CS 240 – Data Structures and Data Management

Module 4: Dictionaries

O. Veksler

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2024

Outline

Dictionaries and Balanced Search Trees

- Dictionary ADT
- Review: Binary Search Trees
- AVL Trees
 - insertion
 - restoring the AVL Property: Rotations
 - deletion

Outline

Dictionaries and Balanced Search Trees

- Dictionary ADT
- Review: Binary Search Trees
- AVL Trees
 - insertion
 - restoring the AVL Property: Rotations
 - deletion

Dictionary ADT

- Dictionary ADT consists of a collection of items, each item contains
 - a *key*
 - a value (some data)
- Item is called a key-value pair (KVP)
- Keys can be compared and are (typically) unique
 - can extend to handle non-unique keys
- Operations
 - search(k)
 - also called *findElement(k)*
 - insert(k, v)
 - also called *insertItem(k, v)*
 - delete(k)
 - also called removeElement(k)
 - optional: *closestKeyBefore*, *join*, *isEmpty*, *size*, *etc*.

Dictionary ADT: Common Assumptions

- We will make the following assumptions
 - dictionary has n KVPs
 - each KVP uses constant space
 - if not, the "value" could be a pointer
 - keys can be compared in constant time

Elementary Implementations

Unordered array or linked list

- search $\Theta(n)$
- *insert* $\Theta(1)$

(7,'Ace') (1,'Pot') ((3,'Top')	(2,'Dog')
-----------------------	-----------	-----------

- except if using array, the array occasionally needs to resize, so it is
 Θ(1) amortized time, but we do not discuss amortization details
- delete $\Theta(n)$
 - need to search

Ordered array

- search $\Theta(\log n)$
 - via binary search
- insert $\Theta(n)$
- delete $\Theta(n)$

(1,'Pot') (2,'Dog')) (3,'Top')	(7,'Ace')
---------------------	-------------	-----------

Outline

Dictionaries and Balanced Search Trees

- Dictionary ADT
- Review: Binary Search Trees
- AVL Trees
 - insertion
 - restoring the AVL Property: Rotations
 - full code for insertion
 - deletion

Binary Search Trees (review)

- Structure
 - binary tree is either empty or consists of nodes
 - all nodes have two (possibly empty) subtrees
 - *L* (left)
 - R (right)
 - every node stores a KVP
 - leaves store empty subtrees
 - empty subtrees usually not shown
- Ordering
 - every key k in the left subtree of node v is less than v. key
 - every key k the right subtree of node v greater than v. key

- BST::search(k)
 - start at root, compare k to current node
 - stop if found or subtree is empty, else recurse at subtree
- Example: *BST::search*(24)

- BST::search(k)
 - start at root, compare k to current node
 - stop if found or subtree is empty, else recurse at subtree
- Example: BST::search(24)

- BST::search(k)
 - start at root, compare k to current node
 - stop if found or subtree is empty, else recurse at subtree
- Example: BST::search(24)

- BST::search(k)
 - start at root, compare k to current node
 - stop if found or subtree is empty, else recurse at subtree
- Example: BST::search(24)

BST Insert

- BST::insert(k, v)
 - search for k, then insert (k, v) as a new node at the empty subtree where search stops
- Example: BST::insert(24, v)

BST Delete: Case 1

- First search for node *x* containing the key
 - 1. If *x* has at an empty subtree
 - delete x with the empty subtree
 - If x has a parent, reconnect the other subtree of x to the parent of x
- Example: BST::delete(25)

BST Delete: Case 2

- First search for node *x* containing the key
 - 2. If *x* has only non-empty subtrees
 - swap KVP at x with KVP at successor node (or predecessor node)
 - delete successor node (or predecessor node)
 - now case 1 applies
- Example: BST::delete(15)

BST Delete: Case 2

- First search for node *x* containing the key
 - 2. If *x* has only non-empty subtrees
 - swap KVP at x with KVP at successor node (or predecessor node)
 - delete successor node (or predecessor node)
 - now case 1 applies
- Example: BST::delete(15)

• BST::search, BST::insert, BST::delete all have cost $\Theta(h)$

- h = height of the tree = maximum length path from root to a leaf node
- height of an empty tree is defined to be −1
- If n items are BST::inserted one-at-a-time, how big is h?
 - worst-case is $n 1 = \Theta(n)$
 - best case is $\Theta(\log n)$
 - binary tree with *n* nodes has height $\geq \log(n + 1) 1$
 - can show if insert items in random order then height is $\Theta(\log n)$

Height of a node

• Height of node v is the height of the tree rooted at node v

Height of a node

• Height of node v is the height of the tree rooted at node v

- Can compute heights of all nodes in post order traversal
 - leaf height is 0
 - height of any other node v is

1 + max{height(*v*.left), height(*v*.right)}

Outline

Dictionaries and Balanced Search Trees

- Dictionary ADT
- Review: Binary Search Trees
- AVL Trees
 - insertion
 - restoring the AVL Property: Rotations
 - full code for insertion
 - deletion

AVL Trees

- Adelson-Velski and Landis, 1962
- *AVL Tree* is a BST with **height-balance** property
 - for any node v, heights of its left and right subtrees differ by at most 1

- AVL Tree is a BST with **height-balance** property
 - for any node v, heights of its left and right subtrees differ by at most 1
 - in other words, $height(v.right) height(v.left) \in \{-1, 0, 1\}$
 - -1 means v is *left-heavy*
 - 0 means *v* is *balanced*
 - +1 means v is *right-heavy*
- Need to store at each node v its height
 - enough to store balance factor = height(v.right) height(v.left)
 - fewer bits
 - but code more complicated, especially for deleting
 - no details

Height of an AVL tree

Theorem: AVL tree on n nodes has $\Theta(\log n)$ height

Proof:

- Only need upper bound, as height is Ω(log n)
- Let N(h) be the *smallest* number of nodes an AVL tree of height h can have
 - any AVL tree of height h has number of nodes $n \ge N(h)$

• For $h \ge 2$

 $N(h) = N(h-1) + N(h-2) + 1 \ge N(h-2) + N(h-2) = 2N(h-2)$

- Thus $N(h) \ge 2N(h-2)$
 - number of nodes doubles every two levels ⇒ exponential growth

Height of an AVL tree

Proof: (continued)

- N(h) is the *least* number of nodes in height-h AVL tree
 - any AVL tree of height h has number of nodes $n \ge N(h)$
- N(0) = 1, N(1) = 2 and $N(h) \ge 2N(h-2)$ for $h \ge 2$ and
- Keep expanding until the base case

 $N(h) \ge 2N(h-2) \ge 2^2N(h-2\cdot 2) \ge 2^3N(h-2\cdot 3) \ge \dots \ge 2^iN(h-2\cdot i)$ case 1: odd h

- expand until $h 2 \cdot i = 1$
- rewriting, i = (h 1)/2 $N(h) \ge 2^{(h-1)/2} N(1) = 2^{\frac{h-1}{2}} \cdot 2$
- take log

$$\log N(h) \ge \frac{h-1}{2} + 1$$

rearrange

 $h \leq 2\log N(h) - 2 \leq 2\log n - 2$

In both cases, h is $O(\log n)$

case2: even h

- expand until $h 2 \cdot i = 0$
- rewriting, i = h/2 $N(h) \ge 2^{h/2} N(0) = 2^{\frac{n}{2}} \cdot 1$
- take log

$$\log N(h) \ge \frac{h}{2}$$

rearrange $h \leq 2\log N(h) \leq 2\log n$

Outline

Dictionaries and Balanced Search Trees

- Dictionary ADT
- Review: Binary Search Trees
- AVL Trees
 - insertion
 - restoring the AVL Property: Rotations
 - full code for insertion
 - deletion

AVL insertion

• AVL::insert(T, k, v)

- 1. insert (k, v) into T with the usual BST insertion
 - assume this returns the new leaf where the key was inserted
 - heights of nodes on path from this leaf to root may have increased
 - if increased, by at most 1
- 2. move up the path from the new leaf to the root, updating heights
 - either use parent-links, or BST::insert could return path to z
- 3. if the height difference becomes ± 2 for some node on this path, the node is *unbalanced*
 - must re-structure the tree to restore height-balance property

Outline

Dictionaries and Balanced Search Trees

- Dictionary ADT
- Review: Binary Search Trees
- AVL Trees
 - insertion
 - restoring the AVL Property: Rotations
 - full code for insertion
 - deletion

• Let *z* be *the first* unbalanced node on path from inserted node to root

before insertion

after insertion

since $h - 2 \ge -1$

• Let *z* be *the first* unbalanced node on path from inserted node to root

before insertion

after insertion, $h \ge 1$

• Let *z* be *the first* unbalanced node on path from inserted node to root

before insertion

after insertion, $h \ge 1$

Let z be the first unbalanced node on path from inserted node to root

new

before insertion

h+1Ζ h-2h D У h - 1h-2

after insertion, $h \ge 1$

Restoring Height: Right Rotation

- Let *z* be the first unbalanced node on path from inserted node to the root
- Right rotation is used for left-left imbalance (taller left child and grandchild)

- BST order is preserved
- Balanced
- Same subtree height h as before insertion

Right Rotation Pseudocode

Right rotation on node z

rotate-right(z) $y \leftarrow z.left, z.left \leftarrow y.right, y.right \leftarrow z$ setHeightFromChildren(z), setHeightFromChildren(y) return y // returns new root of subtree

Right Rotation Pseudocode

• Right rotation on node *z*

rotate-right(z) $y \leftarrow z.left, z.left \leftarrow y.right, y.right \leftarrow z$ setHeightFromChildren(z), setHeightFromChildren(y)return y // returns new root of subtree

Right Rotation Pseudocode

Right rotation on node z

rotate-right(z) $y \leftarrow z.left, z.left \leftarrow y.right, y.right \leftarrow z$ setHeightFromChildren(z), setHeightFromChildren(y)return y // returns new root of subtree

If z had a parent p, need to set y as the new child of p

If z had a parent p, need to set y as the new child of p

If node z was the tree root, then y becomes new tree root

If node z was the tree root, then y becomes new tree root

AVL Insertion Example

Example: AVL::insert(2)

Fix with right rotation on node z

AVL Insertion Example

Example: AVL::insert(2)

Fix with right rotation on node z

AVL Insertion Example

Example: AVL::insert(2)

before insertion

- After rotation all node heights are correct
 - can stop traversing up

Restoring Height Balance, Case 2

Case 1: Fixed with right rotation

Case 2: Fixed with left rotation

Left Rotation

- Symmetrically, this is a *left rotation* on node z
- Useful to fix right-right imbalance

- BST order is preserved
- Balanced
- Same height as before insertion

Distinguishing between Case 1 and Case 2

Case 1: Fixed with right rotation

Case 2: Fixed with left rotation

- $z \leftarrow$ the first unbalanced node on path from inserted node to the root
- $y \leftarrow \text{taller child of } z$
- $x \leftarrow$ taller child of y

- Fix with double rotation on node z
 - first, left rotation at y

- Fix with double rotation on node *z*
 - first, left rotation at y
 - second, right rotation at z

Cumulative result of *double right rotation* on node z

- First, left rotation at y, second, right rotation at z
- BST order is preserved
- Useful for left-right imbalance
 - can argue height balance property restored as before

Symmetrically, there is a *double left rotation* on node *z*

- First, a right rotation at y, second, a left rotation at z
- BST order is preserved
- Useful for right-left imbalance
 - can argue height balance property restored as before

Unbalanced Node z: all 4 cases

- z is the first unbalanced node on the path from inserted node to the root
- *y* is the taller child of *z*
 - z is guaranteed to have one child taller than the other
- *x* is the taller child of *y*
 - y is guaranteed to have one child taller than the other

Fixing Unbalanced AVL tree

- In each case, the middle key of x, y, z becomes the new root
- Running time is $\Theta(1)$

Tri-Node Restructuring

All four cases can be handled with one method, Tri-Node restructuring

Tri-Node Restructuring

- New names
 - *a* = node with middle key
 - **b** = node with smallest key
 - *c* = node with largest key
- Restructure
 - a becomes new subtree parent
 - b becomes left child of a
 - c becomes right child of a
 - one or two subtrees of a get "orphaned"
 - left subtree, if orphan, becomes right child of b
 - right subtree, if orphan, becomes left child of c

Outline

Dictionaries and Balanced Search Trees

- Dictionary ADT
- Review: Binary Search Trees
- AVL Trees
 - insertion
 - restoring the AVL Property: Rotations
 - full code for insertion
 - deletion

AVL insertion

```
AVL::insert(k, v)
    z \leftarrow BST::insert(k, v)
    while (z is not NIL)
         if (|z.left.height - z.right.height| > 1) then
                 let y be tallest child of z
                 let x be tallest child of y
                z \leftarrow restructure(x, y, z)
                 break
                                      // done after one restructure
          setHeightFromSubtrees(z)
          z \leftarrow \text{parent of } z
```

setHeightFromSubtrees(u)

if u is not an empty subtree

 $u.height \leftarrow 1 + \max\{u.left.height, u.right.height\}$

Outline

Dictionaries and Balanced Search Trees

- Dictionary ADT
- Review: Binary Search Trees
- AVL Trees
 - insertion
 - restoring the AVL Property: Rotations
 - full code for insertion
 - deletion

Restoring Height After Deletion: Case 1

• The *first* unbalanced node on path from deleted node to the root is *z*

- Rebalancing is similar to that after insertion, but
 - while z is guaranteed to have one taller child
 - y may have both children of the same height
 - which child to take as x?

- Fix with left rotation on node z
- Or trinode restructuring on node z

- Fix with double right rotation (left rotate y, then rotate right z)
- Or trinode restructuring on node z

Example: AVL::delete(22)

Rebalanced

AVL Deletion

- AVL::delete(T, k)
 - first, delete k from T with BST deletion
 - delete returns parent z of the deleted node
 - heights of nodes on path from z to root may have decreased
 - next, move up the tree from z, updating heights
 - if height difference is ± 2 at node z, then z is *unbalanced*
 - re-structure tree to restore height-balance property
 - just like rebalancing for insertion, with two differences
 - 1. restructuring after deletion does not guarantee to restore tree height to what it was before deletion
 - continue the path up the tree, fixing any imbalances
 - 2. tallerChild(**y**)
 - if left and right children of y have the same height
 - return left child of y if y is itself the left child
 - return right child of y if y is itself the right child

Example: incorrect if do not following the "same side" rule

- The "other" child of y has height h 1
 - children of x get separated, one of them can have height h − 3 and becomes a sibling of the "other" child of y

Example: same example, now following the "same side" rule

- Rotate or trinode restructuring
- Rebalanced!
 - "other" child of y still has height h 1, but children of x do not separate

Reduced Height after Deletion

- If 'not the tallest' child of y has height h 2, height decreases after rebalancing
 - might cause imbalance higher up the tree

AVL Delete Pseudocode

```
AVL::delete(k)
    z \leftarrow BST::delete(k)
    // Assume z is the parent of the BST node that was removed
    while (z is not NIL)
        if (|z.left.height - z.right.height| > 1) then
               let y be tallest child of z
               let x be tallest child of y
               // break ties to prefer 'the same side'
               z \leftarrow restructure(x, y, z)
        setHeightFromSubtrees(z)
       // must continue checking the path upwards
        z \leftarrow \text{parent of } z
```

AVL Tree Operations Runtime

- AVL::search
 - implemented just like in BSTs, runtime is $\Theta(height)$
- AVL::insert
 - BST::insert
 - then check and update along path to new leaf
 - *restructure* restores the height of the tree to what it was
 - so restructure will be called at most once
 - total cost Θ(height)
- AVL::delete
 - *BST::delete*, then check and update along path to deleted node
 - *restructure* may be called $\Theta(height)$ times
 - total cost Θ(height)
- Total cost for all operations is $\Theta(height) = \Theta(\log n)$
 - but in practice, the constant is quite large
- There are other realizations of ADT dictionary that are better in practice