CS 240 - Data Structures and Data Management

Module 6: Dictionaries for special keys

O. Veksler

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2024

Outline

- Lower bound for search
- Interpolation Search
- Tries
- Intro
- Standard Trie
- Pruned Trie
- Compressed Trie
- Multiway Trie

Outline

- Lower bound for search
- Interpolation Search
- Tries
- Intro
- Standard Trie
- Pruned Trie
- Compressed Trie
- Multiway Trie

Dictionary ADT: Implementations Thus Far

- Search is $\Theta(\log n)$ in fastest implementations of dictionary ADT
- n is the number of items stored
- Search is $\Omega(\log n)$ in all realizations of ADT we know
- Question: Can we do better than $\Theta(\log n)$ search?
- Answer: It depends on what we allow
- No: comparison-based searching lower bound is $\Omega(\log n)$
- Yes: non-comparison based searching can achieve $o(\log n)$
- keys have special properties

1. Interpolation search: keys have special distribution
2. Tries: keys are strings

Lower Bound For Search

Theorem: $\Omega(\log n)$ comparisons required for search in comparison based model Proof:

- Let algorithm A search for key for k among n items $x_{1}, x_{2}, \ldots, x_{n}$
- There is a corresponding binary decision tree
- Chose a set of distinct keys $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
- Consider $n+1$ instances of search problem
- search S for $k=x_{1}$
- search S for $k=x_{2}$

- search S for $k=x_{n}$
decision tree
- search S for k different from keys in S
- Decision tree must have one leaf for each instance above
- Decision tree must have at least $(n+1)$ leaves
- Binary tree of height h has at most 2^{h} leaves
- Thus $2^{h} \geq n+1$
- Taking \log of both sides, $h \geq \log (n+1)$

Outline

- Interpolation Search
- Tries
- Intro
- Standard Trie
- Pruned Trie
- Compressed Trie
- Multiway Trie

Binary Search on Ordered Array

- insert and delete: $\Theta(n)$, search is $\Theta(\log n)$

```
Binary-search(A,n,k)
A: Array of size n, k: key
    l\leftarrow0
    r\leftarrown-1
    while ( }l\leqr\mathrm{ )
        m}\leftarrow\lfloor\frac{l+r}{2}
        if (k=A[m]) return "found at A[m]"
        else if (A[m]<k)// key cannot be in the left part of }
        l\leftarrowm+1
            else}r\leftarrowm-1// key cannot be in the right part of A
    return "not found but would be between A[l-1] and A[l]"
```


Interpolation Search: Motivation

- binary search looks at index
middle

c	$\left\lfloor\frac{l+r}{2}\right\rfloor$
l	$=l+\left\lfloor\frac{1}{2}(r-l)\right\rfloor$
40	

Interpolation Search: Motivation

- binary search looks at index
middle

c	$\left\lfloor\frac{l+r}{2}\right\rfloor$
l	$=l+\left\lfloor\frac{1}{2}(r-l)\right\rfloor$
40	r

- If keys are close to evenly distributed, where would key $k=100$ be?

l	r	
40	120	

- 100 should be much further away from $A[l]=40$ than from $A[r]=120$

Interpolation Search: Motivation

- binary search looks at index
middle

c	$\left\lfloor\frac{l+r}{2}\right\rfloor$
l	$=l+\left\lfloor\frac{1}{2}(r-l)\right\rfloor$
40	r

- If keys are close to evenly distributed, where would key $k=100$ be?

- 100 should be much closer to $A[r]=120$ than to $A[l]=40$
- fractional distance: $\frac{k-A[l]}{A[r]-A[l]}=60 / 80=\frac{3}{4}$ of the way between l and r
- Interpolation search looks at index $l+\left\lfloor\frac{k-A[l]}{A[r]-A[l]}(r-l)\right\rfloor$

Interpolation Search Example

$$
m=l+\left\lfloor\frac{k-A[l]}{A[r]-A[l]}(r-l)\right\rfloor
$$

0	1	2	3	4	5	6	7	8	9	10
0	1	2	3	449	450	600	800	1000	1200	1500
l										

- Search(449), iteration 1

$$
l=0, r=n-1=10
$$

$$
m=0+\left\lfloor\frac{449-0}{1500-0}(10-0)\right\rfloor=2
$$

Interpolation Search Example

$$
m=l+\left\lfloor\frac{k-A[l]}{A[r]-A[l]}(r-l)\right\rfloor
$$

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 2 | 3 | 449 | 450 | 000 | 800 | 1000 | 1200 | 1500 |

- Search(449), iteration 2

$$
l=3, r=10
$$

$$
m=3+\left\lfloor\frac{449-3}{1500-3}(10-3)\right\rfloor=5
$$

- Deleted 6 out of 8 elements, better than possible with binary search

Interpolation Search Example

$$
m=l+\left\lfloor\frac{k-A[l]}{A[r]-A[l]}(r-l)\right\rfloor
$$

0	1	2	3	4	5	6	7	8	9	10
0	1	2	3	449	450	600	800	1000	1200	1500
$\begin{aligned} & l \\ & \text { key found } \end{aligned}$										

- Search(449), iteration 3

$$
l=3, r=4
$$

$$
m=3+\left\lfloor\frac{449-3}{499-3}(4-3)\right\rfloor=4
$$

Interpolation Search

- Works well if keys are close to evenly distributed
- But worst case performance on unevenly distributed keys is $\Theta(n)$
- Example: search(10)

0	1	2	3	4	5	6	7	8	9	10
0	1	2	3	4	5	6	7	8	9	1500

Interpolation Search

- Works well if keys are close to evenly distributed
- But worst case performance on unevenly distributed keys is $\Theta(n)$
- Example: search(10)

0	1	2	3	4	5	6	7	8	9	10
0	1	2	3	4	5	6	7	8	9	1500
l										

- Search(10), iteration 1

$$
l=0, r=n-1=10, \quad m=0+\left\lfloor\frac{10-0}{1500-0}(10-0)\right\rfloor=0
$$

Interpolation Search

- Works well if keys are close to evenly distributed
- But worst case performance on unevenly distributed keys is $\Theta(n)$
- Example: search(10)

0	1	2	3	4	5	6	7	8	9	10
0	1	2	3	4	5	6	7	8	9	1500
l										

- Search(10), iteration 2

$$
l=1, r=10, \quad m=1+\left\lfloor\left.\frac{10-1}{1500-1}(10-1) \right\rvert\,=1\right.
$$

Interpolation Search

- Works well if keys are close to evenly distributed
- But worst case performance on unevenly distributed keys is $\Theta(n)$
- Example: search(10)

0	1	2	3	4	5	6	7	8	9	10
0	1	2	3	4	5	6	7	8	9	1500
l										

- Search(10), iteration 3

$$
l=2, r=10, \quad m=2+\left\lfloor\left.\frac{10-2}{1500-2}(10-2) \right\rvert\,=2\right.
$$

- Will continue in 'steps' of 1 at each iteration until reach the end of the array

Interpolation Search

- Works well on average
- can show (difficult): $T^{a v g}(n) \leq T^{a v g}(\sqrt{n})+\Theta(1)$
- recurse into array of \sqrt{n} size, on average
- resolves to $T^{a v g}(n) \in O(\log \log n)$
- Clever trick
- use interpolation search for $\log n$ steps
- if key is still not found, switch to binary search
- guarantees $O(\log n)$ worst case, but could be $O(\log \log n)$

Interpolation Search

- Code similar to binary search, but compare at interpolated index
- Need extra test to avoid division by zero due to $A[l]=A[r]$

```
Interpolation-search(A,n,k)
A: Sorted array of size n, k: key
    l\leftarrow0,r\leftarrown-1
    while ( l\leqr )
        if (k<A[l] or k>A[r]) return "not found"
        if (k=A[r]) return "found at A[r]"
            m}\leftarrowl+\lfloor\frac{k-A[l]}{A[r]-A[l]}(r-l)
                if (A[m]=k) return "found at }A[m]
                else if (A[m]<k)
                        l\leftarrowm+1
        elsif}r\leftarrowm-
// always return from inside the while loop
```


Outline

- Lower bound for search
- Interpolation Search
- Tries
- Intro
- Standard Trie
- Pruned Trie
- Compressed Trie
- Multiway Trie

Tries: Introduction

- Scenario: Keys in dictionary are words
- Words (=strings): sequence of characters over alphabet Σ

$$
\{b e, \text { bear, beer\} }
$$

- Typical alphabets: $\{0,1\}$ (bitstrings), ASCII, etc.
- Stored in an array: $w[i]$ gets i th character (for $i=0,1, \ldots$)
- Convention: words have end-sentinel \$ (sometimes not shown)
- \$ is smaller than any other character and does not occur in Σ
- w. size $=|w|=$ number of non-sentinel characters
- |be\$|=2
- Should know
- prefix, suffix, substring
- sorting of words lexicographically

$$
\text { be\$ }<_{\text {lex }} \text { bear\$ bear\$ }<_{\text {lex }} \text { beer\$ }
$$

- this is different from sorting numbers

$$
010 \$<_{\text {lex }} 1 \$
$$

Tries: Introduction

- Trie (also known as radix tree): a dictionary for bit strings
- comes from word retrieval, but pronounced "try"
- Trie vs. AVL tree
- let the number of strings in dictionary be n
- Trie: insert, find, delete is $O(|w|)$ time
- independent of n
- AVL tree: insert, find delete is $O(|w| \log (n))$ time
- $O(\log (n))$ nodes on a path, $O(|w|)$ operations at each node
- Trie applications
- auto-completion
- smart phones, commands for operating systems
- spell checking
- DNA sequencing

Tries: Introduction

- Trie (radix tree): dictionary for bitstrings
- tree based on bitwise comparisons
- edges labelled with corresponding bit
- store words by comparing edge labels and word bits
- similar to radix sort: compare individual bits, not the whole key
- due to end-sentinels \$, all key-value pairs are at leaves
- n is the number of words (strings) stored in the trie

Tries: Search Example

Example: Search(011\$)
$P=$

Tries: Search Example

Example: Search(011\$)
$P=\bullet$

Tries: Search Example

Example: Search(011\$)

Tries: Search Example

Example: Search(011\$)

Tries: Search Example

Example: Search(011\$) successful

Tries: Search Example

Example: Search(0111\$)

Tries: Search Example

Example: Search(0111\$) unsuccessful

Tries: Search

- Follow links that correspond to current bits in w
- Repeat until w is found or no such link

```
Trie::get-path-to(w)
Output: Stack with all ancestors of where w would be stored
P\longleftarrow empty stack; z \longleftarrow root; d ए 0; P.push(z)
while d\leq |w|
    if z has a child-link labelled with w[d]
                z \leftarrow child at this link; d++; P.push(z)
    else break
return P
```

Trie::search (w)
$P \longleftarrow$ get-path-to $(w) ; z \longleftarrow P . t o p()$
if Z is not a leaf then
return "not found, would be in sub-trie of z "
return key-value pair at z

Tries: Leaf-References

- For later applications of tries, want prefix-search(w)
- find word v in a trie for which w is a prefix

prefix-search(01\$) can return: $01 \$$ or $0100 \$$ or $011 \$$

Tries: Leaf-References

- For later applications of tries, want prefix-search(w)
- find word v in a trie for which w is a prefix

- To find v quickly, need leaf-references
- Convention: reference to leaf with longest word in the subtree
- ties broken arbitrarily

Tries: Leaf-References

- Example: Trie::prefix-search(00\$)

- If match, stack size is larger by exactly 1 than size of prefix w
- 1 node for the root
- 1 node for each character of w

Trie::prefix-search(w)
$P \longleftarrow$ get-path-to(w); $p \longleftarrow P . t o p()$
if number of nodes on P is w. size or less then return "not string with prefix w found"
return p. leaf

Tries: Insert

- $P \leftarrow$ get-path-to(w) gives ancestors that exist already
- Expand trie from $p \leftarrow P$.top () by adding nodes for the extra bits of w
- Update leaf-references for new nodes and also for nodes in P
- $\quad w$ could be longer that the leaves nodes in P currently point to
- Example: Insert(01101\$)

Tries: Insert

- $P \leftarrow$ get-path-to(w) gives ancestors that exist already
- Expand trie from $p \leftarrow P$.top () by adding nodes for the extra bits of w
- Update leaf-references for new nodes and also for nodes in P
- $\quad w$ could be longer that the leaves nodes in P currently point to
- Example: Insert(01101\$)

Tries: Insert

- $P \leftarrow$ get-path-to(w) gives ancestors that exist already
- Expand trie from $p \leftarrow P$.top () by adding nodes for the extra bits of w
- Update leaf-references for new nodes and also for nodes in P
- $\quad w$ could be longer that the leaves nodes in P currently point to
- Example: Insert(01101\$)

Tries: Insert

- $P \leftarrow$ get-path-to(w) gives ancestors that exist already
- Expand trie from $p \leftarrow P$.top () by adding nodes for the extra bits of w
- Update leaf-references for new nodes and also for nodes in P
- $\quad w$ could be longer that the leaves nodes in P currently point to
- Example: Insert(01101\$)

Tries: Insert

- $P \leftarrow$ get-path-to(w) gives ancestors that exist already
- Expand trie from $p \leftarrow P$.top () by adding nodes for the extra bits of w
- Update leaf-references for new nodes and also for nodes in P
- $\quad w$ could be longer that the leaves nodes in P currently point to
- Example: Insert(01101\$)

Tries: Delete

- $P \longleftarrow$ get-path-to (w) gives all ancestors
- Let l be the leaf where w is stored
- Delete l and nodes on P until ancestor has two or more children
- Update leaf-references on the rest of P
- if $z \in P$ referred to l, find new z. leaf from current children of z
- Delete(0100\$)

Tries: Delete

- $P \longleftarrow$ get-path-to (w) gives all ancestors
- Let l be the leaf where w is stored
- Delete l and nodes on P until ancestor has two or more children
- Update leaf-references on the rest of P
- if $z \in P$ referred to l, find new z. leaf from current children of z
- Delete(0100\$)

Tries: Delete

- $P \longleftarrow$ get-path-to (w) gives all ancestors
- Let l be the leaf where w is stored
- Delete l and nodes on P until ancestor has two or more children
- Update leaf-references on the rest of P
- if $z \in P$ referred to l, find new z. leaf from current children of z
- Delete(0100\$)

Tries: Delete

- $P \longleftarrow$ get-path-to (w) gives all ancestors
- Let l be the leaf where w is stored
- Delete l and nodes on P until ancestor has two or more children
- Update leaf-references on the rest of P
- if $z \in P$ referred to l, find new z. leaf from current children of z
- Delete(0100\$)

Tries: Delete

- $P \longleftarrow$ get-path-to (w) gives all ancestors
- Let l be the leaf where w is stored
- Delete l and nodes on P until ancestor has two or more children
- Update leaf-references on the rest of P
- if $z \in P$ referred to l, find new z. leaf from current children of z
- Delete(0100\$)

Tries: Delete

- $P \longleftarrow$ get-path-to (w) gives all ancestors
- Let l be the leaf where w is stored
- Delete l and nodes on P until ancestor has two or more children
- Update leaf-references on the rest of P
- if $z \in P$ referred to l, find new z. leaf from current children of z
- Delete(0100\$)

Standard Trie Summary

- $\operatorname{search}(w)$, prefix-search (w), insert (w), delete (w) all take $\Theta(|w|)$ time
- time is independent of n, the number of words stored in the trie
- time is small for short words
- Trie for a given set of words is unique
- except for order of children and ties among leaf-references
- Disadvantages
- can be wasteful with respect to space
- the problem is 'chains'

- Worst case space is Θ ($n \cdot$ maximum word length $)$
- How to save space?

Outline

- Lower bound for search
- Interpolation Search
- Tries
- Standard Trie
- Pruned Trie
- Compressed Trie
- Multiway Trie

Pruned Trie

- Sub-trie with one key has only one node
- Convert standard trie into pruned trie

Pruned Trie

- Sub-trie with one key has only one node
- Convert standard trie into pruned trie

Pruned Trie

- Sub-trie with one key has only one node
- Convert standard trie into pruned trie

Pruned Trie

- Sub-trie with one key has only one node
- Convert standard trie into pruned trie

Pruned Trie

- Sub-trie with one key has only one node
- Convert standard trie into pruned trie

Pruned Trie

- Sub-trie with one key has only one node
- Convert standard trie into pruned trie

Pruned Trie

- Sub-trie with one key has only one node
- Convert standard trie into pruned trie

Pruned Trie

- Sub-trie with one key has only one node
- Final pruned trie

- node has a child only if it has at least two descendants
- saves space if there are only few bitstrings that are long
- can even store really long bitstrings more efficiently (real numbers)
- more efficient version of tries, but operations get a bit more complicated

Outline

- Lower bound for search
- Interpolation Search
- Tries
- Standard Trie
- Pruned Trie
- Compressed Trie
- Multiway Trie

Pruned Trie: Internal Nodes with One Child

- Pruned trie can have internal nodes with one child

- Extreme example

- Such 'chains' in a trie waste space and reduce efficiency

Compressing Singly Linked Chains

- Singly linked 'chains' in a trie waste space and reduce efficiency
- If compress chains into one node, each internal node will have at least 2 children
- Let n be the number of leaf nodes (i.e. the number of stored keys)
- Will show that if each internal node has 2 or more children, then there are at most $n-1$ internal nodes
- Therefore at most $2 n-1$ total nodes
- $\quad n$ external + at most $n-1$ internal
- space is $O(n)$, not much wasted space

Pruned Trie: Internal Nodes with One Child

- Pruned trie can have internal nodes with one child
- Such 'chains' in a trie waste space and reduce efficiency
- If compress chains into one node, each internal node will have at least 2 children
- Let n be the number of leaf nodes (i.e. the number of stored keys)
- Will show that if each internal node has 2 or more children, then there are at most $n-1$ internal nodes
- Therefore at most $2 n-1$ total nodes
- no wasted space, i.e. space is $O(n)$

Tree with no 'chains' Theorem

- Let T be a tree with m leafs. If every non-leaf (internal) node has at least 2 children, then the tree has at most $m-1$ internal nodes

- Visual proof
- put a stone on each leaf

Tree with no 'chains' Theorem

- Let T be a tree with m leafs. If every non-leaf (internal) node has at least 2 children, then the tree has at most $m-1$ internal nodes

- Visual proof
- put a stone on each leaf
- there are m stones
- all leaves pass a stone to the parent

Tree with no 'chains' Theorem

- Let T be a tree with m leafs. If every non-leaf (internal) node has at least 2 children, then the tree has at most $m-1$ internal nodes

- Visual proof
- put a stone on each leaf
- there are m stones
- all leaves pass a stone to the parent
- all internal nodes at level $h-1$ have at least 2 stones, they leave one stone and pass one stone to parent

Tree with no 'chains' Theorem

- Let T be a tree with m leafs. If every non-leaf (internal) node has at least 2 children, then the tree has at most $m-1$ internal nodes

- Visual proof
- put a stone on each leaf
- there are m stones
- all leaves pass a stone to the parent
- all internal nodes at level $h-1$ have at least 2 stones, they leave one stone and pass one stone to parent
- all internal nodes at level $h-2$ have at least 2 stones, they leave one stone and pass one stone to the parent

Tree with no 'chains' Theorem

- Let T be a tree with m leafs. If every non-leaf (internal) node has at least 2 children, then the tree has at most $m-1$ internal nodes

- Visual proof
- continue until reach the root
- now each internal node has 1 stone and root has 2 or more stones

Tree with no 'chains' Theorem

- Let T be a tree with m leafs. If every non-leaf (internal) node has at least 2 children, then the tree has at most $m-1$ internal nodes

- Visual proof
- continue until reach the root
- now each internal node has 1 stone and root has 2 or more stones
- root leaves 1 stone and throws the rest outside the tree
- now each internal node has 1 stone, and there is one or more stones outside the tree
- since number of stones is m, the number of internal nodes is strictly less than m

Compressing Chains

- But now we lost part of the binary string '10011’
- Check if the leaf we reach stores the search key

Compressed Tries (Patricia Tries)

- Morrison (1968): Patricia-Tries
- \quad Practical $\underline{\text { Algorithm to }}$ Retrieve Information $\underline{\text { Coded }}$ in $\underline{\text { Alphanumeric }}$
- Idea: compress paths of nodes with only one child
- Each node stores an index : next bit to be tested during a search
- Compressed trie with n keys has at most $n-1$ internal (non-leaf) nodes

Compressed Tries: Search Example

Example: Search(10\$)

Compressed Tries: Search Example

Example: Search(10\$)

Compressed Tries: Search Example

Example: Search(10\$)
skip

Compressed Tries: Search Example

Example: Search(10 \$) unsuccessful

Compressed Tries: Search Example

Example: Search(101\$)

Compressed Tries: Search Example

Example: Search(101\$) Unsuccessful

Compressed Tries: Search Example

Example: Search(111\$)

Compressed Tries: Search Example

Example: Search(111\$) successful

Compressed Tries: Search

```
CompressedTrie::get-path-to(w)
P \leftarrow empty stack; z \longleftarrow root; P.push(z)
while z is not a leaf and ( }d\longleftarrowz\mathrm{ z.index }\leqw\mathrm{ . size) do
    if z has a child-link labelled with w[d]
                        z\longleftarrow child at this link; P.push(z)
    else break
return P
```

```
CompressedTrie::search(w)
P\leftarrowget-path-to(w); z\longleftarrow &.top()
if z is not a leaf or word stored at z is not w}\mathrm{ then
    return "not found"
return key-value pair at z
```

- As in standard tries, follow links that correspond to current bits in w
- Main difference
- stored indices say which bits to compare
- also must compare w to the word found at the leaf

Compressed Tries: Summary

- search(w) and prefix-search(w) are easy
- insert(w) and delete (w) are conceptually simple
- search for path P to word w (say we reach node z)
- uncompress this path (using characters of z. leaf)
- insert/delete w as in uncompressed trie
- compress path from root to where changed happened
- All operations take $O(|w|)$ time for word w
- Use $O(n)$ space
- More complicated than standard tries, but space savings are worth it if words are unevenly distributed

Outline

- Lower bound for search
- Interpolation Search
- Tries
- Standard Trie
- Pruned Tries
- Compressed Trie
- Multiway Trie

Multiway Tries: Larger Alphabet

- Represents Strings over any fixed alphabet Σ
- Any node has at most $|\Sigma|+1$ children
- one child for the end-of-word character \$
- Example: A trie holding strings \{bear\$, ben\$, be\$, soul\$, soup\$\}

Compressed Multiway Tries

- Compressed multi-way tries
- Example: A compressed trie holding strings \{bear\$, ben\$, be\$, soul\$, soup\$\}

Multiway Tries: Summary

- Operations search (w), insert(w) and delete (w) are as for bitstring tries
- Run-time $O(|w| \cdot$ (time to find the appropriate child))
- Each node now has up to $|\Sigma|+1$ children
- How should children be stored?

- Time/Space tradeoff: arrays are fast, lists are space efficient
- run-time $O(|w|)$ with arrays storing children
- AVL tree is best in theory, but not worth it in practice unless $|\Sigma|$ is huge
- In practice, use hashing (next module)

