# CS 240 - Data Structures and Data Management 

## Module 4: Dictionaries

O. Veksler

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo
Winter 2024

## Outline

- Dictionaries and Balanced Search Trees
- Dictionary ADT
- Review: Binary Search Trees
- AVL Trees
- insertion
- restoring the AVL Property: Rotations
- deletion


## Outline

- Dictionaries and Balanced Search Trees
- Dictionary ADT
- Review: Binary Search Trees - AVL Trees
- insertion
- restoring the AVL Property: Rotations
- deletion


## Dictionary ADT

- Dictionary ADT consists of a collection of items, each item contains
- a key
- a value (some data)
- Item is called a key-value pair (KVP)
- Keys can be compared and are (typically) unique
- can extend to handle non-unique keys
- Operations
- search $(k)$
- also called findElement $(k)$
- $\quad \operatorname{insert}(k, v)$
- also called insertltem $(k, v)$
- delete(k)
- also called removeElement( $k$ )
- optional: closestKeyBefore, join, isEmpty, size, etc.


## Dictionary ADT: Common Assumptions

- We will make the following assumptions
- dictionary has $\boldsymbol{n}$ KVPs
- each KVP uses constant space
- if not, the "value" could be a pointer
- keys can be compared in constant time


## Elementary Implementations

- Unordered array or linked list
- search $\Theta(n)$
- insert $\Theta$ (1)
- except if using array, the array occasionally needs to resize, so it is $\Theta(1)$ amortized time, but we do not discuss amortization details
- delete $\Theta(n)$
- need to search
- Ordered array

| $\left(1,{ }^{\prime}\right.$ Pot' $\left.^{\prime}\right)$ | (2,' ${ }^{\prime}$ Dog' $\left.^{\prime}\right)$ | (3,'Top') | (7,'Ace') |
| :--- | :--- | :--- | :--- |

- search $\Theta(\log n)$
- via binary search
- insert $\Theta(n)$
- delete $\Theta(n)$


## Outline

- Dictionaries and Balanced Search Trees

Dictionary ADT

- Review: Binary Search Trees
- AVL Trees
- insertion
- restoring the AVL Property: Rotations
- full code for insertion
- deletion


## Binary Search Trees (review)

- Structure
- binary tree is either empty or consists of nodes
- all nodes have two (possibly empty) subtrees
- $\quad L$ (left)
- $\quad R$ (right)
- every node stores a KVP
- leaves store empty subtrees

- empty subtrees usually not shown
- Ordering
- every key $k$ in the left subtree of node $v$ is less than $v$. key
- every key $k$ the right subtree of node $v$ greater than $v$. key


## BST Search

- BST::search $(k)$
- start at root, compare $k$ to current node
- stop if found or subtree is empty, else recurse at subtree
- Example: BST::search(24)



## BST Search

- BST::search $(k)$
- start at root, compare $k$ to current node
- stop if found or subtree is empty, else recurse at subtree
- Example: BST::search(24)



## BST Search

- BST::search $(k)$
- start at root, compare $k$ to current node
- stop if found or subtree is empty, else recurse at subtree
- Example: BST::search(24)



## BST Search

- BST::search $(k)$
- start at root, compare $k$ to current node
- stop if found or subtree is empty, else recurse at subtree
- Example: BST::search(24)



## BST Insert

- BST::insert( $k, v$ )
- search for $k$, then insert $(k, v)$ as a new node at the empty subtree where search stops
- Example: BST::insert(24,v)



## BST Delete: Case 1

- First search for node $x$ containing the key

1. If $x$ has at an empty subtree

- delete $x$ with the empty subtree
- If $x$ has a parent, reconnect the other subtree of $x$ to the parent of $x$
- Example: BST::delete(25)



## BST Delete: Case 2

- First search for node $x$ containing the key

2. If $x$ has only non-empty subtrees

- swap KVP at $x$ with KVP at successor node (or predecessor node)
- delete successor node (or predecessor node)
- now case 1 applies
- Example: BST::delete(15)



## BST Delete: Case 2

- First search for node $x$ containing the key

2. If $x$ has only non-empty subtrees

- swap KVP at $x$ with KVP at successor node (or predecessor node)
- delete successor node (or predecessor node)
- now case 1 applies
- Example: BST::delete(15)



## Height of a BST



- BST::search, BST::insert, BST::delete all have cost $\Theta(h)$
- $h=$ height of the tree $=$ maximum length path from root to a leaf node
- height of an empty tree is defined to be -1
- If $n$ items are BST::inserted one-at-a-time, how big is $h$ ?
- worst-case is $n-1=\Theta(n)$
- best case is $\Theta(\log n)$
- binary tree with $n$ nodes has height $\geq \log (n+1)-1$
- can show if insert items in random order then height is $\Theta(\log n)$


## Height of a node

- Height of node $v$ is the height of the tree rooted at node $v$



## Height of a node

- Height of node $v$ is the height of the tree rooted at node $v$

- Can compute heights of all nodes in post order traversal
- leaf height is 0
- height of any other node $v$ is
$1+\max \{\operatorname{height}(v$. left $), \operatorname{height}(v$. right $)\}$


## Outline

- Dictionaries and Balanced Search Trees
- Dictionary ADT
- Review: Binary Search Trees
- AVL Trees
insertion
- restoring the AVL Property: Rotations
- full code for insertion
- deletion


## AVL Trees

- Adelson-Velski and Landis, 1962
- AVL Tree is a BST with height-balance property
- for any node $v$, heights of its left and right subtrees differ by at most 1


AVL Tree
not AVL Tree

## AVL Trees



- AVL Tree is a BST with height-balance property
- for any node $v$, heights of its left and right subtrees differ by at most 1
- in other words, height(v.right) - height(v.left) $\in\{-1,0,1\}$
- $\quad-1$ means $v$ is left-heavy
- $\quad 0$ means $v$ is balanced
- $\quad+1$ means $v$ is right-heavy
- Need to store at each node $v$ its height
- enough to store balance factor $=$ height (v.right) $-\operatorname{height}(v . l e f t)$
- fewer bits
- but code more complicated, especially for deleting
- no details


## Height of an AVL tree

Theorem: AVL tree on $n$ nodes has $\Theta(\log n)$ height

## Proof:

- Only need upper bound, as height is $\Omega(\log n)$
- Let $N(h)$ be the smallest number of nodes an AVL tree of height $h$ can have
- any AVL tree of height $h$ has number of nodes $n \geq N(h)$
$N(0)$
$N(h)$
(8)

- For $h \geq 2$


$$
N(h)=N(h-1)+N(h-2)+1 \geq N(h-2)+N(h-2)=2 N(h-2)
$$

- Thus $N(h) \geq 2 N(h-2)$
- number of nodes doubles every two levels $\Rightarrow$ exponential growth


## Height of an AVL tree

## Proof: (continued)

- $N(h)$ is the least number of nodes in height- $h$ AVL tree
- any AVL tree of height $h$ has number of nodes $n \geq N(h)$
- $N(0)=1, N(1)=2$ and $N(h) \geq 2 N(h-2)$ for $h \geq 2$ and
- Keep expanding until the base case

$$
\begin{gathered}
N(h) \geq 2 N(h-2) \geq 2^{2} N(h-2 \cdot 2) \geq 2^{3} N(h-2 \cdot 3) \geq \cdots \geq 2^{i} N(h-2 \cdot i) \\
\quad \text { case } 1: \text { odd } h
\end{gathered}
$$

- expand until $h-2 \cdot i=1$
- rewriting, $i=(h-1) / 2$

$$
N(h) \geq 2^{(h-1) / 2} N(1)=2^{\frac{h-1}{2}} \cdot 2
$$

- take log

$$
\log N(h) \geq \frac{h-1}{2}+1
$$

- rearrange

$$
h \leq 2 \log N(h)-2 \leq 2 \log n-2
$$

- expand until $h-2 \cdot i=0$
- rewriting, $i=h / 2$

$$
N(h) \geq 2^{h / 2} N(0)=2^{\frac{h}{2}} \cdot 1
$$

- take log

$$
\log N(h) \geq \frac{h}{2}
$$

- rearrange

$$
h \leq 2 \log N(h) \leq 2 \log n
$$

- In both cases, $h$ is $O(\log n)$


## Outline

- Dictionaries and Balanced Search Trees

Dictionary ADT

- Review: Binary Search Trees - AVL Trees
- insertion
- restoring the AVL Property: Rotations
- full code for insertion
- deletion


## AVL Insertion Example

Example: AVL::insert(2)


## AVL insertion

- AVL::insert $(T, k, v)$

1. insert $(k, v)$ into $T$ with the usual BST insertion

- assume this returns the new leaf where the key was inserted
- heights of nodes on path from this leaf to root may have increased
- if increased, by at most 1

2. move up the path from the new leaf to the root, updating heights

- either use parent-links, or BST::insert could return path to $z$

3. if the height difference becomes $\pm 2$ for some node on this path, the node is unbalanced

- must re-structure the tree to restore height-balance property


## Outline

- Dictionaries and Balanced Search Trees
- Dictionary ADT
- Review: Binary Search Trees
- AVL Trees
- insertion
- restoring the AVL Property: Rotations
- full code for insertion
- deletion


## Restoring Height After Insertion

- Let $z$ be the first unbalanced node on path from inserted node to root



## Restoring Height After Insertion

- Let $z$ be the first unbalanced node on path from inserted node to root

after insertion, $h \geq 1$



## Restoring Height After Insertion

- Let $z$ be the first unbalanced node on path from inserted node to root

after insertion, $h \geq 1$

if $x=$ new node: both $-1 \quad(h=1)$
If $x \neq$ new node: one $h-2$, one $h-3$


## Restoring Height After Insertion

- Let $z$ be the first unbalanced node on path from inserted node to root



## Restoring Height: Right Rotation

- Let $z$ be the first unbalanced node on path from inserted node to the root
- Right rotation is used for left-left imbalance (taller left child and grandchild)

- BST order is preserved
- Balanced
- Same subtree height $h$ as before insertion


## Right Rotation Pseudocode

- Right rotation on node $z$

rotate-right(z)
$y \leftarrow z$.left, z.left $\leftarrow y . r i g h t, y . r i g h t ~ \leftarrow z$
setHeightFromChildren $(z)$, setHeightFromChildren $(y)$
return $y \quad / /$ returns new root of subtree


## Right Rotation Pseudocode

- Right rotation on node $z$

rotate-right ( $z$ )
$y \leftarrow z$.left, z.left $\leftarrow y . r i g h t, y . r i g h t ~ \leftarrow z$
setHeightFromChildren $(z)$, setHeightFromChildren $(y)$
return $y \quad / /$ returns new root of subtree


## Right Rotation Pseudocode

- Right rotation on node $z$

rotate-right( $z$ )

$$
y \leftarrow \text { z.left, z.left } \leftarrow y . r i g h t, ~ y . r i g h t \leftarrow z
$$

setHeightFromChildren $(z)$, setHeightFromChildren $(y)$
return $y \quad / /$ returns new root of subtree

## After Rotation:

- If $z$ had a parent $p$, need to set $y$ as the new child of $p$



## After Rotation:

- If $z$ had a parent $p$, need to set $y$ as the new child of $p$



## After Rotation:

- If node $z$ was the tree root, then $y$ becomes new tree root



## After Rotation:

- If node $z$ was the tree root, then $y$ becomes new tree root


Why do we call this a rotation?


## AVL Insertion Example

Example: AVL::insert(2)


- Fix with right rotation on node $z$


## AVL Insertion Example

Example: AVL::insert(2)


- Fix with right rotation on node $z$


## AVL Insertion Example

Example: AVL::insert(2)
before insertion


- After rotation all node heights are correct
- can stop traversing up


## Restoring Height Balance, Case 2



Case 1: Fixed with right rotation


Case 2: Fixed with left rotation

## Left Rotation

- Symmetrically, this is a left rotation on node $z$
- Useful to fix right-right imbalance

- BST order is preserved
- Balanced
- Same height as before insertion


## Distinguishing between Case 1 and Case 2



Case 1: Fixed with right rotation
first unbalanced node $\boldsymbol{z}$


Case 2: Fixed with left rotation

- $z \leftarrow$ the first unbalanced node on path from inserted node to the root
- $y \leftarrow$ taller child of $z$
- $x \leftarrow$ taller child of $y$


## Case 3

first unbalanced node $\boldsymbol{Z}$


- Fix with double rotation on node $z$
- first, left rotation at $y$


## Case 3



- Fix with double rotation on node $z$
- first, left rotation at $y$
- second, right rotation at $z$


## Case 3

- Cumulative result of double right rotation on node $z$

- First, left rotation at $y$, second, right rotation at $z$
- BST order is preserved
- Useful for left-right imbalance
- can argue height balance property restored as before


## Case 4

- Symmetrically, there is a double left rotation on node $z$

- First, a right rotation at $y$, second, a left rotation at $z$
- BST order is preserved
- Useful for right-left imbalance
- can argue height balance property restored as before


## Unbalanced Node z: all 4 cases



- $z$ is the first unbalanced node on the path from inserted node to the root
- $y$ is the taller child of $z$
- $z$ is guaranteed to have one child taller than the other
- $x$ is the taller child of $y$
- $y$ is guaranteed to have one child taller than the other


## Fixing Unbalanced AVL tree

| restructure $(x, y, z)$ |
| :---: | :---: |
| $x:$ node of BST that has an unbalanced grandparent, |
| $y$ and $z$ : the parent and grandparent of $x$ |
| case |

- In each case, the middle key of $x, y, z$ becomes the new root
- Running time is $\Theta(1)$


## Tri-Node Restructuring



- All four cases can be handled with one method, Tri-Node restructuring


## Tri-Node Restructuring



- New names
- $\boldsymbol{a}=$ node with middle key
- $\boldsymbol{b}=$ node with smallest key
- c = node with largest key
- Restructure
- a becomes new subtree parent
- b becomes left child of a
- c becomes right child of a
- one or two subtrees of a get "orphaned"
- left subtree, if orphan, becomes right child of $\mathbf{b}$
- right subtree, if orphan, becomes left child of c


## Outline

- Dictionaries and Balanced Search Trees
- Dictionary ADT
- Review: Binary Search Trees
- AVL Trees
- insertion
- restoring the AVL Property: Rotations
- full code for insertion
- deletion


## AVL insertion

```
AVL::insert(k,v)
    Z}\leftarrowBST::insert (k,v
    while (z is not NIL)
        if (|z.left.height - z.right.height | > 1) then
            let }y\mathrm{ be tallest child of z
            let }x\mathrm{ be tallest child of }
            z}\leftarrow\operatorname{restructure (x,y,z)
            break // done after one restructure
        setHeightFromSubtrees(z)
        z}\leftarrow\mathrm{ parent of }
```

    setHeightFromSubtrees(u)
        if \(u\) is not an empty subtree
            u.height \(\leftarrow 1+\max \{u . l e f t . h e i g h t, u . r i g h t . h e i g h t\}\)
    
## Outline

- Dictionaries and Balanced Search Trees
- Dictionary ADT
- Review: Binary Search Trees
- AVL Trees
- insertion
- restoring the AVL Property: Rotations
- full code for insertion
- deletion


## AVL Deletion Example

Example: AVL::delete(22)


## AVL Deletion Example

Example: AVL::delete(22)


## Restoring Height After Deletion: Case 1

- The first unbalanced node on path from deleted node to the root is $z$

- Rebalancing is similar to that after insertion, but
- while $z$ is guaranteed to have one taller child
- $y$ may have both children of the same height

- which child to take as $x$ ?


## AVL Deletion Example

Example: AVL::delete(22)


- Fix with left rotation on node $\boldsymbol{z}$
- Or trinode restructuring on node $\boldsymbol{z}$


## AVL Deletion Example

Example: AVL::delete(22)


## AVL Deletion Example

Example: AVL::delete(22)


## AVL Deletion Example

Example: AVL::delete(22)


- Fix with double right rotation (left rotate $\boldsymbol{y}$, then rotate right $\boldsymbol{z}$ )
- Or trinode restructuring on node $Z$


## AVL Deletion Example

Example: AVL::delete(22)


## AVL Deletion Example

Example: AVL::delete(22)


- Rebalanced


## AVL Deletion

- AVL::delete(T,k)
- first, delete $k$ from $T$ with BST deletion
- delete returns parent $\mathbf{z}$ of the deleted node
- heights of nodes on path from $\boldsymbol{z}$ to root may have decreased
- next, move up the tree from $z$, updating heights
- if height difference is $\pm 2$ at node $\boldsymbol{z}$, then $\boldsymbol{z}$ is unbalanced
- re-structure tree to restore height-balance property
- just like rebalancing for insertion, with two differences

1. restructuring after deletion does not guarantee to restore tree height to what it was before deletion

- continue the path up the tree, fixing any imbalances


2. tallerChild $(\boldsymbol{y})$

- if left and right children of $\boldsymbol{y}$ have the same height
- return left child of $\boldsymbol{y}$ if $y$ is itself the left child
- return right child of $\boldsymbol{y}$ if $\boldsymbol{y}$ is itself the right child


## AVL Deletion Example

Example: incorrect if do not following the "same side" rule


- The "other" child of $y$ has height $h-1$
- children of $x$ get separated, one of them can have height $h-3$ and becomes a sibling of the "other" child of $y$


## AVL Deletion Example

Example: same example, now following the "same side" rule


- Rotate or trinode restructuring
- Rebalanced!
- "other" child of $y$ still has height $h-1$, but children of $x$ do not separate


## Reduced Height after Deletion



- If 'not the tallest' child of $\boldsymbol{y}$ has height $h-2$, height decreases after rebalancing
- might cause imbalance higher up the tree


## AVL Delete Pseudocode

```
AVL::delete(k)
    z}\leftarrowBST::delete(k
    // Assume z is the parent of the BST node that was removed
    while (z is not NIL)
        if (|z.left.height - z.right.height | > 1) then
            let }y\mathrm{ be tallest child of z
            let }x\mathrm{ be tallest child of }
            // break ties to prefer 'the same side'
            z}\leftarrow\operatorname{restructure (x,y,z)
        setHeightFromSubtrees(z)
        // must continue checking the path upwards
        Z}\leftarrow\mathrm{ parent of }
```


## AVL Tree Operations Runtime

- AVL::search
- implemented just like in BSTs, runtime is $\Theta$ (height)
- AVL::insert
- BST::insert
- then check and update along path to new leaf
- restructure restores the height of the tree to what it was
- so restructure will be called at most once
- total cost $\Theta$ (height)
- AVL::delete
- BST::delete, then check and update along path to deleted node
- restructure may be called $\Theta$ (height) times
- total cost $\Theta$ (height)
- Total cost for all operations is $\Theta(h e i g h t)=\Theta(\log n)$
- but in practice, the constant is quite large
- There are other realizations of ADT dictionary that are better in practice

