
CS 240 – Data Structures and Data Management

Module 6: Dictionaries for special keys

O. Veksler
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2024

Outline

 Lower bound for search

 Interpolation Search

 Tries

 Intro

 Standard Trie

 Pruned Trie

 Compressed Trie

 Multiway Trie

Outline

 Lower bound for search

 Interpolation Search

 Tries

 Intro

 Standard Trie

 Pruned Trie

 Compressed Trie

 Multiway Trie

Dictionary ADT: Implementations Thus Far

 Search is Θ(log 𝑛) in fastest implementations of dictionary ADT
 𝑛 is the number of items stored

 Search is Ω(log 𝑛) in all realizations of ADT we know

 Question: Can we do better than Θ(log 𝑛) search?

 Answer: It depends on what we allow

 No: comparison-based searching lower bound is Ω(log 𝑛)

 Yes: non-comparison based searching can achieve 𝑜(log 𝑛)
 keys have special properties

1. Interpolation search: keys have special distribution

2. Tries: keys are strings

Lower Bound For Search
Theorem: Ω(log 𝑛) comparisons required for search in comparison based model

Proof:

not found𝑘 = 𝑥1

 Let algorithm 𝐴 search for key for 𝑘 among 𝑛 items 𝑥1, 𝑥2, … , 𝑥𝑛
 There is a corresponding binary decision tree

 Chose a set of distinct keys 𝑆 = {𝑥1, 𝑥2, … , 𝑥𝑛}

 Consider 𝑛 + 1 instances of search problem

 search 𝑆 for 𝑘 = 𝑥1
 search 𝑆 for 𝑘 = 𝑥2
 …

 search 𝑆 for 𝑘 = 𝑥𝑛
 search 𝑆 for 𝑘 different from keys in 𝑆

 Decision tree must have one leaf for each instance above

 Decision tree must have at least (𝑛 + 1) leaves

 Binary tree of height ℎ has at most 2ℎ leaves

 Thus 2ℎ ≥ 𝑛 + 1

 Taking log of both sides, ℎ ≥ log(𝑛 + 1)

𝑘 = 𝑥2

decision tree

…

Outline

 Lower bound for search

 Interpolation Search

 Tries

 Intro

 Standard Trie

 Pruned Trie

 Compressed Trie

 Multiway Trie

Binary Search on Ordered Array
 insert and delete: Θ(𝑛), search is Θ(log 𝑛)

Binary-search(𝐴, 𝑛, 𝑘)

𝐴: Array of size 𝑛, 𝑘: key

𝑙 ← 0

𝑟 ← 𝑛 − 1

while 𝑙 ≤ 𝑟

𝑚 ←
𝑙+𝑟

2

if (𝑘 = 𝐴 𝑚) return “found at 𝐴 𝑚 ”

else if 𝐴 𝑚 < 𝑘 // key cannot be in the left part of 𝐴

𝑙 ← 𝑚 + 1

els𝐞 𝑟 ← 𝑚 − 1 // key cannot be in the right part of 𝐴

return “not found but would be between 𝐴 𝑙 − 1 and 𝐴 𝑙 ”

Interpolation Search: Motivation
 binary search looks at index

𝑙 𝑟

40 120

middle

= 𝑙 +
1

2
(𝑟 − 𝑙)

𝑙 + 𝑟

2

Interpolation Search: Motivation

 If keys are close to evenly distributed, where would key 𝑘 = 100 be?
𝑙 𝑟

40 120

 100 should be much further away from 𝐴 𝑙 = 40 than from 𝐴 𝑟 = 120

 binary search looks at index

𝑙 𝑟

40 120

middle

= 𝑙 +
1

2
(𝑟 − 𝑙)

𝑙 + 𝑟

2

Interpolation Search: Motivation

𝐴[𝑟] − 𝐴[𝑙] = 80

𝑘 − 𝐴[𝑙] = 60

 fractional distance:
𝑘−𝐴[𝑙]

𝐴 𝑟 −𝐴[𝑙]
= 60/80 =

3

4
of the way between 𝑙 and 𝑟

 If keys are close to evenly distributed, where would key 𝑘 = 100 be?
𝑙 𝑟

40 120

 binary search looks at index

𝑙 𝑟

40 120

middle

= 𝑙 +
1

2
(𝑟 − 𝑙)

𝑙 + 𝑟

2

 100 should be much closer to 𝐴 𝑟 = 120 than to 𝐴 𝑙 = 40

 Interpolation search looks at index 𝑙 +
𝑘−𝐴[𝑙]

𝐴 𝑟 −𝐴[𝑙]
(𝑟 − 𝑙)

Interpolation Search Example

0 1 2 3 4 5 6 7 8 9

0 1 2 3 449 450 600 800 1000 1200 1500

10

 Search(449), iteration 1

𝑙 = 0, 𝑟 = 𝑛 − 1 = 10,

𝑚 = 𝑙 +
𝑘 − 𝐴[𝑙]

𝐴 𝑟 − 𝐴[𝑙]
(𝑟 − 𝑙)

𝑚 = 0 +
449 − 0

1500 − 0
(10 − 0) = 2

𝑙 𝑟

Interpolation Search Example

0 1 2 3 4 5 6 7 8 9

0 1 2 3 449 450 600 800 1000 1200 1500

10

 Search(449), iteration 2

𝑚 = 𝑙 +
𝑘 − 𝐴[𝑙]

𝐴 𝑟 − 𝐴[𝑙]
(𝑟 − 𝑙)

𝑙 = 3, 𝑟 = 10, 𝑚 = 3 +
449 − 3

1500 − 3
(10 − 3) = 5

𝑙 𝑟

 Deleted 6 out of 8 elements, better than possible with binary search

Interpolation Search Example

0 1 2 3 4 5 6 7 8 9

0 1 2 3 449 450 600 800 1000 1200 1500

10

 Search(449), iteration 3

𝑚 = 𝑙 +
𝑘 − 𝐴[𝑙]

𝐴 𝑟 − 𝐴[𝑙]
(𝑟 − 𝑙)

𝑙 = 3, 𝑟 = 4, 𝑚 = 3 +
449 − 3

499 − 3
(4 − 3) = 4

𝑙 𝑟

key found

Interpolation Search

 Works well if keys are close to evenly distributed

 But worst case performance on unevenly distributed keys is Θ(𝑛)

 Example: search(10)

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 1500

10

Interpolation Search

CS240 – Module 6

 Search(10), iteration 1

𝑙 = 0, 𝑟 = 𝑛 − 1 = 10, 𝑚 = 0 +
10 − 0

1500 − 0
(10 − 0) = 0

𝑙 𝑟

 Works well if keys are close to evenly distributed

 But worst case performance on unevenly distributed keys is Θ(𝑛)

 Example: search(10)

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 1500

10

Interpolation Search

CS240 – Module 6

 Search(10), iteration 2

𝑙 = 1, 𝑟 = 10, 𝑚 = 1 +
10 − 1

1500 − 1
(10 − 1) = 1

𝑙 𝑟

 Works well if keys are close to evenly distributed

 But worst case performance on unevenly distributed keys is Θ(𝑛)

 Example: search(10)

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 1500

10

Interpolation Search

CS240 – Module 6

 Search(10), iteration 3

𝑙 = 2, 𝑟 = 10, 𝑚 = 2 +
10 − 2

1500 − 2
(10 − 2) = 2

𝑙 𝑟

 Works well if keys are close to evenly distributed

 But worst case performance on unevenly distributed keys is Θ(𝑛)

 Example: search(10)

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 1500

10

 Will continue in ‘steps’ of 1 at each iteration until reach the end of the array

Interpolation Search

 Works well on average

 can show (difficult): 𝑇𝑎𝑣𝑔 𝑛 ≤ 𝑇𝑎𝑣𝑔(𝑛) + Θ(1)

 recurse into array of 𝑛 size, on average

 resolves to 𝑇𝑎𝑣𝑔(𝑛) ∈ 𝑂(log log 𝑛)

CS240 – Module 6

 Clever trick

 use interpolation search for log 𝑛 steps

 if key is still not found, switch to binary search

 guarantees 𝑂(log𝑛) worst case, but could be 𝑂(log log 𝑛)

Interpolation Search
 Code similar to binary search, but compare at interpolated index

 Need extra test to avoid division by zero due to 𝐴[𝑙] = 𝐴[𝑟]

Interpolation-search(𝐴, 𝑛, 𝑘)

𝐴: Sorted array of size 𝑛, 𝑘: key

𝑙 ← 0, 𝑟 ← 𝑛 − 1

while 𝑙 ≤ 𝑟

if (𝑘 < 𝐴 𝑙 or 𝑘 > 𝐴[𝑟]) return “not found”

if (𝑘 = 𝐴[𝑟]) return “found at 𝐴[𝑟]”

𝑚 ← 𝑙 +
𝑘−𝐴[𝑙]

𝐴 𝑟 −𝐴[𝑙]
(𝑟 − 𝑙)

if 𝐴 𝑚 = 𝑘 return “found at 𝐴[𝑚]”
else if 𝐴 𝑚 < 𝑘

𝑙 ← 𝑚 + 1

elsif 𝑟 ← 𝑚 − 1

// always return from inside the while loop

Outline

 Lower bound for search

 Interpolation Search

 Tries

 Intro

 Standard Trie

 Pruned Trie

 Compressed Trie

 Multiway Trie

Tries: Introduction
 Scenario: Keys in dictionary are words

 Words (=strings): sequence of characters over alphabet Σ
{be, bear, beer}

 Typical alphabets: {0,1} (bitstrings), ASCII, etc.

 Stored in an array: 𝑤[𝑖] gets 𝑖th character (for 𝑖 = 0,1,…)

 Convention: words have end-sentinel $ (sometimes not shown)
 $ is smaller than any other character and does not occur in Σ

 𝑤. 𝑠𝑖𝑧𝑒 = 𝑤 = number of non-sentinel characters
 be$ = 2

 Should know
 prefix, suffix, substring

 sorting of words lexicographically

be$ <lex bear$

 this is different from sorting numbers

010$ < lex 1$

bear$ < lex beer$

Tries: Introduction

 Trie (also known as radix tree): a dictionary for bit strings

 comes from word retrieval, but pronounced “try”

 Trie vs. AVL tree

 let the number of strings in dictionary be 𝑛

 Trie: insert, find, delete is 𝑂(𝑤) time

 independent of 𝑛

 AVL tree: insert, find delete is 𝑂(𝑤 log(𝑛)) time

 𝑂(log(𝑛)) nodes on a path, 𝑂(𝑤) operations at each node

 Trie applications

 auto-completion

 smart phones, commands for operating systems

 spell checking

 DNA sequencing

Tries: Introduction

 Trie (radix tree): dictionary for bitstrings

 tree based on bitwise comparisons

 edges labelled with corresponding bit

 store words by comparing edge labels and word bits

 similar to radix sort: compare individual bits, not the whole key

 due to end-sentinels $, all key-value pairs are at leaves

 𝑛 is the number of words (strings) stored in the trie

001$

0

0

1

1

1

000$

$

011$

10

0001$

$ 1

$
11$

$

$$

0100$

0

0

$

01$

1

Tries: Search Example

root

$

00$

$

0001$

0

1

0

$

01001$

0

1

0

$

011$

$

01101$

0

1

1

1

0

$

110$

1101$

1

$

0

$

111$

1

1

1

Example: Search(011$) 𝑃 =

Tries: Search Example

root

$

00$

$

0001$

0

1

0

$

01001$

0

1

0

$

011$

$

01101$

0

1

1

1

0

$

110$

1101$

1

$

0

$

111$

1

1

1

Example: Search(011$) 𝑃 =

Tries: Search Example

root

$

00$

$

0001$

0

1

0

$

01001$

0

1

0

$

011$

$

01101$

0

1

1

1

0

$

110$

1101$

1

$

0

$

111$

1

1

1

Example: Search(011$) 𝑃 =

Tries: Search Example

root

$

00$

$

0001$

0

1

0

$

01001$

0

1

0

$

011$

$

01101$

0

1

1

1

0

$

110$

1101$

1

$

0

$

111$

1

1

1

Example: Search(011$) 𝑃 =

Tries: Search Example

root

$

00$

$

0001$

0

1

0

$

01001$

0

1

0

011$

$

01101$

0

1

1

1

0

$

110$

1101$

1

$

0

$

111$

1

1

1

Example: Search(011$)

$

𝑃 =

011$

successful

Tries: Search Example

root

$

00$

$

0001$

0

1

0

$

01001$

0

1

0

$

011$

$

01101$

0

1

1

1

0

$

110$

1101$

1

$

0

$

111$

1

1

1

Example: Search(0111$)

Tries: Search Example

root

$

00$

$

0001$

0

1

0

$

01001$

0

1

0

$

011$

$

01101$

0

1

1

1

0

$

110$

1101$

1

$

0

$

111$

1

1

1

Example: Search(0111$)

no 1-child

unsuccessful
𝑃 =

011

Tries: Search
 Follow links that correspond to current bits in 𝑤

 Repeat until 𝑤 is found or no such link

Trie::get-path-to(𝑤)

Output: Stack with all ancestors of where 𝑤 would be stored

𝑃 ⟵ empty stack; 𝑧 ⟵ root; 𝑑 ⟵ 0; 𝑃.push(𝑧)

while 𝑑 ≤ |𝑤|

if 𝑧 has a child-link labelled with 𝑤 𝑑

𝑧 ⟵ child at this link; 𝑑++; 𝑃.push(𝑧)

else break

return 𝑃

Trie::search(𝑤)

𝑃 ⟵ get-path-to(𝑤); 𝑧 ⟵ 𝑃.top()

if 𝑧 is not a leaf then

return “not found, would be in sub-trie of 𝑧”

return key-value pair at 𝑧

Tries: Leaf-References

 For later applications of tries, want prefix-search(𝑤)

 find word 𝑣 in a trie for which 𝑤 is a prefix

001$

0

0

1

1

1

000$

$

011$

10

0001$

$ 1

$
11$

$

$$

0100$

0

0

$

01$

1

prefix-search(01$) can return:

01$

0100$

011$

01$ or 0100$ or 011$

Tries: Leaf-References

 For later applications of tries, want prefix-search(𝑤)

 find word 𝑣 in a trie for which 𝑤 is a prefix

001$

0

0

1

1

1

000$

$

011$

10

0001$

$ 1

$
11$

$

$$

0100$

0

0

$

01$

1

 To find 𝑣 quickly, need leaf-references

 Convention: reference to leaf with longest word in the subtree

 ties broken arbitrarily

not all leaf-references are shown

Tries: Leaf-References
 Example: Trie::prefix-search(00$)

001$

0

0

1

1

1

000$

$

011$

10

0001$

$ 1

$
11$

$

$$

0100$

0

0

$

01$

1

𝑃 =

matched prefix!

 If match, stack size is larger by
exactly 1 than size of prefix 𝑤

 1 node for the root

 1 node for each
character of 𝑤

Trie::prefix-search(𝑤)

𝑃 ⟵ get-path-to(𝑤); 𝑝 ⟵ 𝑃.top()

if number of nodes on 𝑃 is 𝑤. 𝑠𝑖𝑧𝑒 or less then

return “not string with prefix 𝑤 found”

return 𝑝. 𝑙𝑒𝑎𝑓

00

Tries: Insert

$

00$

$

0001$

0

1

0

0

1

0

$

011$
$

0111$

1

1

1

0

$

110$

1101$

1

$

0

$

111$

1

1

1

$

010010$

0

 𝑃 ⟵ get-path-to(𝑤) gives ancestors that exist already

 Expand trie from 𝑝 ⟵ 𝑃.top() by adding nodes for the extra bits of 𝑤

 Update leaf-references for new nodes and also for nodes in 𝑃

 𝑤 could be longer that the leaves nodes in 𝑃 currently point to

 Example: Insert(01101$)

no 0-child

011

Tries: Insert

$

00$

$

0001$

0

1

0

0

1

0

$

011$
$

0111$

1

1

1

0

$

110$

1101$

1

$

0

$

111$

1

1

1

$

010010$

0

 𝑃 ⟵ get-path-to(𝑤) gives ancestors that exist already

 Expand trie from 𝑝 ⟵ 𝑃.top() by adding nodes for the extra bits of 𝑤

 Update leaf-references for new nodes and also for nodes in 𝑃

 𝑤 could be longer that the leaves nodes in 𝑃 currently point to

 Example: Insert(01101$)

0

Tries: Insert

$

00$

$

0001$

0

1

0

0

1

0

$

011$
$

0111$

1

1

1

0

$

110$

1101$

1

$

0

$

111$

1

1

1

$

010010$

0

 𝑃 ⟵ get-path-to(𝑤) gives ancestors that exist already

 Expand trie from 𝑝 ⟵ 𝑃.top() by adding nodes for the extra bits of 𝑤

 Update leaf-references for new nodes and also for nodes in 𝑃

 𝑤 could be longer that the leaves nodes in 𝑃 currently point to

 Example: Insert(01101$)

0

1

Tries: Insert

$

00$

$

0001$

0

1

0

0

1

0

$

011$
$

0111$

1

1

1

0

$

110$

1101$

1

$

0

$

111$

1

1

1

$

010010$

0

 𝑃 ⟵ get-path-to(𝑤) gives ancestors that exist already

 Expand trie from 𝑝 ⟵ 𝑃.top() by adding nodes for the extra bits of 𝑤

 Update leaf-references for new nodes and also for nodes in 𝑃

 𝑤 could be longer that the leaves nodes in 𝑃 currently point to

 Example: Insert(01101$)

0

1

01101$

$

Tries: Insert

$

00$

$

0001$

0

1

0

0

1

0

$

011$
$

0111$

1

1

1

0

$

110$

1101$

1

$

0

$

111$

1

1

1

$

010010$

0

 𝑃 ⟵ get-path-to(𝑤) gives ancestors that exist already

 Expand trie from 𝑝 ⟵ 𝑃.top() by adding nodes for the extra bits of 𝑤

 Update leaf-references for new nodes and also for nodes in 𝑃

 𝑤 could be longer that the leaves nodes in 𝑃 currently point to

 Example: Insert(01101$)

0

1

01101$

$

Tries: Delete
 𝑃 ⟵ get-path-to(𝑤) gives all ancestors

 Let 𝑙 be the leaf where 𝑤 is stored

 Delete 𝑙 and nodes on 𝑃 until ancestor has two or more children

 Update leaf-references on the rest of 𝑃

 if 𝑧ϵ𝑃 referred to 𝑙, find new 𝑧. 𝑙𝑒𝑎𝑓 from current children of 𝑧

 Delete(0100$)

001$

0

0

1

1

1

000$

$

011$

10

0001$

$ 1

$
11$

$

$$

0100$

0

0

$

01$

1

Tries: Delete
 𝑃 ⟵ get-path-to(𝑤) gives all ancestors

 Let 𝑙 be the leaf where 𝑤 is stored

 Delete 𝑙 and nodes on 𝑃 until ancestor has two or more children

 Update leaf-references on the rest of 𝑃

 if 𝑧ϵ𝑃 referred to 𝑙, find new 𝑧. 𝑙𝑒𝑎𝑓 from current children of 𝑧

 Delete(0100$)

001$

0

0

1

1

1

000$

$

011$

10

0001$

$ 1

$
11$

$

$$

0100$

0

0

$

01$

1

𝑙

Tries: Delete

001$

0

0

1

1

1

000$

$

011$

10

0001$

$ 1

$
11$

$

$$ 01$

1

 𝑃 ⟵ get-path-to(𝑤) gives all ancestors

 Let 𝑙 be the leaf where 𝑤 is stored

 Delete 𝑙 and nodes on 𝑃 until ancestor has two or more children

 Update leaf-references on the rest of 𝑃

 if 𝑧ϵ𝑃 referred to 𝑙, find new 𝑧. 𝑙𝑒𝑎𝑓 from current children of 𝑧

 Delete(0100$)

Tries: Delete

001$

0

0

1

1

1

000$

$

011$

10

0001$

$ 1

$
11$

$

$$ 01$

1

 𝑃 ⟵ get-path-to(𝑤) gives all ancestors

 Let 𝑙 be the leaf where 𝑤 is stored

 Delete 𝑙 and nodes on 𝑃 until ancestor has two or more children

 Update leaf-references on the rest of 𝑃

 if 𝑧ϵ𝑃 referred to 𝑙, find new 𝑧. 𝑙𝑒𝑎𝑓 from current children of 𝑧

 Delete(0100$)

Tries: Delete

001$

0

0

1

1

1

000$

$

011$

10

0001$

$ 1

$
11$

$

$$ 01$

1

 𝑃 ⟵ get-path-to(𝑤) gives all ancestors

 Let 𝑙 be the leaf where 𝑤 is stored

 Delete 𝑙 and nodes on 𝑃 until ancestor has two or more children

 Update leaf-references on the rest of 𝑃

 if 𝑧ϵ𝑃 referred to 𝑙, find new 𝑧. 𝑙𝑒𝑎𝑓 from current children of 𝑧

 Delete(0100$)

Tries: Delete

001$

0

0

1

1

1

000$

$

011$

10

0001$

$ 1

$
11$

$

$$ 01$

1

 𝑃 ⟵ get-path-to(𝑤) gives all ancestors

 Let 𝑙 be the leaf where 𝑤 is stored

 Delete 𝑙 and nodes on 𝑃 until ancestor has two or more children

 Update leaf-references on the rest of 𝑃

 if 𝑧ϵ𝑃 referred to 𝑙, find new 𝑧. 𝑙𝑒𝑎𝑓 from current children of 𝑧

 Delete(0100$)

Standard Trie Summary

 search 𝑤 , prefix-search 𝑤 , insert 𝑤 , delete 𝑤 all take Θ(|𝑤|) time

 time is independent of 𝑛, the number of words stored in the trie

 time is small for short words

 Trie for a given set of words is unique

 except for order of children and ties among leaf-references

 Disadvantages

 can be wasteful with respect to space

 the problem is ‘chains’

 Worst case space is Θ(𝑛 ∙ maximum word length)

 How to save space?

Outline

 Lower bound for search

 Interpolation Search

 Tries

 Standard Trie

 Pruned Trie

 Compressed Trie

 Multiway Trie

Pruned Trie

 Sub-trie with one key has only one node

 Convert standard trie into pruned trie

001$

0

0

1

1

1

000$

$

011$

10

0001$

$ 1

$
11$

$

$$

0100$

0

0

$

1

7 keys

6 keys 1 key

1

01$

Pruned Trie

 Sub-trie with one key has only one node

 Convert standard trie into pruned trie

001$

0

0

1

1

1

000$

$

011$

10

0001$

$ 1

$
11$

$

$$

0100$

0

0

$

1

$
11$

1

7 keys

6 keys 1 key

01$

Pruned Trie

 Sub-trie with one key has only one node

 Convert standard trie into pruned trie

001$

0

0

1

1

1

000$

$

011$

10

0001$

$ 1

$

$$

0100$

0

0

$

11$

7 keys

6 keys 1 key

3 keys 3 keys

2 keys 1 key

01$

Pruned Trie

 Sub-trie with one key has only one node

 Convert standard trie into pruned trie

001$

0

0

1

1

1

000$

$

011$

10

0001$

$ 1

$

$
$

0100$

0

0

$

11$

7 keys

6 keys 1 key

3 keys 3 keys

2 keys 1 key

01$

Pruned Trie

 Sub-trie with one key has only one node

 Convert standard trie into pruned trie

0

0

1

1

1

000$

$

011$

10

0001$

$ 1

$

$

0100$

0

0

$

11$

7 keys

6 keys 1 key

3 keys 3 keys

2 keys 1 key
001$

1 key
01$

Pruned Trie

 Sub-trie with one key has only one node

 Convert standard trie into pruned trie

0

0

1

1

1

000$

$

011$

10

0001$

$ 1

$

$

0100$

0

0

$

11$

7 keys

6 keys 1 key

3 keys 3 keys

2 keys 1 key
001$

1 key
01$

Pruned Trie

 Sub-trie with one key has only one node

 Convert standard trie into pruned trie

0

0

1

1

1

000$

$

011$

10

0001$

$ 1

$

$

0

01$

11$

7 keys

6 keys 1 key

3 keys 3 keys

2 keys 1 key
001$

1 key
0100$

Pruned Trie

 Sub-trie with one key has only one node

 Final pruned trie

0

0

1

1

1

000$

$

011$

10

0001$

$ 1
0

01$

11$

001$ 0100$

 node has a child only if it has at least two descendants

 saves space if there are only few bitstrings that are long

 can even store really long bitstrings more efficiently (real numbers)

 more efficient version of tries, but operations get a bit more complicated

Outline

 Lower bound for search

 Interpolation Search

 Tries

 Standard Trie

 Pruned Trie

 Compressed Trie

 Multiway Trie

Pruned Trie: Internal Nodes with One Child

 Pruned trie can have internal
nodes with one child

$ 0
00$ 0001$

0

0
01001$

$ 0
011$ 01101$

1

1

0

$ 1
110$ 1101$

0 1
111$

1

1

 Such ‘chains’ in a trie waste space and reduce efficiency

 Extreme example

Compressing Singly Linked Chains

 Singly linked ‘chains’ in a trie waste space and reduce efficiency

 If compress chains into one node, each internal node will have at least 2 children

 Let 𝑛 be the number of leaf nodes (i.e. the number of stored keys)

 Will show that if each internal node has 2 or more children, then there are at
most 𝑛 − 1 internal nodes

 Therefore at most 2𝑛 − 1 total nodes

 𝑛 external + at most 𝑛 − 1 internal

 space is 𝑂(𝑛), not much wasted space

compress

Pruned Trie: Internal Nodes with One Child

 Pruned trie can have internal nodes with one child

$ 0
00$ 0001$

0

0
01001$

$ 0
011$ 01101$

1

1

0

$ 1
110$ 1101$

0 1
111$

1

1

 Such ‘chains’ in a trie waste space and reduce efficiency

 If compress chains into one node, each internal node will have at least 2 children

 Let 𝑛 be the number of leaf nodes (i.e. the number of stored keys)

 Will show that if each internal node has 2 or more children, then there are at
most 𝑛 − 1 internal nodes

 Therefore at most 2𝑛 − 1 total nodes

 no wasted space, i.e. space is 𝑂(𝑛)

Tree with no ‘chains’ Theorem

 Let T be a tree with 𝑚 leafs. If every non-leaf (internal) node has at
least 2 children, then the tree has at most 𝑚 − 1 internal nodes

 Visual proof

 put a stone on each leaf

Tree with no ‘chains’ Theorem

 Let T be a tree with 𝑚 leafs. If every non-leaf (internal) node has at
least 2 children, then the tree has at most 𝑚 − 1 internal nodes

 Visual proof

 put a stone on each leaf

 there are 𝑚 stones

 all leaves pass a stone to the parent

Tree with no ‘chains’ Theorem

 Let T be a tree with 𝑚 leafs. If every non-leaf (internal) node has at
least 2 children, then the tree has at most 𝑚 − 1 internal nodes

 Visual proof

 put a stone on each leaf

 all internal nodes at level ℎ − 1 have
at least 2 stones, they leave one
stone and pass one stone to parent

 there are 𝑚 stones

 all leaves pass a stone to the parent

Tree with no ‘chains’ Theorem

 Let T be a tree with 𝑚 leafs. If every non-leaf (internal) node has at
least 2 children, then the tree has at most 𝑚 − 1 internal nodes

 Visual proof

 put a stone on each leaf

 all internal nodes at level ℎ −2 have at
least 2 stones, they leave one stone and
pass one stone to the parent

 all internal nodes at level ℎ − 1 have
at least 2 stones, they leave one
stone and pass one stone to parent

 there are 𝑚 stones

 all leaves pass a stone to the parent

Tree with no ‘chains’ Theorem

 Let T be a tree with 𝑚 leafs. If every non-leaf (internal) node has at
least 2 children, then the tree has at most 𝑚 − 1 internal nodes

 Visual proof

 continue until reach the root

 now each internal node has 1 stone
and root has 2 or more stones

Tree with no ‘chains’ Theorem

 Let T be a tree with 𝑚 leafs. If every non-leaf (internal) node has at
least 2 children, then the tree has at most 𝑚 − 1 internal nodes

 Visual proof

 continue until reach the root

 now each internal node has 1 stone
and root has 2 or more stones

 root leaves 1 stone and throws the
rest outside the tree

 now each internal node has 1 stone,
and there is one or more stones
outside the tree

 since number of stones is 𝑚, the
number of internal nodes is strictly
less than 𝑚

Compressing Chains

1

0

0

1

1

trie above

trie below

trie above

trie below

bit 5

bit 6

bit 7

bit 8

bit 9

bit 10

bit 11

11

 But now we lost part of the binary string ‘10011’

after this node, search
according to bit 11

bit 5

bit 11

compressing

‘******’

 Check if the leaf we reach stores the search key

Compressed Tries (Patricia Tries)

 Morrison (1968): Patricia-Tries

 Practical Algorithm to Retrieve Information Coded in Alphanumeric

 Idea: compress paths of nodes with only one child

 Each node stores an index : next bit to be tested during a search

 Compressed trie with 𝑛 keys has at most 𝑛 − 1 internal (non-leaf) nodes

0

1

2

00$

$ 0

0

2

011$ 01101$

0

0 1

0001$ 01001$ 3

$

1

0

2

3

$ 1

110$ 1101$

0

111$

1

1

$
00$

$
0001$

011$
$

1

0

0

0 1

0 0 1

1 0

1
110$

$

1101$
$

1

0

$

111$

1

1

1

$
01001$

$
01101$

Compressed Tries: Search Example

Example: Search(10$)

0

1
0

2 2
$ 1 0

00$ 0001$ 01001$

011$
$

01101$
0

1
3

1

0

2

3

$ 1
110$ 1101$

0

111$

1

1

Compressed Tries: Search Example

Example: Search(10$)

0

1
0

2 2
$ 1 0

00$ 0001$ 01001$

011$

$

01101$

0

1
3

1

0

2

3

$ 1
110$ 1101$

0

111$

1

1

Compressed Tries: Search Example

Example: Search(10$)

0

1
0

2 2
$ 1 0

00$ 0001$ 01001$

011$

$

01101$

0

1
3

1

0

2

3

$ 1
110$ 1101$

0

111$

1

1

skip

Compressed Tries: Search Example

Example: Search(10$)

0

1
0

2 2
$ 1 0

00$ 0001$ 01001$

011$

$

01101$

0

1
3

1

0

2

3

$ 1
110$ 1101$

0

111$

1

1 no $-child

unsuccessful

Compressed Tries: Search Example

Example: Search(101$)

0

1
0

2 2
$ 1 0

00$ 0001$ 01001$

011$

$

01101$

0

1
3

1

0

2

3

$ 1
110$ 1101$

0

111$

1

1

Compressed Tries: Search Example

Example: Search(101$)

0

1
0

2 2
$ 1 0

00$ 0001$ 01001$

011$

$

01101$

0

1
3

1

0

2

3

$ 1
110$ 1101$

0

111$

1

1

Compressed Tries: Search Example

Example: Search(101$)

0

1
0

2 2
$ 1 0

00$ 0001$ 01001$

011$

$

01101$

0

1
3

1

0

2

3

$ 1
110$ 1101$

0

111$

1

1

skip

Compressed Tries: Search Example

Example: Search(101$)

0

1
0

2 2
$ 1 0

00$ 0001$ 01001$

011$

$

01101$

0

1
3

1

0

2

3

$ 1
110$ 1101$

0

111$

1

1

Compressed Tries: Search Example

Example: Search(101$)

0

1
0

2 2
$ 1 0

00$ 0001$ 01001$

011$

$

01101$

0

1
3

1

0

2

3

$ 1
110$ 1101$

0

111$

1

1

Unsuccessful

compare to 101$

Compressed Tries: Search Example

Example: Search(111$)

0

1
0

2 2
$ 1 0

00$ 0001$ 01001$

011$

$

01101$

0

1
3

1

0

2

3

$ 1
110$ 1101$

0

111$

1

1

Compressed Tries: Search Example

Example: Search(111$)

0

1
0

2 2
$ 1 0

00$ 0001$ 01001$

011$

$

01101$

0

1
3

1

0

2

3

$ 1
110$ 1101$

0

111$

1

1

Compressed Tries: Search Example

Example: Search(111$)

0

1
0

2 2
$ 1 0

00$ 0001$ 01001$

011$

$

01101$

0

1
3

1

0

2

3

$ 1
110$ 1101$

0

111$

1

1

skip

Compressed Tries: Search Example

Example: Search(111$)

0

1
0

2 2
$ 1 0

00$ 0001$ 01001$

011$

$

01101$

0

1
3

1

0

2

3

$ 1
110$ 1101$

0

111$

1

1

Compressed Tries: Search Example

Example: Search(111$)

0

1
0

2 2
$ 1 0

00$ 0001$ 01001$

011$

$

01101$

0

1
3

1

0

2

3

$ 1
110$ 1101$

0

111$

1

1

successful

compare to 111$

Compressed Tries: Search

 As in standard tries, follow links that correspond to current bits in 𝑤

 Main difference

 stored indices say which bits to compare

 also must compare 𝑤 to the word found at the leaf

CompressedTrie::get-path-to(𝑤)

𝑃 ⟵ empty stack; 𝑧 ⟵ root; 𝑃.push(𝑧)

while 𝑧 is not a leaf and 𝑑 ⟵ 𝑧. 𝑖𝑛𝑑𝑒𝑥 ≤ 𝑤. 𝑠𝑖𝑧𝑒 do

if 𝑧 has a child-link labelled with 𝑤 𝑑

𝑧 ⟵ child at this link; 𝑃.push(𝑧)

else break

return 𝑃

CompressedTrie::search(𝑤)

𝑃 ⟵ get-path-to(𝑤); 𝑧 ⟵ 𝑃.top()

if 𝑧 is not a leaf or word stored at 𝑧 is not 𝑤 then

return “not found”

return key-value pair at 𝑧

Compressed Tries: Summary

 search 𝑤 and prefix-search 𝑤 are easy

 insert 𝑤 and delete 𝑤 are conceptually simple
 search for path 𝑃 to word 𝑤 (say we reach node 𝑧)

 uncompress this path (using characters of 𝑧. 𝑙𝑒𝑎𝑓)

 insert/delete 𝑤 as in uncompressed trie

 compress path from root to where changed happened

 All operations take 𝑂(|𝑤|) time for word 𝑤

 Use 𝑂(𝑛) space

 More complicated than standard tries, but space
savings are worth it if words are unevenly distributed

Outline

 Lower bound for search

 Interpolation Search

 Tries

 Standard Trie

 Pruned Tries

 Compressed Trie

 Multiway Trie

Multiway Tries: Larger Alphabet

be$

$

$

bear$

r $

ben$

a n

e

$

soul$

l

$

soup$

p

o

u

 Represents Strings over any fixed alphabet Σ

 Any node has at most |Σ| + 1 children

 one child for the end-of-word character $

 Example: A trie holding strings {bear$, ben$, be$, soul$, soup$}

b s

Compressed Multiway Tries
 Compressed multi-way tries

 Example: A compressed trie holding strings {bear$, ben$, be$, soul$, soup$}

2

be$

$

bear$

a

ben$

n

b

3

l

soul$

p

soup$

s

0

Multiway Tries: Summary

 Operations search(𝑤), insert(𝑤) and delete(𝑤) are as for bitstring tries

 Run-time 𝑂(|𝑤| · (time to find the appropriate child))

 Each node now has up to |Σ| + 1 children

 How should children be stored?

 Time/Space tradeoff: arrays are fast, lists are space efficient

 run-time 𝑂(|𝑤|) with arrays storing children

 AVL tree is best in theory, but not worth it in practice unless |Σ| is huge

 In practice, use hashing (next module)

array linked list AVL tree

