
CS 240 – Data Structures and Data Management

Module 4: Dictionaries

O. Veksler
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2024

Outline

 Dictionaries and Balanced Search Trees
 Dictionary ADT

 Review: Binary Search Trees

 AVL Trees

 insertion

 restoring the AVL Property: Rotations

 deletion

Outline

 Dictionaries and Balanced Search Trees
 Dictionary ADT

 Review: Binary Search Trees

 AVL Trees

 insertion

 restoring the AVL Property: Rotations

 deletion

Dictionary ADT
 Dictionary ADT consists of a collection of items, each item contains

 a key

 a value (some data)

 Item is called a key-value pair (KVP)

 Keys can be compared and are (typically) unique

 can extend to handle non-unique keys

 Operations

 search(𝑘)
 also called findElement(𝑘)

 insert(𝑘, 𝑣)

 also called insertItem(𝑘, 𝑣)

 delete(𝑘)

 also called removeElement(𝑘)

 optional: closestKeyBefore, join, isEmpty, size, etc.

Dictionary ADT: Common Assumptions

 We will make the following assumptions
 dictionary has 𝒏 KVPs

 each KVP uses constant space

 if not, the “value” could be a pointer

 keys can be compared in constant time

Elementary Implementations

(7,’Ace’) (1,’Pot’) (3,’Top’) (2,’Dog’)

(1,’Pot’) (2,’Dog’) (3,’Top’) (7,’Ace’) Ordered array
 search Θ(log 𝑛)

 via binary search

 insert Θ(𝑛)

 delete Θ(𝑛)

 Unordered array or linked list
 search Θ(𝑛)

 insert Θ 1

 except if using array, the array occasionally needs to resize, so it is
Θ 1 amortized time, but we do not discuss amortization details

 delete Θ(𝑛)

 need to search

Outline

 Dictionaries and Balanced Search Trees
 Dictionary ADT

 Review: Binary Search Trees

 AVL Trees

 insertion

 restoring the AVL Property: Rotations

 full code for insertion

 deletion

Binary Search Trees (review)

 Structure
 binary tree is either empty or consists of nodes

 all nodes have two (possibly empty) subtrees

 L (left)

 R (right)

 every node stores a KVP

 leaves store empty subtrees

 empty subtrees usually not shown

 Ordering
 every key 𝑘 in the left subtree of node 𝑣 is less than 𝑣. 𝑘𝑒𝑦

 every key 𝑘 the right subtree of node 𝑣 greater than 𝑣. 𝑘𝑒𝑦

more accurate picture

25

23 29

27 50

key = 23, <value>

BST Search
 BST::search(𝑘)

 start at root, compare 𝑘 to current node

 stop if found or subtree is empty, else recurse at subtree

 Example: BST::search(24)

6

10

8 14

25

23

15

6

10

8 14

25

23

15

BST Search
 BST::search(𝑘)

 start at root, compare 𝑘 to current node

 stop if found or subtree is empty, else recurse at subtree

 Example: BST::search(24)

6

10

8 14

25

23

15

BST Search
 BST::search(𝑘)

 start at root, compare 𝑘 to current node

 stop if found or subtree is empty, else recurse at subtree

 Example: BST::search(24)

6

10

8 14

25

23

15

BST Search
 BST::search(𝑘)

 start at root, compare 𝑘 to current node

 stop if found or subtree is empty, else recurse at subtree

 Example: BST::search(24)

not found!

BST Insert
 BST::insert(𝑘, 𝑣)

 search for 𝑘, then insert (𝑘, 𝑣) as a new node at the empty subtree
where search stops

 Example: BST::insert(24, 𝑣)

6

10

8 14

25

23

15

24

6

10

8 14

25

23

15

 First search for node 𝑥 containing the key

 Example: BST::delete(25)

15

6

10

8

25

23

14 22 24

15

6

10

8

23

14

22 24

1. If 𝑥 has at an empty subtree

 If 𝑥 has a parent, reconnect the other subtree of 𝑥 to the parent of 𝑥

 delete 𝑥 with the empty subtree

BST Delete: Case 1

BST Delete: Case 2
 First search for node 𝑥 containing the key

 Example: BST::delete(15)

2. If 𝑥 has only non-empty subtrees

 delete successor node (or predecessor node)

 now case 1 applies

 swap KVP at 𝑥 with KVP at successor node (or predecessor node)

15

6

10

8

25

22

14 20 24

21

20

6

10

8

25

22

14 15 24

21

20

6

10

8

25

22

14 21 24

BST Delete: Case 2
 First search for node 𝑥 containing the key

 Example: BST::delete(15)

2. If 𝑥 has only non-empty subtrees

 delete successor node (or predecessor node)

 now case 1 applies

 swap KVP at 𝑥 with KVP at successor node (or predecessor node)

15

6

10

8

25

22

14 20 24

21

Height of a BST

 BST::search, BST::insert, BST::delete all have cost Θ(ℎ)
 ℎ = height of the tree = maximum length path from root to a leaf node

15

256

10

8 14

23 29

27 50

height 3

 height of an empty tree is defined to be −1

 If 𝑛 items are BST::inserted one-at-a-time, how big is ℎ?

 worst-case is 𝑛 − 1 = Θ(𝑛)

 best case is Θ(log 𝑛)

 binary tree with 𝑛 nodes has height ≥ log(𝑛 + 1) − 1

 can show if insert items in random order then height is Θ(log𝑛)

Height of a node

 Height of node 𝑣 is the height of the tree rooted at node 𝑣

15

256

10

8 14

23 29

27 50

height 2

height 1
height 0

Height of a node

 Height of node 𝑣 is the height of the tree rooted at node 𝑣

15

256

10

8 14

23 29

27 50

3

2 2

1

0

0 0

1

 Can compute heights of all nodes in post order traversal
 leaf height is 0

 height of any other node 𝑣 is

1 + max height 𝑣. left , height 𝑣. right

00

Outline

 Dictionaries and Balanced Search Trees
 Dictionary ADT

 Review: Binary Search Trees

 AVL Trees

 insertion

 restoring the AVL Property: Rotations

 full code for insertion

 deletion

AVL Trees

1

2

0

0

1

0 0

0

7

2

4

9

3

1

5

8 10

 Adelson-Velski and Landis, 1962

 AVL Tree is a BST with height-balance property
 for any node 𝑣, heights of its left and right subtrees differ by at most 1

AVL Tree

20

7

2

4

9

3

1

5

8 10

6

not AVL Tree

2

AVL Trees

 AVL Tree is a BST with height-balance property

 for any node 𝑣, heights of its left and right subtrees differ by at most 1

7

2

4

9

1

2

3

0

0

1

0 0

0

3

1

5

8 10

 in other words, ℎ𝑒𝑖𝑔ℎ𝑡(𝑣. 𝑟𝑖𝑔ℎ𝑡) − ℎ𝑒𝑖𝑔ℎ𝑡(𝑣. 𝑙𝑒𝑓𝑡) ∈ {−1, 0, 1}
 −1 means 𝑣 is left-heavy

 0 means 𝑣 is balanced

 +1 means 𝑣 is right-heavy

 Need to store at each node 𝑣 its height

 enough to store balance factor = ℎ𝑒𝑖𝑔ℎ𝑡 𝑣. 𝑟𝑖𝑔ℎ𝑡 − ℎ𝑒𝑖𝑔ℎ𝑡(𝑣. 𝑙𝑒𝑓𝑡)
 fewer bits

 but code more complicated, especially for deleting

 no details

(0)

(-1)

(1)

Height of an AVL tree

 Only need upper bound, as height is Ω(log 𝑛)

 Let 𝑁(ℎ) be the smallest number of nodes an AVL tree of height ℎ can have

 any AVL tree of height ℎ has number of nodes 𝑛 ≥ 𝑁 ℎ

𝒉
𝒉 − 𝟏

𝒉 − 𝟐

𝑁 ℎ

8

𝑁(0)

2

4

𝑁(1)

 For ℎ ≥ 2

𝑁 ℎ = 𝑁 ℎ − 1 + 𝑁 ℎ − 2 + 1 ≥ 𝑁 ℎ − 2 + 𝑁 ℎ − 2 = 2𝑁 ℎ − 2

Theorem: AVL tree on 𝑛 nodes has Θ(log 𝑛) height

 Thus 𝑁(ℎ) ≥ 2𝑁(ℎ − 2)

 number of nodes doubles every two levels ⇒ exponential growth

Proof:

Proof: (continued)

 𝑁(ℎ) is the least number of nodes in height-ℎ AVL tree

 any AVL tree of height ℎ has number of nodes 𝑛 ≥ 𝑁 ℎ

≥ 22𝑁 ℎ − 2 ⋅ 2 ≥ ⋯ ≥ 2𝑖𝑁 ℎ − 2 ⋅ 𝑖𝑁 ℎ ≥ 2𝑁 ℎ − 2 ≥ 23𝑁 ℎ − 2 ⋅ 3

case 1: odd ℎ

 𝑁 0 = 1, 𝑁 1 = 2 and 𝑁 ℎ ≥ 2𝑁 ℎ − 2 for ℎ ≥ 2 and

 Keep expanding until the base case

 expand until ℎ − 2 ⋅ 𝑖 = 1

 rewriting, 𝑖 = (ℎ − 1)/2

case2: even ℎ

𝑁 ℎ ≥ 2(ℎ−1)/2𝑁 1 = 2
ℎ−1
2 ⋅ 2

 take log

log𝑁 ℎ ≥
ℎ−1

2
+ 1

 rearrange

ℎ ≤ 2log𝑁 ℎ − 2𝑁 ℎ

𝑛 ≥ 𝑁 ℎ

≤ 2log 𝑛 − 2

 expand until ℎ − 2 ⋅ 𝑖 = 0

 rewriting, 𝑖 = ℎ/2

𝑁 ℎ ≥ 2ℎ/2𝑁 0 = 2
ℎ
2 ⋅ 1

 take log

log𝑁 ℎ ≥
ℎ

2

 rearrange

ℎ ≤ 2log𝑁 ℎ ≤ 2log 𝑛𝑁 ℎ

 In both cases, ℎ is 𝑂(log 𝑛)

Height of an AVL tree

Outline

 Dictionaries and Balanced Search Trees
 Dictionary ADT

 Review: Binary Search Trees

 AVL Trees

 insertion

 restoring the AVL Property: Rotations

 full code for insertion

 deletion

AVL Insertion Example

Example: AVL::insert(2)

22

4
31

2

37

1

28

0

10

3

4

1

3

0

16

0

14

2

18

1

13

0

30

0

AVL Insertion Example

Example: AVL::insert(2)

22

4
31

2

37

1

28

0

10

3

4

1

3

0

16

0

14

2

18

1

13

0

30

0

2

0

AVL Insertion Example

Example: AVL::insert(2)

22

4
31

2

37

1

28

0

10

3

4

1

3

0

16

0

14

2

18

1

13

0

30

0

2

0

?

?

?

?

AVL Insertion Example

Example: AVL::insert(2)

22

4
31

2

37

1

28

0

10

3

4

1

3

1

16

0

14

2

18

1

13

0

30

0

2

0

?

?

?

AVL Insertion Example

Example: AVL::insert(2)

22

4
31

2

37

1

28

0

10

3

4

2

3

1

16

0

14

2

18

1

13

0

30

0

2

0

?

?

4

2

unbalanced

AVL insertion

 AVL::insert(𝑇, 𝑘, 𝑣)

1. insert (𝑘, 𝑣) into 𝑇 with the usual BST insertion
 assume this returns the new leaf where the key was inserted

 heights of nodes on path from this leaf to root may have
increased

 if increased, by at most 1

2. move up the path from the new leaf to the root, updating
heights

 either use parent-links, or BST::insert could return path to 𝑧

3. if the height difference becomes ±2 for some node on this

path, the node is unbalanced
 must re-structure the tree to restore height-balance property

Outline

 Dictionaries and Balanced Search Trees
 Dictionary ADT

 Review: Binary Search Trees

 AVL Trees

 insertion

 restoring the AVL Property: Rotations

 full code for insertion

 deletion

Restoring Height After Insertion

z

ℎ + 1

ℎ ℎ − 2

after insertion

D

before insertion

 Let z be the first unbalanced node on path from inserted node to root

new
node

ℎ ≥ 1
since ℎ − 2 ≥ −1

z

D

ℎ − 1 ℎ − 2

ℎ

Restoring Height After Insertion

z

ℎ + 1

ℎ − 2

after insertion, ℎ ≥ 1before insertion

 Let z be the first unbalanced node on path from inserted node to root

new
node

z

ℎ − 1 ℎ − 2

ℎ

ℎ − 1

D

ℎ

y

new
node

D
y

ℎ − 2

CC

ℎ − 2 or
ℎ −3

?ℎ − 3ℎ − 2

Restoring Height After Insertion

z

ℎ + 1

ℎ − 2

after insertion, ℎ ≥ 1before insertion

 Let z be the first unbalanced node on path from inserted node to root

z

ℎ − 1 ℎ − 2

ℎ

D

ℎ

y

new
node

D
y

C

ℎ − 2 ?ℎ − 3ℎ − 2ℎ − 1

Cx

A B

new
node

ℎ − 2

both ℎ − 3

if 𝑥 = new node: both −1 (ℎ = 1)

x

A B

If 𝑥 ≠ new node: one ℎ − 2, one ℎ −3

Restoring Height After Insertion

z

ℎ + 1

ℎ − 2

after insertion, ℎ ≥ 1before insertion

 Let z be the first unbalanced node on path from inserted node to root

z

ℎ − 1 ℎ − 2

ℎ

D

ℎ

y

new
node

D
y

C

ℎ − 2 ?ℎ − 3ℎ − 2ℎ − 1

Cx

A B

new
node

ℎ − 2

both ℎ − 3

x

A B

ℎ − 2 or ℎ −3

Restoring Height: Right Rotation
 Let z be the first unbalanced node on path from inserted node to the root

 Right rotation is used for left-left imbalance (taller left child and grandchild)

y

ℎ − 1

ℎ − 2

C

z

ℎ + 1

ℎ

ℎ − 2

D

x

A B

y

x

A B

z

C D

ℎ − 2 ℎ − 2

ℎ − 1

ℎ

ℎ − 1

 BST order is preserved

 Balanced

 Same subtree height ℎ as before
insertion

subtree height
before insertion: 𝒉

Right Rotation Pseudocode

 Right rotation on node 𝑧

y

A B

C

D

z

rotate-right(𝑧)

y ← z.left, z.left ← y.right, y.right ← z

setHeightFromChildren(𝑧), setHeightFromChildren(𝑦)

return 𝑦 // returns new root of subtree

y ← z.left

y

A B

C

D

z

Right Rotation Pseudocode

 Right rotation on node 𝑧

y

A B

C

D

z

rotate-right(𝑧)

y ← z.left, z.left ← y.right, y.right ← z

setHeightFromChildren(𝑧), setHeightFromChildren(𝑦)

return 𝑦 // returns new root of subtree

y

A B

z

C D

Right Rotation Pseudocode

 Right rotation on node 𝑧

y

A B

C

D

z

rotate-right(𝑧)

y ← z.left, z.left ← y.right, y.right ← z

setHeightFromChildren(𝑧), setHeightFromChildren(𝑦)

return 𝑦 // returns new root of subtree

y.right ← z

y

x

A B

C

D

y

x

A B

z

C D

z

After Rotation:
 If 𝑧 had a parent 𝑝, need to set 𝑦 as the new child of 𝑝

p

p

y

x

A B

C

D

y

x

A B

z

C D

z

After Rotation:
 If 𝑧 had a parent 𝑝, need to set 𝑦 as the new child of 𝑝

p
p

y

x

A B

C

D

y

x

A B

z

C D

z

After Rotation:
 If node 𝑧 was the tree root, then 𝑦 becomes new tree root

root
root

y

x

A B

C

D

y

x

A B

z

C D

z

After Rotation:
 If node 𝑧 was the tree root, then 𝑦 becomes new tree root

root
root

Why do we call this a rotation?

z

y

x

A B

C

D

A B

C

y z

x

D

Why do we call this a rotation?

y

x

A B

z

C D

Why do we call this a rotation?

y

x

A B

z

C D

Why do we call this a rotation?

AVL Insertion Example

Example: AVL::insert(2)

 Fix with right rotation on node z

22

4
31

2

37

1

28

0

10

3

4

2

3

1

16

0

14

2

18

1

13

0

30

0

2

0

?

?

4

2

unbalanced

3

1

2

0

22

4
31

2

37

1

28

0

10

3

16

0

14

2

18

1

13

0

30

0

?

?

4

2

4

2

3

1

2

0

AVL Insertion Example

Example: AVL::insert(2)

 Fix with right rotation on node z

22

4
31

2

37

1

28

0

10

3

4

2

3

1

16

0

14

2

18

1

13

0

30

0

2

0

?

?

4

2

unbalanced

3

1

2

0

22

4
31

2

37

1

28

0

10

3

16

0

14

2

18

1

13

0

30

0

?

?

4

0

3

1

2

0

update height

AVL Insertion Example

Example: AVL::insert(2)

22

4
31

2

37

1

28

0

10

3

16

0

14

2

18

1

13

0

30

0

?

?

4

0

3

1

2

0

update height

 After rotation all node heights are correct
 can stop traversing up

22

4
31

2

37

1

28

0

10

3

4

1

3

0

16

0

14

2

18

1

13

0

30

0

before insertion

height 1
height 1

Restoring Height Balance, Case 2

y

x

A B

C

D

z

A

y

B

x

z

C D

Case 1: Fixed with right rotation Case 2: Fixed with left rotation

Left Rotation

A

y

B

x

C D

z

 BST order is preserved

 Balanced

 Same height as before insertion

 Symmetrically, this is a left rotation on node z

 Useful to fix right-right imbalance

ℎ − 1
ℎ − 2

ℎ + 1

ℎ
ℎ − 2

y

z

A B

x

C D

ℎ − 2 ℎ − 2

ℎ − 1

ℎ

ℎ − 1

Distinguishing between Case 1 and Case 2

 z ← the first unbalanced node on path from inserted node to the root

 y ← taller child of z

 x ← taller child of y

y

x

A B

C

D

z

taller child of z

taller child of y

A

y

B

x

z

taller child of z

taller child of y

C D

Case 1: Fixed with right rotation Case 2: Fixed with left rotation

first unbalanced node z first unbalanced node z

Case 3

y

A

x D

z

x

y

A B

C

D

B C

 Fix with double rotation on node 𝑧
 first, left rotation at 𝒚

z
taller child of 𝒛

taller child of y

first unbalanced node 𝒛

x

y

A B

z

C D

Case 3

z

x

y

A B

C

D

 Fix with double rotation on node 𝑧
 first, left rotation at 𝑦
 second, right rotation at 𝒛

x

y

A B

z

C D

Case 3
 Cumulative result of double right rotation on node 𝑧

 First, left rotation at 𝑦, second, right rotation at 𝑧

 BST order is preserved

 Useful for left-right imbalance

 can argue height balance property restored as before

y

A

x D

B C

z

ℎ − 1ℎ − 2

ℎ + 1

ℎ ℎ − 2

ℎ − 2 ℎ − 2

ℎ − 1

ℎ

ℎ − 1

ℎ − 2 or ℎ −3

ℎ − 2
or ℎ −3

ℎ − 2
or ℎ −3

z

A

y

x

B C

D

x

z

A B

y

C D

 First, a right rotation at 𝑦, second, a left rotation at 𝑧

Case 4
 Symmetrically, there is a double left rotation on node 𝑧

taller child of z

taller child of y

first unbalanced node z

 BST order is preserved

 Useful for right-left imbalance
 can argue height balance property restored as before

Unbalanced Node 𝒛: all 4 cases

 𝑧 is the first unbalanced node on the path from inserted node to the root

 𝑦 is the taller child of 𝑧
 𝑧 is guaranteed to have one child taller than the other

 𝑥 is the taller child of 𝑦
 𝑦 is guaranteed to have one child taller than the other

z

x

y

z

y

x

case 1

case 2

z

y

x

z

x

y

case 4

case 3

Fixing Unbalanced AVL tree

restructure(𝑥, 𝑦, 𝑧)
x : node of BST that has an unbalanced grandparent,
𝑦 and 𝑧: the parent and grandparent of 𝑥

case

y

x

z

y

x

z

: // Right rotation

return rotate-right(𝑧)

: // Double-rightrotation
z.left ← rotate-left(𝑦)

z

y

x

return rotate-right(𝑧)

: // Double-leftrotation
z.right ← rotate-right(𝑦)
return rotate-left(𝑧)

z

y

x

: // Leftrotation
return rotate-left(𝑧)

 In each case, the middle key of 𝑥, 𝑦, 𝑧 becomes the new root

 Running time is Θ(1)

case 1

case 3

case 4

case 2

Tri-Node Restructuring

 All four cases can be handled with one method, Tri-Node restructuring

z

x

y

z

y

x

case 1

case 2

z

y

x

z

x

y

case 4

case 3

Tri-Node Restructuring

 New names
 a = node with middle key

a

b c

orphan orphan

orphan

c

b

a

 c = node with largest key

 b = node with smallest key

 Restructure
 a becomes new subtree parent

 b becomes left child of a

 c becomes right child of a

 one or two subtrees of a get “orphaned”

 left subtree, if orphan, becomes right child of b

 right subtree, if orphan, becomes left child of c

c

b

a
a

b c

case 3 case 1

Outline

 Dictionaries and Balanced Search Trees
 Dictionary ADT

 Review: Binary Search Trees

 AVL Trees

 insertion

 restoring the AVL Property: Rotations

 full code for insertion

 deletion

AVL insertion

AVL::insert(𝑘, 𝑣)

𝑧 ← BST::insert(𝑘, 𝑣)

while (𝑧 is not NIL)

if (|𝑧.left.height − 𝑧.right.height| > 1) then

let 𝑦 be tallest child of 𝑧

let 𝑥 be tallest child of 𝑦

𝑧 ← restructure(𝑥, 𝑦, 𝑧)

break // done after one restructure

setHeightFromSubtrees(𝑧)

𝑧 ← parent of 𝑧

setHeightFromSubtrees(𝑢)

if 𝑢 is not an empty subtree

𝑢. ℎ𝑒𝑖𝑔ℎ𝑡 ← 1 + max{𝑢.left.height, 𝑢.right.height}

Outline

 Dictionaries and Balanced Search Trees
 Dictionary ADT

 Review: Binary Search Trees

 AVL Trees

 insertion

 restoring the AVL Property: Rotations

 full code for insertion

 deletion

AVL Deletion Example

Example: AVL::delete(22)

22

4

31

2

37

1

46

0

28

0

10

3

6

1

8

0

16

0

14

2

18

1

13

0

4

0

AVL Deletion Example

Example: AVL::delete(22)

28

4

31

2

37

1

46

0

10

3

6

1

8

0

14

2

18

1

13

0

4

0

16

0

Restoring Height After Deletion: Case 1

z

ℎ + 1

ℎ ℎ − 2

D
y

ℎ − 1
or ℎ −2

 Rebalancing is similar to that after insertion, but

 while z is guaranteed to have one taller child

 y may have both children of the same height

 which child to take as 𝑥?

z

ℎ + 1

ℎ ℎ − 2

D

deleted
from here

ℎ ≥ 1

ℎ − 1

y

ℎ − 1
ℎ − 1

or ℎ − 2

C

z

ℎ + 1

ℎ

ℎ − 2

D

x

A B
both ℎ − 2

or one ℎ − 2, one ℎ −3

 The first unbalanced node on path from deleted node to the root is z

C

AVL Deletion Example

Example: AVL::delete(22)

28

4

31

2

37

1

46

0

10

3

6

1

8

0

16

0

14

2

18

1

13

0

4

0

z

y

x

 Fix with left rotation on node 𝒛

 Or trinode restructuring on node 𝒛

31

2

37

1

46

0

unbalanced

AVL Deletion Example

Example: AVL::delete(22)

28

4

10

3

6

1

8

0

16

0

14

2

18

1

13

0

4

0

37

1

46

0

31

2

31

0

done with this node

AVL Deletion Example

Example: AVL::delete(22)

28

4

10

3

6

1

8

0

16

0

14

2

18

1

13

0

4

0

37

1

46

0

31

0

unbalanced28

4

z

AVL Deletion Example

Example: AVL::delete(22)

28

4

37

1

46

0

31

0

10

3

6

1

8

0

16

0

14

2

18

1

13

0

4

0

28

4
y

x

 Fix with double right rotation (left rotate 𝒚, then rotate right 𝒛)

 Or trinode restructuring on node 𝒛

46

0

31

0

28

4

10

3

14

2

16

0

18

1
the

same
the

same

13

0

10

3

14

2

z

AVL Deletion Example

Example: AVL::delete(22)

28

4

37

1

46

0

31

0

10

3

6

1

8

0

16

0

14

2

18

1
13

0

4

0

update height
10

2

28

2
update height

14

3

update height

AVL Deletion Example

Example: AVL::delete(22)

28

2

37

1

46

0

31

0

10

2

6

1

8

0

16

0

14

4

18

1
13

0

4

0

 Rebalanced

14

3

AVL Deletion
 AVL::delete(𝑇, 𝑘)

 first, delete 𝑘 from 𝑇 with BST deletion

 delete returns parent 𝒛 of the deleted node

 heights of nodes on path from 𝒛 to root may have decreased

 next, move up the tree from 𝒛, updating heights

 if height difference is ±2 at node 𝒛 , then 𝒛 is unbalanced

 re-structure tree to restore height-balance property

 just like rebalancing for insertion, with two differences

1. restructuring after deletion does not guarantee to restore
tree height to what it was before deletion

 continue the path up the tree, fixing any imbalances

𝒚

𝒛 𝒛

tallerChild

 if left and right children of 𝒚 have the same height

 return left child of 𝒚 if 𝒚 is itself the left child

 return right child of 𝒚 if 𝒚 is itself the right child

𝒚

2. tallerChild(𝒚)

AVL Deletion Example
Example: incorrect if do not following the “same side” rule

28

4

37

1

46

0

31

0

10

3

6

2

8

0

16

0

14

2

18

1

13

0

4

1

28

4

z

y

3

0

28

2

10

3

6

2

8

0 16

0

14

4

18

1

13

0

4

1

3

0

37

1

46

0

31

0

unbalanced

10

3

x
14

2
ℎ − 1

ℎ

ℎ − 1

 The “other” child of 𝑦 has height ℎ − 1

 children of 𝑥 get separated, one of them can have height ℎ − 3 and becomes a
sibling of the “other” child of 𝑦

ℎ −3ℎ − 1
ℎ − 1

16

0

18

1

13

0

ℎ −3

AVL Deletion Example
Example: same example, now following the “same side” rule

 Rotate or trinode restructuring

28

4

37

1

46

0

31

0

10

3

6

2

8

0

16

0

14

2

18

1

13

0

4

1

28

4

z

y

x

3

0

 Rebalanced!
 ‘’other’’ child of 𝑦 still has height ℎ − 1, but children of 𝒙 do not separate

28

4

37

1

46

0

31

0

10

4

6

2

8

0

16

0

14

2

18

1

13

0

4

1

28

3

3

0

z

y

x
ℎ − 1

ℎ − 2ℎ − 1ℎ − 1

ℎ

ℎ − 1
ℎ

10

3

6

2

ℎ − 2

Reduced Height after Deletion

z

x

y
ℎ − 1

ℎ + 1

ℎ

ℎ − 2
ℎ − 2

 If ‘not the tallest’ child of 𝒚 has height ℎ − 2, height decreases after rebalancing

 might cause imbalance higher up the tree

restructure

y

x z

ℎ − 2 ℎ − 2

ℎ − 1 ℎ − 1

ℎ

deleted node

AVL Delete Pseudocode

AVL::delete(𝑘)

𝑧 ← BST::delete(𝑘)

// Assume z is the parent of the BST node that was removed

while (𝑧 is not NIL)

if (|𝑧.left.height − 𝑧.right.height| > 1) then

let 𝑦 be tallest child of 𝑧

let 𝑥 be tallest child of 𝑦

// break ties to prefer ‘the same side’

𝑧 ← restructure(𝑥, 𝑦, 𝑧)

setHeightFromSubtrees 𝑧

// must continue checking the path upwards

𝑧 ← parent of 𝑧

AVL Tree Operations Runtime
 AVL::search

 implemented just like in BSTs, runtime is Θ ℎ𝑒𝑖𝑔ℎ𝑡

 AVL::insert

 BST::insert

 then check and update along path to new leaf

 restructure restores the height of the tree to what it was

 so restructure will be called at most once

 total cost Θ(ℎ𝑒𝑖𝑔ℎ𝑡)

 AVL::delete

 BST::delete, then check and update along path to deleted node

 restructure may be called Θ(ℎ𝑒𝑖𝑔ℎ𝑡) times

 total cost Θ(ℎ𝑒𝑖𝑔ℎ𝑡)

 Total cost for all operations is Θ(ℎ𝑒𝑖𝑔ℎ𝑡) = Θ(log 𝑛)

 but in practice, the constant is quite large

 There are other realizations of ADT dictionary that are better in practice

