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Dictionary ADT: Implementations Thus Far

 Search is Θ(log 𝑛) in fastest implementations of dictionary ADT
 𝑛 is the number of items stored 

 Search is Ω(log 𝑛) in all realizations of ADT we know

 Question: Can we do better than Θ(log 𝑛) search?

 Answer: It depends on what we allow

 No: comparison-based searching lower bound is Ω(log 𝑛)

 Yes: non-comparison based searching can achieve 𝑜(log 𝑛)
 keys have special properties

1. Interpolation search: keys have special distribution

2. Tries: keys are strings



Lower Bound For Search
Theorem: Ω(log 𝑛) comparisons required for search in comparison based model

Proof:

not found𝑘 = 𝑥1

 Let algorithm 𝐴 search for key for 𝑘 among 𝑛 items 𝑥1, 𝑥2, … , 𝑥𝑛
 There is a corresponding binary decision tree 

 Chose a set of distinct keys 𝑆 = {𝑥1, 𝑥2, … , 𝑥𝑛}

 Consider 𝑛 + 1 instances of search problem

 search 𝑆 for 𝑘 = 𝑥1
 search 𝑆 for 𝑘 = 𝑥2
 …

 search 𝑆 for 𝑘 = 𝑥𝑛
 search 𝑆 for 𝑘 different from keys in 𝑆

 Decision tree must have one leaf for each instance above

 Decision tree must have at least (𝑛 + 1) leaves

 Binary tree of height ℎ has at most 2ℎ leaves

 Thus 2ℎ ≥ 𝑛 + 1

 Taking log of both sides,  ℎ ≥ log(𝑛 + 1)

𝑘 = 𝑥2

decision tree

…
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Binary Search on Ordered Array
 insert and delete: Θ(𝑛), search is Θ(log 𝑛)

Binary-search(𝐴, 𝑛, 𝑘)

𝐴: Array of size 𝑛, 𝑘: key

𝑙 ← 0

𝑟 ← 𝑛 − 1

while 𝑙 ≤ 𝑟

𝑚 ←
𝑙+𝑟

2

if (𝑘 = 𝐴 𝑚 ) return “found at 𝐴 𝑚 ”

else if 𝐴 𝑚 < 𝑘 // key cannot be in the left part of 𝐴

𝑙 ← 𝑚 + 1

els𝐞 𝑟 ← 𝑚 − 1 // key cannot be in the right part of 𝐴

return “not found but would be between 𝐴 𝑙 − 1 and 𝐴 𝑙 ”



Interpolation Search: Motivation
 binary search looks at index

𝑙 𝑟

40 120

middle

= 𝑙 +
1

2
(𝑟 − 𝑙)

𝑙 + 𝑟

2



Interpolation Search: Motivation

 If keys are close to evenly distributed, where would key 𝑘 = 100 be? 
𝑙 𝑟

40 120

 100 should be much further away from 𝐴 𝑙 = 40 than from  𝐴 𝑟 = 120

 binary search looks at index

𝑙 𝑟

40 120

middle

= 𝑙 +
1

2
(𝑟 − 𝑙)

𝑙 + 𝑟

2



Interpolation Search: Motivation

𝐴[𝑟] − 𝐴[𝑙] = 80

𝑘 − 𝐴[𝑙] = 60

 fractional distance: 
𝑘−𝐴[𝑙]

𝐴 𝑟 −𝐴[𝑙]
= 60/80 =

3

4
of the way between 𝑙 and  𝑟

 If keys are close to evenly distributed, where would key 𝑘 = 100 be? 
𝑙 𝑟

40 120

 binary search looks at index

𝑙 𝑟

40 120

middle

= 𝑙 +
1

2
(𝑟 − 𝑙)

𝑙 + 𝑟

2

 100 should be much closer to 𝐴 𝑟 = 120 than to  𝐴 𝑙 = 40

 Interpolation search looks at index 𝑙 +
𝑘−𝐴[𝑙]

𝐴 𝑟 −𝐴[𝑙]
(𝑟 − 𝑙)



Interpolation Search Example

0 1 2 3 4 5 6 7 8 9

0 1 2 3 449 450 600 800 1000 1200 1500

10

 Search(449), iteration 1

𝑙 = 0, 𝑟 = 𝑛 − 1 = 10,

𝑚 = 𝑙 +
𝑘 − 𝐴[𝑙]

𝐴 𝑟 − 𝐴[𝑙]
(𝑟 − 𝑙)

𝑚 = 0 +
449 − 0

1500 − 0
(10 − 0) = 2

𝑙 𝑟



Interpolation Search Example

0 1 2 3 4 5 6 7 8 9

0 1 2 3 449 450 600 800 1000 1200 1500

10

 Search(449), iteration 2

𝑚 = 𝑙 +
𝑘 − 𝐴[𝑙]

𝐴 𝑟 − 𝐴[𝑙]
(𝑟 − 𝑙)

𝑙 = 3, 𝑟 = 10, 𝑚 = 3 +
449 − 3

1500 − 3
(10 − 3) = 5

𝑙 𝑟

 Deleted 6 out of 8 elements, better than possible with binary search



Interpolation Search Example

0 1 2 3 4 5 6 7 8 9

0 1 2 3 449 450 600 800 1000 1200 1500

10

 Search(449), iteration 3

𝑚 = 𝑙 +
𝑘 − 𝐴[𝑙]

𝐴 𝑟 − 𝐴[𝑙]
(𝑟 − 𝑙)

𝑙 = 3, 𝑟 = 4, 𝑚 = 3 +
449 − 3

499 − 3
(4 − 3) = 4

𝑙 𝑟

key found



Interpolation Search

 Works well if keys are close to evenly distributed

 But worst case performance on unevenly distributed keys is Θ(𝑛)

 Example: search(10)

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 1500

10



Interpolation Search

CS240 – Module 6

 Search(10), iteration 1

𝑙 = 0, 𝑟 = 𝑛 − 1 = 10, 𝑚 = 0 +
10 − 0

1500 − 0
(10 − 0) = 0

𝑙 𝑟

 Works well if keys are close to evenly distributed

 But worst case performance on unevenly distributed keys is Θ(𝑛)

 Example: search(10)

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 1500

10



Interpolation Search

CS240 – Module 6

 Search(10), iteration 2

𝑙 = 1, 𝑟 = 10, 𝑚 = 1 +
10 − 1

1500 − 1
(10 − 1) = 1

𝑙 𝑟

 Works well if keys are close to evenly distributed

 But worst case performance on unevenly distributed keys is Θ(𝑛)

 Example: search(10)

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 1500

10



Interpolation Search

CS240 – Module 6

 Search(10), iteration 3

𝑙 = 2, 𝑟 = 10, 𝑚 = 2 +
10 − 2

1500 − 2
(10 − 2) = 2

𝑙 𝑟

 Works well if keys are close to evenly distributed

 But worst case performance on unevenly distributed keys is Θ(𝑛)

 Example: search(10)

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 1500

10

 Will continue in ‘steps’ of 1 at each iteration until reach the end of the array



Interpolation Search

 Works well on average

 can show (difficult): 𝑇𝑎𝑣𝑔 𝑛 ≤ 𝑇𝑎𝑣𝑔( 𝑛) + Θ(1)

 recurse into array of 𝑛 size, on average

 resolves to 𝑇𝑎𝑣𝑔(𝑛) ∈ 𝑂(log log 𝑛)

CS240 – Module 6

 Clever trick

 use interpolation search for at most  log 𝑛 steps

 if key is still not found, switch to binary search

 guarantees 𝑂(log𝑛) worst case, but could be 𝑂(log log 𝑛)



Interpolation Search
 Code similar to binary search, but compare at interpolated index 

 Need extra test to avoid division by zero due to 𝐴[𝑙] = 𝐴[𝑟]

Interpolation-search(𝐴, 𝑛, 𝑘)

𝐴: Sorted array of size 𝑛, 𝑘: key

𝑙 ← 0,  𝑟 ← 𝑛 − 1

while 𝑙 ≤ 𝑟

if (𝑘 < 𝐴 𝑙 or 𝑘 > 𝐴[𝑟]) return  “not found”

if (𝑘 = 𝐴[𝑟]) return “found at 𝐴[𝑟]”

𝑚 ← 𝑙 +
𝑘−𝐴[𝑙]

𝐴 𝑟 −𝐴[𝑙]
(𝑟 − 𝑙)

if 𝐴 𝑚 = 𝑘 return “found at 𝐴[𝑚]”
else if 𝐴 𝑚 < 𝑘

𝑙 ← 𝑚 + 1

elsif 𝑟 ← 𝑚 − 1

// always return from inside the while loop
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Tries: Introduction
 Scenario: Keys in dictionary are words

 Words (=strings): sequence of characters over alphabet Σ
{be, bear, beer}

 Typical alphabets: {0,1} (bitstrings), ASCII, etc.

 Stored in an array: 𝑤[𝑖] gets 𝑖th character (for 𝑖 = 0,1,…)

 Convention: words have end-sentinel $ (sometimes not shown)
 $ is smaller than any other character and does not occur in Σ

 𝑤. 𝑠𝑖𝑧𝑒 = 𝑤 = number of non-sentinel characters
 be$ = 2

 Should know
 prefix, suffix, substring

 sorting of words lexicographically 

be$ <lex bear$

 this is different from sorting numbers

010$ < lex 1$

bear$ < lex beer$



Tries: Introduction

 Trie (also known as radix tree): a dictionary for bit strings

 comes from word retrieval, but pronounced “try”

 Trie vs. AVL tree

 let the number of strings in dictionary be 𝑛

 Trie: insert, find, delete is 𝑂( 𝑤 ) time

 independent of 𝑛

 AVL tree: insert, find delete is 𝑂( 𝑤 log(𝑛)) time

 𝑂(log(𝑛)) nodes on a path, 𝑂( 𝑤 ) operations at each node

 Trie applications

 auto-completion

 smart phones, commands for operating systems

 spell checking

 DNA sequencing



Tries: Introduction

 Trie (radix tree): dictionary for bitstrings

 tree based on bitwise comparisons

 edges labelled with corresponding bit

 store words by comparing edge labels and word bits

 similar to radix sort: compare individual bits, not the whole key

 due to end-sentinels $, all key-value pairs are at leaves

 𝑛 is the number of words (strings) stored in the trie

001$

0

0

1

1

1

000$

$

011$

10

0001$

$ 1

$
11$

$

$$

0100$

0

0

$

01$

1



Tries: Search Example

root

$  

00$

$

0001$

0

1

0

$

01001$

0

1

0

$  

011$

$

01101$

0

1

1

1

0

$  

110$

1101$

1

$

0

$

111$

1

1

1

Example: Search(011$) 𝑃 =



Tries: Search Example

root
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$
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1

1

0

$  

110$

1101$

1

$

0

$
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1

1

1

Example: Search(011$) 𝑃 =



Tries: Search Example
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Example: Search(011$) 𝑃 =



Tries: Search Example
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Tries: Search Example

root

$  

00$

$

0001$

0

1

0

$

01001$

0

1

0

011$

$

01101$

0

1

1

1

0

$  

110$

1101$
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$
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$
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Example: Search(011$)

$

𝑃 =

011$

successful



Tries: Search Example

root

$  

00$

$

0001$

0

1

0

$

01001$

0

1

0

$  

011$

$

01101$

0

1

1

1

0

$  

110$

1101$

1

$

0

$

111$

1

1

1

Example: Search(0111$)

no 1-child

unsuccessful
𝑃 =

011



Tries: Search
 Follow links that correspond to current bits in 𝑤

 Repeat until 𝑤 is found or no such link

Trie::get-path-to(𝑤)

Output: 𝑤 in the trie: stack holds path leading to and including 𝑤

𝑤 not in the trie: stack holds ancestors of where 𝑤 would have been 

𝑃 ⟵ empty stack; 𝑧 ⟵ root; 𝑑 ⟵ 0; 𝑃.push(𝑧)

while 𝑑 ≤ |𝑤|

if 𝑧 has a child-link labelled with 𝑤 𝑑

𝑧 ⟵ child at this link; 𝑑++; 𝑃.push(𝑧)

else break

return 𝑃

Trie::search(𝑤)

𝑃 ⟵ get-path-to(𝑤); 𝑧 ⟵ 𝑃.top()

if 𝑧 is not a leaf then

return “not found, would be in sub-trie of 𝑧”

return key-value pair at 𝑧



Tries: Leaf-References

 For later applications of tries, want prefix-search(𝑤)

 find word 𝑣 in a trie for which 𝑤 is a prefix

001$

0

0

1

1

1

000$

$

011$

10

0001$

$ 1

$
11$

$

$$

0100$

0

0

$

01$

1

prefix-search(01$) can return:

01$

0100$

011$

01$ or 0100$ or 011$



Tries: Leaf-References

 For later applications of tries, want prefix-search(𝑤)

 find word 𝑣 in a trie for which 𝑤 is a prefix

001$

0

0

1

1

1

000$

$

011$

10

0001$

$ 1

$
11$

$

$$

0100$

0

0

$

01$

1

 To find 𝑣 quickly, need leaf-references

 Convention: reference to leaf with longest word in the subtree

 ties broken arbitrarily

not all leaf-references are shown



Tries: Leaf-References
 Example: Trie::prefix-search(00$)

001$

0

0

1

1

1

000$

$

011$

10

0001$

$ 1

$
11$

$

$$

0100$

0

0

$

01$

1

𝑃 =

matched prefix!

 If match, stack size is larger by 
exactly 1 than size of prefix 𝑤

 1 node for the root

 1 node for each 
character of 𝑤

Trie::prefix-search(𝑤)

𝑃 ⟵ get-path-to(𝑤)

if number of nodes on 𝑃 is 𝑤. 𝑠𝑖𝑧𝑒 or less then

return “not string with prefix 𝑤 found”

𝑝 ⟵ 𝑃.top()

return 𝑝. 𝑙𝑒𝑎𝑓

00



Tries: Insert

$  

00$

$

0001$

0

1

0

0

1

0

$  

011$
$

0111$

1

1

1

0

$  

110$

1101$

1

$

0

$

111$

1

1

1

$

010010$

0

 𝑃 ⟵ get-path-to(𝑤) gives ancestors that exist already

 Expand trie from 𝑝 ⟵ 𝑃.top() by adding nodes for the extra bits of 𝑤

 Update leaf-references for new nodes and also for nodes in 𝑃

 𝑤 could be longer that the leaves nodes in 𝑃 currently point to

 Example: Insert(01101$)

no 0-child

011



Tries: Insert

$  

00$

$

0001$

0

1

0

0

1

0

$  

011$
$

0111$

1

1

1

0

$  

110$

1101$

1

$

0

$

111$

1

1

1

$

010010$

0

 𝑃 ⟵ get-path-to(𝑤) gives ancestors that exist already

 Expand trie from 𝑝 ⟵ 𝑃.top() by adding nodes for the extra bits of 𝑤

 Update leaf-references for new nodes and also for nodes in 𝑃

 𝑤 could be longer that the leaves nodes in 𝑃 currently point to

 Example: Insert(01101$)

0



Tries: Insert

$  

00$

$

0001$

0

1

0

0

1

0

$  

011$
$

0111$

1

1

1

0

$  

110$

1101$

1

$

0

$

111$

1

1

1

$

010010$

0

 𝑃 ⟵ get-path-to(𝑤) gives ancestors that exist already

 Expand trie from 𝑝 ⟵ 𝑃.top() by adding nodes for the extra bits of 𝑤

 Update leaf-references for new nodes and also for nodes in 𝑃

 𝑤 could be longer that the leaves nodes in 𝑃 currently point to

 Example: Insert(01101$)

0

1



Tries: Insert

$  

00$

$

0001$

0

1

0

0

1

0

$  

011$
$

0111$

1

1

1

0

$  

110$

1101$

1

$

0

$

111$

1

1

1

$

010010$

0

 𝑃 ⟵ get-path-to(𝑤) gives ancestors that exist already

 Expand trie from 𝑝 ⟵ 𝑃.top() by adding nodes for the extra bits of 𝑤

 Update leaf-references for new nodes and also for nodes in 𝑃

 𝑤 could be longer that the leaves nodes in 𝑃 currently point to

 Example: Insert(01101$)

0

1

01101$

$



Tries: Insert

$  

00$

$

0001$

0

1

0

0

1

0

$  

011$
$

0111$

1

1

1

0

$  

110$

1101$

1

$

0

$

111$

1

1

1

$

010010$

0

 𝑃 ⟵ get-path-to(𝑤) gives ancestors that exist already

 Expand trie from 𝑝 ⟵ 𝑃.top() by adding nodes for the extra bits of 𝑤

 Update leaf-references for new nodes and also for nodes in 𝑃

 𝑤 could be longer that the leaves nodes in 𝑃 currently point to

 Example: Insert(01101$)

0

1

01101$

$



Tries: Delete
 𝑃 ⟵ get-path-to(𝑤) gives all ancestors

 Let 𝑙 be the leaf where 𝑤 is stored

 Delete 𝑙 and nodes on 𝑃 until ancestor has two or more children

 Update leaf-references on the rest of 𝑃

 if 𝑧ϵ𝑃 referred to 𝑙, find new 𝑧. 𝑙𝑒𝑎𝑓 from current children of 𝑧

 Delete(0100$)

001$

0

0

1

1

1

000$

$

011$

10

0001$

$ 1

$
11$

$

$$

0100$

0

0

$

01$

1



Tries: Delete
 𝑃 ⟵ get-path-to(𝑤) gives all ancestors

 Let 𝑙 be the leaf where 𝑤 is stored

 Delete 𝑙 and nodes on 𝑃 until ancestor has two or more children

 Update leaf-references on the rest of 𝑃

 if 𝑧ϵ𝑃 referred to 𝑙, find new 𝑧. 𝑙𝑒𝑎𝑓 from current children of 𝑧

 Delete(0100$)

001$

0

0

1

1

1

000$

$

011$

10

0001$

$ 1

$
11$

$

$$

0100$

0

0

$

01$

1

𝑙



Tries: Delete

001$

0

0

1

1

1

000$

$

011$

10

0001$

$ 1

$
11$

$

$$ 01$

1

 𝑃 ⟵ get-path-to(𝑤) gives all ancestors

 Let 𝑙 be the leaf where 𝑤 is stored

 Delete 𝑙 and nodes on 𝑃 until ancestor has two or more children

 Update leaf-references on the rest of 𝑃

 if 𝑧ϵ𝑃 referred to 𝑙, find new 𝑧. 𝑙𝑒𝑎𝑓 from current children of 𝑧

 Delete(0100$)



Tries: Delete

001$

0

0

1

1

1

000$

$

011$

10

0001$

$ 1

$
11$

$

$$ 01$

1

 𝑃 ⟵ get-path-to(𝑤) gives all ancestors

 Let 𝑙 be the leaf where 𝑤 is stored

 Delete 𝑙 and nodes on 𝑃 until ancestor has two or more children

 Update leaf-references on the rest of 𝑃

 if 𝑧ϵ𝑃 referred to 𝑙, find new 𝑧. 𝑙𝑒𝑎𝑓 from current children of 𝑧

 Delete(0100$)
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 if 𝑧ϵ𝑃 referred to 𝑙, find new 𝑧. 𝑙𝑒𝑎𝑓 from current children of 𝑧

 Delete(0100$)



Tries: Delete

001$

0

0

1

1

1

000$

$

011$

10

0001$

$ 1

$
11$

$

$$ 01$

1
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 Update leaf-references on the rest of 𝑃

 if 𝑧ϵ𝑃 referred to 𝑙, find new 𝑧. 𝑙𝑒𝑎𝑓 from current children of 𝑧

 Delete(0100$)



Standard Trie Summary

 search 𝑤 , prefix-search 𝑤 , insert 𝑤 , delete 𝑤 all take Θ(|𝑤|) time

 time is independent of 𝑛, the number of words stored in the trie

 time is small for short words

 Trie for a given set of words is unique

 except for order of children and ties among leaf-references

 Disadvantages

 can be wasteful with respect to space

 the problem is ‘chains’

 Worst case space is Θ(𝑛 ∙ maximum word length)

 How to save space? 
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 Lower bound for search

 Interpolation Search

 Tries

 Standard Trie

 Pruned Trie

 Compressed Trie

 Multiway Trie



Pruned Trie

 Sub-trie with one key has only one node

 Convert standard trie into pruned trie
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Pruned Trie

 Sub-trie with one key has only one node

 Convert standard trie into pruned trie
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Pruned Trie

 Sub-trie with one key has only one node

 Convert standard trie into pruned trie
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Pruned Trie

 Sub-trie with one key has only one node

 Convert standard trie into pruned trie
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Pruned Trie

 Sub-trie with one key has only one node

 Convert standard trie into pruned trie
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$
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Pruned Trie

 Sub-trie with one key has only one node

 Final pruned trie
0

0

1

1

1

000$

$

011$

10

0001$

$ 1
0

01$

11$

001$ 0100$

 node has a child only if it has at least two descendants

 saves space if there are only few bitstrings that are long

 can even store really long bitstrings more efficiently (real numbers)

 more  efficient version of tries, but operations get a bit more complicated

 in particular, have to change prefix-search(𝑤) to search at the leaf if full prefix is 
not found prior to visiting the leaf
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Pruned Trie: Internal Nodes with One Child

 Pruned trie can have internal 
nodes with one child

$ 0
00$ 0001$

0

0
01001$

$ 0
011$ 01101$

1

1

0

$ 1
110$ 1101$

0 1
111$

1

1

 Such ‘chains’ in a trie waste space and reduce efficiency

 Extreme example



Compressing Singly Linked Chains

 Singly linked ‘chains’ in a trie waste space and reduce efficiency

 If compress chains into one node, each internal node will have at least 2 children

 Let 𝑛 be the number of leaf nodes (i.e. the number of stored keys) 

 Will show that if each internal node has 2 or more children, then there are at 
most 𝑛 − 1 internal nodes 

 Therefore at most 2𝑛 − 1 total nodes

 𝑛 external + at most 𝑛 − 1 internal

 space is 𝑂(𝑛), not much wasted space

compress



Tree with no ‘chains’ Theorem

 Let T be a tree with 𝑚 leafs. If every  non-leaf (internal) node has at 
least 2 children, then the tree has at most  𝑚 − 1 internal nodes

 Visual proof

 put a stone on each leaf
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 Let T be a tree with 𝑚 leafs. If every  non-leaf (internal) node has at 
least 2 children, then the tree has at most  𝑚 − 1 internal nodes

 Visual proof

 put a stone on each leaf

 there are 𝑚 stones

 all leaves pass a stone to the parent



Tree with no ‘chains’ Theorem

 Let T be a tree with 𝑚 leafs. If every  non-leaf (internal) node has at 
least 2 children, then the tree has at most  𝑚 − 1 internal nodes

 Visual proof

 put a stone on each leaf

 all  internal nodes at level ℎ − 1 have 
at least 2 stones, they leave one 
stone and pass one stone to parent

 there are 𝑚 stones

 all leaves pass a stone to the parent



Tree with no ‘chains’ Theorem

 Let T be a tree with 𝑚 leafs. If every  non-leaf (internal) node has at 
least 2 children, then the tree has at most  𝑚 − 1 internal nodes

 Visual proof

 put a stone on each leaf

 all internal nodes at level ℎ −2 have at 
least 2 stones, they leave one stone and 
pass one stone to the parent

 all  internal nodes at level ℎ − 1 have 
at least 2 stones, they leave one 
stone and pass one stone to parent

 there are 𝑚 stones

 all leaves pass a stone to the parent



Tree with no ‘chains’ Theorem

 Let T be a tree with 𝑚 leafs. If every  non-leaf (internal) node has at 
least 2 children, then the tree has at most  𝑚 − 1 internal nodes

 Visual proof

 continue until reach the root

 now each internal node has 1 stone 
and root has 2 or more stones



Tree with no ‘chains’ Theorem

 Let T be a tree with 𝑚 leafs. If every  non-leaf (internal) node has at 
least 2 children, then the tree has at most  𝑚 − 1 internal nodes

 Visual proof

 continue until reach the root

 now each internal node has 1 stone 
and root has 2 or more stones

 root leaves 1 stone and throws the 
rest outside the tree

 now each internal node has 1 stone, 
and there is one or more stones 
outside the tree

 since number of stones is 𝑚, the
number of internal nodes is strictly 
less than 𝑚



Compressing Chains

1

0

0

1

1

trie above

trie below

trie above

trie below

bit 5

bit 6

bit 7

bit 8

bit 9

bit 10

bit 11

11

 But now we lost part of the binary string ‘10011’

after this node, search 
according to bit 11

bit 5

bit 11

compressing

‘******’

 Check if the leaf we reach stores the search key 



Compressed Tries (Patricia Tries)

 Morrison (1968): Patricia-Tries

 Practical Algorithm to Retrieve Information Coded in Alphanumeric

 Idea: compress paths of nodes with only one child

 Each node stores an index : next bit to be tested during a search

 Compressed trie with 𝑛 keys has at most 𝑛 − 1 internal (non-leaf) nodes

0

1

2

00$

$ 0

0
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011$ 01101$

0

0 1

0001$   01001$ 3

$

1

0

2

3

$ 1

110$ 1101$
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1

1

$  
00$

$
0001$

011$
$

1

0

0

0 1

0 0 1

1 0

1
110$

$

1101$
$

1

0

$

111$

1

1

1

$
01001$

$
01101$



Compressed Tries: Search Example

Example: Search(10$)
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Compressed Tries: Search Example

Example: Search(10$)
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Compressed Tries: Search Example

Example: Search(101$)
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Compressed Tries: Search Example

Example: Search(101$)
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Example: Search(101$)
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Compressed Tries: Search Example

Example: Search(101$)
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Compressed Tries: Search Example

Example: Search(101$)
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Compressed Tries: Search Example

Example: Search(111$)
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Compressed Tries: Search Example

Example: Search(111$)
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Compressed Tries: Search Example

Example: Search(111$)
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Compressed Tries: Search Example

Example: Search(111$)
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Compressed Tries: Search Example

Example: Search(111$)
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Compressed Tries: Search

 As in standard tries, follow links that correspond to current bits in 𝑤

 Main difference

 stored indices say which bits to compare

 also must compare 𝑤 to the word found at the leaf

CompressedTrie::get-path-to(𝑤)

𝑃 ⟵ empty stack; 𝑧 ⟵ root;  𝑃.push(𝑧)

while 𝑧 is not a leaf and 𝑑 ⟵ 𝑧. 𝑖𝑛𝑑𝑒𝑥 ≤ 𝑤. 𝑠𝑖𝑧𝑒 do

if 𝑧 has a child-link labelled with 𝑤 𝑑

𝑧 ⟵ child at this link; 𝑃.push(𝑧)

else break

return 𝑃

CompressedTrie::search(𝑤)

𝑃 ⟵ get-path-to(𝑤); 𝑧 ⟵ 𝑃.top()

if 𝑧 is not a leaf or word stored at 𝑧 is not 𝑤 then

return “not found”

return key-value pair at 𝑧



Compressed Trie: Links to Leaves

 Links to leaves established as in uncompressed tries
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 Need to modify prefix-search(𝑤) to check if the leaf has prefix matching 𝑤

 All keys in a subtree of the node where search for 𝑤 ends have the same 
prefix of length 𝑤

 prefix 𝑤 either matches all keys in the subtree, or none of subtrees keys

all keys in 
subtree have 
prefix 11

all keys in 
subtree have 
prefix 11



Compressed Tries: Summary

 search 𝑤 and prefix-search 𝑤 are easy

 insert 𝑤 and delete 𝑤 are conceptually simple
 search for path 𝑃 to word 𝑤 (say we reach node 𝑧)

 uncompress this path (using characters of 𝑧. 𝑙𝑒𝑎𝑓)

 insert/delete 𝑤 as in uncompressed trie

 compress path from root to where changed happened

 All operations take 𝑂(|𝑤|) time for word 𝑤

 Use 𝑂(𝑛) space

 More complicated than standard tries, but space 
savings are worth it if words are unevenly distributed



Outline

 Lower bound for search

 Interpolation Search

 Tries

 Standard Trie

 Pruned Tries

 Compressed Trie

 Multiway Trie



Multiway Tries: Larger Alphabet

be$

$

$

bear$

r $

ben$

a n

e

$

soul$

l

$

soup$

p

o

u

 Represents Strings over any fixed alphabet Σ

 Any node has at most |Σ| + 1 children 

 one child for the  end-of-word character $

 Example: A trie holding strings {bear$, ben$, be$, soul$, soup$}

b s



Compressed Multiway Tries
 Compressed multi-way tries

 Example: A compressed trie holding strings {bear$, ben$, be$, soul$,  soup$}

2

be$

$

bear$

a

ben$

n

b

3

l

soul$

p

soup$

s

0



Multiway Tries: Summary

 Operations search(𝑤), insert(𝑤) and delete(𝑤) are as for bitstring tries

 Run-time 𝑂(|𝑤| · (time to find the appropriate child))

 Each node now has up to |Σ| + 1 children

 How should children be stored? 

 Time/Space tradeoff: arrays are fast, lists are space efficient

 run-time 𝑂(|𝑤|) with arrays storing children

 AVL tree is best in theory, but not worth it in practice unless |Σ| is huge

 In practice, use hashing (next module)

array linked list AVL tree


