CS 240 — Data Structures and Data Management

Module 4: Dictionaries

0. Veksler

Based on lecture notes by many previous ¢s240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2024

Outline

" Dictionaries and Balanced Search Trees
= Dictionary ADT
= Review: Binary Search Trees
= AVL Trees
= |nsertion
= restoring the AVL Property: Rotations
= deletion

Outline

= Dictionaries and Balanced Search Trees
= Dictionary ADT

Dictionary ADT

= Dictionary ADT consists of a collection of items, each item contains
= 3 key
= avalue (some data)
= Jtem is called a key-value pair (KVP)
= Keys can be compared and are (typically) unique
= can extend to handle non-unique keys
= QOperations

= search(k)
= also called findElement (k)

= jnsert(k,v)
= also called insertitem(k, v)

= delete(k)

= also called removeElement(k)
= optional: closestKeyBefore, join, isEmpty, size, etc.

Dictionary ADT: Common Assumptions

= We will make the following assumptions
= dictionary has n KVPs

= each KVP uses constant space
= if not, the “value” could be a pointer

= keys can be compared in constant time

Elementary Implementations

= Unordered array or linked list

= search O(n)
= jnsert ©(1)

(7,’Ace’)

(1,'Pot’)

(3, Top’)

(2,'Dog’)

= except if using array, the array occasionally needs to resize, so it is
©(1) amortized time, but we do not discuss amortization details

= delete ©®(n)
" need to search

= Ordered array
= search O(logn)
= via binary search
" jnsert ®(n)
= delete O(n)

(1,’Pot’)

(2,'Dog’)

(3, Top’)

(7,’Ace’)

Outline

= Dictionaries and Balanced Search Trees

= Review: Binary Search Trees

Binary Search Trees (review) @

= Structure

B

binary tree is either empty or consists of nodes [/ "-. \D /N
all nodes have two (possibly empty) subtrees
= [(left) "'.
: (]
= R {(right) :
A 4
every node stores a KVP [key = 23, <va|ue>]
leaves store empty subtrees more accurate picture

empty subtrees usually not shown

= Ordering

= every key k in the left subtree of node v is less than v. key
= every key k the right subtree of node v greater than v. key

50

BST Search

= BST:search(k)
= start at root, compare k to current node

= stop if found or subtree is empty, else recurse at subtree

= Example: BST::search(24)

W @
R

BST Search

= BST:search(k)
= start at root, compare k to current node
= stop if found or subtree is empty, else recurse at subtree

= Example: BST::search(24)

BST Search

= BST:search(k)
= start at root, compare k to current node
= stop if found or subtree is empty, else recurse at subtree

= Example: BST::search(24)

°

BST Search

= BST:search(k)
= start at root, compare k to current node
= stop if found or subtree is empty, else recurse at subtree

= Example: BST::search(24)

4
@\

not found!

BST Insert

= BST:insert(k,v)
= search for k, then insert (k, v) as a new node at the empty subtree
where search stops

= Example: BST::insert(24, v)

nln
& ORI
: ORE

2

BST Delete: Case 1

" First search for node x containing the key

1. If x has at an empty subtree
= delete x with the empty subtree

= |f x has a parent, reconnect the other subtree of x to the parent of x

= Example: BST::delete(25)

\
L
\ P R
\ / .
\ / ~
\ L .
I
\ 1 N\
\
\
\ \ AN

\ \ \
\ | \)
\\ \ \
. ‘ !
RN \ !
. . ;
S ‘\ 1
. 7
™ 4
Ny / : : g
\\\ r”

ORECR W)

BST Delete: Case 2

= First search for node x containing the key
2. If x has only non-empty subtrees
= swap KVP at x with KVP at successor node (or predecessor node)

= delete successor node (or predecessor node)
= now case 1 applies

= Example: BST::delete(15)

A

&
|
o

7w 8

&
&
&

¥a
G
&

=
%

BST Delete: Case 2

= First search for node x containing the key

2. If x has only non-empty subtrees

= Example:

A

swap KVP at x with KVP at successor node (or predecessor node)

delete successor node (or predecessor node)
= now case 1 applies

BST::delete(15)

@

Ry
@C GQ@

2

®

Height of a BST

15,
6 25,
@ @ @ height 3

/ N\ /\

27) (50

= BST::search, BST::insert, BST::delete all have cost ©®(h)
= h = height of the tree = maximum length path from root to a leaf node

= height of an empty tree is defined to be —1
" |fnitems are BST::inserted one-at-a-time, how big is h?
= worst-caseisn — 1 = O(n)
= best caseis O(logn)
= binary tree with n nodes has height > log(n + 1) — 1
= canshow ifinsert items in random order then height is @(logn)

Height of a node

= Height of node v is the height of the tree rooted at node v

Height of a node

= Height of node v is the height of the tree rooted at node v
1
0 s
. 129)
.y
0

= Can compute heights of all nodes in post order traversal
= |eaf heightis 0
= height of any other node v is
1 + max{height(v. left), height(v. right)}

5
k)

~

(8

N
-

()
ol &)

Outline

= Dictionaries and Balanced Search Trees

= AVL Trees

AVL Trees

Adelson-Velski and Landis, 1962

= AVL Tree is a BST with height-balance property
= forany node v, heights of its left and right subtrees differ by at most 1

AVL Tree not AVL Tree

AVL Trees

= AVL Tree is a BST with height-balance property
= for any node v, heights of its left and right subtrees differ by at most 1

= inotherwords, height(v.right) — height(v.left) € {—1,0,1}
= —1 meansvis left-heavy
u 0 meansvis balanced
= 41 meansvis right-heavy

= Need to store at each node v its height
= enough to store balance factor = height(v.right) — height(v. left)

= fewer bits
= but code more complicated, especially for deleting

= no details

Height of an AVL tree

Theorem: AVL tree on n nodes has ©(logn) height
Proof:
= Only need upper bound, as height is Q(logn)
= Let N(h) be the smallest number of nodes an AVL tree of height h can have
= any AVL tree of height h has number of nodesn = N(h)

N(0) N(1) N(h)
h—2 h
h-1
= For h=>2 ' v

N(h)=Nh—-1)+Nh—-2)+1=2Nh—-2)+Nh—-2) =2N(h—2)
* Thus N(h) = 2N(h—2)

= number of nodes doubles every two levels = exponential growth

Height of an AVL tree

Proof: (continued)
= N(h) is the least number of nodes in height-h AVL tree
= any AVL tree of height h has number of nodes n = N(h)
= N0)=1,N(1)=2 and N(h) = 2N(h—2) forh = 2 and
= Keep expanding until the base case

N(h) 22N(h—-2)>2°N(h—-2-2)=2’Nh—-2-3)>-->2IN(h—2-i)

case 1: odd h case2: even h

= expanduntil h—2-i=1 = expanduntil h—2-i=0
* rewriting,i=(h—1)/2 - * rewriting, i = h/2 .

N(h) = 2=-D/2N(1) =272 -2 N(h) = 2"2N(0) =22 -1
= take log = take log

logN(h) == +1 log N(h) =

" rearrange " rearrange

h < 2logN(h) —2 < 2logn — 2 h < 2log N(h) < 2logn

= In both cases, h is O(logn)

Outline

= Dictionaries and Balanced Search Trees

B nsertion

AVL Insertion Example

Example: AVL::insert(2)

Cw e
sty

AVL Insertion Example

Example: AVL::insert(2)

a ®
i ’Q
B

AVL Insertion Example

Example: AVL::insert(2)

oy

e

AVL Insertion Example

Example: AVL::insert(2)

gy

e

AVL Insertion Example

Example: AVL::insert(2)

G\
@

unbalancéd

AVL insertion

= AVL:insert(T, k,v)

1.

3.

insert (k,v) into T with the usual BST insertion
= assume this returns the new leaf where the key was inserted

» heights of nodes on path from this leaf to root may have
increased

= jfincreased, by at most 1
move up the path from the new leaf to the root, updating
heights
= either use parent-links, or BST::insert could return path to z
if the height difference becomes =2 for some node on this

path, the node is unbalanced
= must re-structure the tree to restore height-balance property

Outline

= Dictionaries and Balanced Search Trees

= restoring the AVL Property: Rotations

Restoring Height After Insertion

= et z be the first unbalanced node on path from inserted node to root

before insertion after insertion
h h+1
- g _- N

A ® D

new
node

h>1
sinceh—2 > —1

Restoring Height After Insertion

= et z be the first unbalanced node on path from inserted node to root

before insertion after insertion, h > 1
h h+1

h—1 h—2

o

Restoring Height After Insertion

= et z be the first unbalanced node on path from inserted node to root

before insertion after insertion, h > 1
h h+1
h— 1/ ih — 2 h h—2
h—2 h—2 h=1 h—2

bothh — 3
if x = new node: both —1 (h = 1)
If x # new node: one h — 2, one h —3

Restoring Height After Insertion

= et z be the first unbalanced node on path from inserted node to root

before insertion after insertion, h > 1
h h+1
h— 1/ ih — 2 h h—2
h—2 h—2 h=1 h—2

both h — 3

Restoring Height: Right Rotation

Let z be the first unbalanced node on path from inserted node to the root
= Right rotation is used for left-left imbalance (taller left child and grandchild)

subtree height htl
before insertion: h h—1 h—1

= BST order is preserved

= Balanced
= Same subtree height h as before
insertion

Right Rotation Pseudocode

= Right rotation on node z

A
N

rotate-right(z)
y « z.left, z.left < y.right, y.right < z
setHeightFromChildren(z), setHeightFromChildren(y)
return y //returns new root of subtree

Right Rotation Pseudocode

= Right rotation on node z

NGy

rotate-right(z)
y < z.left, z.left < y.right, y.right < z
setHeightFromChildren(z), setHeightFromChildren(y)
return y //returns new root of subtree

Right Rotation Pseudocode

= Right rotation on node z

\)
AA Ab

rotate-right(z)
y « z.left, z.left « y.right, y.right < z
setHeightFromChildren(z), setHeightFromChildren(y)
return y //returns new root of subtree

After Rotation:

* |f z had a parent p, need to set y as the new child of p

After Rotation:

* |f z had a parent p, need to set y as the new child of p

After Rotation:

" |f node z was the tree root, then y becomes new tree root

After Rotation:

" |f node z was the tree root, then y becomes new tree root

/@(root
s
AL

Why do we call this a rotation?

Why do we call this a rotation?

Why do we call this a rotation?

Why do we call this a

AVL Insertion Example

Example: AVL::insert(2)

% %

ST
’ &) o é\ £
SRORONONN T GI6

B 0

= Fix with right rotation on node z

AVL Insertion Example

Example: AVL::insert(2)

% %

e, T é <\
3 16
0’ = 0® ‘T Q

E update height 9

= Fix with right rotation on node z

AVL Insertion Example

Example: AVL::insert(2)

before insertion

he.ghtl QA) hhéﬂ%@

update helght 9

= After rotation all node heights are correct
= can stop traversing up

Restoring Height Balance, Case 2

A

\ \
AA b 4

Case 1: Fixed with right rotation Case 2: Fixed with left rotation

Left Rotation

= Symmetrically, this is a left rotation on node z

Useful to fix right-right imbalance

h+1

h
h—2
A -1 g i
h—2 h 2‘ ol

BST order is preserved
Balanced

Same height as before insertion

Distinguishing between Case 1 and Case 2

first unbalanced node z first unbalanced node z

taller child of z \

A C\ /D

Case 1: Fixed with right rotation Case 2: Fixed with left rotation

taller child of z

taller child of y

= 7 « the first unbalanced node on path from inserted node to the root
=y « taller child of z
= x « taller child of y

Case 3

first unbalanced node z

A

B C

taller child of z

= Fix with double rotation on node z
= first, left rotation at y

Case 3

ﬂ

v A A\ A A

A-:

= Fix with double rotation on node z
= first, left rotationaty
= second, right rotation at z

&\
A
A

Case 3

Cumulative result of double right rotation on node z

B C
h—2orh-3
First, left rotation at y, second, right rotation at z

BST order is preserved

Useful for left-right imbalance
= can argue height balance property restored as before

Case 4

= Symmetrically, there is a double left rotation on node z

/\ first unbalanced node z

0 taller child of z

taller child of/

SN/

B C

= First, a right rotation at y, second, a left rotation at z

= BST order is preserved

= Useful for right-left imbalance
= can argue height balance property restored as before

Unbalanced Node z: all 4 cases

kT

A

case 3

/@\ case 2

A Lr
A

case 4

= zisthe first unbalanced node on the path from inserted node to the root
= yisthe taller child of z

=z is guaranteed to have one child taller than the other
" x is the taller child of y

= yisguaranteed to have one child taller than the other

Fixing Unbalanced AVL tree

restructure(x,y, z)
x :node of BST that has an unbalanced grandparent,
y and z: the parent and grandparent of x

case

case 1 :// Right rotation
return rotate-right(z)

:// Double-right rotation
case 3 zleft « rotate-left(y)
return rotate-right(z)

: // Double-leftrotation
case 4 zright « rotate-right(y)

return rotate-left(z)

: // Leftrotation
case 2 return rotate-left(z)

" |n each case, the middle key of x, y, z becomes the new root
= Runningtimeis ©(1)

Tri-Node Restructuring

A

case 3

/@\ case 2
A

Y%

case 4

All four cases can be handled with one method, Tri-Node restructuring

Tri-Node Restructuring

case 3 case 1 G

© @ B

®: B e
//ﬁ:z\\ /}:1\\ orphan‘//'
~

orphan orphan

= New names
= g =node with middle key
= b =node with smallest key
= ¢ =node with largest key
= Restructure
= abecomes new subtree parent
= b becomes left child of a
= ¢ becomes right child of a
= one or two subtrees of a get “orphaned”
= |eft subtree, if orphan, becomes right child of b
= right subtree, if orphan, becomes left child of ¢

Outline

= Dictionaries and Balanced Search Trees

= fyll code for insertion

AVL insertion

AVL::insert(k,v)
Z « BST:insert(k, v)
while (z is not NIL)
if (|z.left.height — z.right.height| > 1) then
let y be tallest child of z
let x be tallest child of y
Z « restructure(x,y, z)
break // done after one restructure
setHeightFromSubtrees(z)
Z « parent of z

setHeightFromSubtrees(u)
if u is not an empty subtree
u. height <1 + max{u.left.height, u.right.height}

Outline

= Dictionaries and Balanced Search Trees

= deletion

AVL Deletion Example

Example: AVL::delete(22)

e,

ke

AVL Deletion Example

Example: AVL::delete(22)

'\/\@

"
9

Restoring Height After Deletion: Case 1

= The first unbalanced node on path from deleted node to the root is z

h h—?2 ho/ P h—2
r h
deleted /
from here _
h—1 h—1 P hh _12
h>1 orh —2 or
= Rebalancing is similar to that after insertion, but A

= while z is guaranteed to have one taller child both h — 2
" Yy may have both children of the same height orone h —2,one h —3

= which child to take as x?

AVL Deletion Example

Example: AVL::delete(22)

6 db *

= Fix with left rotation on node z

= Ortrinode restructuring on node z

AVL Deletion Example

Example: AVL::delete(22)

K
5o ‘ é ®

AVL Deletion Example

Example: AVL::delete(22)

/.unbal<cec{

G &

/

@\

AVL Deletion Example

Example: AVL::delete(22)

5

» Fix with double right rotation (left rotate y, then rotate right z)

[

= Ortrinode restructuring on node z

AVL Deletion Example

Example: AVL::delete(22)

update height

update height

update height

AVL Deletion Example

5 ?3

Example: AVL::delete(22)

= Rebalanced

AVL Deletion
= AVL::delete(T, k)

= first, delete k from T with BST deletion

delete returns parent z of the deleted node

heights of nodes on path from z to root may have decreased
next, move up the tree from z, updating heights

= if height difference is =2 at node z, then z is unbalanced

re-structure tree to restore height-balance property

= just like rebalancing for insertion, with two differences

1. restructuring after deletion does not guarantee to restore

_ tree height to what it was before deletion
tallerChild
= continue the path up the tree, fixing any imbalances

2. tallerChild(y)

= if left and right children of y have the same height

= return left child of y if y is itself the left child
A A = return right child of y if y is itself the right child

AVL Deletion Example

Example: incorrect if do not following the “same side” rule

unbalanced

h—1

» The “other” child of y has height h — 1

= children of x get separated, one of them can have height h — 3 and becomes a
sibling of the “other” child of y

AVL Deletion Example

Example: same example, now following the “same side” rule

= Rotate or trinode restructuring

= Rebalanced!
= “other” child of y still has height h — 1, but children of x do not separate

Reduced Height after Deletion

h+1

h
\h —_ A\ restructure

deleted node h—2 h—2

= |f ‘not the tallest’ child of y has height h — 2, height decreases after rebalancing
= might cause imbalance higher up the tree

AVL Delete Pseudocode

AVL::delete(k)
Z « BST::delete(k)
// Assume z is the parent of the BST node that was removed
while (z is not NIL)
if (|z.left.height — z.right.height| > 1) then
let y be tallest child of z
let x be tallest child of y
// break ties to prefer ‘the same side’
Z « restructure(x,y, z)
setHeightFromSubtrees(z)
// must continue checking the path upwards

Z « parent of z

AVL Tree Operations Runtime

AVL::search
= implemented just like in BSTs, runtime is ©(height)
AVL::insert
= BST:insert
= then check and update along path to new leaf
= restructure restores the height of the tree to what it was
= so restructure will be called at most once
= total cost O(height)
AVL::delete
= BST::delete, then check and update along path to deleted node
= restructure may be called @(height) times
= total cost ©(height)
Total cost for all operations is ®(height) = ©(logn)
= butin practice, the constant is quite large
There are other realizations of ADT dictionary that are better in practice

