CS 240 — Data Structures and Data Management

Module 5: Other Dictionary Implementations

O. Veksler

Based on lecture notes by many previous ¢s240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2024

Outline

= Dictionaries with Lists Revisited
= Dictionary ADT
" implementations so far
= Skip Lists
" Biased Search Requests

Outline

= Dictionaries with Lists Revisited
= Dictionary ADT
" implementations so far

Dictionary ADT: Implementations thus far

= Adictionary is a collection of key-value pairs (KVPs)

search, insert, and delete

= Realizations
= Balanced search trees (AVL trees)

®(logn) search, insert, and delete
complex code and not necessarily the fastest running time in practice

= Binary search trees

®(height) search, insert and delete
simpler than AVL tree, randomization helps efficiency

= Ordered array

Ordered linked list 37

simple implementation, ®(log n) search
®(n) insert and delete

\ 4

A 4

\ 4

A 4

44 65 69 /9

A 4

33

simple implementation
®(n) search, insert and delete

search is the bottleneck, insert and delete would be ©(1) if do search first and
account for its running time separately

efficient search (like binary search) in ordered linked list?

Outline

= Skip Lists

Skip Lists: Motivation

= Build a hierarchy of linked lists to imitate binary search in ordered linked list wi
= start from the bottom list and take every second item in the list above

= downward links are needed to navigate from list above to the list below

65 >
Y
37 | 65 "1 79 >
— |23 137 144 65697983

Skip Lists: Motivation

= Search goes through the higher lists while possible, before
dropping down to the list below

= top list enables search by % of the list, next by % of the list, and so on

= Search(83)

65 ~
A 4
{ 37 { 65 79
,, | l !
{23 37|44 | 65|69 79 ~f83 |~

1
search by B

1
h by =
search by ~

Skip Lists: Motivation

= Hierarchy of linked lists
= each list has 1/2 of items from the list below
= total number of linked lists (height) is logn

» total number of nodes < 2n

65 >

37 65 /9

" ~23~|37|—-—- 69 | {79 | {83 |

= When searching, go through the highest level possible

logn
height

A 4

\ 4

A 4

\ 4

= thus visit at most two items at each level, and total time to search ®(logn)

Skip Lists: Motivation

Deleted 65, no longer every second item is in the list above

\ 4

1 37

\ 4

79

A

A A 4

44 69 79 83 [~

123 37

\ 4

\ 4

Big problem: deletion or insertion of items ruins ‘every second item is in
the list above’ property

= crucial property for efficiency
Thus the hierarchy of linked lists works only for static dictionary

= know all items beforehand, and do not insert or delete

but in static case an ordered array is more efficient in practice (no links)

Randomization enables hierarchical linked list with efficient insert and delete

instead of requiring a deterministic subset of items in list above, randomly
chose a subset of the items in the list above

Skip Lists: Motivation
= For next level, choose each item from previous level with probability % (coin toss)

= jth list is expected to have n/2! nodes
expected

" Expect about log(n) lists in total number of nodes

79 n

l g

n

44 79 %

0 1

. n

44 1 69 Pl 79 1 87 2
1 0 1 0

23 1 37 7144 71 65 1 69 7| 79 | 83 7| 87 || 94 n

Skip Lists: Motivation

" |nsert ‘boundary’ nodes with special sentinel symbols —co and +co
= to simplify code for searching

— oo 179 | +00
— o0 1 44 1 79 | +00
— o0 44 69 [.| 79 87 +00

Skip Lists: Motivation

" |nsert sentinel only level, with only —oo and 400

= to simplify code for searching

—00 » 400
—oo {79 400
—oo | 44 {79 400
— 1 44 | 69 |5 79 | 87 *|+ 0
O M 2313714416569 17908378794 pt®

Skip Lists [Pugh’1989]
A hierarchy S of ordered linked lists (/evels) So, S1, ..., Sk

= Sy contains the KVPs of S in non-decreasing order
= other lists store only keys

= each §;contains special keys (sentinels) —oo and +o0

" each S;is randomly generated subsequence of S;_;i.e., S0 2512 .. 2 S
= Sjcontains only sentinels, the left sentinel is the root
root
— 00 > -I—OO
—oo | 65 400
—00 37 ' 65 1 83 1 94 pf+°
l | | | —
—00 > 23,vip{37,vi44,v P 65,v i 69,v I+ 79,v i 83,v i+ 87,v > 94,V ||+ 0

n is number of KVP (number of items stored); in this example, n =9

Skip Lists

= Show only keys from now on

0 {+o0
i i

— 1 65 "%
v tower of height 1 !

— oo 1 37 | 65 [83 | 94 | +eo
i below 65

~o 1 23 P 37 |1 44 || 65 [{ 69 [79 |"{ 83 [87 |"{ 94 [+

= Each KVP belongs to a tower of nodes

tower height is number of nodes — 1

= Height of the skip list is the maximum height of any tower

*= Each node p has references to after(p) and below(p)

height is 3 in this example

= There are (usually) more nodes than keys

Search in Skip Lists =
= search(87) =
~
P=|-w
S3 ‘—OO_II »[+00
drop-down |
SZ % sizr:-?c?rr\lljg:d | 65| Ieadingtocr?;?jza\:\:?;o not take >t
Si |- 1 37 1 65 94 |{+eo
} I I | I
So |= |4 23 |+ 37 [1| 44 [65 || 69 || 79 87 |1 94 [{+o

* For each level, predecessor of key k is

= |f key k is present at the level: node before node with key k

= jf key k is not present at the level: node before node where k would have been
= P collects predecessors of key k for all levels

" nodes where we drop down and the rightmost node in So with key < k

= these are needed for insert/delete

= kisinskip list if and only if P.top().after has key k

Search in Skip Lists

getPredecessors(k)
p « root
P« stack of nodes, initially containing p
while p. below # NIL do // keep dropping down until reach S,
p < p.below
while p.after.key < kdo
p < p.after //move to the right

P.push(p) // this is next predecessor
return P

skipList::search(k)
P « getPredecessors(k)
q « P.top() // predecessor of k in S,
if g.after.key = k return g.after
else return ‘not found, but would be after ¢’

Insert in Skip Lists

S3 <«—— ifin Sz, theninsert new item with probability 7

S, <«—— ifin§y, theninsert new item with probability 7

S1 < insert new item with probability %

So -« insert new item

= Keep “tossing a coin” until T appears

" |nsertinto S, and as many other S; as there are heads

= Examples
= H,H,T (insertinto So, S1,S52) = willsayi = 2
= H,T (insertintoSo, S1) = willsayi =1
= T (insert into So) = willsayi =0

Insert in Skip Lists: Example 1

skipList::insert(52,v) a4
cointosses: H,T = i = 1 37
getPredecessors(52) — 0
P=|-

»| + 00

1 65 » 4 0o

37_| | 65 1 83 | 94 plt

23 [37- 65 [69 [83 [87 | 94 [+

Insert in Skip Lists: Example 1

skipList::insert(52,v)
cointosses: H,T = i =1

getPredecessors(52) — 0
now insert into So and S1 = | —o
s +00
| 65 »| +00
37 52 |1 65 " 83 | 94 plt©
23 [{37- 52 65 60 |83 {87 | 04 [+

Insert in Skip Lists: Example 2
skipList::insert(100,v)

cointosses: H,H,H, T = i =3
first increase height

. o+ 00
— o0 | 65 A +00
— 0 | 37 . 65 | 83 J 94 plt®
_;o 23 37 44 E;S 69 [’ 83 || 87 || 94 *+;°

Insert in Skip Lists: Example 2
skipList::insert(100, v)

cointosses: HH HT = i =3
first increase height
next getPredecessors (100)

0 > 400
0 > 400
— 00 " 65 > 400
— 1 37 ;| 65) 83 | 94 plt
‘i; 23 é% 44 65 69 | 83 || 87 || 94 *44;

Insert in Skip Lists: Example 2
skipList::insert(100, v)
cointosses: HH HT = i =3

first increase height
next getPredecessors (100)

\ 4

\ 4

65 |
— 0 | 37 | 65 » 83
— 1 23 71 37 17| 44 7| 65 1| 69 |’ 83 |1 87

A 4

Insert in Skip Lists: Example 2
skipList::insert(100, v)
cointosses: HH HT = i =3

first increase height

next getPredecessors (100)

insert new key

\ 4

\ 4

137

»@

1 65

» 83

23

37

44

69

87

Insert in Skip Lists: Example 2

" skipList::insert(100,v)

= cointosses: H H HT =i =3
= first increase height

= next getPredecessors (100)

= insert new key

+
8

nsert in Skip Lists

skipList::insert(k, v)

for (i « 0; random(2) = 1;i <« i+ 1) {} // random tower height
for (h « 0,p < root.below;p + NILL; p < p.bellow) do h ++
whilei > h // increase skip-list height if needed
root < new sentinel-only list linked in appropriately
h++
P « getPredecessors(k)
p < P.pop()
zBellow « new node with (k,v) inserted afterp ~ //insert (k,v)in S,
whilei > 0

//insertkinS;S,,.., S,
p < P.pop()

Z < new node with k added after p

z.below <« zBellow

zZBellow « z

l—1—1

Example: Delete in Skip Lists

= skipList::delete(65)

44
. 37
= first getPredecessors(S, 65)
= then delete key 65 from all S; —
= P has predecessor of each node to be deleted P >
» + 00
+ oo
37 1 83 1 94 plt®

oz} (2]

69

33

87

94

Example: Delete in Skip Lists
= skipList::delete(65)

= first getPredecessors(S, 65)

= then delete key 65 from all S;

= P has predecessor of each node to be deleted
= height decrease: delete all unnecessary §;, if any

S3 |~

L8

!
|

<
<

23

37

]

A 4

oo
oo

1 83 194 pl+e

69 |{ 83 |{ 87 |{ 94 |{r

Example: Delete in Skip Lists
= skipList::delete(65)

= first getPredecessors(S, 65)

= then delete key 65 from all S;

= P has predecessor of each node to be deleted
= height decrease: delete all unnecessary §;, if any

37

]

A 4

» 4+ 00
{ 83 { 94 [+
69 " 83 1| 87 || 94 Pt

Delete in Skip Lists

skipList::delete(k)
P« getPredecessors(k)
while P is non-empty
p « P.pop() // predecessor of k in some layer
if p.after.key =k
p.after < p.after.after
else break // no more copies of k

p <« left sentinel of the root-list
while p. below. after is the o sentinel

// the two top lists are both only sentinels, remove one
p.below « p.below.below // removes the second empty list

p.after.below < p.after.below.below

Skip List Analysis 37
37 37

v
37 37 37 3:7

height 0 height1l height 2 height 3
toss T toss HT toss HHT toss HHHT

= Let X;, be the height of tower for key k

1 11 . 1
P(Xk21):E P(szz):?E P(Xk>3)__._.E
toss H.... toss HH.... toss HHH....
1 [
= |ngeneral P(X, =1i)= P(w) = (E)
[times

= |n the worst case, the height of a tower could be arbitrary large
®" no bound on heightin terms of n

= QOperations could be arbitrarily slow, and space requirements arbitrarily large
= but this is exceedingly unlikely

= Let us analyse expected run-time and space-usage (randomized data structure)

Skip List Analysis

S3 |S3] =1

S, |S2| = 2

S1 1S1] =3

So |So| = 4
k1 k2 k3 ka

Xk1 =3 Xpp =1 Xp3 =0 Xpyq=2

= Let X be the height of tower for key k, we know P(Xy = i) = %
= If X;, = ithenlist S; includes key k

= Let |S;| be the number of keys in list S;
= sentinels do not count towards the length
= So always contains all n keys

Skip List Analysis

S3
S2
S1
So

I3in=1 I3ke=0 I3k3=0 [34a=0
in=1| Ihie=0 123=0 |I34a=1
k=1 l,e=1 Irs=0 [l1k=1
Xk1=3 Xk2=1 Xk3:O Xk4=2

1S3 =1
|S2| = 2
1S1] =3

= Let X be the height of tower for key k, we know P (X}, = i) = %

= |If X, = ithenlist S; includes key k

1 if Xpe>i

|Sl| — Zkeykli k

wusi) =£[3, o]

keyk

Let |S;| be the number of keys in list S;

Let Ii’k:{() if Xe<i

1

= The expected length of list S; is%

_ {O if list S; does not include key k

if list S; includes key k

z E[l /] = z P(lix=1)= 2 P(Xe>i)= Z %=:

keyk

keyk keyk

i

Sklp List Ana|ysis S4 has only sentinels I+=0

53 13 =1
|Si| is number of keys in list S; I
S 2 =
= E[|Si] —:l :
S1 ILH=1
0 if |Si=0
Let I; = : So
{1 if |Si] =1 kI k2 k3 k4

h=1+),..1;i (here +1is for the sentinel-only level)

SinceI; <1 we have that E[[;] <1

n
Since I; < |S;| we have that E[I;] < E[|Si]] = T

For ease of derivation, assume n is a power of 2

logn o)
Elh] =E 1+zll —1+ZE _1+z]+Z_ E[l]
i>1 =1 1 i=1+logn
ogn
<Y Y
i=1 L1+logn2

<1+ logn + Z _021+1+10gn

Sklp List Ana|ysis S4 has only sentinels I+=0
53 Is=1

= |S;| is number of keys in lict <
n (00]

n E[|Sl|] :; z | n =z°° n
0 - i=02l+1+logn =0 2i217logn
. 1 = (
" let Ii:{ it 151

1 if |Si] = 1IN n
= h=1+Y;.1; (here - 2laizo2n
= Since I; <1 we have th: =1 ” l_:12=1
2 l=02l 2

= Since [; < |Si| we have{

= For ease of derivation, a

© 1 1 1 1
S A g e
i1 200 2 1 1
28 = i_oi =2 +\1\+2 +§§ + -

= E[h] =E

=0 2i+1+logn

Sklp List Analysis S4 has only sentinels Iy

S3 I3
|S:| is number of keys in list S; ,
S 2
= E[lSd] = :l :
51 I
0 if |8 =0
Let [; = : 50
{1 if |5 =1 kK1 k2 k3 k4

h=1+),..1;i (here +1is for the sentinel-only level)

Since I; < 1 we havethat E[[;] <1

n
Since I; < |S;| we have that E[I;] < E[|Si]] = T

For ease of derivation, assume n is a power of 2

logn o)
Elh] =E 1+zll —1+ZE —1+Z]+Z_ El1]
i>1 =1 1 i=1+logn
ogn
<Y Y
=1 L 1+logn2

<1+ logn T Z 021+1+logn
=1+logn+1

Expected skip list height < 2 + logn

Skip List Analysis: Expected Space

= We need space for nodes storing sentinels and nodes storing keys
1. Space for nodes storing sentinels
= thereare 2h + 2 sentinels, where h be the skip list height
= FElh] < 2+logn
= expected space for sentinels is at most

E[2h + 2] = 2E[h] + 2 < 6 + 2logn

2. Space for nodes storing keys
= Let |S;| be the number of keys in list S;
n

" l?[Lsi[l'_ i

= expected space for keysis E

=0 =0 =0

= Total expected space is ©(n)

Zm] = sl =),

Skip List Analysis: Expected Running Time

drop-down

scan-forward|

A 4

drop-down i

scan-forward

»

»
>

A 4

search, insert, and delete are dominated by the runtime of getPredecessors
So we analyze the expected time of getPredecessors

= runtime is proportional to number of ‘drop-down’ and ‘scan-forward’
We ‘drop-down’ h times, where h is skip list height

= expected height his O(logn)

= total expected time spent on ‘drop-down’ operations is O(logn)
Will show next that expected number of ‘scan-forward’ is also O(logn)
So total expected running time is O(logn)

Expected Number of Scan-Forward Operations

Number ‘scan-forward’ at level i

assume i < h (if i = h, then we are at the top list and do not scan forward at all)
let v be leftmost key in S; we visit during search

= we v reached by dropping down from §;

Sit+1 1 UV >
= |et w be the key right after v 7 7
= height of tower of w in this case is at least i S; — UV P W
|

what is the probability of scanning from v to w?

if we do scan forward from v to w, then w did not exist in S; ;1

otherwise, we would scan forward from vtow in §; 4

Thus if we do scan forward from v to w, then the tower of w has height i
= P(tower of w has height i| tower of w has height at leasti) =1

scan forward (i.e. at least one scan) from v to w with probability at most %

‘at most’ because we could scan-down down if search key < w
repeating argument, probability of scan-forward at least [times is at most (1/2)*

1
E [# scan-forward at level i] = Z [- P(scans =) T= z P(scans = 1) < Z? =1
121

=1 =1
theorem in probability

theory

Expected Number of Scan-Forward Operations

= Atleveli < h: E[number of scan-forward] < 1
= Also, expected number of scan-forward at level i < number of keys at level §;

= |S;| is the number of keys in list on level i, and E[|S:|] = %

= For ease of derivation, assume n is a power of 2
= Expected number of scan-forward over all levels

z E[# of scan—forward at level i] =

=0

logn (o)
= Z E[# of scan—for at level i] + Z E[# of scan—for at level {]
i=1 i=1+logn

logn oo n
Y
i=1 i=1+logn21

<logn+1

= Expected number of scan-forwards is O(logn)

Arrays Instead of Linked Lists

= As described now, they are no faster than randomized binary search trees

= (Can save links by implementing each tower as an array
= this not only saves space, but gives better running time in practice
= when ‘scan-forward’, we know the correct array location to look at (level i)

= Search(67)

—00 » 400
—00 | 65 [» 400
—o0 23 J 65 f 69— 400
—oo [23 || 44 | 65 - {69] +0
¢ L
° L °
e ¢ o--- L L
—oo [==%| 23 |—| 44 =¥ 65 [~ 69 +00

Summary of Skip Lists

= For a skip list with n items

= expected space usage is 0(n)

= expected running time for search, insert, delete is O (logn)
= Two efficiency improvements

= use arrays for key towers for more efficient implementation

= can show: a biased coin-flip to determine tower-height gives smaller
expected run-times

= With arrays and biased coin-flip skip lists are fast in practice and easy to
implement

Outline

" Biased Search Requests

Improving Unsorted Lists/Arrays

= Unordered lists/arrays are among simplest data structures to implement
= But for Dictionary ADT
= inefficient search: ©(n)
= Can we make search in unordered lists/arrays more effective in practice?
= Noifitems are accessed equally likely
= can show average-case search is 0(n)
" Yes if the search requests are biased
= some items are accessed much more frequently than others
= 80/20 rule: 80% of outcomes result from 20% of causes
= access = insertion or successful search
= frequently accessed items should be in the front

® two cases
= know the access distribution beforehand
= optimal static ordering

= do not know access distribution beforehand

= dynamic ordering

Optimal Static Ordering

key A B C D E
frequency of access 2 8 1 10 5
access probability 2 8 1 10 5
26 26 26 26 26

Order A B C D E has expected cost

2 1+8 2+1 3+104 > 5 ~ 3.31
26 26 26 26 *Tg 2>

Order D B E A C has expected cost

101+82 53+24+15 2.54
26 26 “ 726 ° 726 26 O “

Claim: ordering items by non-increasing access-probability minimizes

expected access cost, i.e. best static ordering
= static ordering: order of items does not change

Proof Idea: for any other ordering, exchanging two items that are out-of-
order according to access probabilities makes total cost increase

Dynamic Ordering

Dynamic ordering: order of items is allowed to change
What if we do not know the access probabilities ahead of time?
Rule of thumb: recently accessed item is likely to be accessed soon again

Move-To-Front heuristic (MTF): after search, move the accessed item to
the front

= additionally, in list: always insert at the front

A— B[C D (— E

ﬂsearchD

D A [+ B C I E
ﬂinsertF

F D~ A~ B C E

We can also do MTF on an array
= but should then insert and search from back so that we have room to grow

Dynamic Ordering: MTF

= Canshow: MTF is “2-competitive”
= no more than twice as bad as the optima

Ill

offline” ordering

data

frequency of
access statistics

implements implements
programmer A | gptimal static programmer B MTF dynamic
ordering ordering
average run-time of average run-time of

operations is ¢ operations is at most 2t

Dynamic Ordering: Other Heuristics

" Transpose heuristic: Upon a successful search, swap accessed item with the
immediately preceding item

A— B~ C— DIE
| search D

A— B~ D~ CilE
ﬂinsertF

F — A B~ DfC

4
m

= Avoids drastic changes MTF might do, while still adapting to access patterns

= Frequency-count heuristic: Keep counters how often items were accessed, and
sort in non-decreasing order

= works well in practice, but requires extra space

Summary of Biased Search Requests

We are unlikely to know the access-probabilities of items, so
optimal static order is mostly of theoretical interest

For any dynamic reordering heuristic, some sequence will defeat it
= have ©(n) access cost for each item

MTF and Frequency-Count work well in practice
For MTF can prove theoretical guarantees

There is very little overhead for MTF and other strategies, they
should be applied whenever unordered arrays or lists are used

