadv\leftarrowA[n-1]
        loop
            do }i\leftarrowi+1\mathrm{ while }A[i]<
            do j}\leftarrowj-1 while j\geqi and A[j]>
            if i\geqj then break
            else swap(A[i], A[j])
        end loop
        swap(A[n-1],A[i]) // put pivot in correct position
        return i
```

- Running time is $\Theta(n)$

Quick Select Algorithm

- Find item that would be in $A[k]$ if A was sorted
- Similar to quick-sort, but recurse only on one side ("quick-sort with pruning")
- Example: $\operatorname{select}(k=4)$

- $\quad i>k$, search recursively in the left side to select k

Quick Select Algorithm

- Example continued: $\operatorname{select}(k=4)$

- $i<k$, search recursively on the right, select $k-(i+1)$
- $k=1$ in our example

Quick Select Algorithm

- Example continued: $\operatorname{select}(k=1)$

- $\quad i>k$, search on the left to select k

Quick Select Algorithm

- Example continued: $\operatorname{select}(k=1)$

- $\quad i=k$, found our item, done!
- In our example, we got to subarray of size 3
- Often stop much sooner than that

QuickSelect Algorithm

QuickSelect (A, k)
A : array of size n, k : integer s.t. $0 \leq k<n$
$p \leftarrow$ choose-pivot (A)
$i \leftarrow \operatorname{partition}(A, p) \quad / /$ running time $\Theta(n)$
if $i=k$ then return $A[i]$
else if $i>k$ then return QuickSelect $(A[0,1, \ldots, i-1], k)$
else if $i<k$ then return QuickSelect $(A[i+1, \ldots, n-1], k-(i+1))$

- Best case
- first chosen pivot could have pivot-index k
- no recursive calls, total cost $\Theta(n)$
- Worst case
- pivot-value is always the largest and $k=0$
- recurrence equation

$$
T(n)=\left\{\begin{array}{cc}
c n+T(n-1) & n>1 \\
c & n=1
\end{array}\right.
$$

QuickSelect Algorithm

$$
T(n)=\left\{\begin{array}{cc}
c n+T(n-1) & n>1 \\
c & n=1
\end{array}\right.
$$

- Solution: repeatedly expand until we see a pattern forming

$$
\begin{aligned}
& T(n)=c n+T(n \div 1) \\
& T(n-1)=\longdiv { c (n - 1) + T (n - 2) }
\end{aligned}
$$

after 1 expansion: $T(n)=c n+c(n-1)+T(n-2)$

$$
T(n-2)=c(n-2)+T(n-3)
$$

after 2 expansions: $T(n)=c n+c(n-1)+c(n-2)+T(n-3)$
after i expansions: $T(n)=c n+c(n-1)+\cdots+c(n-i)+T(n-(i+1))$

- Stop expanding when get to base case

$$
T(n-(i+1))=T(1) \Rightarrow n-(i+1)=1 \Rightarrow i=n-2
$$

- Thus $T(n)=c n+c(n-1)+c(n-2)+\cdots+2 c+T(1)$

$$
=c[n+(n-1)+(n-2)+\cdots+2+1] \in \Theta\left(n^{2}\right)
$$

Average-Case Analysis of QuickSelect

- Runtime depends only on the order of the elements
- Therefore, can use sorting permutations

$$
T^{\operatorname{avg}}(n)=\frac{1}{n!} \sum_{\pi \in \Pi_{n}} T(\pi)
$$

- Can show (complicated) that average-case runtime is $\Theta(n)$
- better than the worst case runtime, $\Theta\left(n^{2}\right)$
- Create a better algorithm in practice by randomizing QuickSelect
- no more bad instances
- if randomization is done with shuffling, the expected time randomizedQuickSelect is the same as average case runtime of nonrandomized QuickSelect
- expected runtime is easier to derive
- randomization is useful for practical application, and also leads to an easier analysis of average-case

Randomized QuickSelect: Shuffling

- First idea for randomization
- Shuffle the input then run quickSelect

```
quickSelectShuffled(A,k)
A : array of size n
for i}\leftarrow1\mathrm{ to }n-1\mathrm{ do
        swap(A[i], A[random(i+1)])
    QuickSelect(A,k)
```

- $\operatorname{random}(n)$ returns integer uniformly sampled from $\{0,1,2, \ldots, n-1\}$
- Can show that every permutation of A is equally likely after shuffle
- As shown before, expected time of quickSelectShuffled is the same as average case time of quickSelect
- $\Theta(n)$

Randomized QuickSelect Algorithm

- Second idea: change pivot selection

RandomizedQuickSelect(A, k)

```
A: array of size n, k: integer s.t. 0 \leqk<n
```

```
p\leftarrowrandom(A.size)
    i}\leftarrow\operatorname{partition(A,p)
    if i=k then return A[i]
    else if }i>k\mathrm{ then
            return RandomizedQuickSelect(A[0,1, ...,i-1], k)
    else if }i<k\mathrm{ then
        return RandomizedQickSelect(A[i+1,\ldots,n-1],k-(i+1))
```

- Just one line change from QuickSelect
- It is possible to prove that RandomizedQuickSelect has the same expected runtime as quickSelectShuffled (no details)
- Therefore expected time for RandomizedQuickSelect is the same as the average case runtime of QuickSelect
- easier to compute

Randomized QuickSelect: Analysis

- Let $T(A, k, R)$ be number of key-comparisons on array A of size n, selecting k th element, using random numbers R

RandomizedQuickSelect (A, k)
$p \leftarrow \operatorname{random}(A . \operatorname{size})$
$i \leftarrow \operatorname{partition}(A, p)$

- asymptotically the same as running time
- Identify numbers p generated by random with pivot indexes i
- one-one correspondence between generated numbers and pivot indexes
- So R is a sequence of randomly generated pivot indexes, $R=\langle$ first, the rest of $R\rangle=\left\langle i, R^{\prime}\right\rangle$
- Assume array elements are distinct
- probability of any pivot-index i equal to $1 / n$
- Structure of array A after partition

- Recurse in array B or C or algorithms stops

$$
T\left(A, k,\left\langle i, R^{\prime}\right\rangle\right)=n+\left\{\begin{array}{cc}
T\left(B, k, R^{\prime}\right) & \text { if } i>k \\
T\left(C, k-i-1, R^{\prime}\right) & \text { if } i<k \\
0 & \text { otherwise }
\end{array}\right.
$$

Randomized QuickSelect: Analysis

- For expectedDemo

$$
T^{\exp }(n)=\max _{A \in \mathbb{I}_{n}} \sum_{R} T(A, R) \operatorname{Pr}(R)
$$

- Runtime of RandomizedQuickSelect (A, k) also depends on k

$$
T^{\exp }(n)=\max _{A \in \mathbb{I}_{n}} \max _{k \in\{0, \ldots n-1\}} \sum_{R} T(A, k, R) \operatorname{Pr}(R)
$$

- First, let us work on $\sum_{R} T(A, k, R) \operatorname{Pr}(R)$

Randomized QuickSelect: Analysis

$$
\begin{aligned}
& \sum_{R} T(A, k, R) \operatorname{Pr}(R)=\quad T\left(A, k,\left\langle i, R^{\prime}\right\rangle\right)=n+\left\{\begin{array}{cl}
T\left(B, k, R^{\prime}\right) & \text { if } i>k \\
T\left(C, k-i-1, R^{\prime}\right) & \text { if } i<k \\
0 & \text { otherwise }
\end{array}\right. \\
& =\sum_{R=\left\langle i, R^{\prime}\right\rangle} T\left(A, k,\left\langle i, R^{\prime}\right\rangle\right) \operatorname{Pr}(i) \operatorname{Pr}\left(R^{\prime}\right) \\
& =\frac{1}{n} \sum_{R=\left\langle i, R^{\prime}\right\rangle} T\left(A, k,\left\langle i, R^{\prime}\right\rangle\right) \operatorname{Pr}\left(R^{\prime}\right) \\
& =\underbrace{}_{i=\langle\sum_{R=\left\langle 0, R^{\prime}\right\rangle}^{\sum_{R=\left\langle 1, R^{\prime}\right\rangle} \square+\cdots+\sum_{R=\left\langle k-1, R^{\prime}\right\rangle} \square}+\sum_{R=\left\langle k, R^{\prime}\right\rangle} \square+\sum_{\text {base case }} \quad \underbrace{}_{i>k \text { : recurse on } C} \square+\cdots+\sum_{R=\left\langle n-1, R^{\prime}\right\rangle} \square} \\
& =\frac{1}{n} \sum_{i=0}^{k-1} \sum_{R^{\prime}} T\left(A, k,\left\langle i, R^{\prime}\right\rangle\right) \operatorname{Pr}\left(R^{\prime}\right) \quad+\frac{1}{n} \cdot n \\
& +\frac{1}{n} \sum_{i=k+1}^{n-1} \sum_{R^{\prime}} T\left(A, k,\left\langle i, R^{\prime}\right\rangle\right) \operatorname{Pr}\left(R^{\prime}\right) \\
& =\frac{1}{n} \sum_{i=0}^{k-1} \sum_{R^{\prime}} T\left(A, k,\left\langle i, R^{\prime}\right\rangle\right) \operatorname{Pr}\left(R^{\prime}\right) \quad+1 \quad+\frac{1}{n} \sum_{i=k+1}^{n-1} \sum_{R^{\prime}} T\left(A, k,\left\langle i, R^{\prime}\right\rangle\right) \operatorname{Pr}\left(R^{\prime}\right)
\end{aligned}
$$

Randomized QuickSelect: Analysis

$$
\begin{aligned}
& \sum_{R} T(A, k, R) \operatorname{Pr}(R)=\quad T\left(A, k,\left\langle i, R^{\prime}\right\rangle\right)=n+\left\{\begin{array}{cc}
T\left(B, k, R^{\prime}\right) & \begin{array}{c}
\text { if } i>k \\
T\left(C, k-i-1, R^{\prime}\right) \\
\text { if } i<k \\
0
\end{array} \\
\text { otherwise }
\end{array}\right. \\
& \quad=\frac{1}{n} \sum_{i=0}^{k-1} \sum_{R^{\prime}} T\left(A, k,\left\langle i, R^{\prime}\right\rangle\right) \operatorname{Pr}\left(R^{\prime}\right)+1+\frac{1}{n} \sum_{i=k+1}^{n-1} \sum_{R^{\prime}} T\left(A, k,\left\langle i, R^{\prime}\right\rangle\right) \operatorname{Pr}\left(R^{\prime}\right) \\
& \quad=\frac{1}{n} \sum_{i=0}^{k-1} \sum_{R^{\prime}}\left[n+T\left(C, k-i-1, R^{\prime}\right)\right] \operatorname{Pr}\left(R^{\prime}\right)+1+\frac{1}{n} \sum_{i=k+1}^{n-1} \sum_{R^{\prime}}\left[n+T\left(B, k, R^{\prime}\right)\right] \operatorname{Pr}\left(R^{\prime}\right) \\
& \quad=\frac{1}{n} \sum_{i=0}^{k-1} \sum_{R^{\prime}}\left[n+T\left(C, k-i-1, R^{\prime}\right)\right] \operatorname{Pr}\left(R^{\prime}\right)+\text { the rest } \\
& \quad=\frac{1}{n} \sum_{i=0}^{k-1} \sum_{R^{\prime}} n \operatorname{Pr}\left(R^{\prime}\right)+\frac{1}{n} \sum_{i=0}^{k-1} \sum_{R^{\prime}} T\left(C, k-i-1, R^{\prime}\right) \operatorname{Pr}\left(R^{\prime}\right)+\text { the rest }
\end{aligned}
$$

Randomized QuickSelect: Analysis

$$
\begin{aligned}
& T\left(A, k,\left\langle i, R^{\prime}\right\rangle\right)=n+\left\{\begin{array}{cl}
T\left(B, k, R^{\prime}\right) & \text { if } i>k \\
T\left(C, k-i-1, R^{\prime}\right) & \text { if } i<k \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
T\left(A, k,\left\langle i, R^{\prime}\right\rangle\right)=n+\left\{\begin{array}{c}
T\left(B, k, R^{\prime}\right) \\
T(C, k-i-1, \\
0
\end{array}\right. \\
+\frac{1}{n} \sum_{i=k+1}^{n-1} \sum_{R^{\prime}} T\left(A, k,\left\langle i, R^{\prime}\right\rangle\right) \operatorname{Pr}\left(R^{\prime}\right)
\end{array} \\
& =\frac{1}{n} \sum_{i=0}^{k-1} \sum_{R^{\prime}}\left[n+T\left(C, k-i-1, R^{\prime}\right)\right] \operatorname{Pr}\left(R^{\prime}\right)+1+\frac{1}{n} \sum_{i=k+1}^{n-1} \sum_{R^{\prime}}\left[n+T\left(B, k, R^{\prime}\right)\right] \operatorname{Pr}\left(R^{\prime}\right) \\
& =\frac{1}{n} \sum_{i=0}^{k-1} \sum_{R^{\prime}}\left[n+T\left(C, k-i-1, R^{\prime}\right)\right] \operatorname{Pr}\left(R^{\prime}\right)+\text { the rest } \\
& =\frac{n}{n} \sum_{i=0}^{k-1} \sum_{R^{\prime}}^{=1} \operatorname{Pr}\left(R^{\prime}\right)+\frac{1}{n} \sum_{i=0}^{k-1} \sum_{R^{\prime}} T\left(C, k-i-1, R^{\prime}\right) \operatorname{Pr}\left(R^{\prime}\right)+\text { the rest } \\
& =\quad k \quad+\frac{1}{n} \sum_{i=0}^{k-1} \sum_{R^{\prime}} T\left(C, k-i-1, R^{\prime}\right) \operatorname{Pr}\left(R^{\prime}\right) \quad+\text { the rest }
\end{aligned}
$$

Randomized QuickSelect: Analysis

$$
\begin{gathered}
\sum_{R} T(A, k, R) \operatorname{Pr}(R)=\begin{array}{c}
T^{e x p}(n)=\max _{A \in \mathbb{I}_{n}} \max _{k \in\{0, \ldots n-1\}} \sum_{R} T(A, k, R) \operatorname{Pr}(R) \\
=k+\frac{1}{n} \sum_{i=0}^{k-1} \sum_{R^{\prime}} T\left(C, k-i-1, R^{\prime}\right) \operatorname{Pr}\left(R^{\prime}\right)+\text { the rest instance } C \text { of size } n-i-1
\end{array}
\end{gathered}
$$

$$
\text { max over all instances } D \text { of size } n-i-1
$$

$$
\leq k+\frac{1}{n} \sum_{i=0}^{k-1} \max _{D \in \mathbb{I}_{n-i-1}, w \in\{0, \ldots k-1\}} \sum_{R^{\prime}}^{\text {and all integers } \in\{0, \ldots k-1\}} T\left(D, w, R^{\prime}\right) \operatorname{Pr}\left(R^{\prime}\right)+\text { the rest }
$$

$$
=k+\frac{1}{n} \sum_{i=0}^{k-1} T^{\exp }(n-i-1)+\text { the rest }
$$

Randomized QuickSelect: Analysis

$$
\sum_{R} T(A, k, R) \operatorname{Pr}(R)=\quad T^{\exp }(n)=\max _{A \in \mathbb{I}_{n}} \max _{k \in\{0, \ldots n-1\}} \sum_{R} T(A, k, R) \operatorname{Pr}(R)
$$

$$
\begin{aligned}
& =k+\frac{1}{n} \sum_{i=0}^{k-1} T^{\exp }(n-i-1)+\text { the rest } \\
& =k+\frac{1}{n} \sum_{i=0}^{k-1} T^{e x p}(n-i-1)+1+\frac{1}{n} \sum_{i=k+1}^{n-1} \sum_{R^{\prime}}\left[n+T\left(B, k, R^{\prime}\right)\right] \operatorname{Pr}\left(R^{\prime}\right)
\end{aligned}
$$

apply same
steps as to
first sum

$$
\begin{aligned}
& \leq k+\frac{1}{n} \sum_{i=0}^{k-1} T^{\exp }(n-i-1)+1+n-1-k+\frac{1}{n} \sum_{i=k+1}^{n-1} T^{\exp }(i) \\
& \leq n+\frac{1}{n} \sum_{i=0}^{k-1} T^{\exp }(n-i-1)+\frac{1}{n} \sum_{i=k+1}^{n-1} T^{\exp }(i)
\end{aligned}
$$

Randomized QuickSelect: Analysis

$$
\begin{aligned}
& \sum_{R} T(A, k, R) \operatorname{Pr}(R) \\
& \quad \leq n+\frac{1}{n} \sum_{i=0}^{k-1} T^{\exp }(n)=\max _{A \in \mathbb{I}_{n}} \max _{k \in\{0, \ldots n-1\}} \sum_{R} T(A, k, R) \operatorname{Pr}(R) \\
& \quad \leq n+\frac{1}{n} \sum_{i=0}^{k} \max \left\{T^{\exp }(n-i-1)+\frac{1}{n} \sum_{i=k+1}^{n-1} T^{\exp }(i)\right. \\
& \quad \leq n+\frac{1}{n} \sum_{i=0}^{n-1} \max \left\{T^{\exp }(i), T^{\exp }(n-i-1)\right\}
\end{aligned}
$$

- Since above bound works for any A and k, it will work for the worst A and k

$$
T^{\exp }(n)=\max _{A \in \mathbb{I}_{n}} \max _{k \in\{0, \ldots n-1\}} \sum_{R} T(A, k, R) \operatorname{Pr}(R) \leq n+\frac{1}{n} \sum_{i=0}^{n-1} \max \left\{T^{\exp }(i), T^{\exp }(n-i-1)\right\}
$$

- Expected runtime for RandomizedQuickSelect satisfies

$$
T^{\exp }(n) \leq n+\frac{1}{n} \sum_{i=0}^{n-1} \max \left\{T^{\exp }(i), T^{\exp }(n-i-1)\right\}
$$

Randomized QuickSelect: Solving Recurrence

$$
T(1)=1 \text { and } T(n) \leq n+\frac{1}{n} \sum_{i=0}^{n-1} \max \{T(i), T(n-i-1)\}
$$

Theorem: $T(n) \in O(n)$
Proof:

- will prove $T(n) \leq 4 n$ by induction on n
- base case, $n=1: T(1)=1 \leq 4 \cdot 1$
- induction hypothesis: assume $T(m) \leq 4 m$ for all $m<n$
- need to show $T(n) \leq 4 n \quad$ induction hypothesis applies

$$
\begin{aligned}
T(n) & \leq n+\frac{1}{n} \sum_{i=0}^{n-1} \max \{T(i), T(n-i-1)\} \\
& \leq n+\frac{1}{n} \sum_{i=0}^{n-1} \max \{4 i, 4(n-i-1)\} \\
& \leq n+\frac{4}{n} \sum_{i=0}^{n-1} \max \{i, n-i-1\}
\end{aligned}
$$

Randomized QuickSelect: Solving Recurrence

exactly what we need for the proof

$$
\begin{aligned}
& \text { Proof: (cont.) } T(n) \leq n+\frac{4}{n} \sum_{i=0}^{n-1} \max \{i, n-i-1\} \leq n+\frac{4}{n} \cdot \frac{3}{4} n^{2}=4 n \\
& \sum_{i=0}^{n-1} \max \{i, n-i-1\}=\sum_{i=0}^{\frac{n}{2}-1} \max \{i, n-i-1\}+\sum_{i=\frac{n}{2}}^{n-1} \max \{i, n-i-1\} \\
& =\max \{0, n-1\}+\max \{1, n-2\}+\max \left\{2, \underline{n-3\}}+\cdots+\max \left\{\frac{n}{2}-1, \frac{n}{2}\right\}\right. \\
& +\max \left\{\frac{n}{2}, \frac{n}{2}-1\right\}+\max \left\{\frac{n}{2}+1, \frac{n}{2}-2\right\}+\cdots+\max \{n-1,0\} \\
& =\frac{(n-1)+(n-2)+\cdots+\frac{n}{2}+\frac{n}{2}+\left(\frac{n}{2}+1\right)+\cdots(n-1)}{\left(\frac{3 n}{2}-1\right) \frac{n}{4}}=\left(\frac{3 n}{2}-1\right) \frac{n}{2}
\end{aligned}
$$

Summary of Selection

- Thus expected runtime of RandomizedQuickSelect is $O(n)$
- it is also $\Theta(n)$, since the best case is $O(n)$
- have to partition the array
- Therefore quickSelectShuffled has expected runtime $O(n)$
- no details
- Therefore quickSelect has average case runtime $O(n)$
- RandomizedQuickSelect is generally the fastest implementation of selection algorithm
- There is a selection algorithm with worst-case running time $\mathrm{O}(n)$
- CS341
- but it uses double recursion and is slower in practice

Outline

- Sorting, average-case, and Randomization
- Analyzing average-case run-time
- Randomized Algorithms
- QuickSelect
- QuickSort
- Lower Bound for Comparison-Based Sorting
- Non-Comparison-Based Sorting

QuickSort

- Hoare developed partition and quick-select in 1960
- Also used them to sort based on partitioning

QuickSort(A)

Input: array A of size n
if $n \leq 1$ then return
$p \leftarrow \operatorname{choose-pivot}(A)$
$i \leftarrow \operatorname{partition}(A, p)$
QuickSort($A[0,1, \ldots, i-1])$
QuickSort($A[i+1, \ldots, n-1])$
correct place

QuickSort

QuickSort(A)

Input: array A of size n

$$
\begin{aligned}
& \text { if } n \leq 1 \text { then return } \\
& p \leftarrow \operatorname{choose-pivot}(A) \\
& i \leftarrow \operatorname{partition}(A, p) \\
& \text { QuickSort }(A[0,1, \ldots, i-1]) \\
& \text { QuickSort }(A[i+1, \ldots, n-1])
\end{aligned}
$$

- Let $T(n)$ to be the number of comparisons on size n array
- running time is Θ (number of comparisons)
- Recurrence for pivot-index $i: T(n)=n+T(i)+T(n-i-1)$
- Worst case $T(n)=T(n-1)+n$
- recurrence solved in the same way as quickSelect, $O\left(n^{2}\right)$
- Best case $T(n)=T(\lceil n / 2\rceil)+T(\lfloor n / 2\rfloor)+n$
- solved in the same way as mergeSort, $\Theta(n \log n)$
- Average case?
- through randomized version of QuickSort

Randomized QuickSort: Random Pivot

```
RandomizedQuickSort(A)
    p\leftarrowrandom(A.size)
```

- Let $T^{\exp }(n)=$ number of comparisons
- Analysis is similar to that of RandomizedQuickSelect
- but recurse both in array of size i and array of size $n-i-1$
- Expected running time for RandomizedQuickSort
- derived similarly to RandomizedQuickSelect

$$
T^{e x p}(n) \leq \frac{1}{n} \sum_{i=0}^{n-1}\left(n+T^{e x p}(i)+T^{e x p}(n-i-1)\right)
$$

Randomized QuickSort: Expected Runtime

- Simpler recursive expression for $T^{\exp }(n)$

$$
\begin{aligned}
T^{\exp }(n) & \leq \frac{1}{n} \sum_{i=0}^{n-1}\left(n+T^{e x p}(i)+T^{e x p}(n-i-1)\right) \\
& =n+\frac{1}{n} \sum_{i=0}^{n-1} T^{\exp }(i)+\frac{1}{n} \sum_{i=0}^{n-1} T^{e x p}(n-i-1) \\
T(0)+T(1)+\cdots+T(n-1) & T(n-1)+T(n-2)+\cdots+T(0) \\
& =n+\frac{2}{n} \sum_{i=0}^{n-1} T^{\exp }(i)
\end{aligned}
$$

Randomized QuickSort: Solve Recurrence Relation

$$
T(1)=0 \text { and } T(n) \leq n+\frac{2}{n} \sum_{i=2}^{n-1} T(i)
$$

- Claim $T(n) \leq 2 n \ln n$ for all $n>0$
- Proof (by induction on n):
- $\quad T(1)=0$ (no comparisons)
- Suppose true for $2 \leq m<n$
- Let $n \geq 2$

> induction

$$
T(n) \leq n+\frac{2}{n} \sum_{i=2}^{n-1} T(i) \leq n+\frac{2}{n} \sum_{i=2}^{n-1} 2 i \ln i=n+\frac{4}{n} \sum_{i=2}^{n-1} i \ln i
$$

- Upper bound by integral, since is $x \ln x$ is monotonically increasing for $x>1$

$$
\begin{aligned}
\sum_{i=2}^{n-1} i \ln i \leq \int_{2}^{n} x \ln x d x & =\frac{1}{2} n^{2} \ln n-\frac{1}{4} n^{2}-\underbrace{2 \ln 2+1}_{\leq 0} \\
& \leq \frac{1}{2} n^{2} \ln n-\frac{1}{4} n^{2}
\end{aligned}
$$

Randomized QuickSort: Solve Recurrence Relation

$$
T(1)=0 \text { and } T(n) \leq n+\frac{2}{n} \sum_{i=2}^{n-1} T(i)
$$

- Claim $T(n) \leq 2 n \ln n$ for all $n>0$
- Proof (by induction on n):
- $\quad T(1)=0$ (no comparisons)
- Suppose true for $2 \leq m<n$
- Let $n \geq 2$

> induction

$$
\leq \frac{1}{2} n^{2} \ln n-\frac{1}{4} n^{2}
$$

$$
T(n) \leq n+\frac{2}{n} \sum_{i=2}^{n-1} T(i) \leq n+\frac{2}{n} \sum_{i=2}^{n-1} 2 i \ln i=n+\frac{4}{n} \sum_{i=2}^{n-1} i \ln i
$$

$$
T(n) \leq n+\frac{4}{n}\left(\frac{1}{2} n^{2} \ln n-\frac{1}{4} n^{2}\right)=2 n \ln n
$$

- Expected running time of RandomizedQuickSort is $O(n \log n)$
- Average case runtime of QuickSelect is $O(n \log n)$

Improvement ideas for QuickSort

- The auxiliary space is Ω (recursion depth)
- $\Theta(n)$ in the worst case, $\Theta(\log n)$ average case
- can be reduce to $\Theta(\log n)$ worst-case by
- recurse in smaller sub-array first
- replacing the other recursion by a while-loop (tail call elimination)
- Stop recursion when, say $n \leq 10$
- array is not completely sorted, but almost sorted
- at the end, run insertionSort, it sorts in just $O(n)$ time since all items are within 10 units of the required position
- Arrays with many duplicates sorted faster by changing partition to produce three subsets \square $<v$ $=v$ $>v$
- Programming tricks
- instead of passing full arrays, pass only the range of indices
- avoid recursion altogether by keeping an explicit stack

QuickSort with Tricks

$$
\begin{aligned}
& \text { QuickSortImproves }(A, n) \\
& \text { initialize a stack } S \text { of index-pairs with }\{(0, n-1)\} \\
& \text { while } S \text { is not empty } \\
& (l, r) \leftarrow S . \operatorname{pop}() \quad / / \text { get the next subproblem } \\
& \text { while } r-l+1>10 \quad / / \text { work on it if it's larger than } 10 \\
& p \leftarrow \operatorname{choose-pivot}(A, l, r) \\
& i \leftarrow \text { partition }(A, l, r, p) \\
& \text { if } i-l>r-i \text { do } \quad / / \text { is left side larger than right? } \\
& S . p u \operatorname{sh}((l, i-1)) / / \text { store larger problem in } S \text { for later } \\
& l \leftarrow i+1 \quad / / \text { next work on the right side } \\
& \text { else } \\
& S . p u \operatorname{sh}((i+1, r)) / / \text { store larger problem in } S \text { for later } \\
& r \leftarrow i-1 \quad / / \text { next work on the left side } \\
& \text { InsertionSort(} A \text {) }
\end{aligned}
$$

- This is often the most efficient sorting algorithm in practice
- although worst-case is $\Theta\left(n^{2}\right)$

Outline

- Sorting, average-case, and Randomization
- Analyzing average-case run-time
- Randomized Algorithms
- QuickSelect
- QuickSort
- Lower Bound for Comparison-Based Sorting
- Non-Comparison-Based Sorting

Lower bounds for sorting

- We have seen many sorting algorithms

Sort	Running Time	Analysis		
Selection Sort	$\Theta\left(n^{2}\right)$	worst-case		
Insertion Sort	$\Theta\left(n^{2}\right)$	worst-case		
Merge Sort	$\Theta(n \log n)$	worst-case		
Heap Sort	$\Theta(n \log n)$	worst-case		
quickSort	$\Theta(n \log n)$ RandomizedQuickSort	$\Theta(n \log n)$		average-case
:---:				
expected				

- Question: Can one do better than $\Theta(n \log n)$ running time?
- Answer: It depends on what we allow
- No: comparison-based sorting lower bound is $\Omega(n \log n)$
- no restriction on input, just must be able to compare
- Yes: non-comparison-based sorting can achieve $0(n)$
- restrictions on input

The Comparison Model

- All sorting algorithms seen so far are in the comparison model
- In the comparison model data can only be accessed in two ways
- comparing two elements
- $A[i] \leq A[j]$
- moving elements around (e.g. copying, swapping)
- This makes very few assumptions on the things we are sorting
- Under comparison model, will show that any sorting algorithm requires $\Omega(n \log n)$ comparisons
- This lower bound is not for an algorithm, it is for the sorting problem
- How can we talk about problem without algorithm?
- count number of comparisons any sorting algorithm has to perform

Decision Tree

- Decision tree succinctly describes all decisions that are taken during the execution of an algorithm and the resulting outcome
- For each comparison-based sorting algorithm we can construct a corresponding decision tree
- Given decision tree, we can deduce the algorithm
- Can create decision trees for any comparison-based algorithm, not just sorting

Decision Tree for Concrete Algorithm Sorting 3 items

Decision Tree: Sorting Example

Decision Tree: Sorting Example

Decision Tree

- Interior nodes are comparisons
- root corresponds is the first comparison
- Each comparison has two outcomes: $<$ and \geq
- Each interior node has two children, links to the children are labeled with outcomes
- When algorithm makes no more comparisons, that node becomes a leaf
- sorting permutation has been determined once we reach a leaf
- label the leaf with the corresponding sorting permutation, if reachable

Decision Tree

- Can have leaves which are never reached
- Can have unreachable branches
- Unreachable branches/leaves make no difference for the runtime
- algorithm never goes into unreachable structure
- So assume everything is reachable (i.e. prune unreachable branches from decision tree)

Decision Tree

- Can make more comparisons than necessary
- Can have leaves which are never reached
- Can have unreachable branches
- Unreachable branches/leaves make no difference for the runtime
- algorithm never goes into unreachable structure
- So assume everything is reachable (i.e. prune unreachable branches from decision tree)
- Tree height h is the worst case number of comparisons

Decision Tree

- General case: comparison-based sort for n elements
- Many sorting algorithms, for each one we have its own decision tree

- Can prove that the height of any decision tree is at least $c n \log n$
- which is $\Omega(n \log n)$

Lower bound for sorting in the comparison model

Theorem: Comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons Proof:

- Let SortAlg be any comparison based sorting algorithm
- Since SortAlg is comparison based, it has a decision tree

$$
S_{3}=\{[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]\}
$$

- SortAlg must sort correctly any array of n elements
- Let $S_{n}=$ set of arrays storing not-repeating integers $1, \ldots, n$
- $\left|S_{n}\right|=n$!
- Let π_{x} denote the sorting permutation of $x \in S_{n}$
- When we run x through T, we must end up at a leaf labeled with π_{x}
- $x, y \in S_{n}$ with $x \neq y$ have sorting permutations $\pi_{x} \neq \pi_{y}$
- n ! instances in S_{n} must go to distinct leaves \Rightarrow tree must have at least n ! leaves

Lower bound for sorting in the comparison model

Proof: (cont.)

- Therefore, the tree must have at least n ! leaves
- Binary tree with height h has at most 2^{h} leaves
- Height h must be at least such that $2^{h} \geq n$!
- Taking logs of both sides

$$
>\log \frac{n}{2}
$$

$$
h \geq \log (n!)=\log (n(n-1) \ldots \cdot 1)=\log n+\cdots+\log \left(\frac{n}{2}+1\right)+\log \frac{n}{2}+\cdots+\log 1
$$

$$
\geq \underbrace{\log \frac{n}{2}+\cdots+\log \frac{n}{2}}_{\frac{n}{2} \text { terms }}=\frac{n}{2} \log \frac{n}{2}=\frac{n}{2} \log n-\frac{n}{2} \in \Omega(n \log n)
$$

- Notes about the proof
- proof does not assume the algorithm sorts only distinct elements
- proof does not assume the algorithms sorts only integers in range $\{1, \ldots, n\}$
- poof is based on finding n ! input instances that must go to distinct leaves
- total number of inputs is infinite

Outline

- Sorting, average-case, and Randomization
- Analyzing average-case run-time
- Randomized Algorithms
- QuickSelect
- QuickSort
- Lower Bound for Comparison-Based Sorting
- Non-Comparison-Based Sorting

Non-Comparison-Based Sorting

- Sort without comparing items to each other
- Non-comparison based sorting is less general than comparison based sorting
- In particular, need to make assumptions about items we sort
- unlike in comparison based sorting, which sorts any data, as long as it can be compared
- Will assume we are sorting non-negative integers
- can adapt to negative integers
- also to some other data types, such as strings
- but cannot sort arbitrary data

Non-Comparison-Based Sorting

- Suppose all keys in A of size n are integers in range $[0, \ldots, L-1]$
- How would you sort if L is not too large?

Bucket Sort

- Suppose all keys in A of size n are integers in range $[0, \ldots, L-1$]
- How would you sort if L is not too large?
- Use an axillary bucket array $B[0, \ldots, L-1]$ to sort
- i.e. array of initially empty linked lists, initialization is $\Theta(L)$
- Example with $L=15$

c
12
14
7
6
7
0
10

B

Bucket Sort

- Suppose all keys in A of size n are integers in range $[0, \ldots, L-1]$
- Use an axillary bucket array $B[0, \ldots, L-1]$ to sort
- i.e. array of linked lists, initialization is $\Theta(L)$
- Example with $L=15$

B

Bucket Sort

- Suppose all keys in A of size n are integers in range $[0, \ldots, L-1]$
- Use an axillary bucket array $B[0, \ldots, L-1]$ to sort
- i.e. array of linked lists, initialization is $\Theta(L)$
- Example with $L=15$

B

Bucket Sort

- Suppose all keys in A of size n are integers in range $[0, \ldots, L-1]$
- Use an axillary bucket array $B[0, \ldots, L-1]$ to sort
- i.e. array of linked lists, initialization is $\Theta(L)$
- Example with $L=15$

$k=2$	A
	12
	14
	7
	6
	7
	0
	10

B

Bucket Sort

- Suppose all keys in A of size n are integers in range $[0, \ldots, L-1]$
- Use an axillary bucket array $B[0, \ldots, L-1]$ to sort
- i.e. array of linked lists, initialization is $\Theta(L)$
- Example with $L=15$

B

Bucket Sort

- Suppose all keys in A of size n are integers in range $[0, \ldots, L-1]$
- Use an axillary bucket array $B[0, \ldots, L-1]$ to sort
- i.e. array of linked lists, initialization is $\Theta(L)$
- Example with $L=15$

B

Bucket Sort

- Suppose all keys in A of size n are integers in range $[0, \ldots, L-1]$
- Use an axillary bucket array $B[0, \ldots, L-1]$ to sort
- i.e. array of linked lists, initialization is $\Theta(L)$
- Example with $L=15$

B

Bucket Sort

- Suppose all keys in A of size n are integers in range $[0, \ldots, L-1]$
- Use an axillary bucket array $B[0, \ldots, L-1]$ to sort
- i.e. array of linked lists, initialization is $\Theta(L)$
- Example with $L=15$

B

Bucket Sort

- Suppose all keys in A of size n are integers in range $[0, \ldots, L-1]$
- Use an axillary bucket array $B[0, \ldots, L-1]$ to sort
- i.e. array of linked lists, initialization is $\Theta(L)$
- Example with $L=15$
- Now iterate through B and copy non-empty buckets to A

Bucket Sort

- Suppose all keys in A are integers in range [$0, \ldots, L-1$]
- Use an axillary bucket array $B[0, \ldots, L-1]$ to sort
- i.e. array of linked lists, initialization is $\Theta(L)$
- Example with $L=15$
- Now iterate through B and copy non-empty buckets to A

Digit Based Non-Comparison-Based Sorting

- Running time of bucket sort is $\Theta(L+n)$
- $\quad n$ is size of A
- L is range $[0, L$) of integers in A
- What if L is much larger than n ?
- i.e. A has size 100 , range of integers in A is $[0, \ldots, 99999$]
- Assume keys have length of m digits
- pad with leading 0 s to get keys of equal length m

123	230	021	320	210	232	101

- Can sort 'digit by digit'
123
230
021
320
$1 \rightarrow m$

MSD-Radix-Sort: forward

$$
\begin{aligned}
& 123 \\
& 230 \\
& 021 \\
& 320 \\
& 1 \leftarrow m
\end{aligned}
$$

LSD-Radix-Sort: backward

- Bucketsort is perfect for sorting 'by digit'
- Need m rounds of bucketsort

Base R number representation

- Can represent numbers in any base R representation
- digits go from 0 to $R-1$
- R buckets
- numbers are in the range $\left\{0,1, \ldots, R^{m}-1\right\}$
- Number of distinct digits gives the number of buckets R
- Useful to control number of buckets
- larger $R \Rightarrow$ smaller m
- less iterations but more work per iteration (larger bucket array)
- $(100010)_{2}=(34)_{10}$
- From now on, assume keys are numbers in base R (R : radix)
- $R=2,10,128,256$ are common
- Example ($R=4$)

123	230	21	320	210	232	101

Bucket Sort on Last Digit

- Equivalent to normal bucket sort if we redefine comparison
- $a \leq b$ if the last digit of a is smaller than (or equal) to the last digit of b
- example: $211<123$

Bucket Sort on Last Digit

- Equivalent to normal bucket sort if we redefine comparison
- $a \leq b$ if the last digit of a is smaller than (or equal) to the last digit of b
- example: $211<123$

- Bucket sort is stable: equal items stay in original order
- crucial for developing LSD radix sort later

Single Digit Bucket Sort

```
Bucket-sort(A,d)
A : array of size n, contains numbers with digits in {0,\ldots,R - 1}
d: index of digit by which we wish to sort
    initialize array B[0,\ldots,R-1] of empty lists (buckets)
    for }i\leftarrow0\mathrm{ to }n-1\mathrm{ do
        next \leftarrowA[i]
        append next at end of B[dth digit of next]
    i\leftarrow0
    for j}\longleftarrow0\mathrm{ to }R-1\mathrm{ do
        while }B[j]\mathrm{ is non-empty do
                move first element of B[j] to }A[i++
```

- Sorting is stable: equal items stay in original order
- Run-time $\Theta(n+R)$
- Auxiliary space $\Theta(n+R)$
- $\Theta(R)$ for array B, and linked lists are $\Theta(n)$

MSD-Radix-Sort

- Sorts multi-digit numbers from the most significant to the least significant
- Start by sorting the whole array by the first digit

123
232
021
320
210
230
101

MSD-Radix-Sort

- Sorts multi-digit numbers from the most significant to the least significant
- Start by sorting the whole array by the first digit

$\underline{1} 23$
$\underline{2} 32$
$\underline{0} 21$
$\underline{3} 20$
$\underline{2} 10$
$\underline{2} 30$
$\underline{10101}$

MSD-Radix-Sort

- Sorts multi-digit numbers from the most significant to the least significant
- Start by sorting the whole array by the first digit

group 1	$\underline{0} 21$
group 2	123
	101
group 3	$\underline{2} 32$
	$\underline{210}$
	$\underline{230}$
group 4	$\underline{3} 20$

- Cannot sort the whole array by the second digit, will mess up the order
- Have to break down in groups by the first digit
- each group can be safely sorted by the second digit
- call sort recursively on each group, with appropriate array bounds

MSD-Radix-Sort

- Recursively sorts multi-digit numbers
- sort by leading digit, group by next digit, then call sort recursively on each group

recursion
recursion
depth 0 depth 1

MSD-Radix-Sort

- Recursively sorts multi-digit numbers
- sort by leading digit, group by next digit, then call sort recursively on each group

recursion
recursion
depth 0 depth 1

MSD-Radix-Sort

- Recursively sorts multi-digit numbers
- sort by leading digit, group by next digit, then call sort recursively on each group

recursion
recursion
depth 0 depth 1

MSD-Radix-Sort

- Recursively sorts multi-digit numbers
- sort by leading digit, group by next digit, then call sort recursively on each group

recursion
recursion
recursion
depth 0
depth 1
depth 2

MSD-Radix-Sort

- Recursively sorts multi-digit numbers
- sort by leading digit, group by next digit, then call sort recursively on each group

recursion
recursion
recursion
depth 0
depth 1
depth 2

MSD-Radix-Sort

- Recursively sorts multi-digit numbers
- sort by leading digit, group by next digit, then call sort recursively on each group

recursion
recursion
recursion
depth 0
depth 1
depth 2

MSD-Radix-Sort

- Recursively sorts multi-digit numbers
- sort by leading digit, group by next digit, then call sort recursively on each group

recursion	recursion	recursion
depth 0	depth 1	depth 2

MSD-Radix-Sort

- Recursively sorts multi-digit numbers
- sort by leading digit, group by next digit, then call sort recursively on each group

recursion	recursion	recursion
depth 0	depth 1	depth 2

MSD-Radix-Sort

- Recursively sorts multi-digit numbers
- sort by leading digit, group by next digit, then call sort recursively on each group

recursion	recursion	recursion
depth 0	depth 1	depth 2

MSD-Radix-Sort

- Recursively sorts multi-digit numbers
- sort by leading digit, group by next digit, then call sort recursively on each group

recursion	recursion	recursion
depth 0	depth 1	depth 2

MSD-Radix-Sort

- Recursively sorts multi-digit numbers
- sort by leading digit, group by next digit, then call sort recursively on each group

recursion	recursion	recursion
depth 0	depth 1	depth 2

MSD-Radix-Sort

- Recursively sorts multi-digit numbers
- sort by leading digit, group by next digit, then call sort recursively on each group

MSD-Radix-Sort

- Recursively sorts multi-digit numbers
- sort by leading digit, group by next digit, then call sort recursively on each group

MSD-Radix-Sort

- Recursively sorts multi-digit numbers
- sort by leading digit, group by next digit, then call sort recursively on each group

many digits are never examined

MSD-Radix-Sort Space Analysis

- Bucket-sort
- auxiliary space $\Theta(n+R)$
- Recursion depth is $m-1$
- auxiliary space $\Theta(m)$
- Total auxiliary space $\Theta(n+R+m)$

| $\underline{0} 21$ |
| :---: | :---: |
| $\underline{123}$ |
| $\underline{101}$ |
| $\underline{2} 32$ |
| $\underline{210}$ |
| $\underline{2} 30$ |
| $\underline{3} 20$ |

MSD-Radix-Sort Time Analysis

- Time spent for each recursion depth
- Depth $d=0$
- one bucket sort on n items
- $\Theta(n+R)$
- At depth $d>0$
- lets k be number of bucket sorts
- $k \leq n$
- have bucketsort $1,2, \ldots, i \ldots, k$
- bucketsort i involves n_{i} keys
- bucket sort i takes $n_{i}+R$ time
$\sum_{i=1}^{k}\left(n_{i}+R\right)=\sum_{i=1}^{k} n_{i}+\sum_{i=1}^{k} R \leq n+n R$
- total time at depth d is $O(n R)$
- Number of depths is at most $m-1$
- Total time $O(m n R)$

MSD-Radix-Sort Pseudocode

- Sorts array of m-digit radix- R numbers recursively
- Sort by leading digit, then each group by next digit, etc.

MSD-Radix-sort $(A, l \leftarrow 0, r \leftarrow n-1, d \leftarrow$ leading digit index)
l, r : indexes between which to sort, $0 \leq l, r \leq n-1$

if $l<r$

bucket-sort(A [l ...r], d)
if there are digits left

$$
l^{\prime} \leftarrow l
$$

while ($l^{\prime}<r$) do
let $r^{\prime} \geq l^{\prime}$ be the maximal s.t $A\left[l^{\prime} \ldots r^{\prime}\right]$ have the same d th digit MSD-Radix-sort $\left(A, l^{\prime}, r^{\prime}, d+1\right)$ $l^{\prime} \leftarrow r^{\prime}+1$

- Run-time $O(m n R)$, auxiliary space is $\Theta(m+n+R)$
- Advantage: many digits may remain unexamined
- Drawback: many recursions

MSD-Radix-Sort Time Analysis

- Total time $O(m n R)$
- This is $O(n)$ if sort items in limited range
- suppose $R=2$, and we sort are n integers in the range $\left[0,2^{10}\right.$)
- then $m=10, R=2$, and sorting is $O(n)$
- note that n, the number of items to sort, can be arbitrarily large
- This does not contradict $\Omega(n \log n)$ bound on the sorting problem, since the bound applies to comparison-based sorting

LSD-Radix-Sort

- Idea: apply single digit bucket sort from least significant digit to the most significant digit
- Observe that digit bucket sort is stable
- equal elements stay in the original order
- therefore, we can apply single digit bucket sort to the whole array, and the output will be sorted after iterations over all digits

LSD-Radix-Sort

123
230
121
320
210
232
101

prepare
to sort by
last digit

230
320
210
121
101
232
123

> sorted by last digit

230
320
210
121
101
232
123

101
210
320
121
123
230
232

101
210
320
121
123
230
232

sorted by
last two
digits

101
121
123
210
230
232
320

- m bucket sorts, on n items each, one bucket sort is $\Theta(n+R)$
- Total time cost $\Theta(m(n+R))$

LSD-Radix-Sort

LSD-radix-sort (A)
A : array of size n, contains m-digit radix- R numbers
for $d \leftarrow$ least significant down to most significant digit do bucket-sort (A, d)

- Loop invariant: after iteration i, A is sorted w.r.t. the last i digits of each entry
- Time cost $\Theta(m(n+R))$
- Auxiliary space $\Theta(n+R)$

Summary

- Sorting is an important and very well-studied problem
- Can be done in $\Theta(n \log n)$ time
- faster is not possible for general input
- HeapSort is the only $\Theta(n \log n)$ time algorithm we have seen with $O(1)$ auxiliary space
- MergeSort is also $\Theta(n \log n)$ time
- Selection and insertion sorts are $\Theta\left(n^{2}\right)$
- QuickSort is worst-case $\Theta\left(n^{2}\right)$, but often the fastest in practice
- BucketSort and RadixSort can achieve o $(n \log n)$ if the input is special
- Randomized algorithms can eliminate "bad instances"
- Best-case, worst-case, average-case can all differ, but for well designed randomizations of algorithms, the average case runtime of an algorithm is the same as expected runtime of its randomized version

