CS 240 — Data Structures and Data Management

Module 6: Dictionaries for special keys

0. Veksler

Based on lecture notes by many previous ¢s240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2024



Outline

" Lower bound for search
" |[nterpolation Search
= Tries

= Intro

= Standard Trie

" Pruned Trie

= Compressed Trie

= Multiway Trie



Outline

= Lower bound for search



Dictionary ADT: Implementations Thus Far

Search is ®@(logn) in fastest implementations of dictionary ADT
" nisthe number of items stored

Search is Q(logn) in all realizations of ADT we know
Question: Can we do better than ©(logn) search?
Answer: It depends on what we allow
* No: comparison-based searching lower bound is Q(logn)

" Yes: non-comparison based searching can achieve o(logn)

= keys have special properties
1. Interpolation search: keys have special distribution
2. Tries: keys are strings



Lower Bound For Search

Theorem: ()(logn) comparisons required for search in comparison based model

Proof:

= Letalgorithm A search for key for k among n items x4, x5, ..., X,
= Thereis a corresponding binary decision tree
= Chose a set of distinct keys S = {x{, x5, ..., X, }

= Consider n + 1 instances of search problem
= search Sfork = x4

= search S fork = x, / k = x4 |k = x5 -+ | not found

| ]
decision tree
"= searchSfork =x,

= search S for k different from keys in S

= Decision tree must have one leaf for each instance above
= Decision tree must have at least (n + 1) leaves

= Binary tree of height h has at most 2" leaves

= Thus2">n+1

» Taking log of both sides, i = log(n + 1)



Outline

" |[nterpolation Search



Binary Search on Ordered Array

* insert and delete: ®(n), search is ®(logn)

Binary-search(A,n, k)

A: Array of sizen, k: key
[ <0
ren—1

while (I <)

l+r‘
m « |—
2

if (k = Alm]) return “found at A[m]”
else if (A[m] < k) // key cannot be in the left part of A
[m + 1
elser «m — 1 //key cannot be in the right part of 4
return “not found but would be between A[l — 1] and A[l]”




Interpolation Search: Motivation

= binary search looks at index

&

middle

R kel

40

120




Interpolation Search: Motivation

= binary search looks at index

z F-efe-]

40 120

middle

= |f keys are close to evenly distributed, where would key k = 100 be?
[ r

40 | | 120

= 100 should be much further away from A[l] = 40 than from A[r] = 120



Interpolation Search: Motivation

= binary search looks at index

z F-efe-]

40 120

middle

= |f keys are close to evenly distributed, where would key k = 100 be?
[ r

40 k—A[l] = 60 | | 120

\ }
|

Alr] — A[l] = 80

= 100 should be much closer to A[r] = 120 thanto A[l] = 40

k—A[l]
Alr]-A[l]

= 60/80 =% of the way between [ and r

k-Alll .
Al[r]-A[l] (‘l" l)‘

= fractional distance:

= |Interpolation search looks at index [ + {



Interpolation Search Example
k — A[l]

m= b A

(r=10

0 1 2 3 4 5 6 7 8 9 10
——+——2—F 3 (449 [450 |600 (800 |1000 {1200 |1500
[ r
=  Search(449), iteration 1
449 — 0
(10 — 0)

[ =0r=n-1= 10,




Interpolation Search Example

4 | Al l
m=l+ e Y
0 2 3 4 5 6 7 8 9 10
1 | 2 | 3 [449 [450—600— 806—1006—1200—1500—
[ r
=  Search(449), iteration 2
[ =3, r = 10 —3+“49_3 10-3)| =5
- =0 m=3+|1500-3" )

= Deleted 6 out of 8 elements, better than possible with binary search



Interpolation Search Example

k — A[l]
m=l+L1[r]_A[l](r—l)‘
0 3 4 5 6 7 8 9 10
0 3 |449 |450 |600 |800 |1000 {1200 {1500
[ r
key found
=  Search(449), iteration 3
449 — 3
[ =3, r =4, m=3+ (4 —3)

499 — 3

=4



Interpolation Search

Works well if keys are close to evenly distributed

But worst case performance on unevenly distributed keys is ©(n)

Example: search(10)

0

2

3

10

2

3

1500




Interpolation Search

=  Works well if keys are close to evenly distributed
= But worst case performance on unevenly distributed keys is ®(n)
= Example: search(10)

0 2 3 4 5 6 7 8 9 10
S 1 2 3 4 5 6 7 8 9 | 1500
[ r

= Search(10), iteration 1

[ =0, r = 1 = 10 —0+|—2292 q0—0)=0
- E R E s m=0+]1500—0 1007




Interpolation Search

=  Works well if keys are close to evenly distributed
= But worst case performance on unevenly distributed keys is ®(n)
= Example: search(10)

0 1 2 3 4 5 6 7 8 9 10
o+ 23] 45| 6] 7] 8] 9 [150
[ r

= Search(10), iteration 2

I =1 r =10 I s S ST N
- = = 1500 —1° )=




Interpolation Search

=  Works well if keys are close to evenly distributed
= But worst case performance on unevenly distributed keys is ®(n)
= Example: search(10)

0 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 | 1500
[ r

= Search(10), iteration 3

| =2 r =10 P e SRS PN
- = m= 1500 =2 )=

=  Will continue in ‘steps’ of 1 at each iteration until reach the end of the array



Interpolation Search

= Works well on average
= can show (difficult): T®9(n) < T*9(y/n) + O(1)
= recurse into array of /n size, on average
* resolvesto T%9(n) € O(loglogn)

= (Clever trick
= use interpolation search for at most logn steps
= if key is still not found, switch to binary search
= guarantees O(logn) worst case, but could be O(loglog n)



Interpolation Search

= Code similar to binary search,

but compare at interpolated index

* Need extra test to avoid division by zero due to A[l] = A[r]

while (I <r)

m <[+

else if (4

Interpolation-search(A, n, k)
A: Sorted array of size n, k: key
<0, ren—1

if (k < A[l] ork > A[r]) return “not found”
if (k = A[r]) return “found at A[r]”

k-alll .
aiioam l)‘

if (A[m] = k) return “found at A[m]”

'm] < k)

[lem + 1
elsif r«m — 1
// always return from inside the while loop




Outline

" Tries

" |ntro



Tries: Introduction

Scenario: Keys in dictionary are words
Words (=strings): sequence of characters over alphabet X

{be, bear, beer}

Typical alphabets: {0,1} (bitstrings), ASCII, etc.
Stored in an array: w|i] gets ith character (fori = 0,1, ...)

Convention: words have end-sentinel S (sometimes not shown)
= $is smaller than any other character and does not occur in

w.size = |w| = number of non-sentinel characters
= |be$| =2
Should know
= prefix, suffix, substring
= sorting of words lexicographically
be$ < bear$s bears <

= thisis different from sorting numbers
0108 < .., 1s

beer$s

lex lex



Tries: Introduction

= Trie (also known as radix tree): a dictionary for bit strings
= comes from word retrieval, but pronounced “try”
= Trievs. AVL tree
= |et the number of strings in dictionary be n
= Trie: insert, find, delete is O(|Jw|) time
=" independent of n
= AVL tree: insert, find delete is O(|]w|log(n)) time
= (O(log(n)) nodes on a path, O(|w|) operations at each node

= Trie applications

= auto-completion
= smart phones, commands for operating systems

= spell checking
= DNA sequencing



Tries: Introduction

0001$

01005

Trie (radix tree): dictionary for bitstrings

tree based on bitwise comparisons
edges labelled with corresponding bit

store words by comparing edge labels and word bits

similar to radix sort: compare individual bits, not the whole key

due to end-sentinels S, all key-value pairs are at leaves
n is the number of words (strings) stored in the trie



Tries: Search Example

Example: Search(0115S)

01001%

root

01101%




Tries: Search Example

Example: Search(011S)

01001%




Tries: Search Example

Example: Search(011S)

01001%

root

01101%




Tries: Search Example

Example: Search(011S) p=e

? 0 1
003 1 0 $/ \ 4}
$

s T e 011%

01001$ 01101%




Tries: Search Example

o
Example: Search(011S) successful p=e
o

i A
00% ;
T A |,
¢ 110$ 111$
$T 1 1+ $
0001$ . 1101$
$ $

01001$ 01101%




Tries: Search Example

Example: Search(0111S)unsuccessful

root

01001% 01101%




Tries: Search

= Follow links that correspond to current bits in w
= Repeat until w is found or no such link

Trie::get-path-to(w)
Output: w in the trie: stack holds path leading to and including w
w not in the trie: stack holds ancestors of where w would have been

P «— empty stack; z «<—root; d < 0; P.push(z)
while d < |w|

if z has a child-link labelled with w|[d]

z <— child at this link; d++; P.push(z)

else break

return P

Trie::search(w)
P «— get-path-to(w); z «— P.top()
if z is not a leaf then
return “not found, would be in sub-trie of z”

return key-value pair at z




Tries: Leaf-References

= For later applications of tries, want prefix-search(w)

= find word v in a trie for which w is a prefix

prefix-search(01$) can return: 01$ or 0100$ or 011$



Tries: Leaf-References

For later applications of tries, want prefix-search(w)

= find word v in a trie for which w is a prefix

0001$

To find v quickly, need leaf-references

~,
S\
~
S

0100S

not all leaf-references are shown

Convention: reference to leaf with longest word in the subtree

= ties broken arbitrarily



Tries: Leaf-References

= Example: Trie::prefix-search(00$) p=@

matched prefix! 0 1
s
N
S 115
000$ 011

01005 |¥

Trie::prefix-search(w)

P < get-path-to(w)

if number of nodes on P is w. size or less then
= 1 node for each return “not string with prefix w found

character of w p < P.top()
return p. leaf

= |f match, stack size is larger by
exactly 1 than size of prefix w

= 1 node for the root




Tries: Insert

= P « get-path-to(w) gives ancestors that exist already

= Expand trie from p «<— P.top() by adding nodes for the extra bits of w

= Update leaf-references for new nodes and also for nodes in P
=  w could be longer that the leaves nodes in P currently point t

= Example: Insert(011015S)

o)

1
s o 0 1
003 .
111$
1101$
0

,/010010%




Tries: Insert

= P « get-path-to(w) gives ancestors that exist already

= Expand trie from p «<— P.top() by adding nodes for the extra bits of w

= Update leaf-references for new nodes and also for nodes in P
=  w could be longer that the leaves nodes in P currently point t

= Example: Insert(01101S)

o)

1
s o 0 1
003 .
111$
1101$
0

,/010010%




Tries: Insert

= P « get-path-to(w) gives ancestors that exist already

= Expand trie from p «<— P.top() by adding nodes for the extra bits of w

= Update leaf-references for new nodes and also for nodes in P
=  w could be longer that the leaves nodes in P currently point t

= Example: Insert(011015S)

o)

1
s o 0 1
003 .
111$
1101$
0

,/010010%




Tries: Insert

= P « get-path-to(w) gives ancestors that exist already

= Expand trie from p «<— P.top() by adding nodes for the extra bits of w

= Update leaf-references for new nodes and also for nodes in P
=  w could be longer that the leaves nodes in P currently point t

= Example: Insert(01101S)

o)

1
s o 0 1
003
$
111$

1101%

,/010010%




Tries: Insert

= P « get-path-to(w) gives ancestors that exist already

= Expand trie from p «<— P.top() by adding nodes for the extra bits of w

= Update leaf-references for new nodes and also for nodes in P
=  w could be longer that the leaves nodes in P currently point t

= Example: Insert(01101S)

o)

1
s o 0 1
003
$
111$

1101%

,/010010%




Tries: Delete

= P « get-path-to(w) gives all ancestors
= Let [ be the leaf where w is stored
=  Delete [ and nodes on P until ancestor has two or more children

= Update leaf-references on the rest of P
= if zeP referred to [, find new z. leaf from current children of z

= Delete(01005)




Tries: Delete

= P « get-path-to(w) gives all ancestors
= Let [ be the leaf where w is stored
=  Delete [ and nodes on P until ancestor has two or more children

= Update leaf-references on the rest of P
= if zeP referred to [, find new z. leaf from current children of z

= Delete(01005)




Tries: Delete

= P « get-path-to(w) gives all ancestors
= Let [ be the leaf where w is stored
=  Delete [ and nodes on P until ancestor has two or more children

= Update leaf-references on the rest of P
= if zeP referred to [, find new z. leaf from current children of z

= Delete(01005)




Tries: Delete

= P « get-path-to(w) gives all ancestors
= Let [ be the leaf where w is stored
=  Delete [ and nodes on P until ancestor has two or more children

= Update leaf-references on the rest of P
= if zeP referred to [, find new z. leaf from current children of z

= Delete(01005)




Tries: Delete

= P « get-path-to(w) gives all ancestors
= Let [ be the leaf where w is stored
=  Delete [ and nodes on P until ancestor has two or more children

= Update leaf-references on the rest of P
= if zeP referred to [, find new z. leaf from current children of z

= Delete(01005)




Tries: Delete

= P « get-path-to(w) gives all ancestors
= Let [ be the leaf where w is stored
=  Delete [ and nodes on P until ancestor has two or more children

= Update leaf-references on the rest of P
= if zeP referred to [, find new z. leaf from current children of z

= Delete(01005)

PR
-
-
-




Standard Trie Summary

= search(w), prefix-search(w), insert(w), delete(w) all take @(|w|) time
" timeisindependent of n, the number of words stored in the trie
= time is small for short words
= Trie for a given set of words is unique
= except for order of children and ties among leaf-references
= Disadvantages

= can be wasteful with respect to space
= the problemis ‘chains’

_,—0—+>0—0—>0—0—+0—0—>0—0—>0—5—>000000%

o®

I\‘.—l—ri—l—ri—l—ri—l—ri—l—*l—$+ 1111119%

=  Worst case space is ®(n - maximum word length)
= How to save space?



Outline

" Tries

=" Pruned Trie



Pruned Trie

Sub-trie with one key has only one node
Convert standard trie into pruned trie

6 keys

000S




Pruned Trie

=  Sub-trie with one key has only one node
= Convert standard trie into pruned trie

6 keys

000S




Pruned Trie

Sub-trie with one key has only one node
Convert standard trie into pruned trie

6 keys




Pruned Trie

Sub-trie with one key has only one node
Convert standard trie into pruned trie

6 keys




Pruned Trie

Sub-trie with one key has only one node
Convert standard trie into pruned trie

6 keys




Pruned Trie

Sub-trie with one key has only one node
Convert standard trie into pruned trie

6 keys




Pruned Trie

Sub-trie with one key has only one node
Convert standard trie into pruned trie

6 keys




Pruned Trie

=  Sub-trie with one key has only one node

= Final pruned trie

000S$ | |0001S

= node has a child only if it has at least two descendants
= saves space if there are only few bitstrings that are long
= can even store really long bitstrings more efficiently (real numbers)

= more efficient version of tries, but operations get a bit more complicated

" in particular, have to change prefix-search(w) to search at the leaf if full prefix is
not found prior to visiting the leaf




Outline

" Tries

= Compressed Trie



Pruned Trie: Internal Nodes with One Child

0 1
"  Pruned trie can have internal 0 ®
nodes with one child ! 1
S 0 0 1 0 1
005 S\\o S 1

=  Extreme example

=  Such ‘chains’ in a trie waste space and reduce efficiency



Compressing Singly Linked Chains

compress > /.\

Singly linked ‘chains’ in a trie waste space and reduce efficiency
If compress chains into one node, each internal node will have at least 2 children

Let n be the number of leaf nodes (i.e. the number of stored keys)

Will show that if each internal node has 2 or more children, then there are at
most n — 1 internal nodes

Therefore at most 2n — 1 total nodes
m n external + at most n — 1 internal
"=  spaceis 0(n), not much wasted space



Tree with no ‘chains’ Theorem

= LetT be atree with m leafs. If every non-leaf (internal) node has at
least 2 children, then the tree has at most m — 1 internal nodes

=  Visual proof
"= put astone on each leaf



Tree with no ‘chains’ Theorem

= LetT be atree with m leafs. If every non-leaf (internal) node has at
least 2 children, then the tree has at most m — 1 internal nodes

=  Visual proof
= putastone on each leaf
=  there are m stones
= all leaves pass a stone to the parent




Tree with no ‘chains’ Theorem

= LetT be atree with m leafs. If every non-leaf (internal) node has at
least 2 children, then the tree has at most m — 1 internal nodes

=  Visual proof

put a stone on each leaf

there are m stones

all leaves pass a stone to the parent
all internal nodes at level h — 1 have

at least 2 stones, they leave one
stone and pass one stone to parent



Tree with no ‘chains’ Theorem

= LetT be atree with m leafs. If every non-leaf (internal) node has at
least 2 children, then the tree has at most m — 1 internal nodes

=  Visual proof
= putastone on each leaf
=  there are m stones
= all leaves pass a stone to the parent
= all internal nodes at level h — 1 have

at least 2 stones, they leave one
stone and pass one stone to parent

= allinternal nodes at level h —2 have at
least 2 stones, they leave one stone and
pass one stone to the parent




Tree with no ‘chains’ Theorem

= LetT be atree with m leafs. If every non-leaf (internal) node has at
least 2 children, then the tree has at most m — 1 internal nodes

=  Visual proof

= continue until reach the root

"=  now each internal node has 1 stone
and root has 2 or more stones




Tree with no ‘chains’ Theorem

Let T be a tree with m leafs. If every non-leaf (internal) node has at
least 2 children, then the tree has at most m — 1 internal nodes

=  Visual proof

= continue until reach the root

"=  now each internal node has 1 stone
and root has 2 or more stones

=  rootleaves 1 stone and throws the
rest outside the tree

= pow each internal node has 1 stone,
and there is one or more stones
outside the tree

=  since number of stones is m, the
number of internal nodes is strictly
less than m



Compressing Chains

trie above

. bit5
9

1| bit 6
® trie above

0l hi N
‘blt 7 [ compressing > bit 5 after th(ijs: node,b§ei;ch
_ ( :) according to bit
O|bit8 bit 117

ok % ok ok k k7
®

1|bit9 trie below
o
1| bit 10

o
0 bit 11

trie below

=  But now we lost part of the binary string ‘10011’
= Check if the leaf we reach stores the search key



Compressed Tries (Patricia Tries)

(005 ] [0001$ | [01001$ | 11103] | 11018

0115 | ® [1105 | ® [111$ s/ \0
011$ | [01101$ |

0001%$ ¢
01001$/01101%

=  Morrison (1968): Patricia-Tries

=  Practical Algorithm to Retrieve Information Coded in Alohanumeric

= |dea: compress paths of nodes with only one child

= Each node stores an index : next bit to be tested during a search

= Compressed trie with n keys has at most n — 1 internal (non-leaf) nodes



Compressed Tries: Search Example
Example: Search(10S)

0 O 1
D 2
0 1 0 \1
/ \ / TIE
$ 1 0 1 $ 1
00$| | 0001 |01001$ 1109 11015

s %o

011S | |01101$




Compressed Tries: Search Example
Example: Search(10S)

00§ [0001$|[01001§ (3) [1109[1101%

$ 0
011 |01101%




Compressed Tries: Search Example

Example: Search(105)

T
skip

00§ [0001$|[01001§ (3) [1109[1101%

$ 0
011 |01101%




Compressed Tries: Search Example

Example: Search(10S) unsuccessful

$/ \ 1
00$ |0001$| | 01001$ 1104 1101$
$ 0
011$| 01101%

no S-child

111%




Compressed Tries: Search Example
Example: Search(1015S)

00§ [0001$|[01001§ (3) [1109[1101%

$ 0
011 |01101%




Compressed Tries: Search Example
Example: Search(101S)

00§ [0001$|[01001§ (3) [1109[1101%

$ 0
011 |01101%




Compressed Tries: Search Example

Example: Search(1015S)

T
skip

00§ [0001$|[01001§ (3) [1109[1101%

$ 0
011 |01101%




Compressed Tries: Search Example
Example: Search(101S)

00§ [0001$|[01001§ (3) [1109[1101%

$ 0
011 |01101%




Compressed Tries: Search Example

Example: Search(101S) Unsuccessful

111%

$/ \ 1 1
00§ [0001$|[01001% 1109 11013
$ 0
011$| [01101%

compare to 101$



Compressed Tries: Search Example
Example: Search(111S)

00§ [0001$|[01001§ (3) [1109[1101%

$ 0
011 |01101%




Compressed Tries: Search Example
Example: Search(111S)

00§ [0001$|[01001§ (3) [1109[1101%

$ 0
011 |01101%




Compressed Tries: Search Example

Example: Search(111S)

T
skip

00§ [0001$|[01001§ (3) [1109[1101%

$ 0
011 |01101%




Compressed Tries: Search Example
Example: Search(111S)

00§ [0001$|[01001§ (3) [1109[1101%

$ 0
011 |01101%




Compressed Tries: Search Example

Example: Search(111S) successful

111%

$/ \ 1 1
00§ [0001$|[01001% 1109 11013
$ 0
011$| [01101%

compare to 1115



Compressed Tries: Search

CompressedTrie::get-path-to(w)
P «— empty stack; z < root; P.push(z)
while z is not a leaf and (d < z.index < w.size) do
if z has a child-link labelled with w|[d]
z <— child at this link; P.push(z)
else break
return P

CompressedTrie::search(w)

P «— get-path-to(w); z «— P.top()

if z is not a leaf or word stored at z is not w then
return “not found”

return key-value pair at z

= Asin standard tries, follow links that correspond to current bits in w

= Main difference
= stored indices say which bits to compare
= also must compare w to the word found at the leaf



Compressed Trie: Links to Leaves

S

00S

all keys in

subtree have all keys in
prefix 11 subtree have
prefix 11

........
SS

0/‘
~

0 1
0 0 1
1 o| S A
011
$ 1 1

S 0 0 1 S L
%4 [00$| |0001$ | 010013 (1108] [ 11018] ...

L $ 0

(0115 | [01101$ ]

0001$ ¢ ¢
01001$//01101%

Links to leaves established as in uncompressed tries

Need to modify prefix-search(w) to check if the leaf has prefix matching w

All keys in a subtree of the node where search for w ends have the same
prefix of length |w|

= prefix w either matches all keys in the subtree, or none of subtrees keys



Compressed Tries: Summary

= search(w) and prefix-search(w) are easy
= jnsert(w) and delete(w) are conceptually simple

search for path P to word w (say we reach node z)

uncompress this path (using characters of z. leaf)
insert/delete w as in uncompressed trie

compress path from root to where changed happened

= All operations take O(|w]) time for word w

= Use 0(n) space

= More complicated than standard tries, but space
savings are worth it if words are unevenly distributed



Outline

" Tries

= Multiway Trie



Multiway Tries: Larger Alphabet

= Represents Strings over any fixed alphabet X
= Any node has at most |X| + 1 children

= one child for the end-of-word character $

= Example: A trie holding strings {bear$, ben$, be$, soul$, soup$}

&
® ben$
$ $ $




Compressed Multiway Tries

=  Compressed multi-way tries
= Example: A compressed trie holding strings {bears, benS, beS, soulS, soupS}

be$ bear$ ben$ soul$ soup$




Multiway Tries: Summary

= Qperations search(w), insert(w) and delete(w) are as for bitstring tries
= Run-time O(|w| - (time to find the appropriate child))

= Each node now hasupto [X] + 1 children

= How should children be stored?

‘ array ‘ linked list | AVL tree

[oe] T Jol ] S)oi—1ale;—n|e| R
e/

@
W
g
=

= Time/Space tradeoff: arrays are fast, lists are space efficient

= run-time O(|w|) with arrays storing children
= AVL tree is best in theory, but not worth it in practice unless |Z| is huge
= |n practice, use hashing (next module)



