
CS 240 – Data Structures and Data Management

Module 5: Other Dictionary Implementations

O. Veksler

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2024

Outline

 Dictionaries with Lists Revisited

 Dictionary ADT

 implementations so far

 Skip Lists

 Biased Search Requests

Outline

 Dictionaries with Lists Revisited

 Dictionary ADT

 implementations so far

 Skip Lists

 Biased Search Requests

Dictionary ADT: Implementations thus far
 A dictionary is a collection of key-value pairs (KVPs)

 search, insert, and delete

 Realizations

 Balanced search trees (AVL trees)

 Θ(log 𝑛) search, insert, and delete

 complex code and not necessarily the fastest running time in practice

 Binary search trees

 Θ(ℎ𝑒𝑖𝑔ℎ𝑡) search, insert and delete

 simpler than AVL tree, randomization helps efficiency

 Ordered array

 simple implementation, Θ(log 𝑛) search

 Θ(𝑛) insert and delete

6544 69 79 8337 Ordered linked list

 simple implementation

 Θ(𝑛) search, insert and delete

 search is the bottleneck, insert and delete would be Θ(1) if do search first and
account for its running time separately

 efficient search (like binary search) in ordered linked list?

Outline

 Dictionaries with Lists Revisited

 Dictionary ADT

 implementations so far

 Skip Lists

 Re-ordering items

Skip Lists: Motivation
 Build a hierarchy of linked lists to imitate binary search in ordered linked list wi

 start from the bottom list and take every second item in the list above

 downward links are needed to navigate from list above to the list below

6544 69 7923 8337

7937 65

65

Skip Lists: Motivation

6544 69 7923 8337

65

7937 65

 Search goes through the higher lists while possible, before
dropping down to the list below

 top list enables search by ½ of the list, next by ¼ of the list, and so on

 Search(83)

search by
1

2

search by
1

4

Skip Lists: Motivation
 Hierarchy of linked lists

log 𝑛
height

 When searching, go through the highest level possible

 thus visit at most two items at each level, and total time to search Θ(log 𝑛)

 each list has 1/2 of items from the list below

 total number of linked lists (height) is log𝑛

 total number of nodes ≤ 2𝑛

6544 69 7923 8337

65

7937 65

Skip Lists: Motivation

6544 69 7923 8337

65

7937 65

 Deleted 65, no longer every second item is in the list above

 Big problem: deletion or insertion of items ruins ‘every second item is in
the list above’ property

 crucial property for efficiency

 Thus the hierarchy of linked lists works only for static dictionary

 know all items beforehand, and do not insert or delete

 but in static case an ordered array is more efficient in practice (no links)

 Randomization enables hierarchical linked list with efficient insert and delete

 instead of requiring a deterministic subset of items in list above, randomly
chose a subset of the items in the list above

Skip Lists: Motivation

23 37 6544 69 79 8783 94

 For next level, choose each item from previous level with probability ½ (coin toss)

0 0 1 0 1 1 0 1 0

1 0 1 0

44 79
0 1

79

𝑛

expected
number of nodes

𝑛

2

𝑛

22

𝑛

23

 𝑖th list is expected to have 𝑛/2𝑖 nodes

 Expect about log(𝑛) lists in total

44 69 79 87

Skip Lists: Motivation

23 37 6544 69 79 8783 94

 Insert ‘boundary’ nodes with special sentinel symbols −∞ and +∞
 to simplify code for searching

44 79

79

44 69 79 87

−∞ +∞

−∞ +∞

−∞ +∞

−∞ +∞

Skip Lists: Motivation
 Insert sentinel only level, with only −∞ and +∞

 to simplify code for searching

−∞ +∞

23 37 6544 69 79 8783 94

44 79

79

44 69 79 87

−∞ +∞

−∞ +∞

−∞ +∞

−∞ +∞

23,v 37,v 65,v44,v 69,v 79,v 87,v83,v 94,v−∞ +∞

37 65 83 94−∞ +∞

−∞ +∞

65−∞ +∞

𝑆0

𝑆1

𝑆2

𝑆3

Skip Lists [Pugh’1989]
 A hierarchy S of ordered linked lists (levels) 𝑆0, 𝑆1, … , 𝑆ℎ

 other lists store only keys

 𝑆0 contains the KVPs of 𝑆 in non-decreasing order

 each 𝑆𝑖 contains special keys (sentinels) −∞ and +∞

 each 𝑆𝑖 is randomly generated subsequence of 𝑆𝑖−1 i.e., 𝑆0 ⊇ 𝑆1 ⊇ ⋯ ⊇ 𝑆ℎ

 𝑆ℎ contains only sentinels, the left sentinel is the root
root

 𝑛 is number of KVP (number of items stored); in this example, 𝑛 = 9

23 37 6544 69 79 8783 94−∞ +∞

37 65 83 94−∞ +∞

−∞ +∞

65−∞ +∞

𝑆0

𝑆1

𝑆2

𝑆3

Skip Lists
 Show only keys from now on

 Each KVP belongs to a tower of nodes

 tower height is number of nodes − 1

 Each node 𝑝 has references to after(𝑝) and below(𝑝)

 There are (usually) more nodes than keys

tower of height 1

after 65

below 65

 Height of the skip list is the maximum height of any tower

 height is 3 in this example

23 37 6544 69 79 8783 94−∞ +∞

37 65 83 94−∞ +∞

−∞ +∞

65−∞ +∞

𝑆0

𝑆1

𝑆2

𝑆3

Search in Skip Lists
 search(87)

 For each level, predecessor of key 𝑘 is

 If key 𝑘 is present at the level: node before node with key 𝑘

 if key 𝑘 is not present at the level: node before node where 𝑘 would have been

 𝑃 collects predecessors of key 𝑘 for all levels

 nodes where we drop down and the rightmost node in 𝑆0 with key < 𝑘

 these are needed for insert/delete

 𝑘 is in skip list if and only if 𝑃. 𝑡𝑜𝑝(). 𝑎𝑓𝑡𝑒𝑟 has key 𝑘

𝑃 = −∞

65

83

83

comparison
scan-forward

drop-down
comparison

leading to node we do not take

Search in Skip Lists

getPredecessors(𝑘)

𝑝 ← root

𝑃 ← stack of nodes, initially containing 𝑝

while 𝑝. 𝑏𝑒𝑙𝑜𝑤 ≠ 𝑁𝐼𝐿 do

𝑝 ← 𝑝. below

while 𝑝. 𝑎𝑓𝑡𝑒𝑟. 𝑘𝑒𝑦 < 𝑘 do

𝑝 ← 𝑝. 𝑎𝑓𝑡𝑒𝑟

𝑃. 𝑝𝑢𝑠ℎ(𝑝)

return 𝑃

// keep dropping down until reach 𝑆0

// predecessor of 𝑘 in 𝑆0

skipList::search(𝑘)

𝑃 ← getPredecessors 𝑘

𝑞 ← 𝑃. 𝑡𝑜𝑝()

if 𝑞. 𝑎𝑓𝑡𝑒𝑟. 𝑘𝑒𝑦 = 𝑘 return 𝑞. 𝑎𝑓𝑡𝑒𝑟

else return ‘not found, but would be after 𝑞’

// move to the right

// this is next predecessor

Insert in Skip Lists

𝑆0

𝑆1

𝑆2

𝑆3

insert new item

insert new item with probability ½

if in 𝑆1, then insert new item with probability ½

if in 𝑆2, then insert new item with probability ½

 Keep “tossing a coin” until 𝑇 appears

 Insert into 𝑆0 and as many other 𝑆𝑖 as there are heads

 Examples

 𝐻,𝐻, 𝑇 (insert into 𝑆0, 𝑆1, 𝑆2) ⇒ will say 𝑖 = 2

 𝐻, 𝑇 (insert into 𝑆0, 𝑆1) ⇒ will say 𝑖 = 1

 𝑇 (insert into 𝑆0) ⇒ will say 𝑖 = 0

Insert in Skip Lists: Example 1
 skipList::insert(52, 𝑣)

 coin tosses: 𝐻, 𝑇 ⇒ 𝑖 = 1

 getPredecessors(52)

𝑃 = −∞

37

44

−∞

23 37 6544 69 8783 94−∞ +∞

37 65 83 94−∞ +∞

−∞ +∞

65−∞ +∞

𝑆0

𝑆1

𝑆2

𝑆3

Insert in Skip Lists: Example 1
 skipList::insert(52, 𝑣)

 coin tosses: 𝐻, 𝑇 ⇒ 𝑖 = 1

 getPredecessors(52)

 now insert into 𝑆0 and 𝑆1 𝑃 = −∞

37

44

−∞

23 37 6544 69 8783 94−∞ +∞

37 65 83 94−∞ +∞

−∞ +∞

65−∞ +∞

𝑆0

𝑆1

𝑆2

𝑆3

52

52

Insert in Skip Lists: Example 2
 skipList::insert(100, 𝑣)

 coin tosses: 𝐻,𝐻,𝐻, 𝑇 ⇒ 𝑖 = 3

 first increase height

23 37 6544 69 8783 94−∞ +∞

37 65 83 94−∞ +∞

−∞ +∞

65−∞ +∞

𝑆0

𝑆1

𝑆2

𝑆3

Insert in Skip Lists: Example 2
 skipList::insert(100, 𝑣)

 coin tosses: 𝐻,𝐻,𝐻, 𝑇 ⇒ 𝑖 = 3

 first increase height

23 37 6544 69 8783 94−∞ +∞

37 65 83 94−∞ +∞

−∞ +∞

65−∞ +∞

𝑆0

𝑆1

𝑆2

𝑆3

−∞ +∞𝑆4

 next getPredecessors (100)

Insert in Skip Lists: Example 2

23 37 6544 69 8783 94−∞ +∞

37 65 83 94−∞ +∞

−∞ +∞

65−∞ +∞

𝑆0

𝑆1

𝑆2

𝑆3

−∞ +∞𝑆4

 skipList::insert(100, 𝑣)

 coin tosses: 𝐻,𝐻,𝐻, 𝑇 ⇒ 𝑖 = 3

 first increase height

 next getPredecessors (100)

Insert in Skip Lists: Example 2

23 37 6544 69 8783 94−∞ +∞

37 65 83 94−∞ +∞

−∞ +∞

65−∞ +∞

𝑆0

𝑆1

𝑆2

𝑆3

−∞ +∞𝑆4

 skipList::insert(100, 𝑣)

 coin tosses: 𝐻,𝐻,𝐻, 𝑇 ⇒ 𝑖 = 3

 first increase height

 next getPredecessors (100)

 insert new key

Insert in Skip Lists: Example 2

23 37 6544 69 8783 94−∞ +∞

37 65 83 94−∞ +∞

−∞ +∞

65−∞ +∞

𝑆0

𝑆1

𝑆2

𝑆3

−∞ +∞𝑆4

100

100

100

100

 insert new key

 skipList::insert(100, 𝑣)

 coin tosses: 𝐻,𝐻,𝐻, 𝑇 ⇒ 𝑖 = 3

 first increase height

 next getPredecessors (100)

Insert in Skip Lists
skipList::insert(𝑘, 𝑣)

for 𝑖 ← 0; 𝑟𝑎𝑛𝑑𝑜𝑚 2 = 1; 𝑖 ← 𝑖 + 1 {}

for ℎ ← 0, 𝑝 ← 𝑟𝑜𝑜𝑡. 𝑏𝑒𝑙𝑜𝑤; 𝑝 ≠ 𝑁𝐼𝐿𝐿; 𝑝 ← 𝑝. 𝑏𝑒𝑙𝑙𝑜𝑤 do ℎ ++

while 𝑖 ≥ ℎ

𝑟𝑜𝑜𝑡 ← new sentinel-only list linked in appropriately

ℎ ++

𝑃 ← getPredecessors(𝑘)

𝑝 ← 𝑃. 𝑝𝑜𝑝()

𝑧𝐵𝑒𝑙𝑙𝑜𝑤 ← new node with (𝑘, 𝑣) inserted after 𝑝

while 𝑖 > 0

𝑝 ← 𝑃. 𝑝𝑜𝑝()

𝑧 ← new node with 𝑘 added after 𝑝

𝑧. 𝑏𝑒𝑙𝑜𝑤 ← 𝑧𝐵𝑒𝑙𝑙𝑜𝑤

𝑧𝐵𝑒𝑙𝑙𝑜𝑤 ← 𝑧

𝑖 ← 𝑖 − 1

// random tower height

// increase skip-list height if needed

// insert (𝑘, 𝑣) in 𝑆0

// insert 𝑘 in 𝑆1 𝑆2,…, 𝑆i

Example: Delete in Skip Lists
 skipList::delete 65

 first getPredecessors 𝑆, 65

𝑃 = −∞

37

44

−∞

23 37 6544 69 8783 94−∞ +∞

37 65 83 94−∞ +∞

−∞ +∞

65−∞ +∞

𝑆0

𝑆1

𝑆2

𝑆3

 then delete key 65 from all 𝑆𝑖
 𝑃 has predecessor of each node to be deleted

Example: Delete in Skip Lists

23 37 44 69 8783 94−∞ +∞

37 83 94−∞ +∞

−∞ +∞

−∞ +∞

𝑆0

𝑆1

𝑆2

𝑆3

 height decrease: delete all unnecessary 𝑆𝑖, if any

 skipList::delete 65
 first getPredecessors 𝑆, 65

 then delete key 65 from all 𝑆𝑖
 𝑃 has predecessor of each node to be deleted

Example: Delete in Skip Lists

23 37 44 69 8783 94−∞ +∞

37 83 94−∞ +∞

−∞ +∞

𝑆0

𝑆1

𝑆2

 skipList::delete 65
 first getPredecessors 𝑆, 65

 then delete key 65 from all 𝑆𝑖
 𝑃 has predecessor of each node to be deleted

 height decrease: delete all unnecessary 𝑆𝑖, if any

Delete in Skip Lists

skipList::delete(𝑘)

𝑃 ← getPredecessors(𝑘)

while 𝑃 is non-empty

𝑝 ← 𝑃. 𝑝𝑜𝑝()

if 𝑝. 𝑎𝑓𝑡𝑒𝑟. 𝑘𝑒𝑦 = 𝑘

𝑝. 𝑎𝑓𝑡𝑒𝑟 ← 𝑝. 𝑎𝑓𝑡𝑒𝑟. 𝑎𝑓𝑡𝑒𝑟

else break

𝑝 ← left sentinel of the root-list

while 𝑝. 𝑏𝑒𝑙𝑜𝑤. 𝑎𝑓𝑡𝑒𝑟 is the ∞ sentinel

𝑝. 𝑏𝑒𝑙𝑜𝑤 ← 𝑝. 𝑏𝑒𝑙𝑜𝑤. 𝑏𝑒𝑙𝑜𝑤

𝑝. 𝑎𝑓𝑡𝑒𝑟. 𝑏𝑒𝑙𝑜𝑤 ← 𝑝. 𝑎𝑓𝑡𝑒𝑟. 𝑏𝑒𝑙𝑜𝑤. 𝑏𝑒𝑙𝑜𝑤

// predecessor of 𝑘 in some layer

// no more copies of 𝑘

// the two top lists are both only sentinels, remove one

// removes the second empty list

Skip List Analysis

 In the worst case, the height of a tower could be arbitrary large

 no bound on height in terms of 𝑛

 Operations could be arbitrarily slow, and space requirements arbitrarily large

 but this is exceedingly unlikely

 Let us analyse expected run-time and space-usage (randomized data structure)

𝑃 𝑋𝑘 ≥ 𝑖 = 𝑃 𝐻 𝐻 … 𝐻

𝑖 times

=
1

2

𝑖

height 1

 Let 𝑋𝑘 be the height of tower for key 𝑘

𝑃(𝑋𝑘 ≥ 1) = 𝑃(𝑋𝑘 ≥ 2) = 𝑃(𝑋𝑘 ≥ 3) =

 In general

toss H….

1

2
toss HH….

1

2
∙
1

2

1

2
∙
1

2
∙
1

2
toss HHH….

37

37

37

37

37

37

37

37

37

height 2 height 3
toss HT toss HHT toss HHHT

height 0
37

toss T

Skip List Analysis

 Let 𝑋𝑘 be the height of tower for key 𝑘,we know 𝑃(𝑋𝑘 ≥ 𝑖) =
1

2𝑖

𝑆0

𝑆1

𝑆2

𝑆3

𝑘1 𝑘2 𝑘3 𝑘4

𝑋𝑘1 = 3

 If 𝑋𝑘 ≥ 𝑖 then list 𝑆𝑖 includes key 𝑘

𝑋𝑘2 = 1 𝑋𝑘3 = 0 𝑋𝑘4 = 2

 Let 𝑆𝑖 be the number of keys in list 𝑆𝑖
 sentinels do not count towards the length

 𝑆0 always contains all 𝑛 keys

𝑆0 = 4

𝑆1 = 3

𝑆2 = 2

𝑆3 = 1

Skip List Analysis

 Let 𝐼𝑖, 𝑘 = ቊ
0 if 𝑋𝑘 < 𝑖
1 if 𝑋𝑘 ≥ 𝑖

 Let 𝑋𝑘 be the height of tower for key 𝑘,we know 𝑃(𝑋𝑘 ≥ 𝑖) =
1

2𝑖

 If 𝑋𝑘 ≥ 𝑖 then list 𝑆𝑖 includes key 𝑘

 𝑆𝑖 = σ𝑘𝑒𝑦 𝑘 𝐼𝑖, 𝑘

𝑆0

𝑆1

𝑆2

𝑆3

 Let 𝑆𝑖 be the number of keys in list 𝑆𝑖

𝐼1, 𝑘1 = 1 𝐼1, 𝑘3 = 0𝐼1, 𝑘2 = 1 𝐼1, 𝑘4 = 1

𝐼2, 𝑘1 = 1 𝐼2, 𝑘3 = 0𝐼2, 𝑘2 = 0 𝐼2, 𝑘4 = 1

𝐼3, 𝑘1 = 1 𝐼3, 𝑘3 = 0𝐼3, 𝑘2 = 0 𝐼3, 𝑘4 = 0

 𝐸[𝑆𝑖] = ෍

𝑘𝑒𝑦𝑘

𝐸[𝐼𝑖, 𝑘]= 𝐸 ෍
𝑘𝑒𝑦 𝑘

𝐼𝑖, 𝑘 = ෍

𝑘𝑒𝑦𝑘

𝑃(𝐼𝑖, 𝑘 =1)= ෍

𝑘𝑒𝑦𝑘

𝑃(𝑋𝑘 ≥ 𝑖) =
𝑛

2𝑖

 The expected length of list 𝑆𝑖 is
𝑛

2𝑖

𝑆1 = 3

𝑆2 = 2

𝑆3 = 1

= ෍

𝑘𝑒𝑦𝑘

1

2𝑖

𝑋𝑘1 = 3 𝑋𝑘2 = 1 𝑋𝑘3 = 0 𝑋𝑘4 = 2

= ቊ
0 if list 𝑆𝑖 does not include key 𝑘
1 if list 𝑆𝑖 includes key 𝑘

Skip List Analysis

 Let 𝐼𝑖 = ቊ
0 if 𝑆𝑖 = 0
1 if 𝑆𝑖 ≥ 1

 Since 𝐼𝑖 ≤ 1 we have that 𝐸[𝐼𝑖] ≤ 1

 Since 𝐼𝑖 ≤ 𝑆𝑖 we have that 𝐸[𝐼𝑖] ≤ 𝐸[𝑆𝑖]

𝑆0

𝑆1

𝑆2

𝑆3

𝐼1 = 1

𝑘1 𝑘2 𝑘3 𝑘4

𝐼2 = 1

𝐼3 = 1
 𝑆𝑖 is number of keys in list 𝑆𝑖

 𝐸[𝑆𝑖] =
𝑛

2𝑖

 𝐸[ℎ] = 1 +෍

𝑖≥1

𝐸[𝐼𝑖]= 𝐸 1 +෍

𝑖≥1

𝐼𝑖 = 1 +෍
𝑖=1

log 𝑛

𝐸[𝐼𝑖] +෍
𝑖=1+log 𝑛

∞

𝐸[𝐼𝑖]

𝐼4 = 0𝑆4 has only sentinels

 ℎ = 1 + σ𝑖≥1 𝐼𝑖 (here +1 is for the sentinel-only level)

≤ 1 +෍
𝑖=1

log 𝑛

1

=
𝑛

2𝑖

≤ 1 + log𝑛

 For ease of derivation, assume 𝑛 is a power of 2

+෍
𝑖=1+log 𝑛

∞ 𝑛

2𝑖

+ ෍
𝑖=0

∞ 𝑛

2𝑖+1+log 𝑛

Skip List Analysis

 Let 𝐼𝑖 = ቊ
0 if 𝑆𝑖 = 0
1 if 𝑆𝑖 ≥ 1

 Since 𝐼𝑖 ≤ 1 we have that 𝐸[𝐼𝑖] ≤ 1

 Since 𝐼𝑖 ≤ 𝑆𝑖 we have that 𝐸[𝐼𝑖] ≤ 𝐸[𝑆𝑖]

𝑆0

𝑆1

𝑆2

𝑆3

𝐼1 = 1

𝑘1 𝑘2 𝑘3 𝑘4

𝐼2 = 1

𝐼3 = 1
 𝑆𝑖 is number of keys in list 𝑆𝑖

 𝐸[𝑆𝑖] =
𝑛

2𝑖

 𝐸[ℎ] = 1 +෍

𝑖≥1

𝐸[𝐼𝑖]= 𝐸 1 +෍

𝑖≥1

𝐼𝑖 = 1 +෍
𝑖=1

log 𝑛

𝐸[𝐼𝑖] +෍
𝑖=1+log 𝑛

∞

𝐸[𝐼𝑖]

𝐼4 = 0𝑆4 has only sentinels

 ℎ = 1 + σ𝑖≥1 𝐼𝑖 (here +1 is for the sentinel-only level)

≤ 1 +෍
𝑖=1

log 𝑛

1

=
𝑛

2𝑖

≤ 1 + log𝑛

 For ease of derivation, assume 𝑛 is a power of 2

+෍
𝑖=1+log 𝑛

∞ 𝑛

2𝑖

+ ෍
𝑖=0

∞ 𝑛

2𝑖+1+log 𝑛

𝑆 =෍
𝑖=0

∞ 1

2𝑖

=෍
𝑖=0

∞ 𝑛

2𝑖212log 𝑛

=
1

2
෍

𝑖=0

∞ 𝑛

2𝑖𝑛

=
1

2
෍

𝑖=0

∞ 1

2𝑖

෍
𝑖=0

∞ 𝑛

2𝑖+1+log 𝑛

2𝑆 =෍
𝑖=0

∞ 2

2𝑖

= 1 +
1

2
+

1

22
+

1

23
+⋯

= 2 +1 +
1

2
+

1

22
+⋯

2𝑆 − 𝑆 = 2

=
1

2
2 = 1

 Expected skip list height ≤ 2 + log𝑛

= 1 + log𝑛 + 1

Skip List Analysis

 Let 𝐼𝑖 = ቊ
0 if 𝑆𝑖 = 0
1 if 𝑆𝑖 ≥ 1

 Since 𝐼𝑖 ≤ 1 we have that 𝐸[𝐼𝑖] ≤ 1

 Since 𝐼𝑖 ≤ 𝑆𝑖 we have that 𝐸[𝐼𝑖] ≤ 𝐸[𝑆𝑖]

𝑆0

𝑆1

𝑆2

𝑆3

𝐼1 = 1

𝑘1 𝑘2 𝑘3 𝑘4

𝐼2 = 1

𝐼3 = 1
 𝑆𝑖 is number of keys in list 𝑆𝑖

 𝐸[𝑆𝑖] =
𝑛

2𝑖

 𝐸[ℎ] = 1 +෍

𝑖≥1

𝐸[𝐼𝑖]= 𝐸 1 +෍

𝑖≥1

𝐼𝑖 = 1 +෍
𝑖=1

log 𝑛

𝐸[𝐼𝑖] +෍
𝑖=1+log 𝑛

∞

𝐸[𝐼𝑖]

𝐼4 = 0𝑆4 has only sentinels

 ℎ = 1 + σ𝑖≥1 𝐼𝑖 (here +1 is for the sentinel-only level)

≤ 1 +෍
𝑖=1

log 𝑛

1

=
𝑛

2𝑖

≤ 1 + log𝑛

 For ease of derivation, assume 𝑛 is a power of 2

+෍
𝑖=1+log 𝑛

∞ 𝑛

2𝑖

+ ෍
𝑖=0

∞ 𝑛

2𝑖+1+log 𝑛

Skip List Analysis: Expected Space

 We need space for nodes storing sentinels and nodes storing keys

1. Space for nodes storing sentinels

 there are 2ℎ + 2 sentinels, where ℎ be the skip list height

 𝐸 ℎ ≤ 2 + log 𝑛

 expected space for sentinels is at most

𝐸 2ℎ + 2 = 2𝐸 ℎ + 2 ≤ 6 + 2log 𝑛

= 2𝑛

2. Space for nodes storing keys

 Let 𝑆𝑖 be the number of keys in list 𝑆𝑖

 𝐸[𝑆𝑖] =
𝑛

2𝑖

 expected space for keys is ෍

𝑖≥0

𝑛

2𝑖
𝐸 ෍

𝑖≥0

𝑆𝑖 =

 Total expected space is Θ(𝑛)

෍

𝑖≥0

𝐸 𝑆𝑖 =

Skip List Analysis: Expected Running Time

 search, insert, and delete are dominated by the runtime of getPredecessors

 So we analyze the expected time of getPredecessors

 runtime is proportional to number of ‘drop-down’ and ‘scan-forward’

 We ‘drop-down’ ℎ times, where ℎ is skip list height

 expected height ℎ is O(log 𝑛)

 total expected time spent on ‘drop-down’ operations is O(log 𝑛)

 Will show next that expected number of ‘scan-forward’ is also O(log 𝑛)

 So total expected running time is O(log𝑛)

drop-down
scan-forward

drop-down
scan-forward

Expected Number of Scan-Forward Operations
 Number ‘scan-forward’ at level 𝑖

 assume 𝑖 < ℎ (if 𝑖 = ℎ, then we are at the top list and do not scan forward at all)

 let 𝑣 be leftmost key in 𝑆𝑖 we visit during search

 we 𝑣 reached by dropping down from 𝑆𝑖+1

𝑤

 let 𝑤 be the key right after 𝑣

 height of tower of 𝑤 in this case is at least 𝑖

 what is the probability of scanning from 𝑣 to 𝑤?

𝑣

𝑣𝑆𝑖+1

𝑆𝑖

𝐸[# scan-forward at level 𝑖] =෍

𝑙≥1

P(scans ≥ 𝑙) ≤෍

𝑙≥1

1

2𝑙
= 1=෍

𝑙≥1

𝑙 ∙ P(scans = 𝑙)

 if we do scan forward from 𝑣 to 𝑤, then 𝑤 did not exist in 𝑆𝑖+1

 otherwise, we would scan forward from 𝑣 to 𝑤 in 𝑆𝑖+1

 Thus if we do scan forward from 𝑣 to 𝑤, then the tower of 𝑤 has height 𝑖

 𝑃(tower of 𝑤 has height 𝑖| tower of 𝑤 has height at least 𝑖) = ½

 scan forward (i.e. at least one scan) from 𝑣 to 𝑤 with probability at most ½

 ‘at most’ because we could scan-down down if search 𝑘𝑒𝑦 < 𝑤

 repeating argument, probability of scan-forward at least 𝑙 times is at most 1/2 𝑙

theorem in probability
theory

Expected Number of Scan-Forward Operations

 Expected number of scan-forwards is O(log 𝑛)

=෍
𝑖=1

log 𝑛

𝐸[# of scan−for at level 𝑖] +෍
𝑖=1+log 𝑛

∞

𝐸[# of scan−for at level 𝑖]

≤ ෍
𝑖=1

log 𝑛

1 +෍
𝑖=1+log 𝑛

∞ 𝑛

2𝑖

 At level 𝑖 < ℎ: 𝐸[number of scan-forward] ≤ 1

 Also, expected number of scan-forward at level 𝑖 < number of keys at level 𝑆𝑖

 𝑆𝑖 is the number of keys in list on level 𝑖, and 𝐸[𝑆𝑖] =
𝑛

2𝑖

 For ease of derivation, assume 𝑛 is a power of 2

 Expected number of scan-forward over all levels

෍

𝑖≥0

𝐸[# of scan−forward at level 𝑖] =

≤ log𝑛 + 1

Arrays Instead of Linked Lists
 As described now, they are no faster than randomized binary search trees

 Can save links by implementing each tower as an array
 this not only saves space, but gives better running time in practice

 when ‘scan-forward’, we know the correct array location to look at (level 𝑖)

 Search(67)

−∞ 23 44 65 69 +∞

−∞

−∞

−∞

−∞

23

23 44

+∞

+∞

+∞

+∞

65

65

65 69

69

Summary of Skip Lists

 For a skip list with 𝑛 items

 expected space usage is 𝑂(𝑛)

 expected running time for search, insert, delete is 𝑂(log 𝑛)

 Two efficiency improvements

 use arrays for key towers for more efficient implementation

 can show: a biased coin-flip to determine tower-height gives smaller
expected run-times

 With arrays and biased coin-flip skip lists are fast in practice and easy to
implement

Outline

 Dictionaries with Lists Revisited

 Dictionary ADT

 implementations so far

 Skip Lists

 Biased Search Requests

Improving Unsorted Lists/Arrays
 Unordered lists/arrays are among simplest data structures to implement

 But for Dictionary ADT

 inefficient search: Θ(𝑛)

 Can we make search in unordered lists/arrays more effective in practice?

 No if items are accessed equally likely

 can show average-case search is Θ(𝑛)

 Yes if the search requests are biased

 some items are accessed much more frequently than others

 80/20 rule: 80% of outcomes result from 20% of causes

 access = insertion or successful search

 frequently accessed items should be in the front

 two cases

 know the access distribution beforehand

 optimal static ordering

 do not know access distribution beforehand

 dynamic ordering

Optimal Static Ordering

 Order A B C D E has expected cost

 Order D B E A C has expected cost

 Claim: ordering items by non-increasing access-probability minimizes
expected access cost, i.e. best static ordering

 static ordering: order of items does not change

 Proof Idea: for any other ordering, exchanging two items that are out-of-
order according to access probabilities makes total cost increase

key A B C D E

frequency of access 2 8 1 10 5

access probability 2

26

8

26

1

26

10

26

5

26

10

26
∙ 1

≈ 3.31

≈ 2.54

2

26
∙ 1 +

8

26
∙ 2 +

1

26
∙ 3 +

10

26
∙ 4 +

5

26
∙ 5

+
8

26
∙ 2 +

5

26
∙ 3 +

2

26
∙ 4 +

1

26
∙ 5

Dynamic Ordering

 Dynamic ordering: order of items is allowed to change

 What if we do not know the access probabilities ahead of time?

 Rule of thumb: recently accessed item is likely to be accessed soon again

 Move-To-Front heuristic (MTF): after search, move the accessed item to
the front

 additionally, in list: always insert at the front

search D

insert F

 We can also do MTF on an array
 but should then insert and search from back so that we have room to grow

A B C D E

D A B C E

D A B C EF

Dynamic Ordering: MTF

 Can show: MTF is “2-competitive”
 no more than twice as bad as the optimal “offline” ordering

programmer A

data

frequency of
access statistics

implements
optimal static

ordering

average run-time of
operations is 𝑡

programmer B

implements
MTF dynamic

ordering

average run-time of
operations is at most 2𝑡

Dynamic Ordering: Other Heuristics
 Transpose heuristic: Upon a successful search, swap accessed item with the

immediately preceding item

 Avoids drastic changes MTF might do, while still adapting to access patterns

search D

insert F

A B C D E

A B D C E

A B D C EF

 Frequency-count heuristic: Keep counters how often items were accessed, and
sort in non-decreasing order

 works well in practice, but requires extra space

Summary of Biased Search Requests

 We are unlikely to know the access-probabilities of items, so
optimal static order is mostly of theoretical interest

 For any dynamic reordering heuristic, some sequence will defeat it

 have Θ(𝑛) access cost for each item

 MTF and Frequency-Count work well in practice

 For MTF can prove theoretical guarantees

 There is very little overhead for MTF and other strategies, they
should be applied whenever unordered arrays or lists are used

