CS 240 – Data Structures and Data Management

Module 4: Dictionaries

O. Veksler

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2024

Outline

- Dictionaries and Balanced Search Trees
 - Dictionary ADT
 - Review: Binary Search Trees
 - AVL Trees
 - insertion
 - restoring the AVL Property: Rotations
 - deletion

Outline

- Dictionaries and Balanced Search Trees
 - Dictionary ADT
 - Review: Binary Search Trees
 - AVL Trees
 - insertion
 - restoring the AVL Property: Rotations
 - deletion

Dictionary ADT

- Dictionary ADT consists of a collection of items, each item contains
 - a key
 - a value (some data)
- Item is called a key-value pair (KVP)
- Keys can be compared and are (typically) unique
 - can extend to handle non-unique keys
- Operations
 - search(k)
 - also called findElement(k)
 - insert(k, v)
 - also called *insertItem*(k, v)
 - delete(k)
 - also called removeElement(k)
 - optional: closestKeyBefore, join, isEmpty, size, etc.

Dictionary ADT: Common Assumptions

- We will make the following assumptions
 - dictionary has n KVPs
 - each KVP uses constant space
 - if not, the "value" could be a pointer
 - keys can be compared in constant time

Elementary Implementations

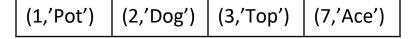
Unordered array or linked list

(7,'Ace') (1,'Pot') (3,'Top') (2,'Dog')

- search $\Theta(n)$
- insert $\Theta(1)$
 - except if using array, the array occasionally needs to resize, so it is $\Theta(1)$ amortized time, but we do not discuss amortization details
- $delete \Theta(n)$
 - need to search

Ordered array

- search $\Theta(\log n)$
 - via binary search
- insert $\Theta(n)$
- delete $\Theta(n)$



Outline

- Dictionaries and Balanced Search Trees
 - Dictionary ADT
 - Review: Binary Search Trees
 - AVL Trees
 - insertion
 - restoring the AVL Property: Rotations
 - full code for insertion
 - deletion

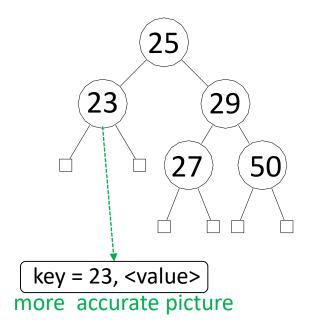
Binary Search Trees (review)

Structure

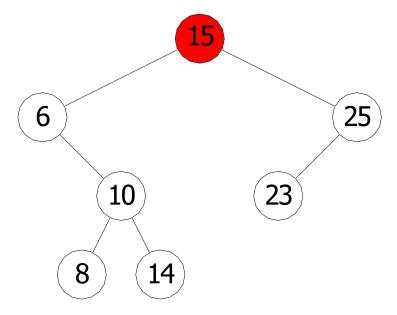
- binary tree is either empty or consists of nodes
- all nodes have two (possibly empty) subtrees
 - L (left)
 - *R* (right)
- every node stores a KVP
- leaves store empty subtrees
- empty subtrees usually not shown

Ordering

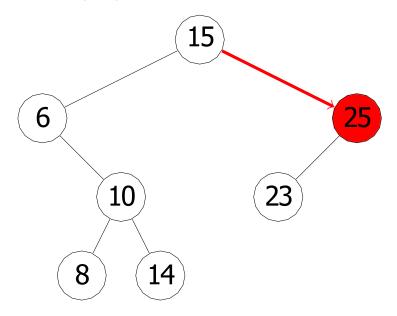
- every key k in the left subtree of node v is less than v. key
- every key k the right subtree of node v greater than v. key



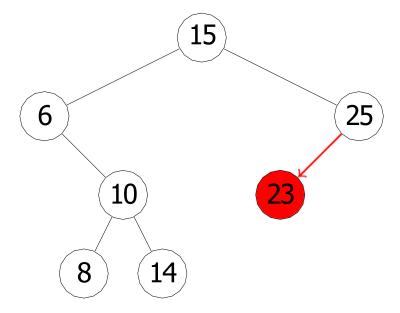
- BST::search(k)
 - start at root, compare k to current node
 - stop if found or subtree is empty, else recurse at subtree
- Example: BST::search(24)



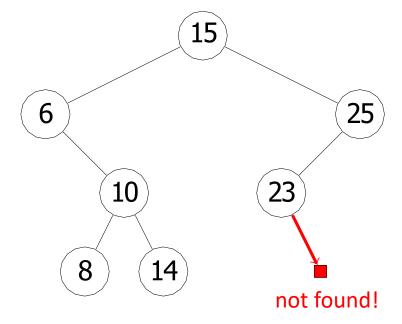
- BST::search(k)
 - start at root, compare k to current node
 - stop if found or subtree is empty, else recurse at subtree
- Example: BST::search(24)



- BST::search(k)
 - start at root, compare k to current node
 - stop if found or subtree is empty, else recurse at subtree
- Example: BST::search(24)

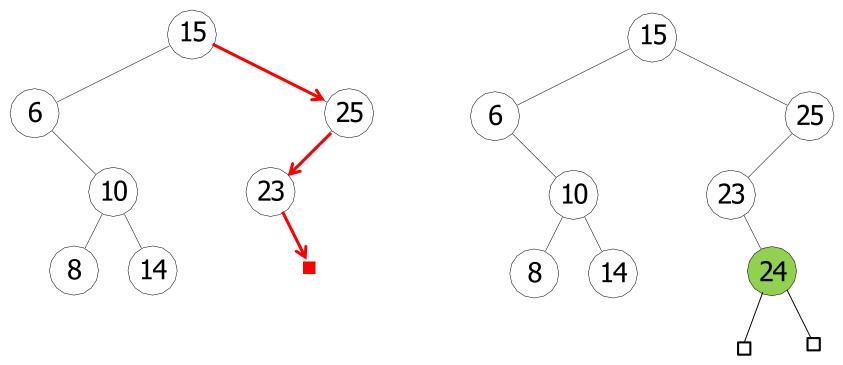


- BST::search(k)
 - start at root, compare k to current node
 - stop if found or subtree is empty, else recurse at subtree
- Example: BST::search(24)



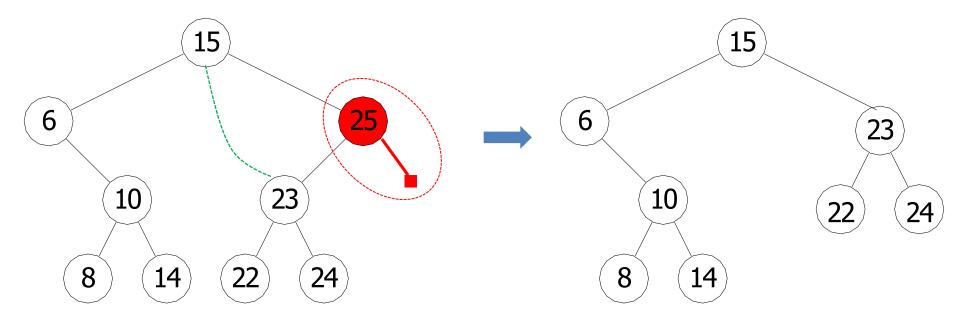
BST Insert

- BST::insert(k, v)
 - search for k, then insert (k, v) as a new node at the empty subtree where search stops
- Example: BST::insert(24, v)



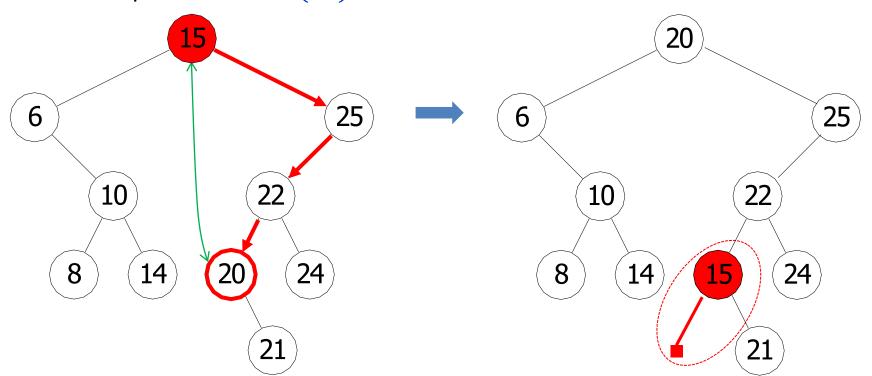
BST Delete: Case 1

- First search for node x containing the key
 - 1. If *x* has at an empty subtree
 - delete x with the empty subtree
 - If x has a parent, reconnect the other subtree of x to the parent of x
- Example: BST::delete(25)



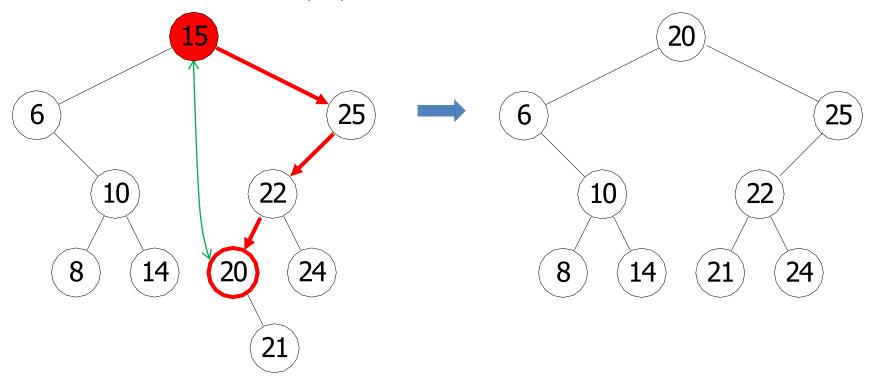
BST Delete: Case 2

- First search for node x containing the key
 - 2. If x has only non-empty subtrees
 - swap KVP at x with KVP at successor node (or predecessor node)
 - successor = smallest key node in the right subtree
 - delete successor node (or predecessor node)
 - now case 1 applies
- Example: *BST::delete*(15)

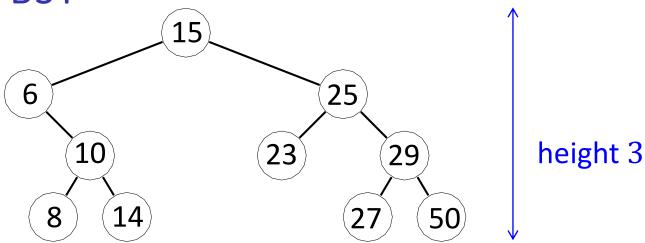


BST Delete: Case 2

- First search for node x containing the key
 - 2. If *x* has only non-empty subtrees
 - swap KVP at x with KVP at successor node (or predecessor node)
 - successor = smallest key node in the right subtree
 - delete successor node (or predecessor node)
 - now case 1 applies
- Example: BST::delete(15)



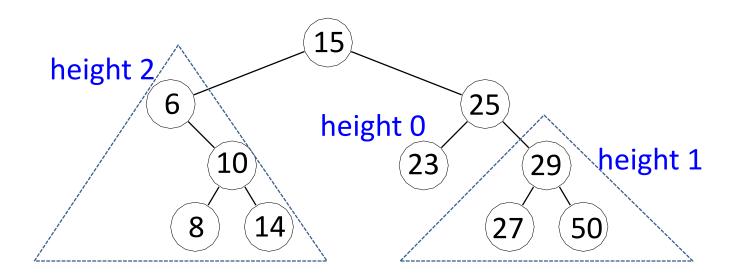
Height of a BST



- BST::search, BST::insert, BST::delete all have cost $\Theta(h)$
 - h = height of the tree = maximum length path from root to a leaf node
 - height of an empty tree is defined to be -1
- If n items are BST::inserted one-at-a-time, how big is h?
 - worst-case is $n-1=\Theta(n)$
 - best case is $\Theta(\log n)$
 - binary tree with n nodes has height $\geq \log(n+1)-1$
 - can show if insert items in random order then height is $\Theta(\log n)$

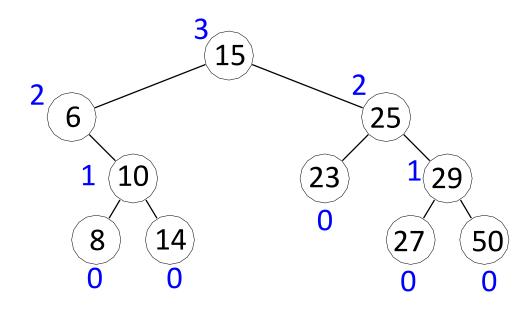
Height of a node

- Height of node v is the height of the tree rooted at node v



Height of a node

- Height of node v is the height of the tree rooted at node v



- Can compute heights of all nodes in post order traversal
 - leaf height is 0
 - height of any other node $oldsymbol{v}$ is

1 + max{height(v.left), height(v.right)}

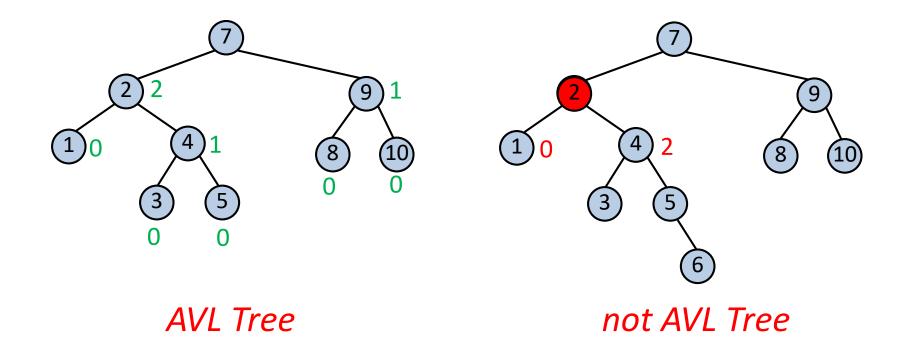
Outline

Dictionaries and Balanced Search Trees

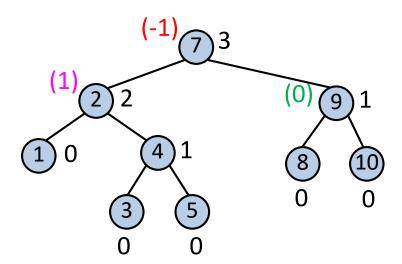
- Dictionary ADT
- Review: Binary Search Trees
- AVL Trees
 - insertion
 - restoring the AVL Property: Rotations
 - full code for insertion
 - deletion

AVL Trees

- Adelson-Velski and Landis, 1962
- AVL Tree is a BST with height-balance property
 - for any node v, heights of its left and right subtrees differ by at most 1



AVL Trees



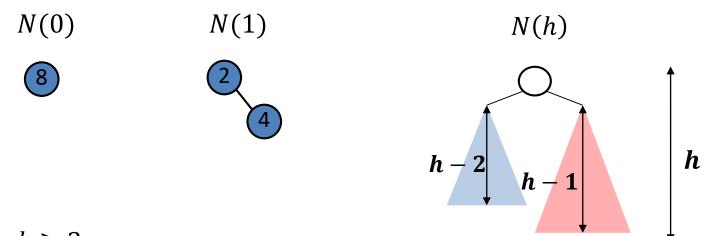
- AVL Tree is a BST with height-balance property
 - for any node v, heights of its left and right subtrees differ by at most 1
 - in other words, $height(v.right) height(v.left) \in \{-1, 0, 1\}$
 - -1 means v is *left-heavy*
 - 0 means v is balanced
 - \blacksquare +1 means v is right-heavy
- Need to store at each node v its height
 - enough to store **balance factor** = height(v.right) height(v.left)
 - fewer bits
 - but code more complicated, especially for deleting
 - no details

Height of an AVL tree

Theorem: AVL tree on n nodes has $\Theta(\log n)$ height

Proof:

- Only need upper bound, as height is $\Omega(\log n)$
- Let N(h) be the *smallest* number of nodes an AVL tree of height h can have
 - any AVL tree of height h has number of nodes $n \ge N(h)$



- For $h \ge 2$ $N(h) = \frac{N(h-1) + N(h-2) + 1}{N(h-2) + N(h-2)} = 2N(h-2)$
- Thus $N(h) \ge 2N(h-2)$
 - number of nodes doubles every two levels ⇒ exponential growth

Height of an AVL tree

Proof: (continued)

- \blacksquare N(h) is the *least* number of nodes in height-h AVL tree
 - any AVL tree of height h has number of nodes $n \ge N(h)$
- N(0) = 1, N(1) = 2 and $N(h) \ge 2N(h-2)$ for $h \ge 2$ and
- Keep expanding until the base case

$$N(h) \ge 2N(h-2) \ge 2^2N(h-2\cdot 2) \ge 2^3N(h-2\cdot 3) \ge \cdots \ge 2^iN(h-2\cdot i)$$
case 1: odd h
case 2: even h

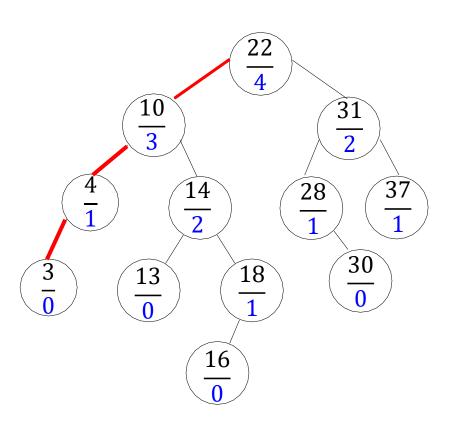
- expand until $h-2 \cdot i=1$
- rewriting, i = (h-1)/2 $N(h) \ge 2^{(h-1)/2}N(1) = 2^{\frac{h-1}{2}} \cdot 2$
- take log $\log N(h) \ge \frac{h-1}{2} + 1$
 - rearrange $h \le 2\log N(h) 2 \le 2\log n 2$
- In both cases, h is $O(\log n)$

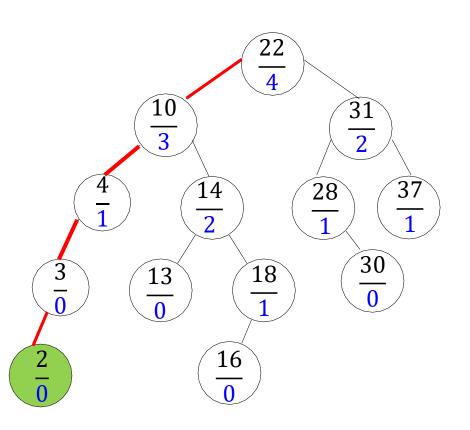
- expand until $h 2 \cdot i = 0$
- rewriting, i = h/2 $N(h) \ge 2^{h/2}N(0) = 2^{\frac{h}{2}} \cdot 1$
- take log $\log N(h) \ge \frac{h}{2}$
- rearrangeh ≤ 2log N(h) ≤ 2log n

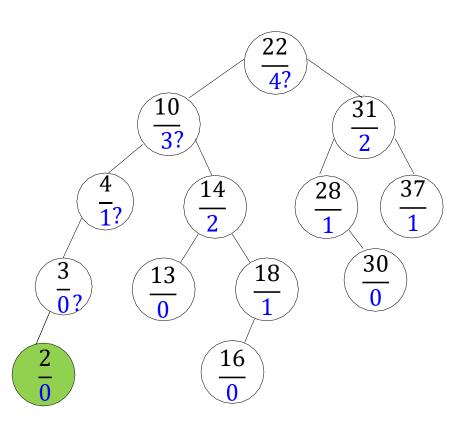
Outline

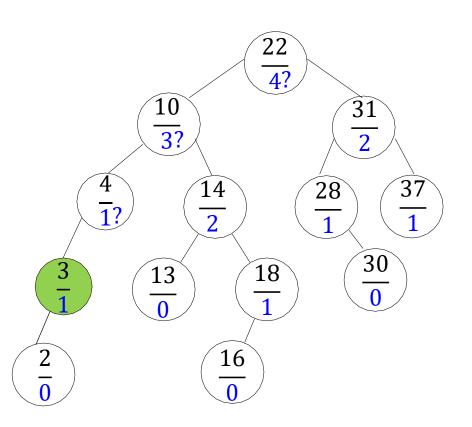
Dictionaries and Balanced Search Trees

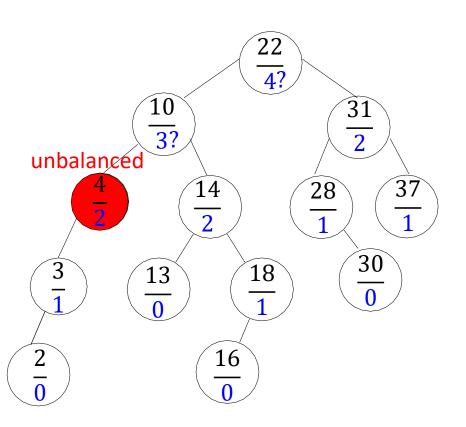
- Dictionary ADT
- Review: Binary Search Trees
- AVL Trees
 - insertion
 - restoring the AVL Property: Rotations
 - full code for insertion
 - deletion











AVL insertion

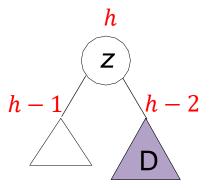
- AVL::insert(T, k, v)
 - 1. insert (k, v) into T with the usual BST insertion
 - assume insert returns new leaf where the key was inserted
 - heights of nodes on path from this leaf to root may have increased
 - by at most 1
 - 2. move up from the new *leaf* to the root, updating heights
 - either use parent-links, or BST::insert could return the path
 - 3. if the height difference becomes ± 2 for some node on this path, the node is *unbalanced*
 - must re-structure the tree to restore height-balance property

Outline

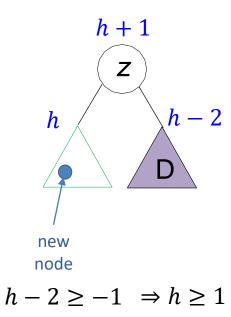
- Dictionaries and Balanced Search Trees
 - Dictionary ADT
 - Review: Binary Search Trees
 - AVL Trees
 - insertion
 - restoring the AVL Property: Rotations
 - full code for insertion
 - deletion

■ Let z be the first unbalanced node on path from inserted node to root

before insertion

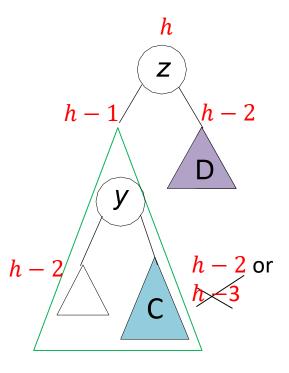


after insertion

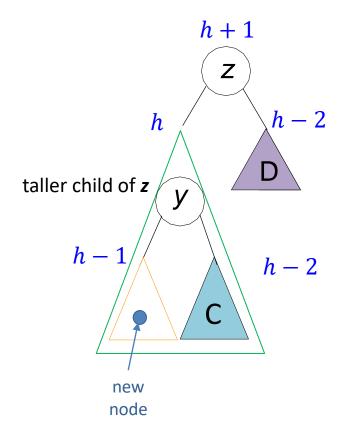


■ Let z be the first unbalanced node on path from inserted node to root

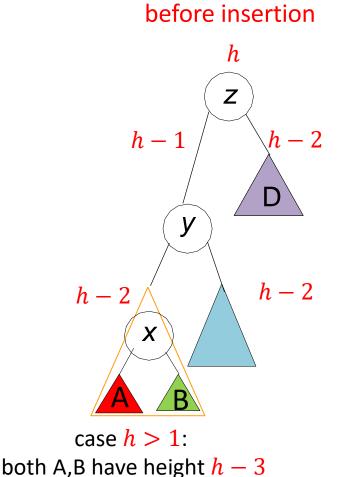
before insertion



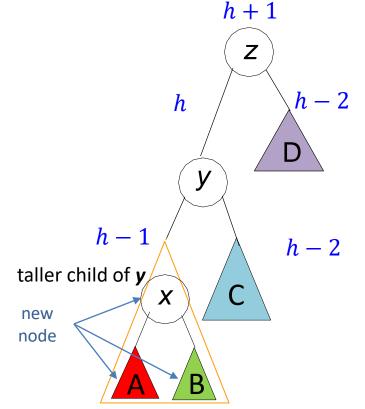
after insertion, $h \ge 1$



■ Let z be the first unbalanced node on path from inserted node to root



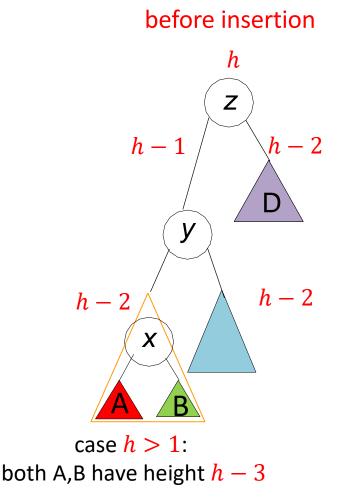
after insertion, $h \ge 1$



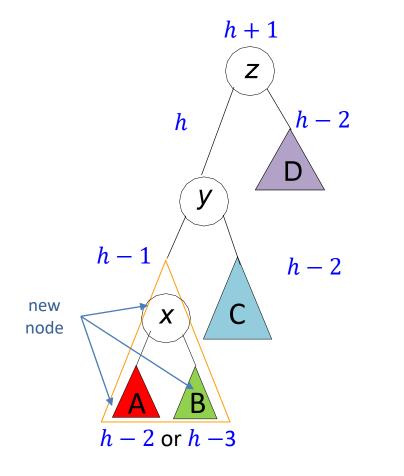
case h = 1: x = new node; A, B have height = -1 = h - 2 case h > 1: $x \ne$ new node; one of A,B has height h - 2,

another h-3

■ Let z be the first unbalanced node on path from inserted node to root

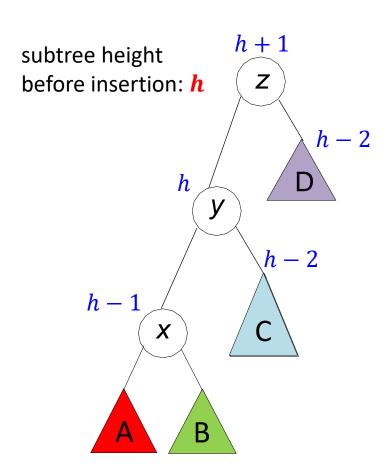


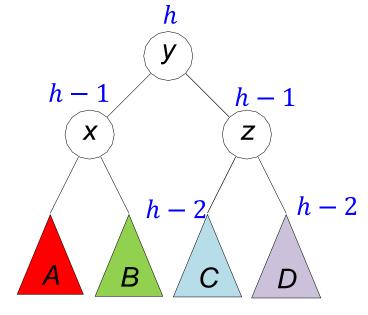
after insertion, $h \ge 1$



Restoring Height: Right Rotation

- Let z be the first unbalanced node on path from inserted node to the root
- Right rotation is used for left-left imbalance (taller left child and left grandchild)

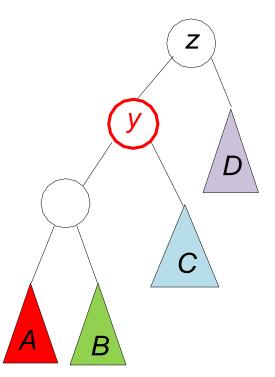




- BST order is preserved
- Balanced
- Same subtree height h as before insertion

Right Rotation Pseudocode

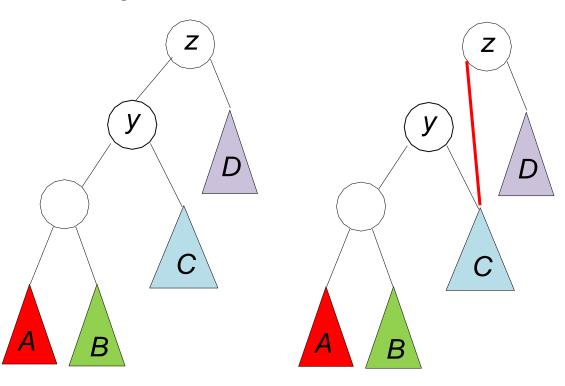
Right rotation on node z



```
 rotate-right(z) \\ y \leftarrow \textit{z.left}, z.left \leftarrow y.right, y.right \leftarrow z \\ setHeightFromChildren(z), setHeightFromChildren(y) \\ return y // returns new root of subtree
```

Right Rotation Pseudocode

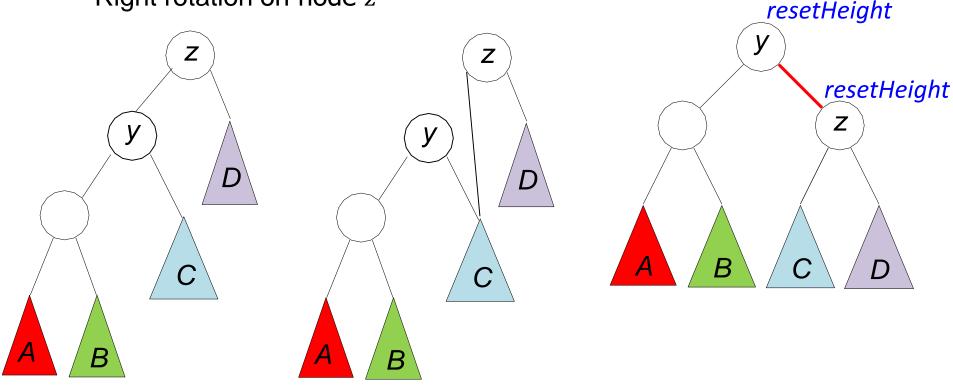
Right rotation on node z



```
 rotate-right(z) \\ y \leftarrow z.left, \textbf{z.left} \leftarrow \textbf{y.right}, \textbf{y.right} \leftarrow z \\ setHeightFromChildren(z), setHeightFromChildren(y) \\ return y // returns new root of subtree
```

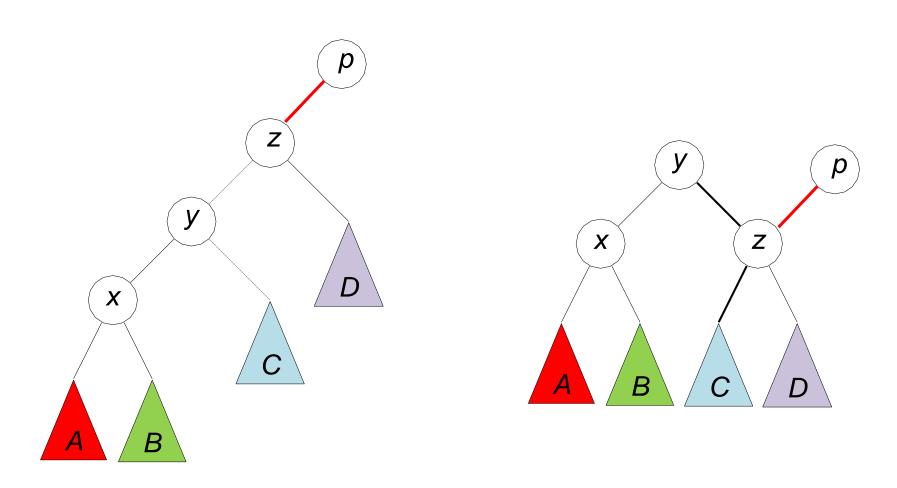
Right Rotation Pseudocode

Right rotation on node z

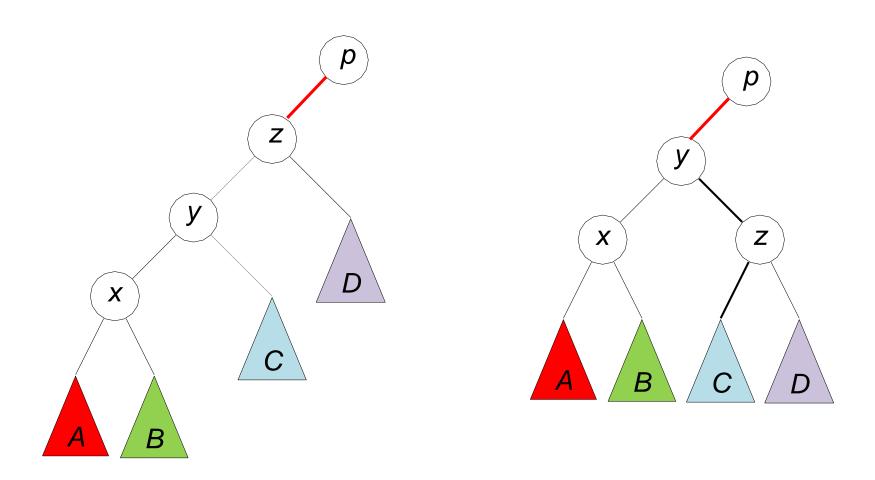


```
 rotate-right(z) \\ y \leftarrow z.left, z.left \leftarrow y.right, \textit{y.right} \leftarrow \textit{z} \\ setHeightFromChildren(z), setHeightFromChildren(y) \\ return y // returns new root of subtree
```

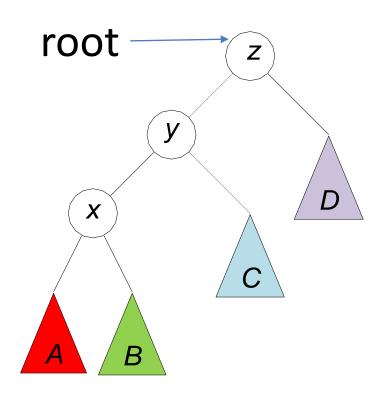
• If z had a parent p, need to set y as the new child of p

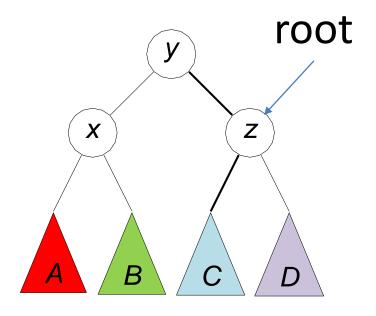


• If z had a parent p, need to set y as the new child of p

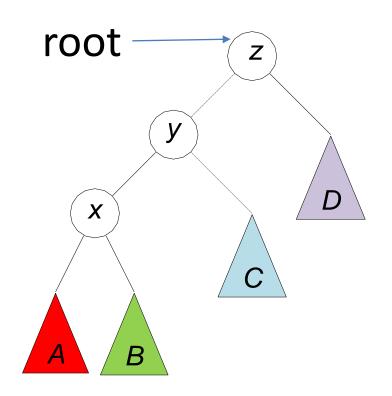


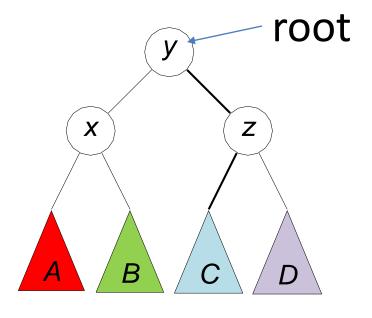
• If node z was the tree root, then y becomes new tree root

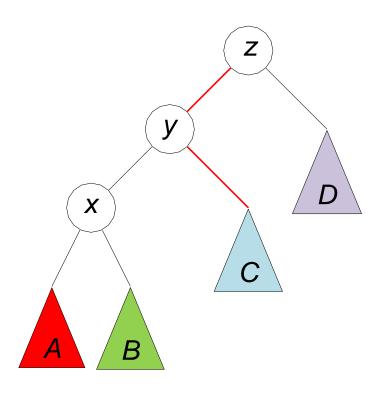


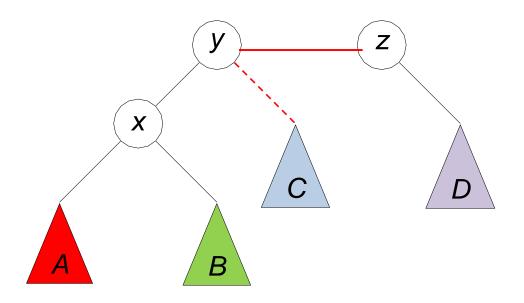


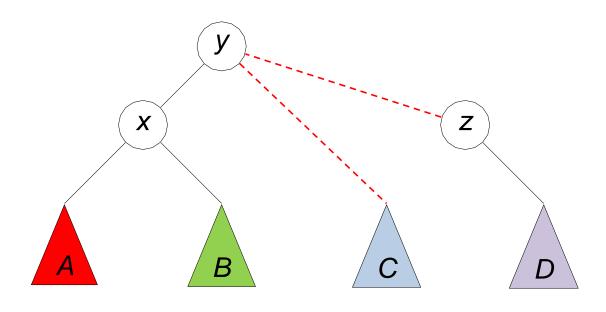
• If node z was the tree root, then y becomes new tree root

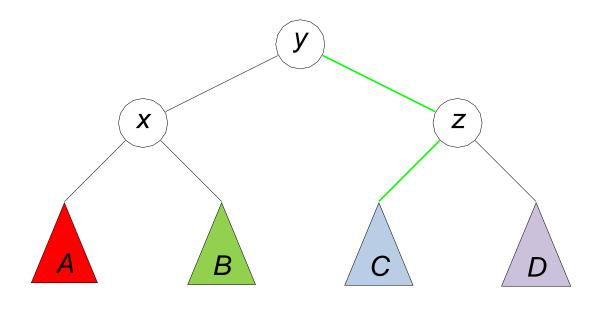






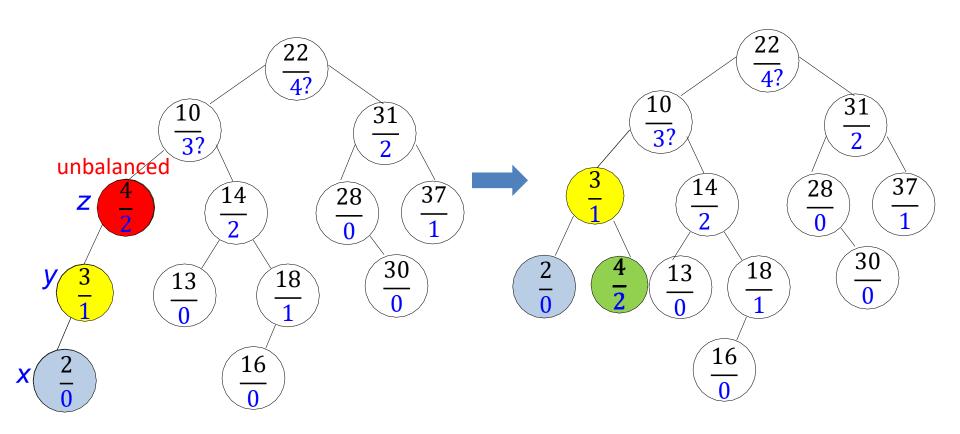






AVL Insertion Example

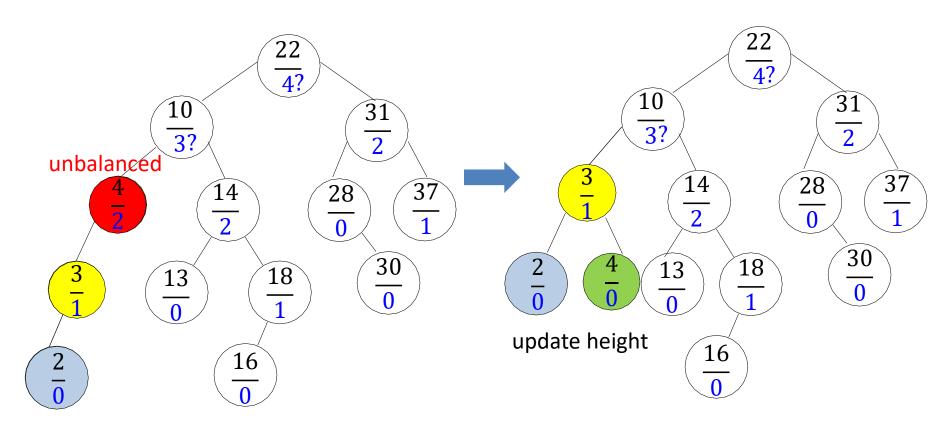
Example: AVL::insert(2)



Fix with right rotation on node z

AVL Insertion Example

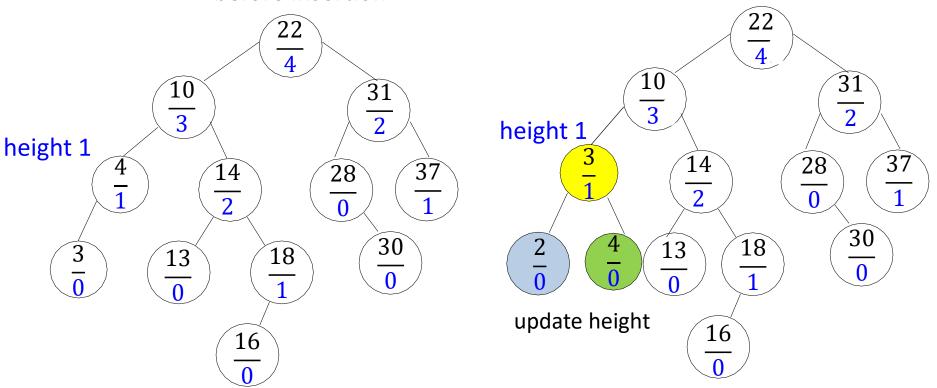
Example: AVL::insert(2)



Fix with right rotation on node z

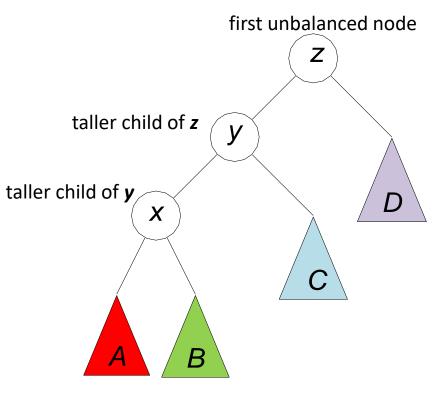
AVL Insertion Example

Example: AVL::insert(2)

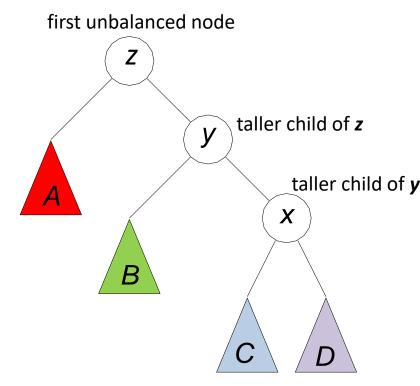


- After rotation all node heights are correct
 - can stop traversing up

Restoring Height Balance, Case 2



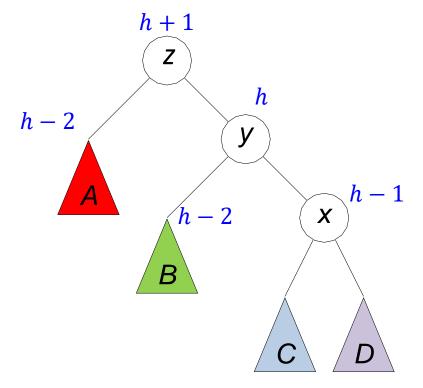
Case 1: Fixed with right rotation left-left imbalance



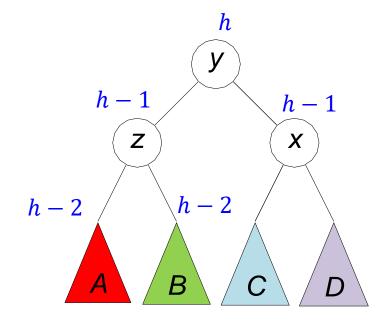
Case 2: Fixed with left rotation right-right imbalance

Case 2: Left Rotation

- Left rotation on node z is symmetric to right rotation
- Used to fix right-right imbalance



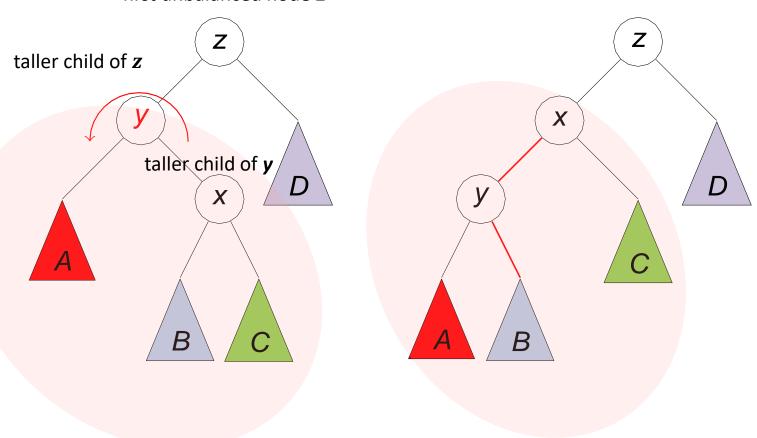
heights for case 2 are deduced exactly as for case 1



- BST order is preserved
- Balanced
- Same height as before insertion

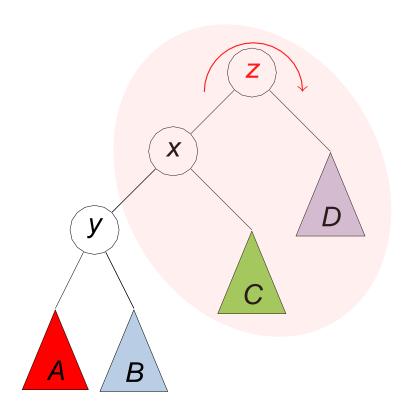
Case 3: Left-Right imbalance

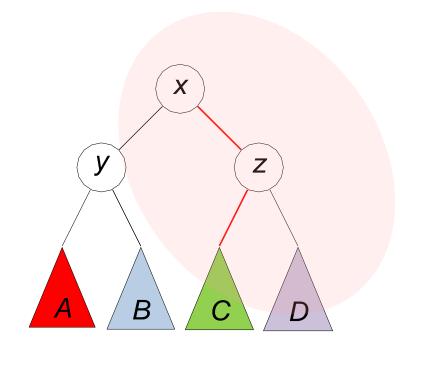
first unbalanced node z



- Fix with double right rotation on node z
 - first, left rotation at y

Case 3: Left-Right imbalance

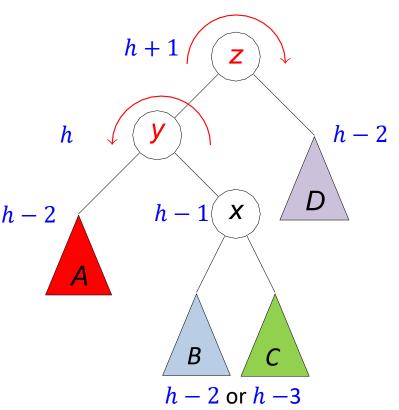


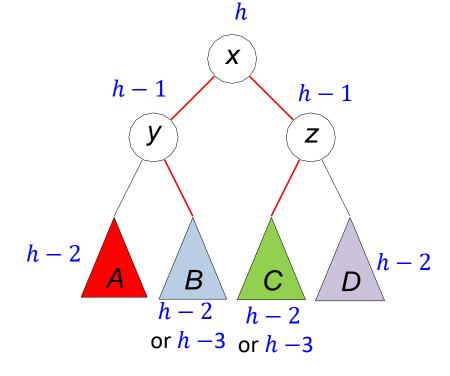


- Fix with double rotation on node z
 - first, left rotation at y
 - second, right rotation at z

Case 3: Left-Right imbalance

Cumulative result of double right rotation on node z

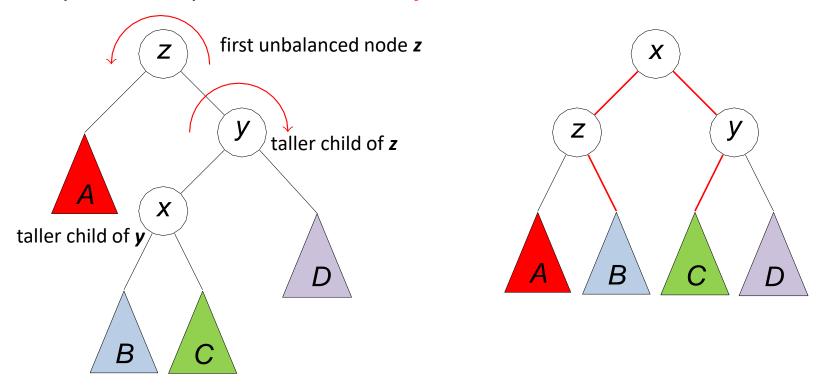




- Left rotation at y, right rotation at z
- BST order is preserved
- Useful for left-right imbalance
 - can argue BST ordering is preserved, as before
 - can argue height balance property restored, as before

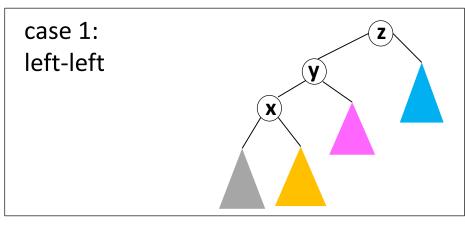
Case 4: Right-Left Imbalance

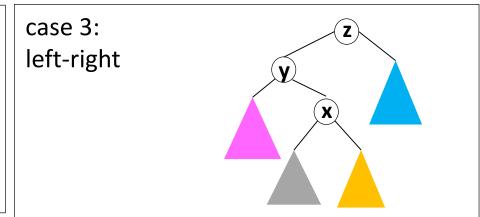
Symmetrically, there is a double left rotation on node z

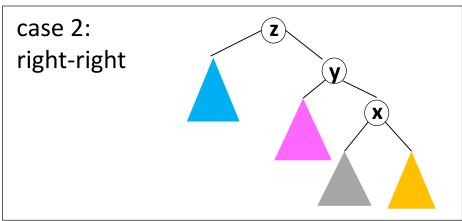


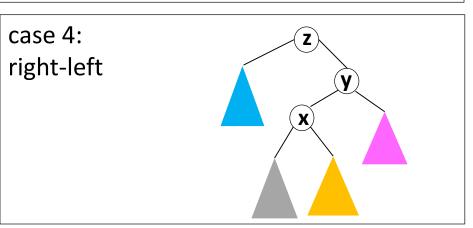
- First, a right rotation at y, second, a left rotation at z
- BST order is preserved
- Used for right-left imbalance
 - can argue BST ordering is preserved, as before
 - can argue height balance property restored, as before

Unbalanced Node z: all 4 cases









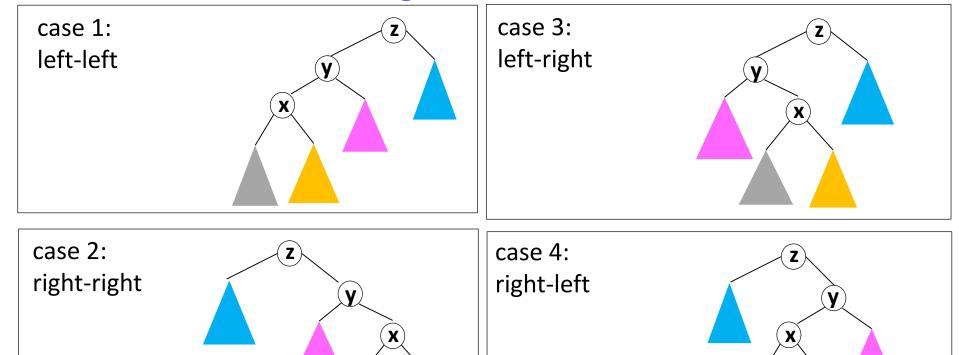
- z is the first unbalanced node on the path from inserted node to the root
- y is the taller child of z
 - z is guaranteed to have one child taller than the other
- x is the taller child of y
 - y is guaranteed to have one child taller than the other

Fixing Unbalanced AVL tree

```
restructure(x, y, z)
      x: node of BST that has an unbalanced grandparent,
      y and z: the parent and grandparent of x
                :// Right rotation
case 1
                 return rotate-right(z)
              :// Double-right rotation z.left \leftarrow rotate-left(y)
                  return rotate-right(z)
                :// Double-left rotation
                  z.right \leftarrow rotate-right(\gamma)
                  return rotate-left(z)
                : // Leftrotation
case 2
                  return rotate-left(z)
```

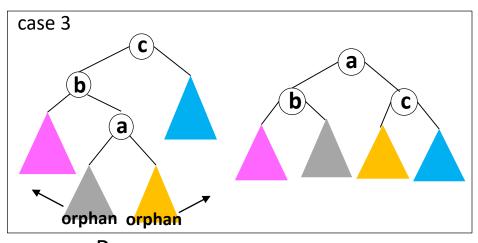
- In each case, the middle key of x, y, z becomes the new root of the subtree
- Running time is $\Theta(1)$

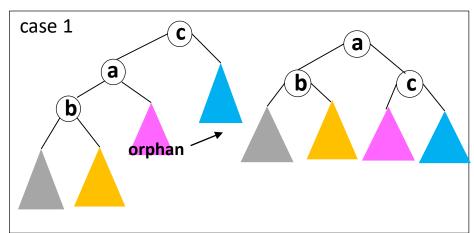
Tri-Node Restructuring



All four cases can be handled with one method, Tri-Node restructuring

Tri-Node Restructuring for Case 1 and Case 3





- Rename
 - a = node with middle key
 - **b** = node with smallest key
 - c = node with largest key
- Restructure
 - **a** becomes new subtree parent
 - b becomes left child of a
 - c becomes right child of a
 - subtrees of b, c with root not equal to a stay attached to where they were
 - one or two subtrees of a get "orphaned"
 - left subtree, if orphan, becomes right child of b
 - right subtree, if orphan, becomes left child of c

Outline

- Dictionaries and Balanced Search Trees
 - Dictionary ADT
 - Review: Binary Search Trees
 - AVL Trees
 - insertion
 - restoring the AVL Property: Rotations
 - full code for insertion
 - deletion

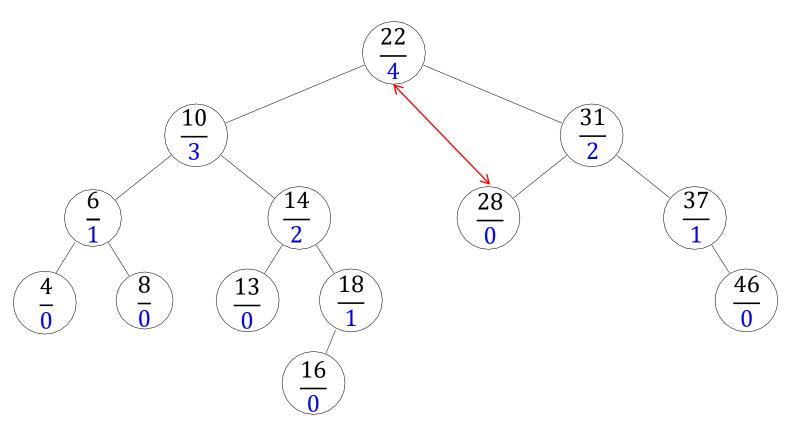
AVL insertion

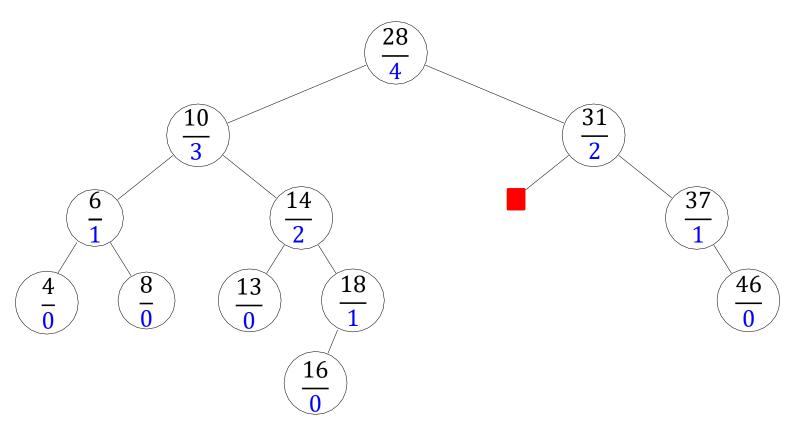
```
AVL::insert(k, v)
       z \leftarrow BST::insert(k, v)
       while (z is not NIL)
            if (|z| left . height - z . right . height| > 1) then
                    let y be tallest child of z
                    let x be tallest child of y
                    z \leftarrow restructure(x, y, z)
                    break
                                          // done after one restructure
             setHeightFromSubtrees(z)
             z \leftarrow \text{parent of } z
```

```
\begin{tabular}{l} setHeightFromSubtrees(u) \\ \hline \textbf{if } u \ \mbox{is not an empty subtree} \\ \hline u.height \ \leftarrow 1 \ + \ \max\{u.left.height, u.right.height\} \\ \hline \end{tabular}
```

Outline

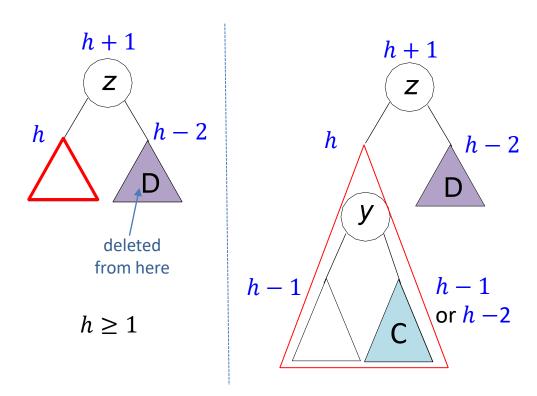
- Dictionaries and Balanced Search Trees
 - Dictionary ADT
 - Review: Binary Search Trees
 - AVL Trees
 - insertion
 - restoring the AVL Property: Rotations
 - full code for insertion
 - deletion



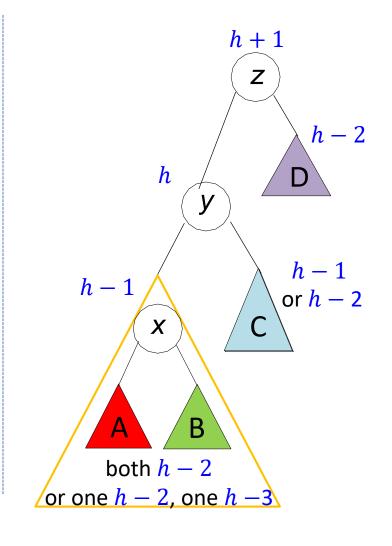


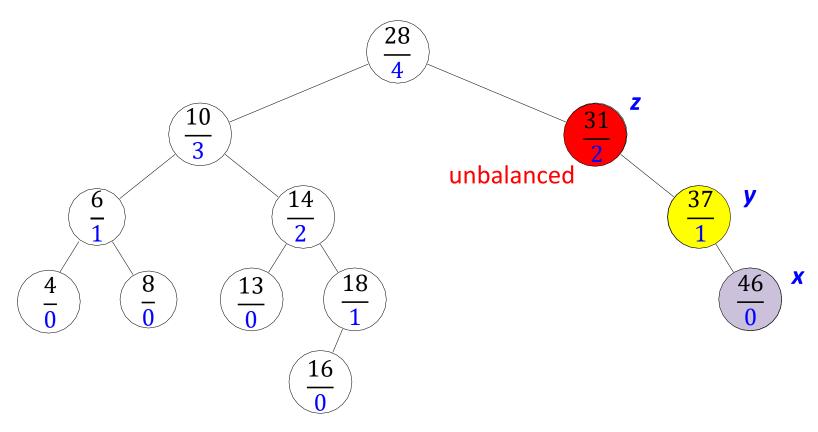
Restoring Height After Deletion: Case 1

■ Let z be the *first* unbalanced node on path from deleted node to the root

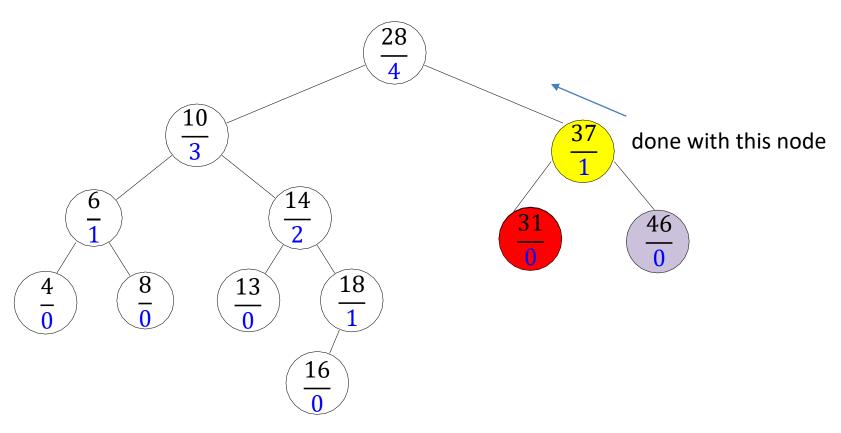


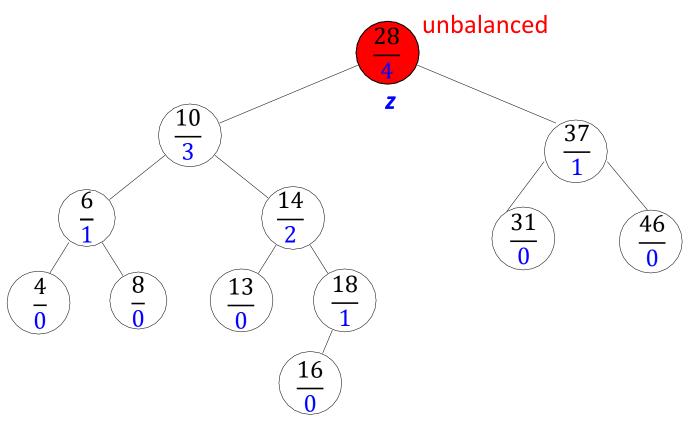
- Rebalancing is similar to that after insertion, but
 - while z is guaranteed to have one taller child
 - y may have both children of the same height
 - which child to take as x?

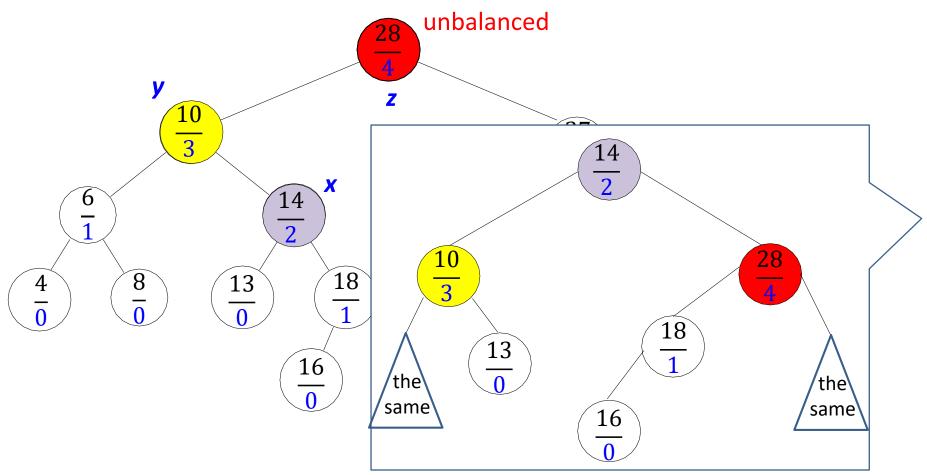




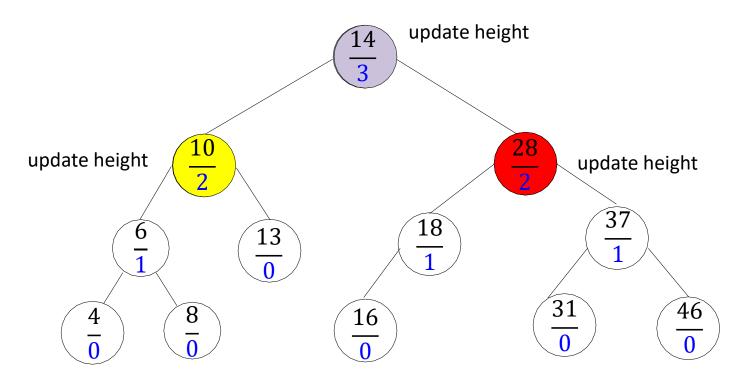
- Fix with left rotation on node z
- Or trinode restructuring on node z



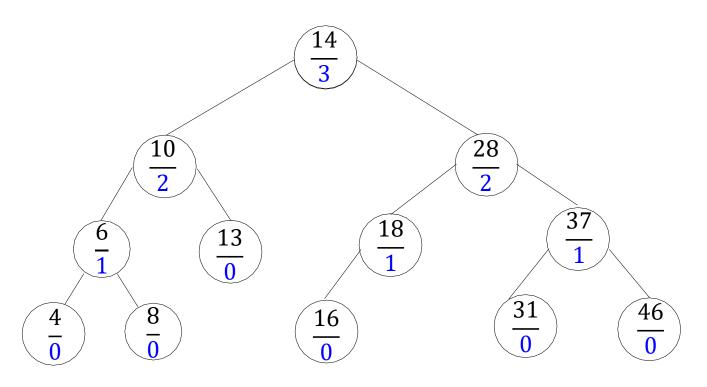




- Fix with double right rotation (left rotate y, then rotate right z)
- Or trinode restructuring on node z



Example: *AVL::delete*(22)

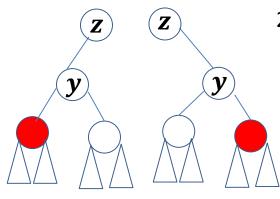


Rebalanced

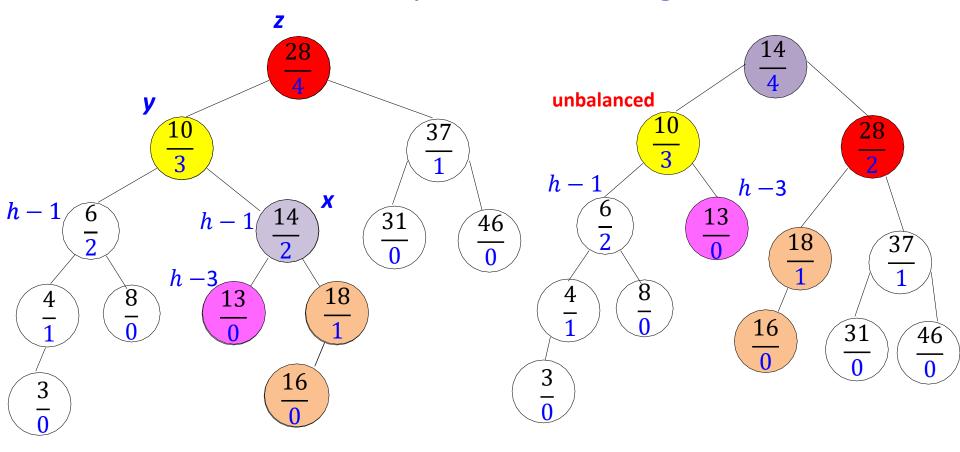
AVL Deletion

- *AVL*::delete(*T*, *k*)
 - first, delete k from T with BST deletion
 - delete returns parent z of the deleted node
 - heights of nodes on path from z to root may have decreased
 - next, move up the tree from z, updating heights
 - if height difference is ± 2 at node z, then z is unbalanced
 - re-structure tree to restore height-balance property
 - like rebalancing for insertion, with two differences
 - restructuring after deletion does not guarantee to restore tree height to what it was before deletion
 - must continue path up the tree, fixing any imbalances
 - 2. tallerChild(y)
 - if left and right children of y have the same height must apply same side rule:
 - return left child of y if y is itself the left child
 - return right child of y if y is itself the right child

tallerChild

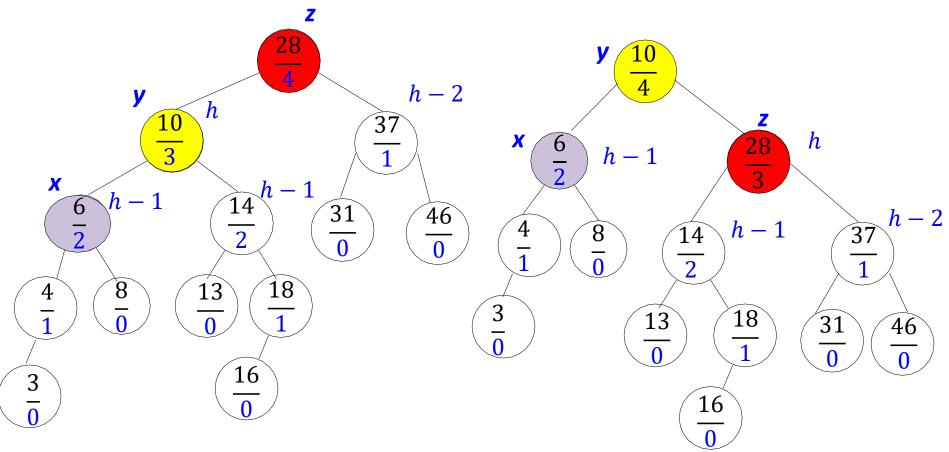


Incorrect Deletion Example not Following Same Side Rule



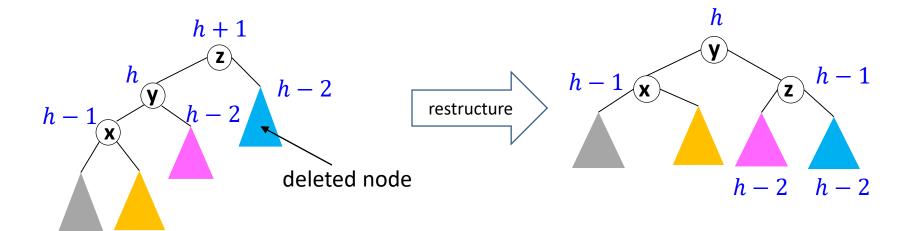
- The "other" child of y has height h-1
 - children of x get separated
 - one of them has height h-3 and becomes a sibling of the "other" child of y which has height h-1

AVL Deletion Example Following Same Side Rule



- Rotate or trinode restructuring
- Rebalanced!
 - children of x do not separate

Reduced Height after Deletion



- If 'not the tallest' child of y has height h-2, height decreases after rebalancing
 - might cause imbalance higher up the tree

AVL Delete Pseudocode

```
AVL::delete(k)
       z \leftarrow BST::delete(k)
       // Assume z is the parent of the BST node that was removed
       while (z is not NIL)
           if (|z| left . height - z . right . height| > 1) then
                   let y be tallest child of z
                   let x be tallest child of y
                   // break ties to prefer 'the same side'
                   z \leftarrow restructure(x, y, z)
           setHeightFromSubtrees(z)
          // must continue checking the path upwards
            z \leftarrow \text{parent of } z
```

AVL Tree Operations Runtime

- AVL::search
 - implemented just like in BSTs, runtime is $\Theta(height)$
- AVL::insert
 - BST::insert
 - then check and update along path to new leaf
 - restructure restores the height of the tree to what it was
 - so restructure will be called at most once
 - total cost Θ(height)
- AVL::delete
 - BST::delete, then check and update along path to deleted node
 - restructure may be called $\Theta(height)$ times
 - total cost $\Theta(height)$
- Total cost for all operations is $\Theta(height) = \Theta(\log n)$
 - but in practice, the constant is quite large
- There are other realizations of ADT dictionary that are better in practice