CS 240 – Data Structures and Data Management

Module 6: Dictionaries for special keys

O. Veksler

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2024

Outline

- Lower bound for search
- Interpolation Search
- Tries
 - Intro
 - Standard Trie
 - Pruned Trie
 - Compressed Trie
 - Multiway Trie

Outline

- Lower bound for search
- Interpolation Search
- Tries
 - Intro
 - Standard Trie
 - Pruned Trie
 - Compressed Trie
 - Multiway Trie

Dictionary ADT: Implementations Thus Far

- Search is $\Theta(\log n)$ in fastest implementations of dictionary ADT
 - *n* is the number of items stored
- Search is $\Omega(\log n)$ in all realizations of ADT we know
- Question: Can we do better than $\Theta(\log n)$ search?
- Answer: It depends on what we allow
 - No: comparison-based searching lower bound is Ω(log n)
 - Yes: non-comparison based searching can achieve o(log n)
 - keys have special properties
 - 1. Interpolation search: keys have special distribution
 - 2. Tries: keys are strings

Lower Bound For Search

Theorem: $\Omega(\log n)$ comparisons required for search in comparison based model **Proof**:

- Let algorithm A search for key for k among n items $x_1, x_2, ..., x_n$
- There is a corresponding binary decision tree
- Chose a set of distinct keys $S = \{x_1, x_2, \dots, x_n\}$
- Consider n + 1 instances of search problem
 - search *S* for $k = x_1$
 - search *S* for $k = x_2$
 - ..
 - search *S* for $k = x_n$
 - search S for k different from keys in S
- Decision tree must have one leaf for each instance above
- Decision tree must have at least (n + 1) leaves
- Binary tree of height h has at most 2^h leaves
- Thus $2^h \ge n+1$
- Taking log of both sides, $h \ge \log(n+1)$

decision tree

Outline

Lower bound for search

Interpolation Search

Tries

- Intro
- Standard Trie
- Pruned Trie
- Compressed Trie
- Multiway Trie

Binary Search on Ordered Array

• insert and delete: $\Theta(n)$, search is $\Theta(\log n)$

```
Binary-search(A, n, k)
A: Array of size n, k: key
      l \leftarrow 0
      r \leftarrow n - 1
      while (l \leq r)
           m \leftarrow \left| \frac{l+r}{2} \right|
           if (k = A[m]) return "found at A[m]"
           else if (A[m] < k) / / key cannot be in the left part of A
                 l \leftarrow m + 1
          else r \leftarrow m - 1 // key cannot be in the right part of A
      return "not found but would be between A[l-1] and A[l] "
```

Interpolation Search: Motivation

Interpolation Search: Motivation

• If keys are close to *evenly* distributed, where would key k = 100 be? l r 40 120

• 100 should be much further away from A[l] = 40 than from A[r] = 120

Interpolation Search: Motivation

• If keys are close to *evenly* distributed, where would key k = 100 be? l

$$40 \xleftarrow{k - A[l] = 60} 120$$

$$A[r] - A[l] = 80$$

- 100 should be much closer to A[r] = 120 than to A[l] = 40
- fractional distance: $\frac{k-A[l]}{A[r]-A[l]} = \frac{60}{80} = \frac{3}{4}$ of the way between l and r
- Interpolation search looks at index $l + \left[\frac{k-A[l]}{A[r]-A[l]}(r-l)\right]$

Interpolation Search Example

$$m = l + \left\lfloor \frac{k - A[l]}{A[r] - A[l]} (r - l) \right\rfloor$$

Search(449), iteration 1

$$l = 0, r = n - 1 = 10,$$
 $m = 0 + \left[\frac{449 - 0}{1500 - 0}(10 - 0)\right] = 2$

Interpolation Search Example

$$m = l + \left\lfloor \frac{k - A[l]}{A[r] - A[l]} (r - l) \right\rfloor$$

Search(449), iteration 2

$$l = 3, r = 10,$$
 $m = 3 + \left| \frac{449 - 3}{1500 - 3} (10 - 3) \right| = 5$

Deleted 6 out of 8 elements, better than possible with binary search

Interpolation Search Example

$$m = l + \left\lfloor \frac{k - A[l]}{A[r] - A[l]} (r - l) \right\rfloor$$

Search(449), iteration 3

$$l = 3, r = 4,$$
 $m = 3 + \left[\frac{449 - 3}{499 - 3}(4 - 3)\right] = 4$

- Works well if keys are close to *evenly* distributed
- But worst case performance on unevenly distributed keys is $\Theta(n)$
- Example: search(10)

0	1	2	3	4	5	6	7	8	9	10
0	1	2	3	4	5	6	7	8	9	1500

- Works well if keys are close to *evenly* distributed
- But worst case performance on unevenly distributed keys is $\Theta(n)$
- Example: search(10)

Search(10), iteration 1

$$l = 0, r = n - 1 = 10,$$
 $m = 0 + \left[\frac{10 - 0}{1500 - 0}(10 - 0)\right] = 0$

н.

4 0

- Works well if keys are close to *evenly* distributed
- But worst case performance on unevenly distributed keys is $\Theta(n)$
- Example: search(10)

• Search(10), iteration 2

$$l = 1, r = 10,$$
 $m = 1 + \left\lfloor \frac{10 - 1}{1500 - 1} (10 - 1) \right\rfloor = 1$

- Works well if keys are close to *evenly* distributed
- But worst case performance on unevenly distributed keys is $\Theta(n)$
- Example: search(10)

Search(10), iteration 3

$$l = 2, r = 10,$$
 $m = 2 + \left| \frac{10 - 2}{1500 - 2} (10 - 2) \right| = 2$

• Will continue in 'steps' of 1 at each iteration until reach the end of the array

- Works well on average
 - can show (difficult): $T^{avg}(n) \le T^{avg}(\sqrt{n}) + \Theta(1)$
 - recurse into array of \sqrt{n} size, on average
 - resolves to $T^{avg}(n) \in O(\log \log n)$
- Clever trick
 - use interpolation search for log n steps
 - if key is still not found, switch to binary search
 - guarantees O(log n) worst case, but could be O(log log n)

- Code similar to binary search, but compare at interpolated index
- Need extra test to avoid division by zero due to A[l] = A[r]

```
Interpolation-search(A, n, k)
A: Sorted array of size n, k: key
      l \leftarrow 0, r \leftarrow n - 1
      while (l \leq r)
           if (k < A[l] \text{ or } k > A[r]) return "not found"
           if (k = A[r]) return "found at A[r]"
           m \leftarrow l + \left| \frac{k - A[l]}{A[r] - A[l]} (r - l) \right|
            if (A[m] = k) return "found at A[m]"
            else if (A[m] < k)
                    l \leftarrow m + 1
            elsif r \leftarrow m - 1
 // always return from inside the while loop
```

Outline

- Lower bound for search
- Interpolation Search
- Tries
 - Intro
 - Standard Trie
 - Pruned Trie
 - Compressed Trie
 - Multiway Trie

Tries: Introduction

- Scenario: Keys in dictionary are words
- Words (=strings): sequence of characters over alphabet Σ {be, bear, beer}
- Typical alphabets: {0,1} (bitstrings), ASCII, etc.
- Stored in an array: w[i] gets ith character (for i = 0,1, ...)
- Convention: words have end-sentinel \$ (sometimes not shown)
 - \$ is smaller than any other character and does not occur in $\boldsymbol{\Sigma}$
- w.size = |w| = number of non-sentinel characters
 - |be\$| = 2
- Should know
 - prefix, suffix, substring
 - sorting of words lexicographically

be\$ <_lex bear\$ bear\$ < lex bear\$</pre>

this is different from sorting numbers

010\$ < _{lex} **1**\$

Tries: Introduction

- Trie (also known as radix tree): a dictionary for bit strings
 - comes from word retrieval, but pronounced "try"
- Trie vs. AVL tree
 - Iet the number of strings in dictionary be n
 - Trie: insert, find, delete is O(|w|) time
 - independent of *n*
 - AVL tree: insert, find delete is $O(|w|\log(n))$ time
 - $O(\log(n))$ nodes on a path, O(|w|) operations at each node
- Trie applications
 - auto-completion
 - smart phones, commands for operating systems
 - spell checking
 - DNA sequencing

Tries: Introduction

- Trie (radix tree): dictionary for bitstrings
 - tree based on bitwise comparisons
 - edges labelled with corresponding bit
 - store words by comparing edge labels and word bits
 - similar to radix sort: compare individual bits, not the whole key
 - due to end-sentinels \$, all key-value pairs are at leaves
 - *n* is the number of words (strings) stored in the trie

P =

Example: Search(011\$)

 $P = \bullet$

011\$

P =

Example: Search(0111\$)

Example: Search(0111\$)unsuccessful

Tries: Search

- Follow links that correspond to current bits in *w*
- Repeat until w is found or no such link

```
Trie::get-path-to(w)Output: Stack with all ancestors of where w would be storedP \leftarrow empty stack; z \leftarrow root; d \leftarrow 0; P.push(z)while d \leq |w|if z has a child-link labelled with w[d]z \leftarrow child at this link; d++; P.push(z)else breakreturn P
```

Trie::search(w) $P \leftarrow get-path-to(w); z \leftarrow P.top()$ if z is not a leaf thenreturn "not found, would be in sub-trie of z"return key-value pair at z

Tries: Leaf-References

- For later applications of tries, want prefix-search(w)
 - find word *v* in a trie for which *w* is a prefix

prefix-search(01\$) can return: 01\$ or 0100\$ or 011\$

Tries: Leaf-References

- For later applications of tries, want prefix-search(w)
 - find word *v* in a trie for which *w* is a prefix

- To find *v* quickly, need leaf-references
- Convention: reference to leaf with longest word in the subtree
 - ties broken arbitrarily

Tries: Leaf-References

- If match, stack size is larger by exactly 1 than size of prefix w
 - 1 node for the root
 - 1 node for each character of w

Trie::prefix-search(w) $P \leftarrow get-path-to(w); p \leftarrow P.top()$ if number of nodes on P is w. size or less then
return "not string with prefix w found"
return p. leaf

Tries: Insert

- $P \leftarrow get-path-to(w)$ gives ancestors that exist already
- Expand trie from $p \leftarrow P.top()$ by adding nodes for the extra bits of w
- Update leaf-references for new nodes and also for nodes in P
 - w could be longer that the leaves nodes in P currently point to
- Example: Insert(01101\$)

Tries: Insert

- $P \leftarrow get-path-to(w)$ gives ancestors that exist already
- Expand trie from $p \leftarrow P.top()$ by adding nodes for the extra bits of w
- Update leaf-references for new nodes and also for nodes in P
 - w could be longer that the leaves nodes in P currently point to
- Example: Insert(01101\$)

Tries: Insert

- $P \leftarrow get-path-to(w)$ gives ancestors that exist already
- Expand trie from $p \leftarrow P.top()$ by adding nodes for the extra bits of w
- Update leaf-references for new nodes and also for nodes in P
 - w could be longer that the leaves nodes in P currently point to
- Example: Insert(01101\$)

Tries: Insert

- $P \leftarrow get-path-to(w)$ gives ancestors that exist already
- Expand trie from $p \leftarrow P.top()$ by adding nodes for the extra bits of w
- Update leaf-references for new nodes and also for nodes in P
 - w could be longer that the leaves nodes in P currently point to
- Example: Insert(01101\$)

Tries: Insert

- $P \leftarrow get-path-to(w)$ gives ancestors that exist already
- Expand trie from $p \leftarrow P.top()$ by adding nodes for the extra bits of w
- Update leaf-references for new nodes and also for nodes in P
 - w could be longer that the leaves nodes in P currently point to
- Example: Insert(01101\$)

- $P \leftarrow get-path-to(w)$ gives all ancestors
- Let *l* be the leaf where *w* is stored
- Delete *l* and nodes on *P* until ancestor has two or more children
- Update leaf-references on the rest of P
 - if $z \in P$ referred to l, find new z. *leaf* from current children of z
- Delete(0100\$)

- $P \leftarrow get-path-to(w)$ gives all ancestors
- Let *l* be the leaf where *w* is stored
- Delete *l* and nodes on *P* until ancestor has two or more children
- Update leaf-references on the rest of P
 - if $z \in P$ referred to l, find new z. *leaf* from current children of z

- $P \leftarrow get-path-to(w)$ gives all ancestors
- Let *l* be the leaf where *w* is stored
- Delete *l* and nodes on *P* until ancestor has two or more children
- Update leaf-references on the rest of P
 - if $z \in P$ referred to l, find new z. *leaf* from current children of z

- $P \leftarrow get-path-to(w)$ gives all ancestors
- Let *l* be the leaf where *w* is stored
- Delete *l* and nodes on *P* until ancestor has two or more children
- Update leaf-references on the rest of P
 - if $z \in P$ referred to l, find new z. *leaf* from current children of z

- $P \leftarrow get-path-to(w)$ gives all ancestors
- Let *l* be the leaf where *w* is stored
- Delete *l* and nodes on *P* until ancestor has two or more children
- Update leaf-references on the rest of P
 - if $z \in P$ referred to l, find new z. *leaf* from current children of z

- $P \leftarrow get-path-to(w)$ gives all ancestors
- Let *l* be the leaf where *w* is stored
- Delete *l* and nodes on *P* until ancestor has two or more children
- Update leaf-references on the rest of P
 - if $z \in P$ referred to l, find new z. *leaf* from current children of z

Standard Trie Summary

- search(w), prefix-search(w), insert(w), delete(w) all take $\Theta(|w|)$ time
 - time is independent of *n*, the number of words stored in the trie
 - time is small for short words
- Trie for a given set of words is unique
 - except for order of children and ties among leaf-references
- Disadvantages
 - can be wasteful with respect to space
 - the problem is 'chains'

- Worst case space is $\Theta(n \cdot \text{maximum word length})$
- How to save space?

Outline

- Lower bound for search
- Interpolation Search
- Tries
 - Standard Trie
 - Pruned Trie
 - Compressed Trie
 - Multiway Trie

- Sub-trie with one key has only one node
- Convert standard trie into pruned trie

- Sub-trie with one key has only one node
- Convert standard trie into pruned trie

- Sub-trie with one key has only one node
- Convert standard trie into pruned trie

- Sub-trie with one key has only one node
- Convert standard trie into pruned trie

- Sub-trie with one key has only one node
- Convert standard trie into pruned trie

- Sub-trie with one key has only one node
- Convert standard trie into pruned trie

- Sub-trie with one key has only one node
- Convert standard trie into pruned trie

- Sub-trie with one key has only one node
- Final pruned trie

- node has a child only if it has at least two descendants
- saves space if there are only few bitstrings that are long
- can even store really long bitstrings more efficiently (real numbers)
- more efficient version of tries, but operations get a bit more complicated

Outline

- Lower bound for search
- Interpolation Search
- Tries
 - Standard Trie
 - Pruned Trie
 - Compressed Trie
 - Multiway Trie

Pruned Trie: Internal Nodes with One Child

Such 'chains' in a trie waste space and reduce efficiency

Compressing Singly Linked Chains

- Singly linked 'chains' in a trie waste space and reduce efficiency
- If compress chains into one node, each internal node will have at least 2 children
- Let n be the number of leaf nodes (i.e. the number of stored keys)
- Will show that if each internal node has 2 or more children, then there are at most n 1 internal nodes
- Therefore at most 2n 1 total nodes
 - n external + at most n-1 internal
 - space is O(n), not much wasted space

Pruned Trie: Internal Nodes with One Child

- Pruned trie can have internal nodes with one child
- Such 'chains' in a trie waste space and reduce efficiency
- If compress chains into one node, each internal node will have at least 2 children
- Let n be the number of leaf nodes (i.e. the number of stored keys)
- Will show that if each internal node has 2 or more children, then there are at most n 1 internal nodes
- Therefore at most 2n 1 total nodes
 - no wasted space, i.e. space is O(n)

- Visual proof
 - put a stone on each leaf

- Visual proof
 - put a stone on each leaf
 - there are *m* stones
 - all leaves pass a stone to the parent

- Visual proof
 - put a stone on each leaf
 - there are *m* stones
 - all leaves pass a stone to the parent
 - all internal nodes at level h 1 have at least 2 stones, they leave one stone and pass one stone to parent

- Visual proof
 - put a stone on each leaf
 - there are *m* stones
 - all leaves pass a stone to the parent
 - all internal nodes at level h 1 have at least 2 stones, they leave one stone and pass one stone to parent
 - all internal nodes at level h 2 have at least 2 stones, they leave one stone and pass one stone to the parent

- Visual proof
 - continue until reach the root
 - now each internal node has 1 stone and root has 2 or more stones

- Visual proof
 - continue until reach the root
 - now each internal node has 1 stone and root has 2 or more stones
 - root leaves 1 stone and throws the rest outside the tree
 - now each internal node has 1 stone, and there is one or more stones outside the tree
 - since number of stones is *m*, the number of internal nodes is strictly less than *m*

Compressing Chains

- But now we lost part of the binary string '10011'
- Check if the leaf we reach stores the search key

Compressed Tries (Patricia Tries)

- Morrison (1968): Patricia-Tries
- <u>Practical Algorithm to Retrieve Information Coded in Alphanumeric</u>
- Idea: compress paths of nodes with only one child
- Each node stores an *index* : next bit to be tested during a search
- Compressed trie with n keys has at most n 1 internal (non-leaf) nodes

Example: Search(10\$)

Example: Search(10\$)

Example: Search(1<u>0</u>\$) t skip

Example: Search(10\$) unsuccessful

Example: Search(101\$)

Example: Search(101\$)

Example: Search(101\$) t skip

Example: Search(101\$)

Example: Search(101\$) Unsuccessful

Example: Search(111\$)

Example: Search(111\$)

Example: Search(1<u>1</u>1\$) t skip

Example: Search(111\$)

Example: Search(111\$) successful

Compressed Tries: Search

```
CompressedTrie::get-path-to(w)

P \leftarrow \text{empty stack}; z \leftarrow \text{root}; P.push(z)

while z is not a leaf and (d \leftarrow z.index \leq w.size) do

if z has a child-link labelled with w[d]

z \leftarrow \text{child at this link}; P.push(z)

else break

return P
```

CompressedTrie::search(w) $P \leftarrow get-path-to(w); z \leftarrow P.top()$ if z is not a leaf or word stored at z is not w then return "not found" return key-value pair at z

- As in standard tries, follow links that correspond to current bits in w
- Main difference
 - stored indices say which bits to compare
 - also must compare w to the word found at the leaf

Compressed Tries: Summary

- search(w) and prefix-search(w) are easy
- *insert(w)* and *delete(w)* are conceptually simple
 - search for path P to word w (say we reach node z)
 - uncompress this path (using characters of z. leaf)
 - insert/delete w as in uncompressed trie
 - compress path from root to where changed happened
- All operations take O(|w|) time for word w
- Use O(n) space
- More complicated than standard tries, but space savings are worth it if words are unevenly distributed

Outline

- Lower bound for search
- Interpolation Search
- Tries
 - Standard Trie
 - Pruned Tries
 - Compressed Trie
 - Multiway Trie

Multiway Tries: Larger Alphabet

- Represents Strings over any fixed alphabet Σ
- Any node has at most $|\Sigma| + 1$ children
 - one child for the end-of-word character \$
- Example: A trie holding strings {bear\$, ben\$, be\$, soul\$, soup\$}

Compressed Multiway Tries

- Compressed multi-way tries
- Example: A compressed trie holding strings {bear\$, ben\$, be\$, soul\$, soup\$}

Multiway Tries: Summary

- Operations search(w), insert(w) and delete(w) are as for bitstring tries
- Run-time $O(|w| \cdot (\text{time to find the appropriate child}))$
- Each node now has up to $|\Sigma| + 1$ children
- How should children be stored?

- Time/Space tradeoff: arrays are fast, lists are space efficient
 - run-time O(|w|) with arrays storing children
- AVL tree is best in theory, but not worth it in practice unless $|\Sigma|$ is huge
- In practice, use hashing (next module)