CS 240 - Data Structures and Data Management

Module 5: Other Dictionary Implementations

O. Veksler

Based on lecture notes by many previous cs 240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2024

Outline

- Dictionaries with Lists Revisited
- Dictionary ADT
- implementations so far
- Skip Lists
- Biased Search Requests

Outline

- Dictionaries with Lists Revisited
- Dictionary ADT
- implementations so far
- Skip Lists
- Biased Search Requests

Dictionary ADT: Implementations thus far

- A dictionary is a collection of key-value pairs (KVPs)
- search, insert, and delete
- Realizations
- Balanced search trees (AVL trees)
- $\quad \Theta(\log n)$ search, insert, and delete
- complex code and not necessarily the fastest running time in practice
- Binary search trees
- Θ (height) search, insert and delete
- simpler than AVL tree, randomization helps efficiency
- Ordered array
- simple implementation, $\Theta(\log n)$ search
- $\Theta(n)$ insert and delete
- Ordered linked list
- simple implementation

- $\Theta(n)$ search, insert and delete
- search is the bottleneck, insert and delete would be $\Theta(1)$ if do search first and account for its running time separately
- efficient search (like binary search) in ordered linked list?

Outline

Dictionaries with Lists Revisited

- Dictionary ADT
- implementations so far
- Skip Lists
- Re-ordering items

Skip Lists: Motivation

- Build a hierarchy of linked lists to imitate binary search in ordered linked list wi
- start from the bottom list and take every second item in the list above
- downward links are needed to navigate from list above to the list below

Skip Lists: Motivation

- Search goes through the higher lists while possible, before dropping down to the list below
- top list enables search by $1 / 2$ of the list, next by $1 / 4$ of the list, and so on
- Search(83)

Skip Lists: Motivation

- Hierarchy of linked lists
- each list has $1 / 2$ of items from the list below
- total number of linked lists (height) is $\log n$
- total number of nodes $\leq 2 n$

- When searching, go through the highest level possible
- thus visit at most two items at each level, and total time to search $\Theta(\log n)$

Skip Lists: Motivation

- Deleted 65, no longer every second item is in the list above

- Big problem: deletion or insertion of items ruins 'every second item is in the list above' property
- crucial property for efficiency
- Thus the hierarchy of linked lists works only for static dictionary
- know all items beforehand, and do not insert or delete
- but in static case an ordered array is more efficient in practice (no links)
- Randomization enables hierarchical linked list with efficient insert and delete
- instead of requiring a deterministic subset of items in list above, randomly chose a subset of the items in the list above

Skip Lists: Motivation

- For next level, choose each item from previous level with probability $1 / 2$ (coin toss)
- i th list is expected to have $n / 2^{i}$ nodes
- Expect about $\log (n)$ lists in total

Skip Lists: Motivation

- Insert 'boundary' nodes with special sentinel symbols $-\infty$ and $+\infty$
- to simplify code for searching

Skip Lists: Motivation

- Insert sentinel only level, with only $-\infty$ and $+\infty$
- to simplify code for searching

Skip Lists [Pugh’1989]

- A hierarchy S of ordered linked lists (levels) $S_{0}, S_{1}, \ldots, S_{h}$
- S_{0} contains the KVPs of S in non-decreasing order
- other lists store only keys
- each S_{i} contains special keys (sentinels) $-\infty$ and $+\infty$
- each S_{i} is randomly generated subsequence of S_{i-1} i.e., $S_{0} \supseteq S_{1} \supseteq \ldots \supseteq S_{h}$
- S_{h} contains only sentinels, the left sentinel is the root

- n is number of KVP (number of items stored); in this example, $n=9$

Skip Lists

- Show only keys from now on

- Each KVP belongs to a tower of nodes
- tower height is number of nodes - 1
- Height of the skip list is the maximum height of any tower
- height is 3 in this example
- Each node p has references to $\operatorname{after}(p)$ and below (p)
- There are (usually) more nodes than keys
- search(87)

- For each level, predecessor of key k is
- If key k is present at the level: node before node with key k
- if key k is not present at the level: node before node where k would have been
- $\quad P$ collects predecessors of key k for all levels
- nodes where we drop down and the rightmost node in S_{0} with key $<k$
- these are needed for insert/delete
- $\quad k$ is in skip list if and only if P. top(). after has key k

Search in Skip Lists

```
getPredecessors(k)
    p\leftarrowroot
    P}\leftarrow\mathrm{ stack of nodes, initially containing }
    while p.below }\not=NIL\mathrm{ do // keep dropping down until reach S S
    p}\leftarrowp\mathrm{ . below
    while p.after.key < k do
        p\leftarrowp.after //move to the right
        P.push(p) // this is next predecessor
    return P
```

skipList::search(k)
$P \leftarrow$ getPredecessors (k)
$q \leftarrow P \cdot \operatorname{top}() \quad / /$ predecessor of k in S_{0}
if q.after. key $=k$ return q.after
else return 'not found, but would be after q '

Insert in Skip Lists

$S_{3} \longleftarrow \quad$ if in S_{2}, then insert new item with probability $1 / 2$
$S_{2} \longleftarrow \quad$ if in S_{1}, then insert new item with probability $1 / 2$
$S_{1} \longleftarrow$ insert new item with probability $1 / 2$
$S_{0} \longleftarrow$ insert new item

- Keep "tossing a coin" until T appears
- Insert into S_{0} and as many other S_{i} as there are heads
- Examples
- H, H, T (insert into $\left.S_{0}, S_{1}, S_{2}\right) \Rightarrow$ will say $i=2$
- H, T (insert into $\left.S_{0}, S_{1}\right) \quad \Rightarrow$ will say $i=1$
- T
(insert into S_{0})
\Rightarrow will say $i=0$

Insert in Skip Lists: Example 1

- skipList::insert $(52, v)$
- coin tosses: $H, T \Rightarrow i=1$
- getPredecessors(52)

Insert in Skip Lists: Example 1

- skipList::insert(52,v)
- coin tosses: $H, T \Rightarrow i=1$
- getPredecessors(52)
- now insert into S_{0} and S_{1}

Insert in Skip Lists: Example 2

- skipList::insert(100,v)
- coin tosses: $H, H, H, T \Rightarrow i=3$
- first increase height

Insert in Skip Lists: Example 2

- skipList::insert(100,v)
- coin tosses: $H, H, H, T \Rightarrow i=3$
- first increase height
- next getPredecessors (100)

Insert in Skip Lists: Example 2

- skipList::insert(100,v)
- coin tosses: $H, H, H, T \Rightarrow i=3$
- first increase height
- next getPredecessors (100)

Insert in Skip Lists: Example 2

- skipList::insert(100,v)
- coin tosses: $H, H, H, T \Rightarrow i=3$
- first increase height
- next getPredecessors (100)
- insert new key

Insert in Skip Lists: Example 2

- skipList::insert(100,v)
- coin tosses: $H, H, H, T \Rightarrow i=3$
- first increase height
- next getPredecessors (100)
- insert new key

Insert in Skip Lists

```
skipList::insert(k,v)
    for }(i\leftarrow0;\operatorname{random}(2)=1;i\leftarrowi+1){
                                    // random tower height
for (h\leftarrow0,p\leftarrowroot.below; p\not=NILL; p\leftarrowp.bellow) do h ++
while i\geqh // increase skip-list height if needed
    root \leftarrow new sentinel-only list linked in appropriately
        h++
P}\leftarrow\mathrm{ getPredecessors(k)
p\leftarrowP.pop()
zBellow }\leftarrow\mathrm{ new node with ( }k,v\mathrm{ ) inserted after p // insert ( }k,v)\mathrm{ in }\mp@subsup{S}{0}{
while }i>
    p}\leftarrowP\cdotpop(
    z}\leftarrow\mathrm{ new node with }k\mathrm{ added after }
    z.below}\leftarrowz\mathrm{ Bellow
    zBellow \leftarrow &
    i\leftarrowi-1
```


Example: Delete in Skip Lists

- skipList::delete(65)
- first getPredecessors $(S, 65)$
- then delete key 65 from all S_{i}
- P has predecessor of each node to be deleted

$$
P=-\infty
$$

Example: Delete in Skip Lists

- skipList::delete(65)
- first getPredecessors $(S, 65)$
- then delete key 65 from all S_{i}
- P has predecessor of each node to be deleted
- height decrease: delete all unnecessary S_{i}, if any

Example: Delete in Skip Lists

- skipList::delete(65)
- first getPredecessors $(S, 65)$
- then delete key 65 from all S_{i}
- P has predecessor of each node to be deleted
- height decrease: delete all unnecessary S_{i}, if any

Delete in Skip Lists

skipList::delete(k)
$P \leftarrow \operatorname{getPredecessors}(k)$
while P is non-empty

$$
\begin{aligned}
& p \leftarrow P . \operatorname{pop}() \quad / / \text { predecessor of } k \text { in some layer } \\
& \text { if } p . \text { after. key }=k \\
& \quad p . \text { after } \leftarrow p . \text { after.after }
\end{aligned}
$$

$$
\text { else break } \quad / / \text { no more copies of } k
$$

$p \leftarrow$ left sentinel of the root-list
while p.below. after is the ∞ sentinel
// the two top lists are both only sentinels, remove one
p.below \leftarrow p.below.below // removes the second empty list
p.after.below $\leftarrow p$.after.below.below

Skip List Analysis

- Let X_{k} be the height of tower for key k

$$
\begin{array}{ll}
P\left(X_{k} \geq 1\right)=\frac{1}{2} & \begin{array}{l}
P\left(X_{k} \geq 2\right)=\frac{1}{2} \cdot \frac{1}{2} \\
\text { toss } H_{1} \ldots .
\end{array} \\
\begin{array}{l}
P\left(X_{k} \geq 3\right)=\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \\
\text { toss HHH.... }
\end{array}
\end{array}
$$

- In general $P\left(X_{k} \geq i\right)=P(\underbrace{H H \ldots H}_{i \text { times }})=\left(\frac{1}{2}\right)^{i}$
- In the worst case, the height of a tower could be arbitrary large
- no bound on height in terms of n
- Operations could be arbitrarily slow, and space requirements arbitrarily large
- but this is exceedingly unlikely
- Let us analyse expected run-time and space-usage (randomized data structure)

Skip List Analysis

- Let X_{k} be the height of tower for key k, we know $P\left(X_{k} \geq i\right)=\frac{1}{2^{i}}$
- If $X_{k} \geq i$ then list S_{i} includes key k
- Let $\left|S_{i}\right|$ be the number of keys in list S_{i}
- sentinels do not count towards the length
- $\quad S_{0}$ always contains all n keys

Skip List Analysis

| S_{3} | $I_{3, k 1}=1$ | $I_{3, k 2}=0$ | $I_{3, k 3}=0$ | $I_{3, k 4}=0$ | $\left\|S_{3}\right\|=1$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S_{2} | $I_{2, k 1}=1$ | $I_{2, k 2}=0$ | $I_{2, k 3}=0$ | $I_{2, k 4}=1$ | $\left\|S_{2}\right\|=2$ |
| S_{1} | $I_{1, k 1}=1$ | $I_{1, k 2}=1$ | $I_{1, k 3}=0$ | $I_{1, k 4}=1$ | $\left\|S_{1}\right\|=3$ |
| S_{0} | | | | | |
| | $X_{k 1}=3$ | $X_{k 2}=1$ | $X_{k 3}=0$ | $X_{k 4}=2$ | |

- Let X_{k} be the height of tower for key k, we know $P\left(X_{k} \geq i\right)=\frac{1}{2^{i}}$
- If $X_{k} \geq i$ then list S_{i} includes key k
- Let $\left|S_{i}\right|$ be the number of keys in list S_{i}
- Let $I_{i, k}=\left\{\begin{array}{cc}0 & \text { if } X_{k}<i \\ 1 & \text { if } \quad X_{k} \geq i\end{array}= \begin{cases}0 & \text { if list } S_{i} \text { does not include key } k \\ 1 & \text { if list } S_{i} \text { includes key } k\end{cases}\right.$
- $\left|S_{i}\right|=\sum_{\text {key }{ }_{k} I_{i, k}, ~}^{\text {l }}$
- $E\left[\left|S_{i}\right|\right]=E\left[\sum_{\text {key } k} I_{i, k}\right]=\sum_{\text {key } k} E\left[I_{i, k}\right]=\sum_{\text {key } k} P\left(I_{i, k}=1\right)=\sum_{\text {key } k} P\left(X_{k} \geq i\right)=\sum_{\text {key } k} \frac{1}{2^{i}}=\frac{n}{2^{i}}$
- The expected length of list S_{i} is $\frac{n}{2^{i}}$

Skip List Analysis

S_{4} has only sentinels
$I_{4}=0$

- $\left|S_{i}\right|$ is number of keys in list S_{i}
- $E\left[\left|S_{i}\right|\right]=\frac{n}{2^{i}}$
- Let $I_{i}= \begin{cases}0 & \text { if }\left|S_{i}\right|=0 \\ 1 & \text { if }\left|S_{i}\right| \geq 1\end{cases}$
S_{3}
S_{2}
S_{1}
- $h=1+\sum_{i \geq 1} I_{i} \quad$ (here +1 is for the sentinel-only level)
- Since $I_{i} \leq 1$ we have that $E\left[I_{i}\right] \leq 1$
- Since $I_{i} \leq\left|S_{i}\right|$ we have that $E\left[I_{i}\right] \leq E\left[\left|S_{i}\right|\right]=\frac{n}{2^{i}}$
- For ease of derivation, assume n is a power of 2
- $E[h]=E\left[1+\sum_{i \geq 1} I_{i}\right]=1+\sum_{i \geq 1} E\left[I_{i}\right]=1+\sum_{i=1}^{\log n} E\left[I_{i}\right]+\sum_{i=1+\log n}^{\infty} E\left[I_{i}\right]$

$$
\leq 1+\sum_{i=1}^{\log n} 1+\sum_{i=1+\log n}^{\infty} \frac{n}{2^{i}}
$$

$$
\leq 1+\log n+\sum_{i=0}^{\infty} \frac{n}{2^{i+1+\log n}}
$$

Skip List Analysis

S_{4} has only sentinels

- $\left|S_{i}\right|$ is number of keys in lice C

$$
I_{3}=1
$$

- $E\left[\left|S_{i}\right|\right]=\frac{n}{2^{i}}$
- Let $I_{i}= \begin{cases}0 & \text { if }\left|S_{i}\right|=1 \\ 1 & \text { if }\left|S_{i}\right| \geq\end{cases}$
- $h=1+\sum_{i \geq 1} I_{i} \quad$ (here -
- Since $I_{i} \leq 1$ we have th
- Since $I_{i} \leq\left|S_{i}\right|$ we have
- For ease of derivation, a
- $E[h]=E\left[1+\sum_{i \geq 1} I_{i}\right]=$

$$
\sum_{i=0}^{\infty} \frac{n}{2^{i+1+\log n}}=\sum_{i=0}^{\infty} \frac{n}{2^{i} 2^{1} 2^{\log n}}
$$

Skip List Analysis

- $\left|S_{i}\right|$ is number of keys in list S_{i}
- $E\left[\left|S_{i}\right|\right]=\frac{n}{2^{i}}$
- Let $I_{i}= \begin{cases}0 & \text { if }\left|S_{i}\right|=0 \\ 1 & \text { if }\left|S_{i}\right| \geq 1\end{cases}$
S_{4} has only sentinels
$I_{4}=0$
S_{3}
S_{2}
S_{1}
- $h=1+\sum_{i \geq 1} I_{i} \quad$ (here +1 is for the sentinel-only level)
- Since $I_{i} \leq 1$ we have that $E\left[I_{i}\right] \leq 1$
- Since $I_{i} \leq\left|S_{i}\right|$ we have that $E\left[I_{i}\right] \leq E\left[\left|S_{i}\right|\right]=\frac{n}{2^{i}}$
- For ease of derivation, assume n is a power of 2
- $E[h]=E\left[1+\sum_{i \geq 1} I_{i}\right]=1+\sum_{i \geq 1} E\left[I_{i}\right]=1+\sum_{i=1}^{\log n} E\left[I_{i}\right]+\sum_{i=1+\log n}^{\infty} E\left[I_{i}\right]$

$$
\begin{aligned}
& \leq 1+\sum_{i=1}^{\log n} 1+\sum_{i=1+\log n}^{\infty} \frac{n}{2^{i}} \\
& \leq 1+\log n+\sum_{i=0}^{\infty} \frac{n}{2^{i+1+\log n}} \\
& =1+\log n+1
\end{aligned}
$$

- Expected skip list height $\leq 2+\log n$

Skip List Analysis: Expected Space

- We need space for nodes storing sentinels and nodes storing keys

1. Space for nodes storing sentinels

- there are $2 h+2$ sentinels, where h be the skip list height
- $E[h] \leq 2+\log n$
- expected space for sentinels is at most

$$
E[2 h+2]=2 E[h]+2 \leq 6+2 \log n
$$

2. Space for nodes storing keys

- Let $\left|S_{i}\right|$ be the number of keys in list S_{i}
- $E\left[\left|S_{i}\right|\right]=\frac{n}{2^{i}}$
- expected space for keys is $E\left[\sum_{i \geq 0}\left|S_{i}\right|\right]=\sum_{i \geq 0} E\left[\left|S_{i}\right|\right]=\sum_{i \geq 0} \frac{n}{2^{i}}=2 n$
- Total expected space is $\Theta(n)$

Skip List Analysis: Expected Running Time

- search, insert, and delete are dominated by the runtime of getPredecessors
- So we analyze the expected time of getPredecessors
- runtime is proportional to number of 'drop-down' and 'scan-forward'
- We 'drop-down' h times, where h is skip list height
- expected height h is $0(\log n)$
- total expected time spent on 'drop-down' operations is $0(\log n)$
- Will show next that expected number of 'scan-forward' is also $0(\log n)$
- So total expected running time is $O(\log n)$

Expected Number of Scan-Forward Operations

- Number 'scan-forward' at level i
- assume $i<h$ (if $i=h$, then we are at the top list and do not scan forward at all)
- let v be leftmost key in S_{i} we visit during search
- we v reached by dropping down from S_{i+1}
- let w be the key right after v
- height of tower of w in this case is at least i

- what is the probability of scanning from v to w ?
- if we do scan forward from v to w, then w did not exist in S_{i+1}
- otherwise, we would scan forward from v to w in S_{i+1}
- Thus if we do scan forward from v to w, then the tower of w has height i
- $\quad P$ (tower of w has height $i \mid$ tower of w has height at least i) $=1 / 2$
- scan forward (i.e. at least one scan) from v to w with probability at most $1 / 2$
- 'at most' because we could scan-down down if search key <w
- repeating argument, probability of scan-forward at least l times is at most $(1 / 2)^{l}$
$E[$ \# scan-forward at level $i]=\sum_{l \geq 1} l \cdot \mathrm{P}($ scans $=l) \underset{\substack{\text { (heorem in probability } \\ \text { theory }}}{=} \sum_{\substack{l \geq 1 \\ \text { thens }}} \mathrm{P}($ scans $\geq l) \leq \sum_{l \geq 1} \frac{1}{2^{l}}=1$

Expected Number of Scan-Forward Operations

- At level $i<h$: E [number of scan-forward] ≤ 1
- Also, expected number of scan-forward at level $i<$ number of keys at level S_{i}
- $\quad\left|S_{i}\right|$ is the number of keys in list on level i, and $E\left[\left|S_{i}\right|\right]=\frac{n}{2^{i}}$
- For ease of derivation, assume n is a power of 2
- Expected number of scan-forward over all levels
$\sum_{i \geq 0} E[\#$ of scan-forward at level $i]=$

$$
\begin{aligned}
& =\sum_{i=1}^{\log n} E[\text { \# of scan-for at level } i]+\sum_{i=1+\log n}^{\infty} E[\text { \# of scan-for at level } i] \\
& \leq \sum_{i=1}^{\log n} 1+\sum_{i=1+\log n}^{\infty} \frac{n}{2^{i}} \\
& \leq \log n+1
\end{aligned}
$$

- Expected number of scan-forwards is $0(\log n)$

Arrays Instead of Linked Lists

- As described now, they are no faster than randomized binary search trees
- Can save links by implementing each tower as an array
- this not only saves space, but gives better running time in practice
- when 'scan-forward', we know the correct array location to look at (level i)
- Search(67)

Summary of Skip Lists

- For a skip list with n items
- expected space usage is $O(n)$
- expected running time for search, insert, delete is $O(\log n)$
- Two efficiency improvements
- use arrays for key towers for more efficient implementation
- can show: a biased coin-flip to determine tower-height gives smaller expected run-times
- With arrays and biased coin-flip skip lists are fast in practice and easy to implement

Outline

Dictionaries with Lists Revisited

- Dictionary ADT

implementations so far

- Skip Lists
- Biased Search Requests

Improving Unsorted Lists/Arrays

- Unordered lists/arrays are among simplest data structures to implement
- But for Dictionary ADT
- inefficient search: $\Theta(n)$
- Can we make search in unordered lists/arrays more effective in practice?
- No if items are accessed equally likely
- can show average-case search is $\Theta(n)$
- Yes if the search requests are biased
- some items are accessed much more frequently than others
- $80 / 20$ rule: 80% of outcomes result from 20% of causes
- access = insertion or successful search
- frequently accessed items should be in the front
- two cases
- know the access distribution beforehand
- optimal static ordering
- do not know access distribution beforehand
- dynamic ordering

Optimal Static Ordering

key	A	B	C	D	E
frequency of access	2	8	1	10	5
access probability	$\frac{2}{26}$	$\frac{8}{26}$	$\frac{1}{26}$	$\frac{10}{26}$	$\frac{5}{26}$

- Order

$$
\begin{array}{cccc}
A & B & C & D \\
\frac{2}{26} \cdot 1+\frac{8}{26} \cdot 2+\frac{1}{26} \cdot 3+\frac{10}{26} \cdot 4+\frac{5}{26} \cdot 5 & \approx 3.31
\end{array}
$$

- Order

$$
\begin{array}{ccccc}
D & B & E & A & C \\
\frac{10}{26} \cdot 1+\frac{8}{26} \cdot 2+\frac{5}{26} \cdot 3+\frac{2}{26} \cdot 4+\frac{1}{26} \cdot 5 & \approx 2.54
\end{array}
$$

- Claim: ordering items by non-increasing access-probability minimizes expected access cost, i.e. best static ordering
- static ordering: order of items does not change
- Proof Idea: for any other ordering, exchanging two items that are out-oforder according to access probabilities makes total cost increase

Dynamic Ordering

- Dynamic ordering: order of items is allowed to change
- What if we do not know the access probabilities ahead of time?
- Rule of thumb: recently accessed item is likely to be accessed soon again
- Move-To-Front heuristic (MTF): after search, move the accessed item to the front
- additionally, in list: always insert at the front

- We can also do MTF on an array
- but should then insert and search from back so that we have room to grow

Dynamic Ordering: MTF

- Can show: MTF is "2-competitive"
- no more than twice as bad as the optimal "offline" ordering

Dynamic Ordering: Other Heuristics

- Transpose heuristic: Upon a successful search, swap accessed item with the immediately preceding item

- Avoids drastic changes MTF might do, while still adapting to access patterns
- Frequency-count heuristic: Keep counters how often items were accessed, and sort in non-decreasing order
- works well in practice, but requires extra space

Summary of Biased Search Requests

- We are unlikely to know the access-probabilities of items, so optimal static order is mostly of theoretical interest
- For any dynamic reordering heuristic, some sequence will defeat it
- have $\Theta(n)$ access cost for each item
- MTF and Frequency-Count work well in practice
- For MTF can prove theoretical guarantees
- There is very little overhead for MTF and other strategies, they should be applied whenever unordered arrays or lists are used

