CS 240 – Data Structures and Data Management

Module 7: Dictionaries via Hashing

O. Veksler

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2024

Outline

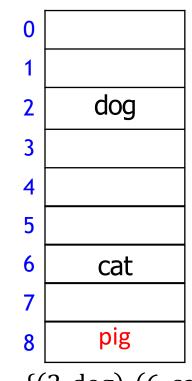
- Dictionaries via Hashing
 - Hashing Introduction
 - Hashing with Chaining
 - Open Addressing
 - probe sequences
 - cuckoo hashing
 - Hash Function Strategies

Outline

- Dictionaries via Hashing
 - Hashing Introduction
 - Hashing with Chaining
 - Open Addressing
 - probe sequences
 - cuckoo hashing
 - Hash Function Strategies

Direct Addressing

- Special situation: every key k is integer with $0 \le k < M$
- Direct addressing implementation
 - store (k, v) in array A of size M via $A[k] \leftarrow v$
 - search(k): check if A[k] is empty
 - $insert(k, v): A[k] \leftarrow v$

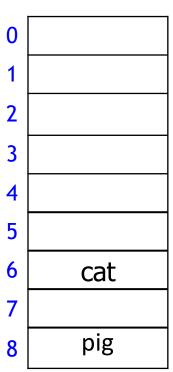


$$D = \{(2, dog), (6, cat)\}$$

$$insert(8, pig)$$

Direct Addressing

- Special situation: every key k is integer with $0 \le k < M$
- Direct addressing implementation
 - store (k, v) in array A of size M via $A[k] \leftarrow v$
 - search(k): check if A[k] is empty
 - $insert(k, v): A[k] \leftarrow v$
 - $delete(k): A[k] \leftarrow empty$



$$D = \{(2, dog), (6, cat), (8, pig)\}$$
 $delete(2)$

Direct Addressing

- Special situation: every key k is integer with $0 \le k < M$
- Direct addressing implementation
 - store (k, v) in array A of size M via $A[k] \leftarrow v$
 - search(k): check if A[k] is empty
 - $insert(k, v): A[k] \leftarrow v$
 - $delete(k): A[k] \leftarrow empty$
 - all operations are O(1)
 - total storage is $\Theta(M)$
 - Drawbacks
 - 1. space is wasteful if $n \ll M$
 - 2. keys must be integers

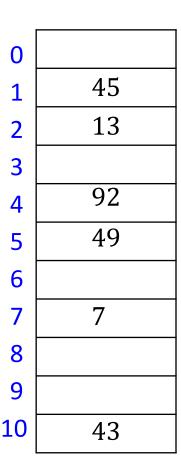
$$D = \{(6, cat), (8, pig)\}$$

Hashing

- Idea: first map keys to small integer range and then use direct addressing
- Assumption: keys come from some universe U
 - typically $U = \{0,1,...\}$, sometimes U is finite
- Design *hash function* $h: U \rightarrow \{0, 1, ..., M 1\}$
 - h(k) is called *hash value* of k
 - example: $h(k) = k \mod M$
 - will see other choices later
- Store dictionary in array T of size M, called hash table
- Item with key k wants to be stored in slot h(k) of array T
- Example
 - U = N, M = 11, $h(k) = k \mod 11$
 - keys 7, 13, 43, 45, 49, 92

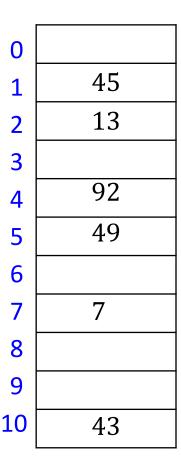
Hashing

- Idea: first map keys to small integer range and then use direct addressing
- Assumption: keys come from some universe U
 - typically $U = \{0,1,...\}$, sometimes U is finite
- Design *hash function* $h: U \rightarrow \{0, 1, ..., M-1\}$
 - h(k) is called *hash value* of k
 - example: $h(k) = k \mod M$
 - will see other choices later
- Store dictionary in array T of size M, called hash table
- Item with key k wants to be stored in **slot** h(k) of array T
- Example
 - U = N, M = 11, $h(k) = k \mod 11$
 - keys 7, 13, 43, 45, 49, 92
 - as usual, store KVP, but show only keys



Hash Functions and Collisions

- Hash function
 - should be fast, O(1), to compute
- Generally hash function h is not injective
 - many keys can map to the same integer, example
 - $h(k) = k \mod 11$,
 - h(46) = 2 = h(13)
- Collision: want to insert (k, v), but T[h(k)] is occupied
- Two main strategies to deal with collisions
 - 1. Chaining: allow multiple items at each table location
 - Open addressing: alternative slots in array
 - probe sequence: many alternative locations
 - linear probing
 - double hashing
 - cuckoo hashing: just one alternative location



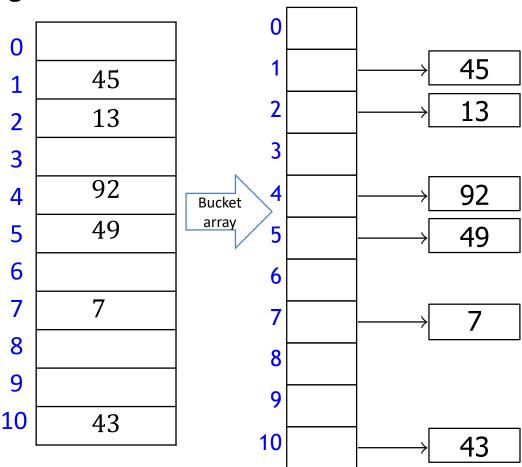
Outline

- Dictionaries via Hashing
 - Hashing Introduction
 - Hashing with Chaining
 - Open Addressing
 - probe Sequences
 - cuckoo hashing
 - Hash Function Strategies

Hashing with Chaining

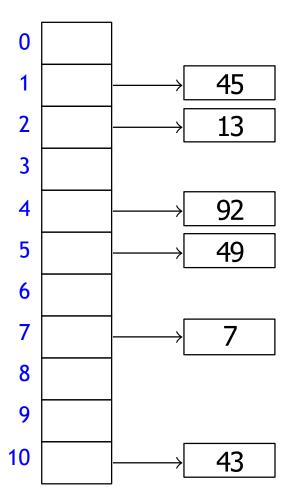
$$M = 11, h(k) = k \mod 11$$

- Each slot is a bucket containing 0 or more KVPs
 - bucket can be implemented by any dictionary
 - even another hash table
 - simplest approach is unsorted linked list in each bucket
 - this is called chaining

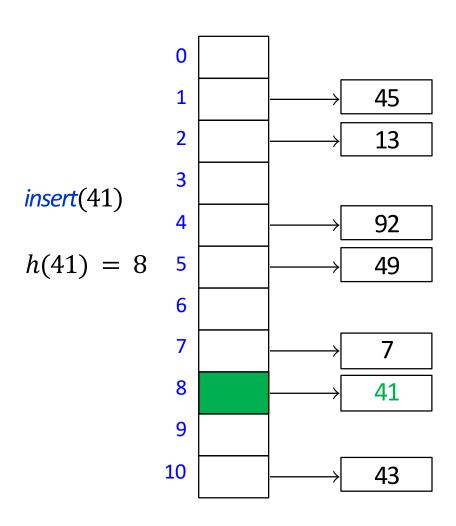


Hashing with Chaining

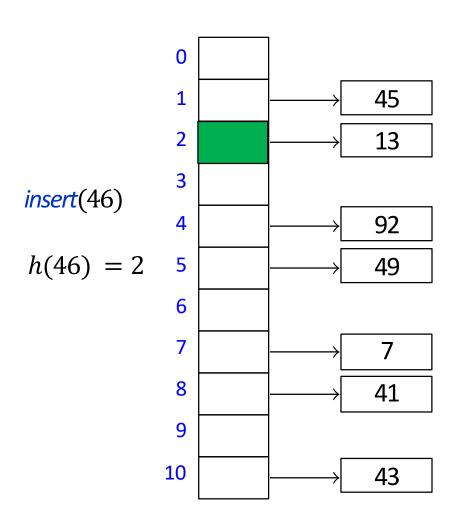
- Operations
 - search(k): look for key k in the list at T[h(k)]
 - apply MTF heuristic
 - insert(k, v): add (k, v) to the front of list at T[h(k)]
 - delete(k): search and delete from the list at T[h(k)]



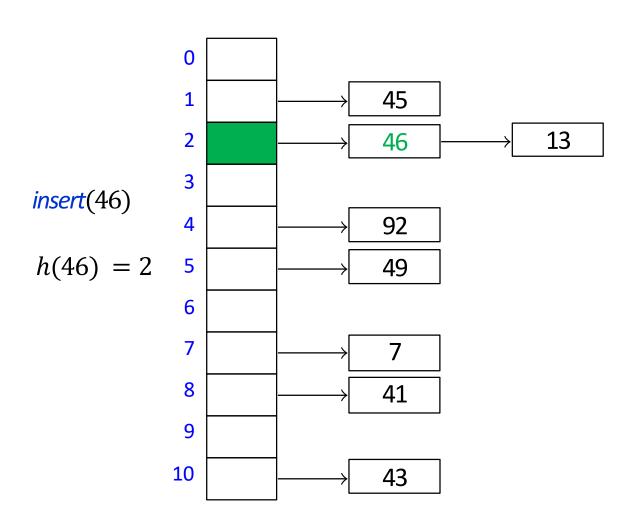
$$M = 11, h(k) = k \mod 11$$



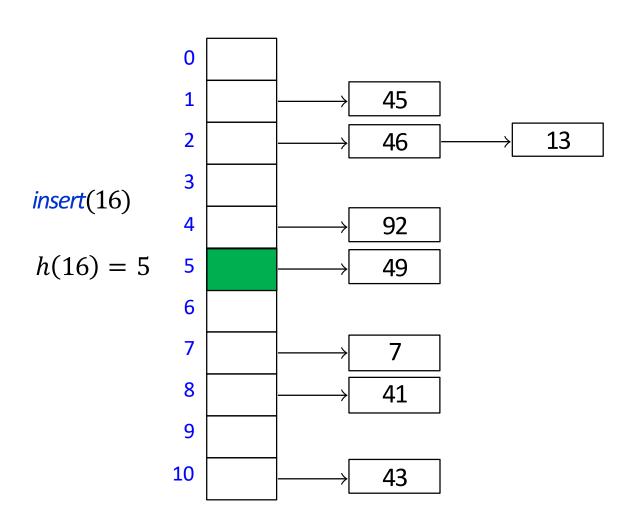
$$M = 11, h(k) = k \mod 11$$



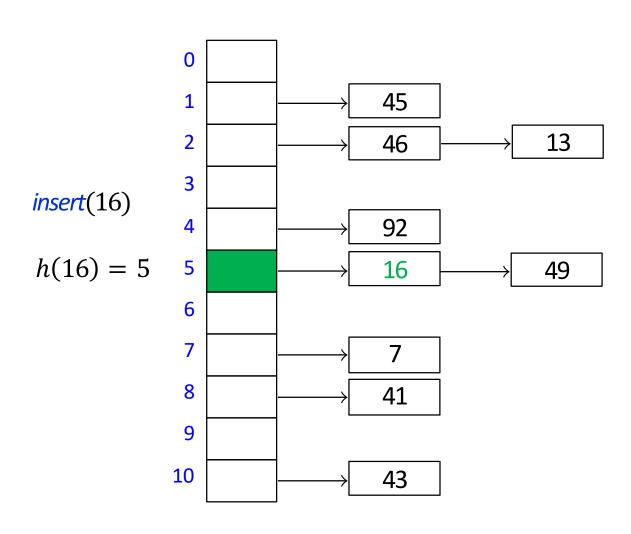
$$M = 11, h(k) = k \mod 11$$



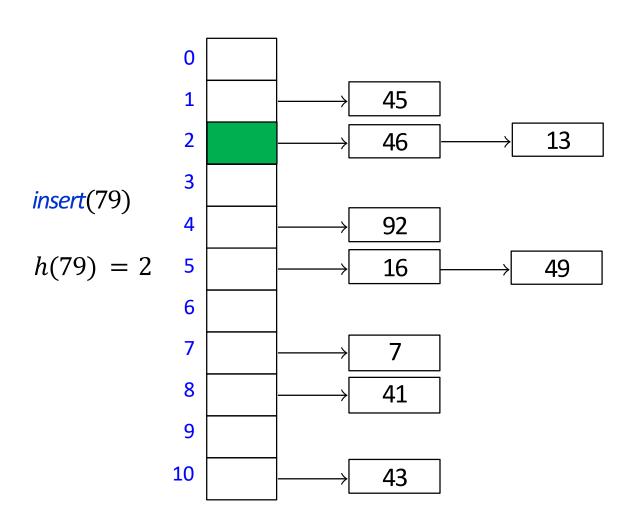
$$M = 11, h(k) = k \mod 11$$



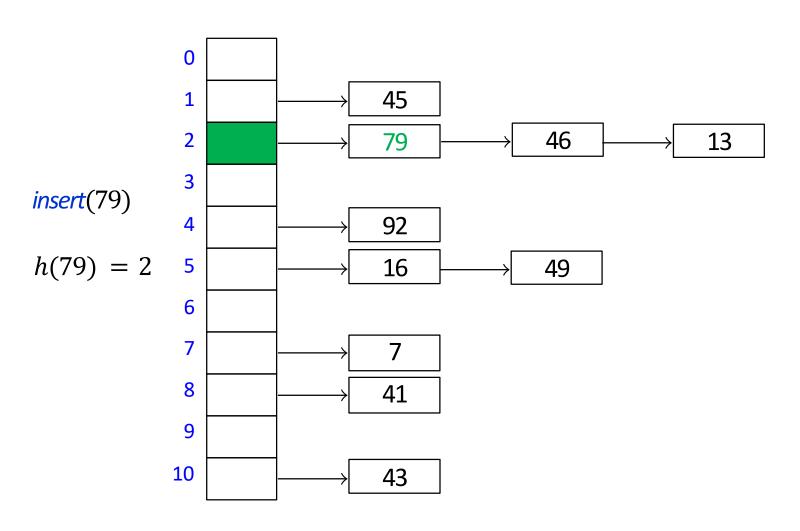
$$M = 11, h(k) = k \mod 11$$



$$M = 11, h(k) = k \mod 11$$

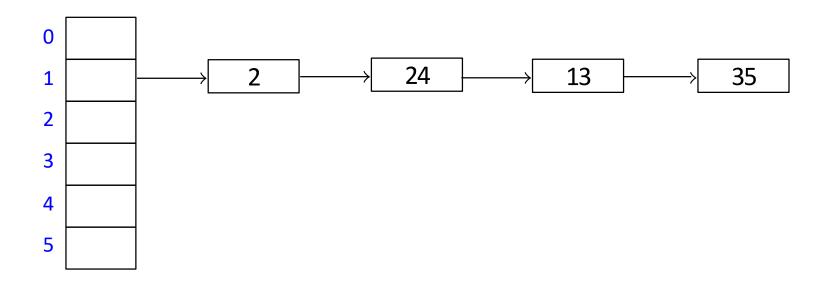


$$M = 11, h(k) = k \mod 11$$



Hashing with Chaining: Running Time

- *insert* is O(1), unordered linked list insertion
- search and delete $\Theta(1 + \text{length of list at } T(h(k))$
 - we do not say $\Theta(\text{size of bucket } T[h(k)])$, as bucket can have size 0
- In the *worst case* all *n* items hash to same array index
 - hash table is essentially a list, and search and delete $\Theta(n)$



Hashing with Chaining: Worst Case Running Time

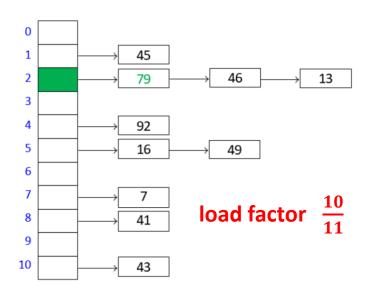
- When can all n items hash to the same array index?
 - 1. For bad hash function, i.e. h(k) = 10
 - 2. For any hash function, if universe is large enough, there are n keys that hash to the same slot Proof:
 - $|\det |U| \ge M(n-1) + 1$
 - suppose at most n-1 keys hash to each table slot

$$\begin{array}{c|c|c}
0 & M-1 \\
\hline
 n-1 & n-1 & n-1 & n-1 & n-1 & n-1 \\
\hline
 M(n-1) & & & \\
\end{array}$$

- then there at most M(n-1) elements in U, contradiction
- lacktriangle The user may happen to insert n such keys that hash to the same slot

Hashing with Chaining: Average Case Runtime?

- Define *load factor* $\alpha = \frac{n}{M}$
 - *n* is the number of items
 - M is the size of hash table
- Average bucket size $=\frac{n}{M}=\alpha$



- This **does not** imply that average-case runtime of search and delete is $\Theta(1 + \alpha)$
 - consider the case when all keys hash to the same slot
 - average bucket-size is still
 - but search and delete nevertheless take $\Theta(n)$ on average
 - message: when you hear 'average', ask 'average over what'
- To get meaningful average-case bounds, we need some assumptions on hashfunction and keys
 - hard to make realistic assumptions
- Easier to switch to randomized hashing

Hashing with Chaining: Randomization

- How can we randomize?
 - do not know sequence of inserts beforehand, cannot randomize that
 - cannot insert at a random location, as key k must hash to the hash value h(k)
- Idea: assume hash-function is chosen randomly from a set of all hash functions
- Uniform Hashing Assumption (UHA): any possible hash-function is equally likely to be chosen
 - not realistic, but this assumption makes analysis possible
- In practice: chose a random hash function from a certain family of hash functions
 - prime number p > M and $random \ a, b \in \{0, ..., p-1\}, \ a \neq 0$
 - $h(k) = ((ak + b) \bmod p) \bmod M$

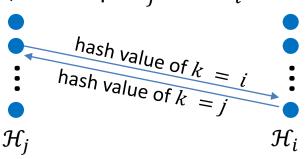
Uniform Hashing Assumption Properties

- Under UHA (any hash-function is chosen equally likely)
 - 1. $P(h(k) = i) = \frac{1}{M}$ for any key k and slot i Proof:

Let k, i be some key and slot

Let \mathcal{H}_j (for j=1,...M-1) be set of hash-functions h s.t. h(k)=j

For $j \neq i$, can map \mathcal{H}_i into \mathcal{H}_i and vice-versa



size of \mathcal{H}_i equal to size of \mathcal{H}_i

size of \mathcal{H}_j is equal to $\frac{1}{M}$ of all hash functions

$$P(h(k) = i) = P(h(k) \in \mathcal{H}_i) = \frac{1}{M}$$

- 2. hash-values of any two keys are independent of each other
- (1,2) mean that the distribution of keys is unimportant

Hashing with Chaining: Randomization

- $P(h(k) = i) = \frac{1}{M}$ for any key k and slot i
- hash-values of any two keys are independent of each other
- load factor $\alpha = \frac{n}{M}$

Claim: for any key k, the expected size of bucket T[h(k)] is at most $1 + \alpha$ Proof:

- Let h(k) = i
- Case 1: k is not in the dictionary
 - then each of n dictionary items hashes to i with probability $\frac{1}{M}$
 - $E[T(i)] = \frac{n}{M} = \alpha \le 1 + \alpha$
- Case 2: k is in the dictionary
 - T(i) definitely has key k
 - the remaining n-1 dictionary items hash to i with probability $\frac{1}{M}$

•
$$E[T(i)] = 1 + \frac{n-1}{M} \le 1 + \alpha$$

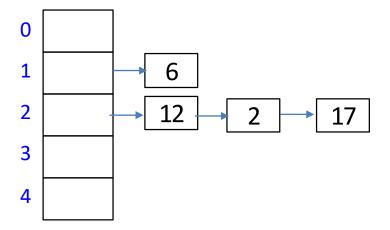
- search, delete have runtime $\Theta(1 + \text{size of bucket } T[h(k)])$
- Expected runtime of search and delete is $\Theta(1 + \alpha)$, insert is $\Theta(1)$

Load factor and re-hashing

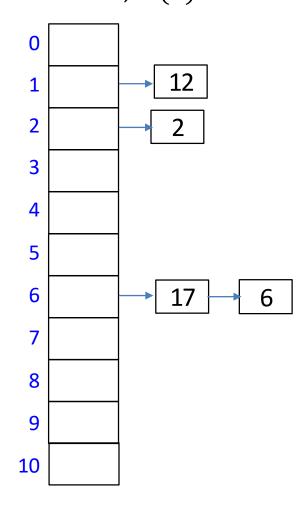
- Load factor $\alpha = \frac{n}{M}$
- Space is $\Theta(M+n) = \Theta(n/\alpha+n)$, time is $\Theta(1+\alpha)$
 - if we maintain $\alpha \in \Theta(1)$, expected running time is O(1) and space is $\Theta(n)$
- Accomplished by rehashing whenever $\frac{n}{M} < c_1$ or $\frac{n}{M} > c_2$
 - where c_1, c_2 are constants with $0 < c_1 < c_2$
 - c_1 is minimum allowed load factor, c_2 is maximum allowed load factor
 - Maintaining hash array of appropriate size
 - start with small M
 - during insert/delete, update n
 - if load factor becomes too big, i.e. $\alpha = \frac{n}{M} > c_2$, rehash
 - chose new $M' \approx 2M$
 - find a new random hash function h' that maps U into $\{0,1,...M'-1\}$
 - create new hash table T' of size M'
 - reinsert each KVP from T into T'
 - update $T \leftarrow T', h \leftarrow h'$
 - If load factor becomes too small, i.e. $\alpha = \frac{n}{M} < c_1$, rehash with smaller M'
 - Rehashing costs $\Theta(M+n)$ but happens rarely, cost amortized over all operations

Rehashing

$$M = 5$$
, $h(k) = k \mod 5$



$$M' = 11, h'(k) = k \mod 11$$



Outline

- Dictionaries via Hashing
 - Hashing Introduction
 - Hashing with Chaining
 - Open Addressing
 - probe sequences
 - cuckoo hashing
 - Hash Function Strategies

Open Addressing

- Chaining wastes space on links
- Can we resolve collisions in the array H?
- Idea: each hash table entry holds only one item, but key k can go in multiple locations
- Probe sequence
 - ullet search and insert follow a probe sequence of possible locations for key k

$$h(k, 0), h(k, 1), h(k, 2), \dots$$

until an empty spot is found

h(k, 2)

h(k,0)

h(k,1)

Open Addressing: Linear Probing

- Linear probing is the simplest method for probe sequence
 - If h(k) is occupied, place item in the next available location
 - probe sequence is
 - h(k,0) = h(k)
 - h(k,1) = h(k) + 1
 - h(k,2) = h(k) + 2
 - etc...
 - Assume circular array, i.e. modular arithmetic
 - $\bullet h(k,i) = (h(k) + i) \bmod M$

$$M = 11, h(k) = k \mod 11$$

insert(41)

h(41) = 8

0	
1	45
2	13
3	
4	92
5	49
6	
7	7
8	
9	
10	43
	·

$$M = 11, h(k) = k \mod 11$$

insert(41)

h(41) = 8

0	
1	45
2	13
3	
4	92
5	49
6	
7	7
8	41
9	
10	43

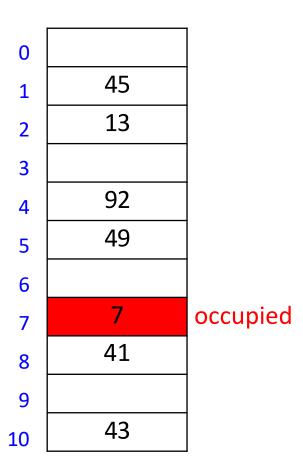
$$M = 11, h(k) = k \mod 11$$

insert(84)

0	
1	45
2	13
3	
4	92
5	49
6	
7	7
8	41
9	
10	43

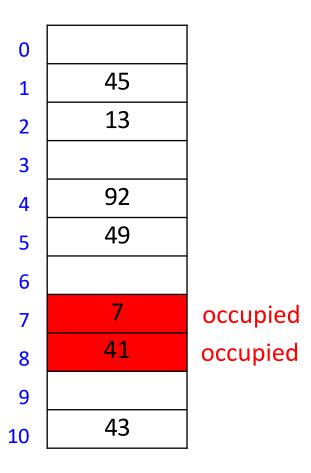
$$M = 11, h(k) = k \mod 11$$

insert(84)



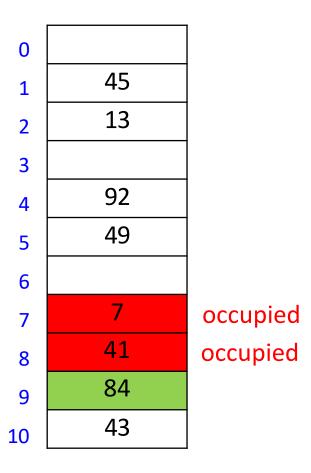
$$M = 11, h(k) = k \mod 11$$

insert(84)



$$M = 11, h(k) = k \mod 11$$

insert(84)



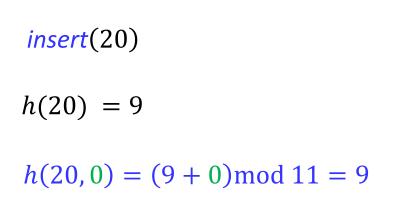
Linear Probing Formula

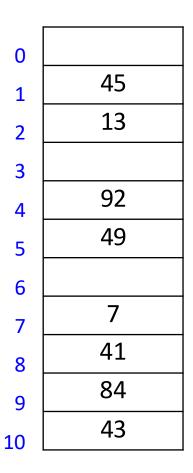
Linear probing explores positions

$$h(k,i) = (h(k) + i) \bmod M$$

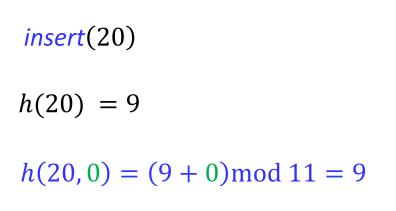
- for i = 0, 1, ... until an empty location is found
- where h(k) is some hash function

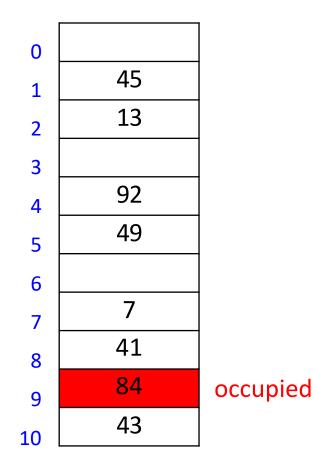
$$M = 11$$
, $h(k) = k \mod 11$
 $h(k, i) = (h(k) + i) \mod M$ for sequence $i = 0, 1, ...$



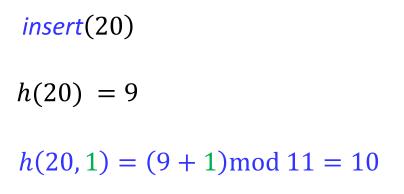


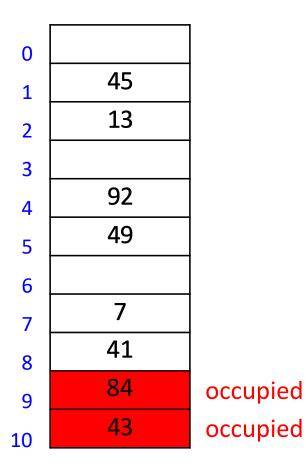
$$M = 11$$
, $h(k) = k \mod 11$
 $h(k, i) = (h(k) + i) \mod M$ for sequence $i = 0,1, ...$





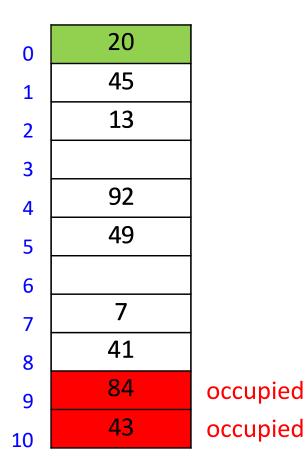
$$M = 11$$
, $h(k) = k \mod 11$
 $h(k, i) = (h(k) + i) \mod M$ for sequence $i = 0,1,...$





$$M = 11$$
, $h(k) = k \mod 11$
 $h(k, i) = (h(k) + i) \mod M$ for sequence $i = 0,1,...$

insert(20) h(20) = 9 $h(20, 2) = (9 + 2) \mod 11 = 0$



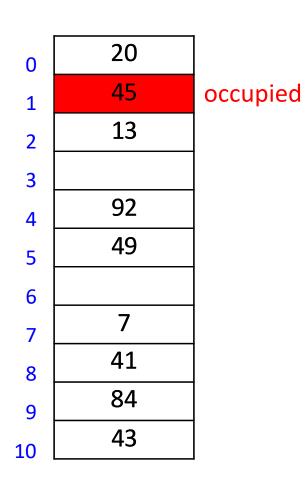
Linear probing example: Search

$$M = 11$$
, $h(k) = k \mod 11$
 $h(k, i) = (h(k) + i) \mod M$ for sequence $i = 0,1,...$

search(23)

$$h(23) = 1$$

$$h(23,0) = (1+0) \mod 11 = 1$$



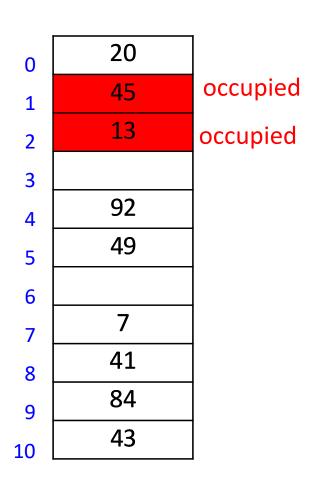
Linear probing example: Search

$$M = 11$$
, $h(k) = k \mod 11$
 $h(k, i) = (h(k) + i) \mod M$ for sequence $i = 0,1,...$

search(23)

$$h(23) = 1$$

$$h(23,1) = (1+1) \mod 11 = 2$$



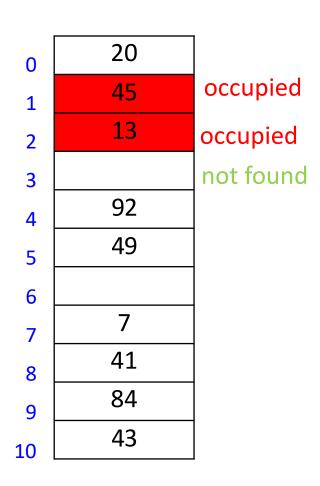
Linear probing example: Search

$$M = 11$$
, $h(k) = k \mod 11$
 $h(k, i) = (h(k) + i) \mod M$ for sequence $i = 0,1,...$

search(23)

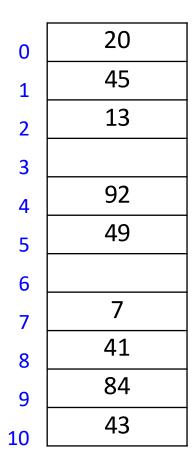
$$h(23) = 1$$

$$h(23,2) = (1+2) \mod 11 = 3$$



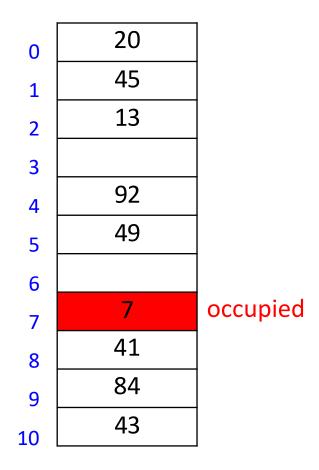
$$M = 11$$
, $h(k) = k \mod 11$
 $h(k, i) = (h(k) + i) \mod M$ for sequence $i = 0,1,...$

$$delete(84)$$
 $h(84) = 7$
 $h(84, 0) = (7 + 0) \mod 11 = 7$



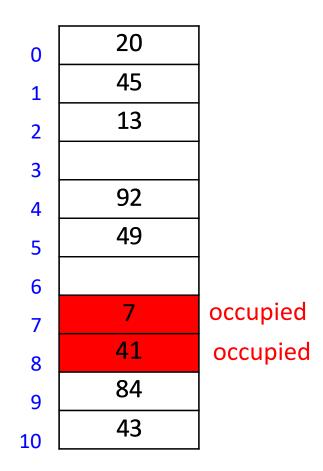
$$M = 11$$
, $h(k) = k \mod 11$
 $h(k, i) = (h(k) + i) \mod M$ for sequence $i = 0,1,...$

$$delete(84)$$
 $h(84) = 7$
 $h(84, 0) = (7 + 0) \mod 11 = 7$



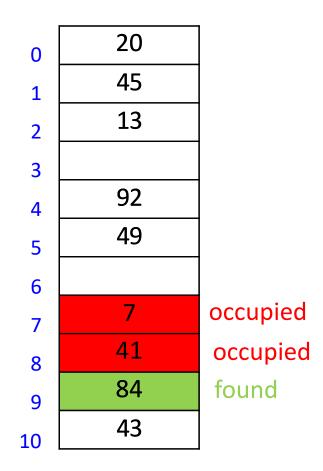
$$M = 11$$
, $h(k) = k \mod 11$
 $h(k, i) = (h(k) + i) \mod M$ for sequence $i = 0,1,...$

$$delete(84)$$
 $h(84) = 7$
 $h(84, 1) = (7 + 1) \mod 11 = 8$

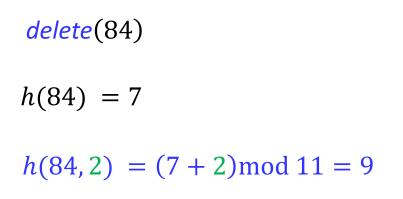


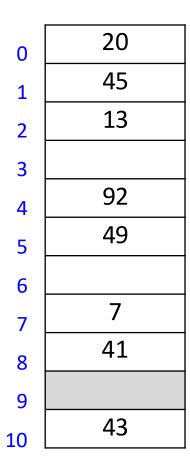
$$M = 11$$
, $h(k) = k \mod 11$
 $h(k, i) = (h(k) + i) \mod M$ for sequence $i = 0,1,...$

$$delete(84)$$
 $h(84) = 7$
 $h(84, 2) = (7 + 2) \mod 11 = 9$

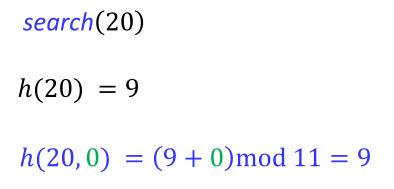


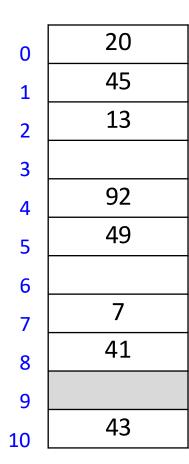
$$M = 11$$
, $h(k) = k \mod 11$
 $h(k, i) = (h(k) + i) \mod M$ for sequence $i = 0,1,...$





$$M = 11$$
, $h(k) = k \mod 11$
 $h(k, i) = (h(k) + i) \mod M$ for sequence $i = 0,1,...$



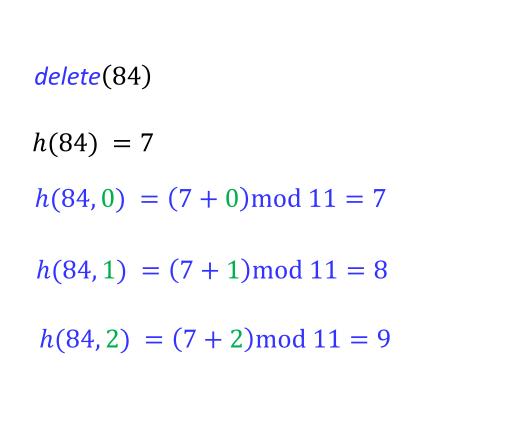


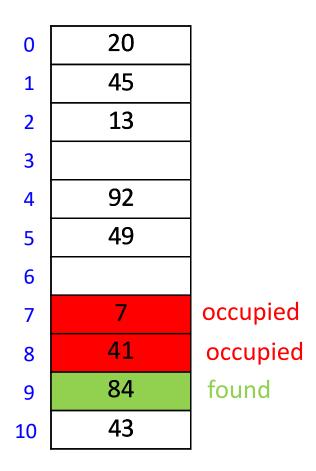
not found

Open Addressing

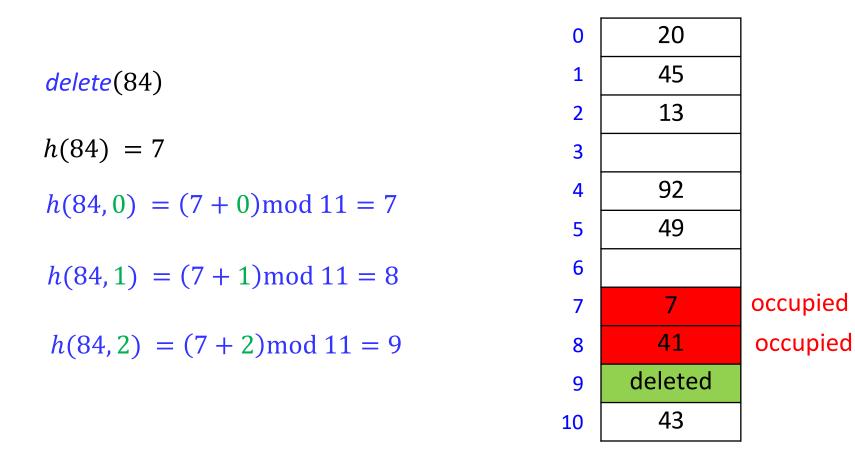
- delete becomes problematic
 - cannot leave an empty spot behind
 - next search might otherwise not go far enough
 - Idea: lazy deletion
 - mark spot as deleted (rather than empty)
 - continue searching past deleted spots
 - insert in empty or deleted spot
 - Can use lazy deletion for other data structures
 - mark as deleted items in AVL tree instead of actual deletion
 - If a lot of items are deleted, rebuild AVL tree
 - While in other data structures lazy deletion can be used to improve performance, in probing lazy deletion is required for correct performance

$$M = 11$$
, $h(k) = k \mod 11$
 $h(k, i) = (h(k) + i) \mod M$ for sequence $i = 0, 1, ...$





$$M = 11$$
, $h(k) = k \mod 11$
 $h(k, i) = (h(k) + i) \mod M$ for sequence $i = 0,1,...$

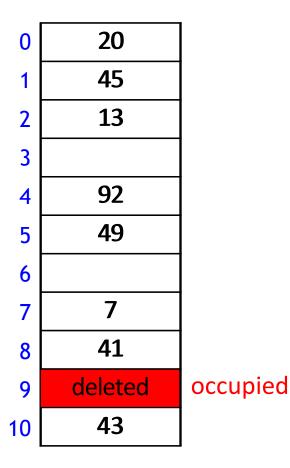


$$M = 11$$
, $h(k) = k \mod 11$
 $h(k, i) = (h(k) + i) \mod M$ for sequence $i = 0,1,...$

search(20)

$$h(20) = 9$$

$$h(20,0) = (9+0) \mod 11 = 9$$

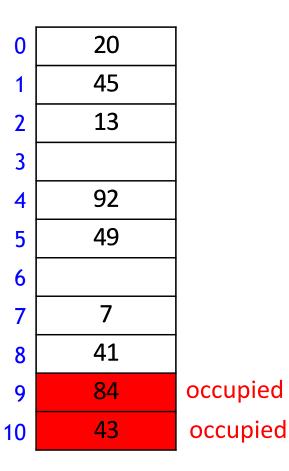


$$M = 11$$
, $h(k) = k \mod 11$
 $h(k, i) = (h(k) + i) \mod M$ for sequence $i = 0,1,...$

search(20)

$$h(20) = 9$$

$$h(20,1) = (9+1) \mod 11 = 10$$

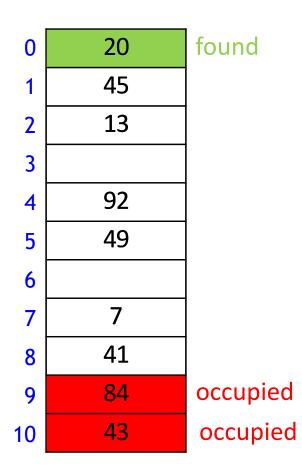


$$M = 11$$
, $h(k) = k \mod 11$
 $h(k, i) = (h(k) + i) \mod M$ for sequence $i = 0,1,...$

search(20)

$$h(20) = 9$$

$$h(20,2) = (9+2) \mod 11 = 0$$



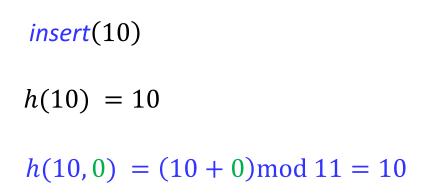
$$M=11,\ h(k)=k\ mod\ 11$$

$$h(k,i)=(h(k)+i)\ mod\ M\ for\ sequence\ i=0,1,...$$

insert(10)
h(10) = 10
$h(10,0) = (10+0) \mod 11 = 10$

0	20
1	45
2	13
3	
4	92
5	49
6	
7	7
8	41
9	84
10	deleted
	•

$$M = 11$$
, $h(k) = k \mod 11$
 $h(k, i) = (h(k) + i) \mod M$ for sequence $i = 0,1,...$



0	20
1	45
2	13
3	
4	92
3 4 5	49
6	
7	7
8	41
9	84
10	10

Probe Sequence Operations

```
probe-sequence::insert(T, (k, v))

for (i = 0; i < M; i + +)

if T[h(k, i)] is empty or deleted

T[h(k, i)] = (k, v)

return success

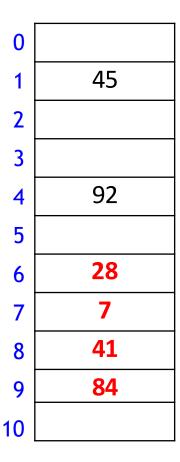
return failure to insert
```

- Stop inserting after M tries
 - provided $\alpha < 1$, linear probing does not need this
 - some probing methods need this
- If insert fails, call rehash

```
\begin{array}{l} \textit{probe-sequence::search}(T\ ,k) \\ & \textbf{for}\ (i\ =\ 0;i\ <\ M;i\ ++) \\ & \textbf{if}\ T\ [h(k,i)]\ \text{is}\ \textit{empty} \\ & \textbf{return}\ \textit{item-not-found} \\ & \textbf{if}\ T\ [h(k,i)]\ \text{has}\ \text{key}\ k\ \textbf{return}\ T\ [h(k,i)] \\ & \ //\ T\ [h(k,i)]\ =\ \text{deleted}\ \text{or}\ \text{not}\ \text{in}\ \text{the}\ \text{data}\ \text{structure} \\ & \ //\ \text{therefore}\ \text{keep}\ \text{searching} \\ & \textbf{return}\ \textit{item}\ \textit{not}\ \textit{found} \end{array}
```

Linear probing drawbacks

- Entries tend to cluster into contiguous regions
- Many probes for each search, insert, and delete
- How to avoid clustering?



Double Hashing Motivation

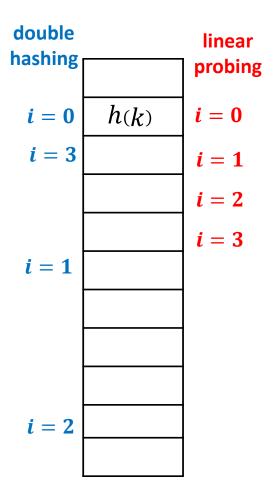
 Linear probing attempts inserting into consecutive locations, i.e. step size 1

$$h(k)$$
 $h(k) + 1$ $h(k) + 2$

 To avoid consecutive locations, let each key have its own step size

$$h(k)$$
 $h(k) + step$ $h(k) + 2step$

- This helps to avoid the clustering side effect
- For each key k, probe sequence is always the same
- Example
 - for k = 14, probe sequence is always
 - **4**, 7, 10, 13
 - for k = 24, probe sequence is always
 - **5**, 10, 15, 20

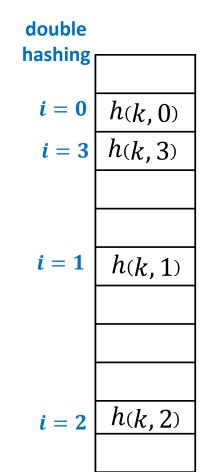


Double Hashing

Double hashing: open addressing with probe sequence

$$h(k,i) = (h_0(k) + i \cdot h_1(k)) \mod M \text{ for } i = 0,1,...$$

- Where
 - h_1 is another (secondary) hash function s.t. $h_1(k) \neq 0$
 - $h_1(k)$ is relative prime with M for all keys k
 - otherwise probe-sequence does not explore the entire hash table
 - easiest to choose M prime, and ensure $h_1(k) < M$
- Double hashing with a good secondary hash function does not cause the bad clustering produced by linear probing
- search, insert, delete work as in linear probing, but with this different probe sequence
 - Innear probing is a special case of double hashing with $h_1(k) = 1$



Independent Hash functions

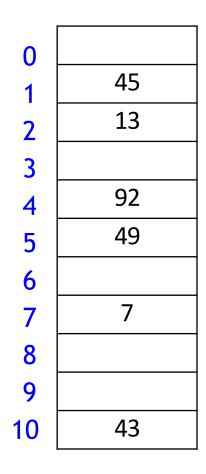
• When two hash functions h_0 , h_1 are required, they should be independent

$$P(h_0(k) = i, h_1(k) = j) = P(h_0(k) = i) P(h_1(k) = j)$$

- Using two modular hash-functions may lead to dependencies
- Better idea: Use multiplicative method for second hash function
 - let 0 < A < 1
 - $h(k) = \lfloor M(kA \lfloor kA \rfloor) \rfloor$ $0 \le \text{fractional part of } kA < 1$ $0 \le M \cdot \text{(fractional part of } kA \text{)} < M$
- Example
 - M = 11, A = 0.2
 - $h(34) = [11 \cdot (34 \cdot 0.2 [34 \cdot 0.2])] = [11 \cdot (6.8 [6.8])] = [11 \cdot 0.8] = 8$
- $A = \varphi = \frac{\sqrt{5-1}}{2} \approx 0.618033988749$ works well to scramble the keys
- For double hashing, to ensure 0 < h(k) < M, use $h_1(k) = \lfloor (M-1)(kA \lfloor kA \rfloor) \rfloor + 1$

$$\frac{\sqrt{5}-1}{2}$$

M = 11, $h_0(k) = k \mod 11$, $h_1(k) = \lfloor 10(\varphi k - \lfloor \varphi k \rfloor) \rfloor + 1$ $h(k,i) = (h_0(k) + i \cdot h_1(k)) \mod M$ for sequence i = 0,1,...



$$M = 11$$
, $h_0(k) = k \mod 11$, $h_1(k) = \lfloor 10(\varphi k - \lfloor \varphi k \rfloor) \rfloor + 1$
 $h(k,i) = (h_0(k) + i \cdot h_1(k)) \mod M$ for sequence $i = 0,1,...$

insert(41)	0	
$h_0(41) = 8$ $h_1(41) = 4$ $h(41, 0) = (8 + 0 \cdot 4) \mod 11 = 8$	1	45
	2	13
	3	
	4	92
	5	49
	6	
	7	7
	8	
	9	
	10	43

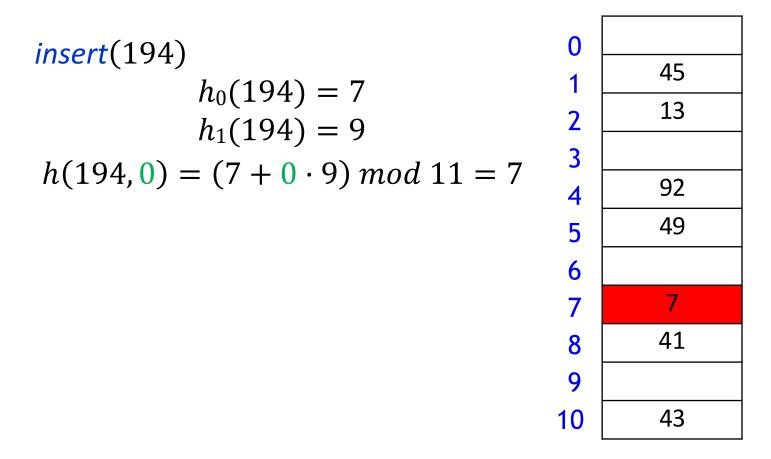
$$M = 11$$
, $h_0(k) = k \mod 11$, $h_1(k) = \lfloor 10(\varphi k - \lfloor \varphi k \rfloor) \rfloor + 1$
 $h(k,i) = (h_0(k) + i \cdot h_1(k)) \mod M$ for sequence $i = 0,1,...$

insert(41)	0	
$h_0(41) = 8$ $h_1(41) = 4$ $h(41,0) = (8 + 0 \cdot 4) \mod 11 = 8$	1	45
	2	13
	3	
	4	92
	5	49
	6	
	7	7
	8	41
	9	
	10	43

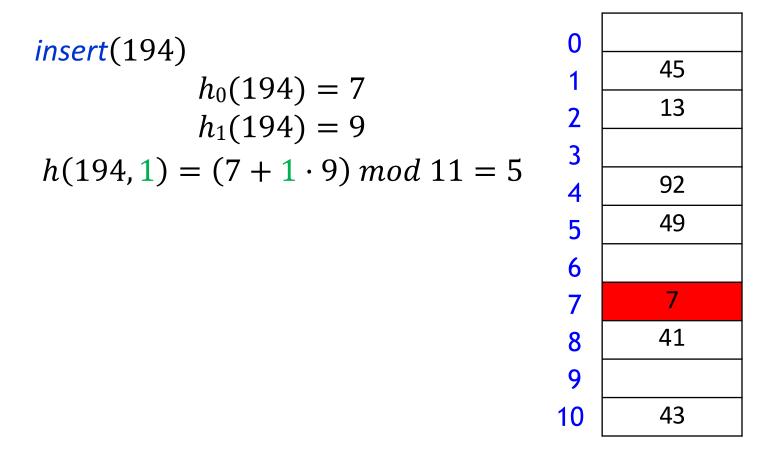
$$M = 11$$
, $h_0(k) = k \mod 11$, $h_1(k) = \lfloor 10(\varphi k - \lfloor \varphi k \rfloor) \rfloor + 1$
 $h(k,i) = (h_0(k) + i \cdot h_1(k)) \mod M$ for sequence $i = 0,1,...$

<i>insert</i> (194)	0	
$h_0(194) = 7$ $h_1(194) = 9$ $h(194, 0) = (7 + 0 \cdot 9) \mod 11 = 7$	1	45
	2	13
	3	
	4	92
	5	49
	6	
	7	7
	8	41
	9	
	10	43

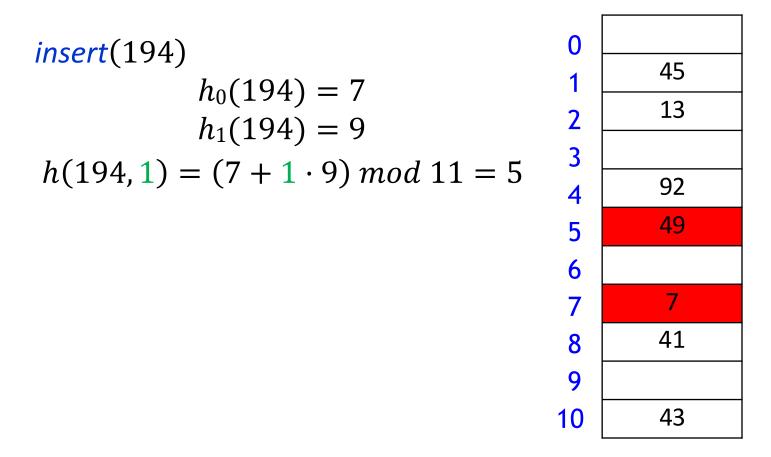
$$M = 11$$
, $h_0(k) = k \mod 11$, $h_1(k) = \lfloor 10(\varphi k - \lfloor \varphi k \rfloor) \rfloor + 1$
 $h(k,i) = (h_0(k) + i \cdot h_1(k)) \mod M$ for sequence $i = 0,1,...$



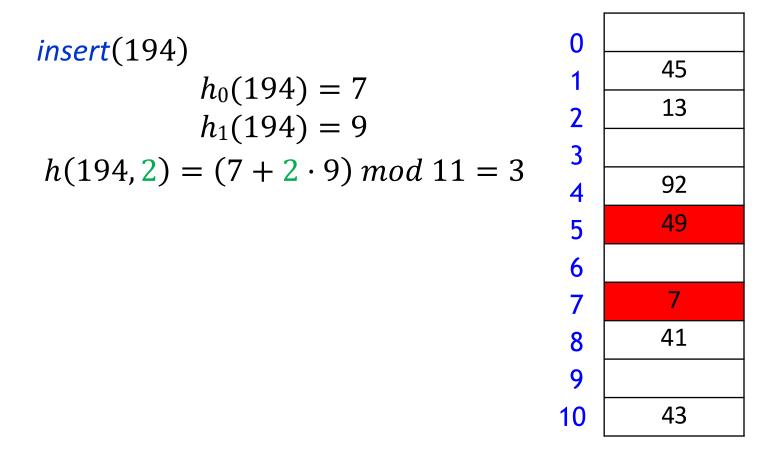
$$M = 11$$
, $h_0(k) = k \mod 11$, $h_1(k) = \lfloor 10(\varphi k - \lfloor \varphi k \rfloor) \rfloor + 1$
 $h(k,i) = (h_0(k) + i \cdot h_1(k)) \mod M$ for sequence $i = 0,1,...$



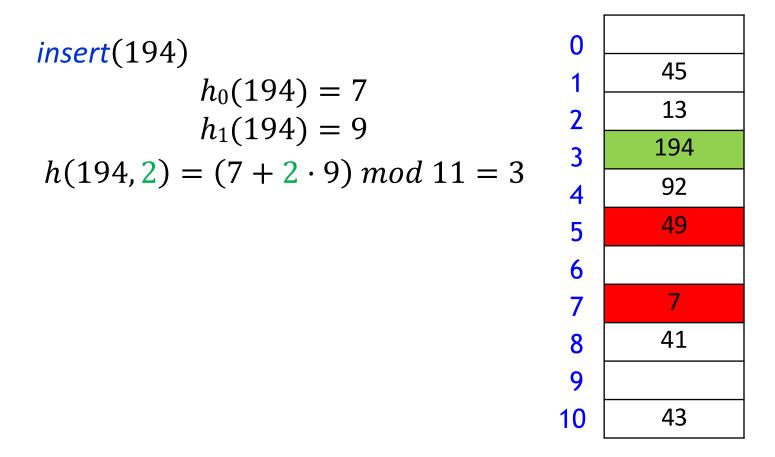
$$M = 11$$
, $h_0(k) = k \mod 11$, $h_1(k) = \lfloor 10(\varphi k - \lfloor \varphi k \rfloor) \rfloor + 1$
 $h(k,i) = (h_0(k) + i \cdot h_1(k)) \mod M$ for sequence $i = 0,1,...$



$$M = 11$$
, $h_0(k) = k \mod 11$, $h_1(k) = \lfloor 10(\varphi k - \lfloor \varphi k \rfloor) \rfloor + 1$
 $h(k,i) = (h_0(k) + i \cdot h_1(k)) \mod M$ for sequence $i = 0,1,...$

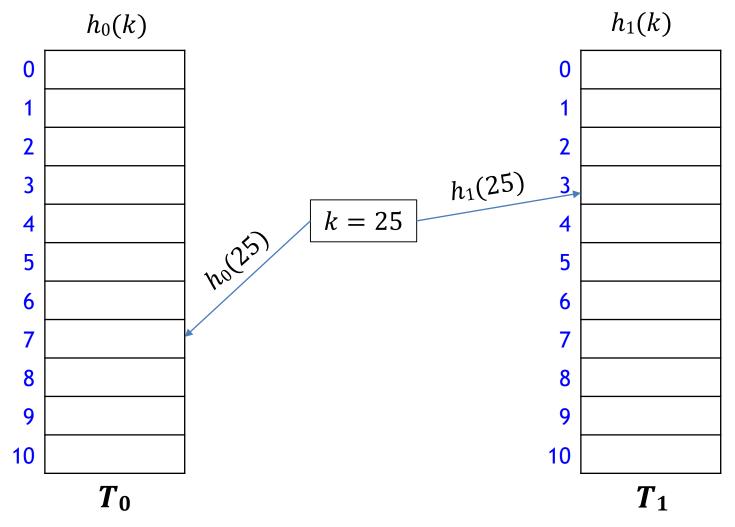


$$M = 11$$
, $h_0(k) = k \mod 11$, $h_1(k) = \lfloor 10(\varphi k - \lfloor \varphi k \rfloor) \rfloor + 1$
 $h(k,i) = (h_0(k) + i \cdot h_1(k)) \mod M$ for sequence $i = 0,1,...$

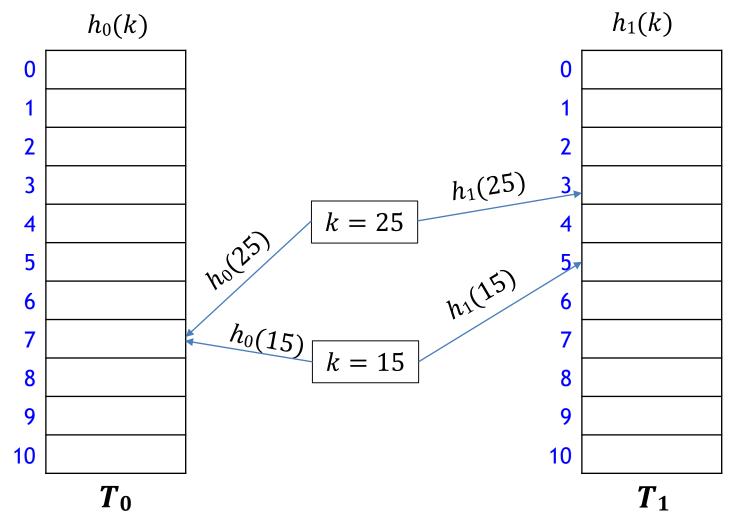


Outline

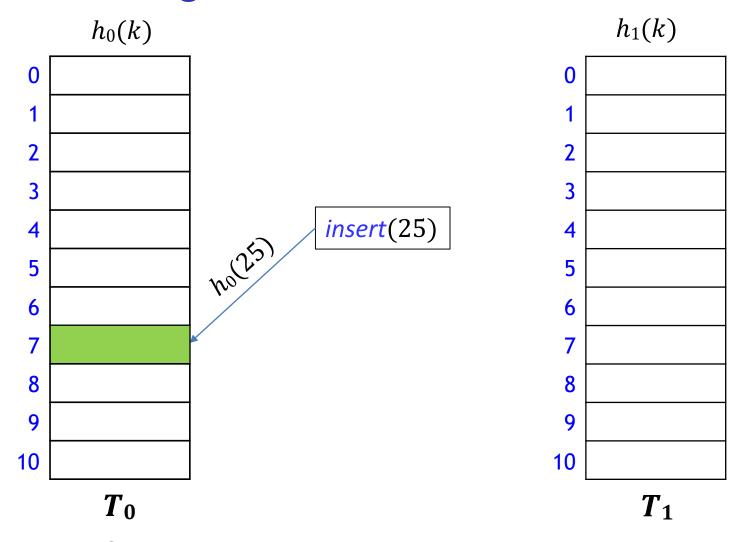
- Dictionaries via Hashing
 - Hashing Introduction
 - Hashing with Chaining
 - Open Addressing
 - probe Sequences
 - cuckoo hashing
 - Hash Function Strategies



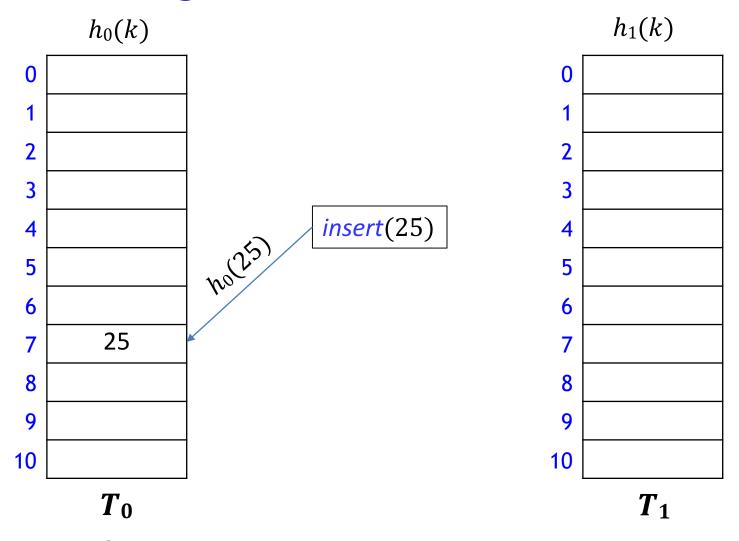
■ Main idea: An item with key k can be only at $T_0[h_0(k)]$ or $T_1[h_1(k)]$



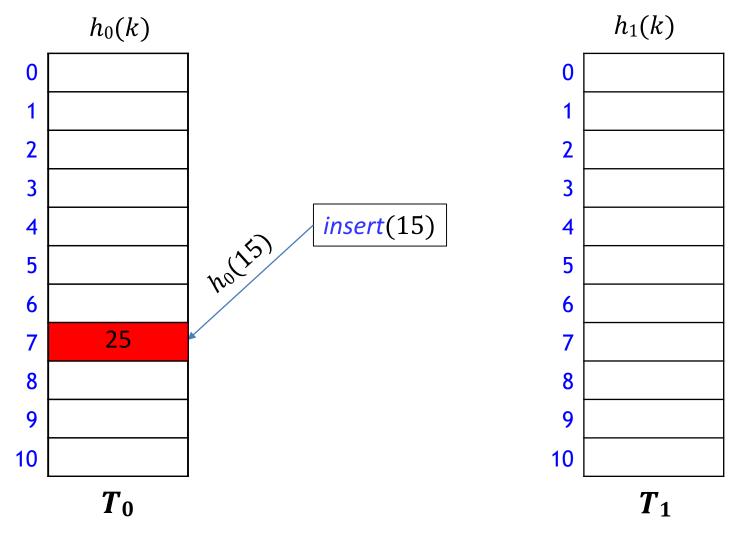
- Main idea: An item with key k can be only at $T_0[h_0(k)]$ or $T_1[h_1(k)]$
 - search and delete take O(1) time

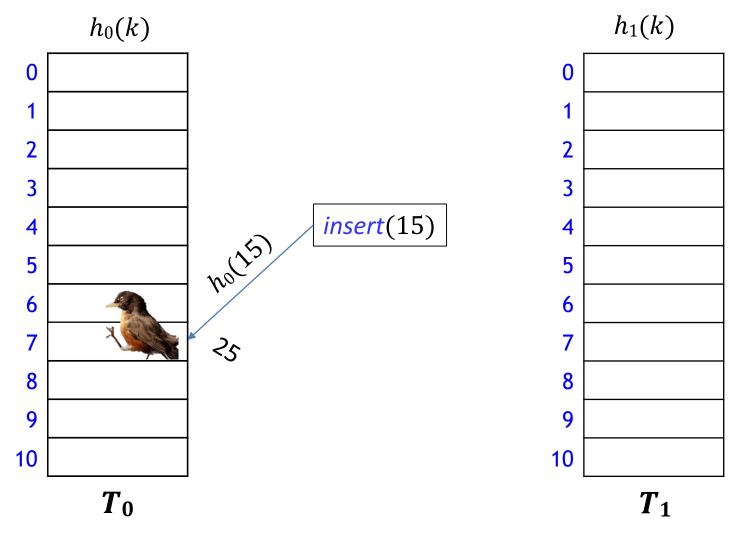


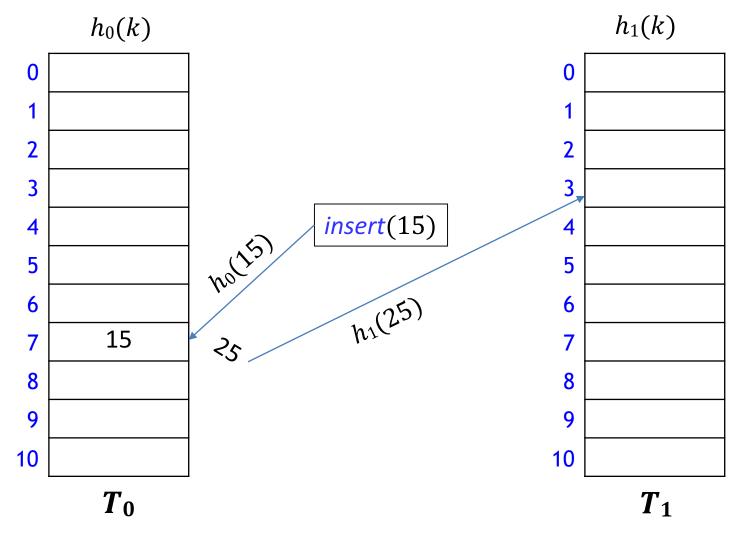
How to insert?

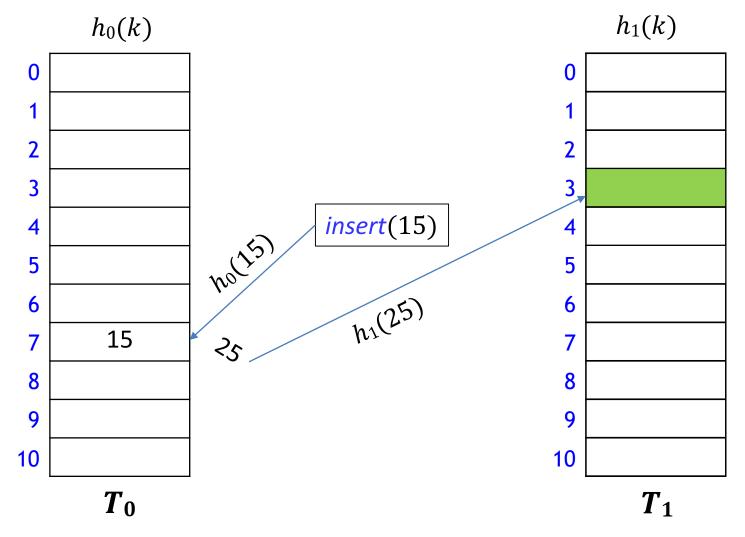


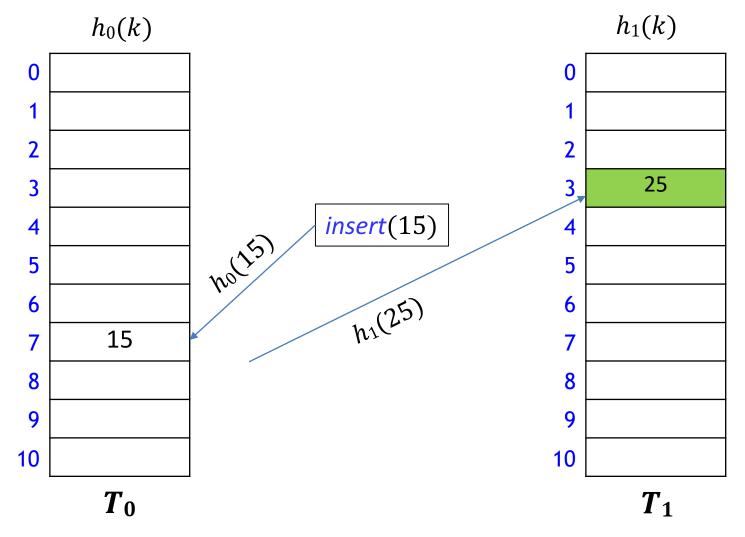
How to insert?

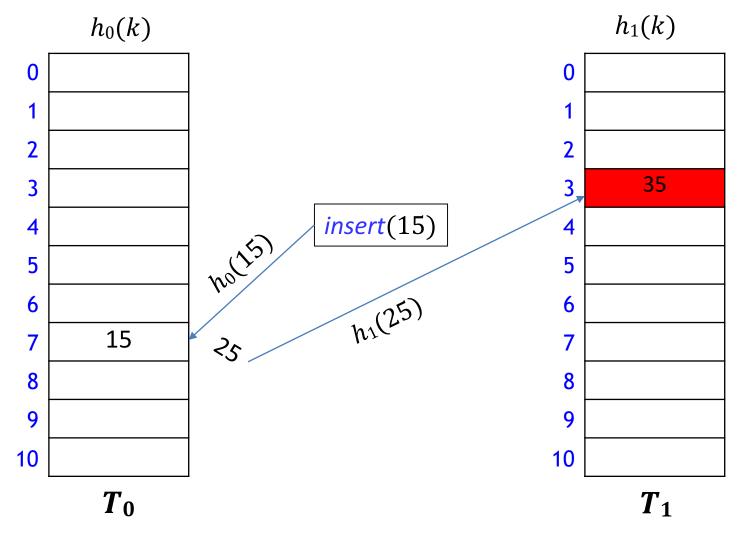


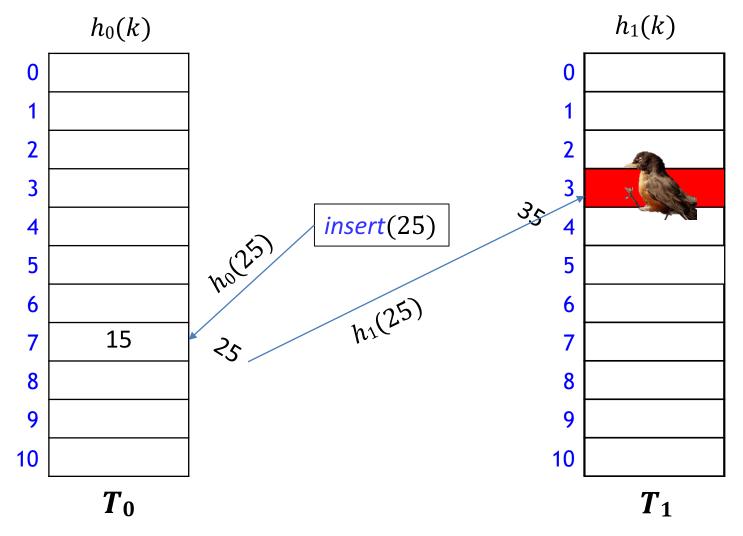


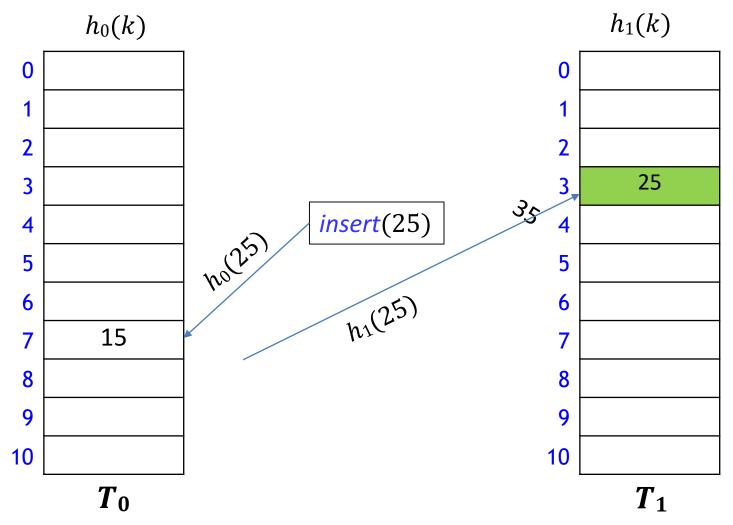








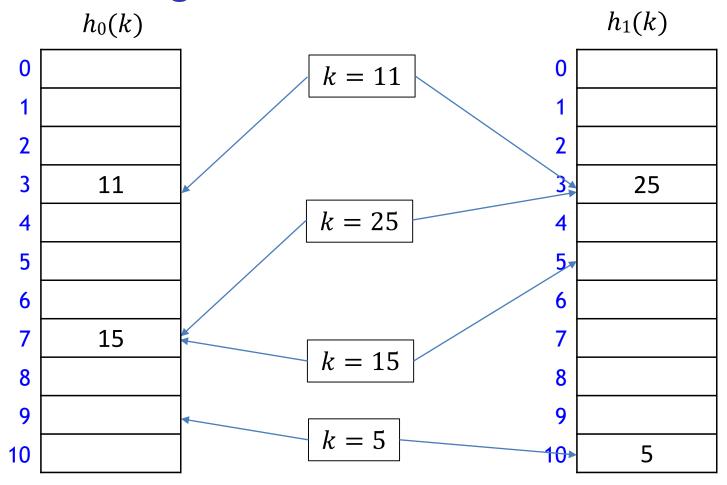




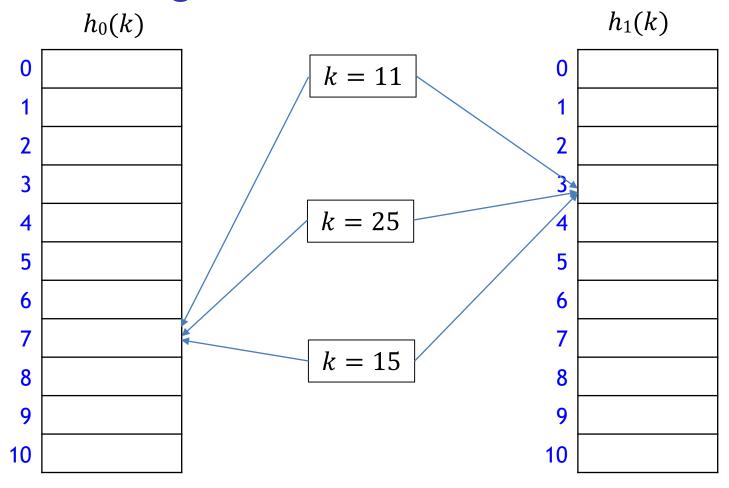
- Continue until all items placed, or failure
 - rehash if failure

Cuckoo Hashing [Pagh & Rodler, 2001]

- Use independent hash functions h_0 , h_1 and two tables T_0 , T_1
- Key k can be only at $T_0[h_0(k)]$ or $T_1[h_1(k)]$
 - search and delete take constant time
 - *insert* always initially puts key k into $T_0[h_0(k)]$
 - evict item that my have been there already
 - if so, evicted item k' is inserted at $T_1[h_1(k')]$
 - may lead to a loop of evictions
 - can show that if insertion is possible, then there are at most 2n evictions
 - so abort after too many attempts



- Intuitively
 - each key has 2 locations (locations can coincide)
 - try to "match" keys to locations so that everyone is placed



- Sometimes no solution for the "matching" problem
 - would loop infinitely if not stopped by force

$$M = 11$$
, $h_0(k) = k \mod 11$, $h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$

insert(51)
i = 0
k = 51
$h_0(k) = 7$

0	44
1	
2	
3	
23456	59
5	
7	
8	
9	92
10	

0	
1	
2	
3	
4 5	
5	
6	
7	
8	
9	
10	

$$M = 11$$
, $h_0(k) = k \mod 11$, $h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$

insert(51)
i = 0
k = 51
$h_0(k) = 7$

0	44
1	
2	
3	
23456	59
5	
6	
7 8	51
8	
9	92
10	

0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

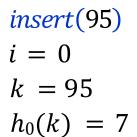
$$M = 11$$
, $h_0(k) = k \mod 11$, $h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$

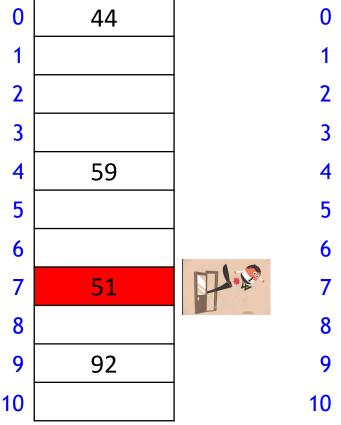
insert(95)
i = 0
k = 95
$h_0(k) = 7$

0	44
1	
2	
3 4 5 6	
4	59
5	
6	
7	51
8	
9	92
10	

0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

$$M = 11$$
, $h_0(k) = k \mod 11$, $h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$





0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

$$M = 11$$
, $h_0(k) = k \mod 11$, $h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$

<i>insert</i> (95)
i = 0
k = 95
$h_0(k) = 7$

0	44
1	
2	
3	
23456	59
5	
7	95
8	
9	92
10	

51

0		
2 3 4 5 6 7 8	0	
3 4 5 6 7 8 9 9	1	
4 5 6 7 8 9		
56789	3	
6		
7 8 9	5	
8 9	6	
9	7	
	8	
10	9	
	10	

$$M = 11$$
, $h_0(k) = k \mod 11$, $h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$

<i>insert</i> (95)
i = 1
k = 51
$h_1(k) = 5$

0	44
1	
2	
3	
4	59
23456	
6	
7	95
8	
9	92
10	

0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

$$M = 11$$
, $h_0(k) = k \mod 11$, $h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$

insert(95)
i = 1
k = 51
$h_1(k) = 5$

0	44
1	
2	
3	
23456	59
5	
6	
7	95
8	
9	92
10	

51

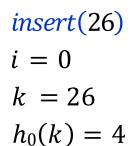
$$M = 11$$
, $h_0(k) = k \mod 11$, $h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$

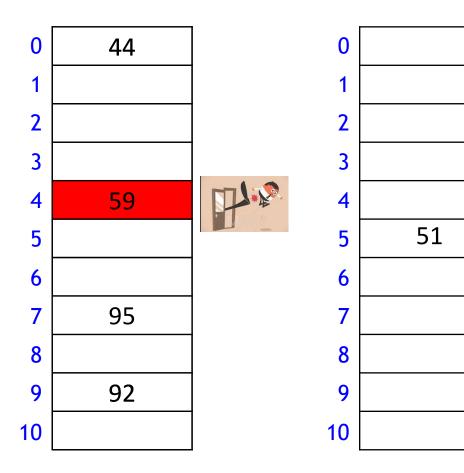
insert(95)
i = 1
k = 51
$h_1(k) = 5$

 0 44 1 2 3 4 59 5 6 7 95 8 9 92 10 		
2 3 4 59 5 6 7 95 8 9 92	0	44
7 9589 92	1	
7 9589 92	2	
7 9589 92	3	
7 9589 92	4	59
7 9589 92	5	
9 92	6	
	7	95
	8	
10	9	92
	10	

0	
1	
2	
234	
5	51
6	
7	
8	
9	
10	

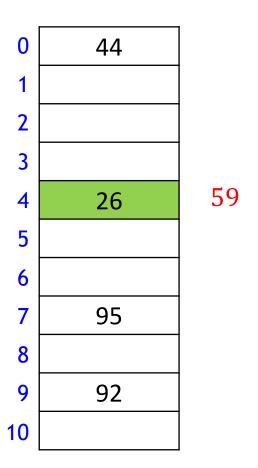
$$M = 11$$
, $h_0(k) = k \mod 11$, $h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$





$$M = 11$$
, $h_0(k) = k \mod 11$, $h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$

insert(26) i = 0 k = 26 $h_0(k) = 4$

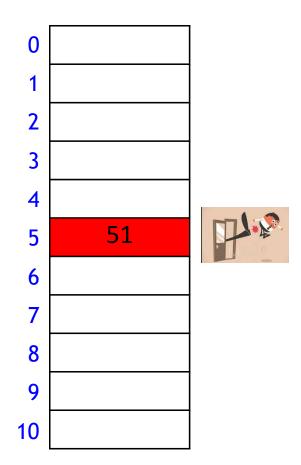


0	
1	
2	
3	
23456	
5	51
6	
7	
8	
9	
10	

$$M = 11$$
, $h_0(k) = k \mod 11$, $h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$

insert(26)
i = 1
k = 59
$h_1(k) = 5$

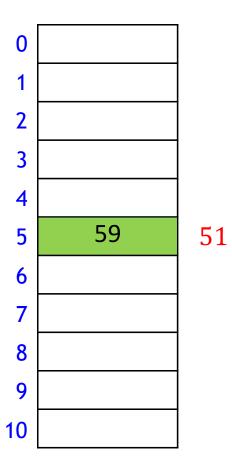
0	44	
1		
2		
234567		
4	26	59
5		
6		
7	95	
8		
9	92	
10		



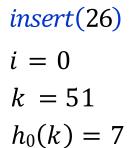
$$M = 11$$
, $h_0(k) = k \mod 11$, $h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$

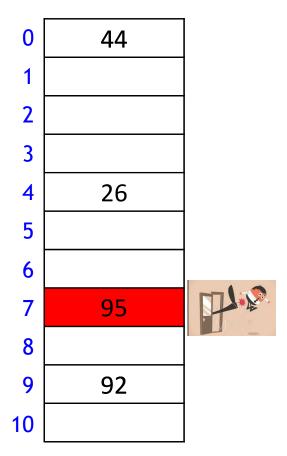
insert(26)
i = 1
k = 59
$h_1(k) = 5$

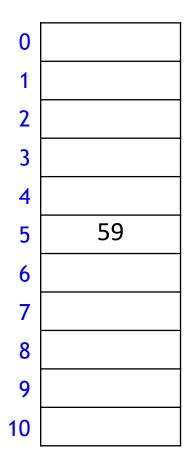
ı	
0	44
1	
2	
3	
23456	26
5	
7	95
8	
9	92
10	



$$M = 11$$
, $h_0(k) = k \mod 11$, $h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$



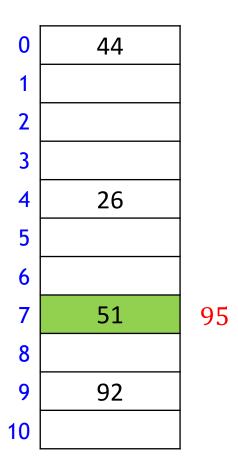




51

$$M = 11$$
, $h_0(k) = k \mod 11$, $h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$

insert(26)
i = 0
k = 51
$h_0(k) = 7$



0	
1	
2	
3	
4	
23456	59
6	
7	
8	
9	
10	

$$M = 11$$
, $h_0(k) = k \mod 11$, $h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$

insert(26)
i = 1
k = 95
$h_1(k) = 7$

0	44	
1		
2		
3		
 3 4 5 6 7 	26	
5		
6		
7	51	95
8		
9	92	
0		

0	
1	
2	
3	
4	
23456	59
6	
7	
8	
9	
10	

$$M = 11$$
, $h_0(k) = k \mod 11$, $h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$

insert(26)
i = 1
k = 95
$h_1(k) = 7$

 0 44 1 2 3 4 26 5 6 7 51 8 9 92 10 		
2 3 4 26 5 6 7 51 8 9 92	0	44
7 5189 92	1	
7 5189 92	2	
7 5189 92	3	
7 5189 92	4	26
7 5189 92	5	
8 9 92		
9 92	7	51
	8	
10	9	92
	10	

0	
1	
2	
3	
4	
23456	59
6	
7	95
8	
9	
10	

Cuckoo Hashing: Insert Pseudocode

```
cuckoo::insert(k, v)
       i \leftarrow 0
      do at most 2n times
          if T_i[h_i(k)] is empty
                  T_i[h_i(k)] \leftarrow (k, v)
                  return "success"
           //insert T_i[h_i(k)] into the other table
           swap((k, v), T_i[h_i(k)]) // kick out current occupant
           i \leftarrow 1 - i // alternate between 0 and 1
      return failure // re-hash
```

- Practical tip
 - do not wait for 2n unsuccessful tries to declare failure
 - declare failure after, say, 10 unsuccessful iterations

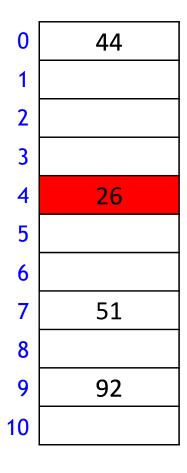
Cuckoo hashing: Search

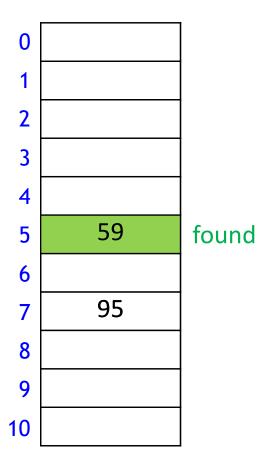
$$M = 11$$
, $h_0(k) = k \mod 11$, $h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$

search(59)

$$h_0(59) = 4$$

 $h_1(59) = 5$





Cuckoo hashing: Delete

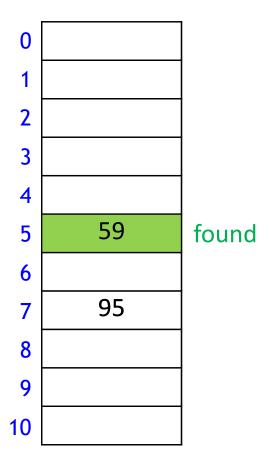
$$M = 11$$
, $h_0(k) = k \mod 11$, $h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$

delete(59)

$$h_0(59) = 4$$

 $h_1(59) = 5$





Cuckoo hashing: Delete

$$M = 11$$
, $h_0(k) = k \mod 11$, $h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$

delete(59)

$$h_0(59) = 4$$

 $h_1(59) = 5$

0	44
1	
2	
3	
4	26
5	
6	
7	51
8	
9	92
10	

0	
1	
2	
3 4 5 6 7	
4	
5	
6	
	95
8	
9	
10	

no need to mark deleted spot

Cuckoo hashing discussion

- Load factor $\alpha = n/(\text{size of } T_0 + \text{size of } T_1)$
- Can show that if the load factor is small enough, then insertion has O(1) expected time
 - this requires $\alpha < 1/2$
 - so wasted space
- There are many variations of cuckoo hashing
 - two hash tables do not have to be of the same size
 - two hash tables can be combined into one
 - more flexible when inserting: always consider both possible positions
 - Use k > 2 allowed locations
 - k tables or k hash functions

Running Time of Open Addressing Strategies

- For any open addressing scheme, we must have $\alpha \leq 1$ (why?)
- lacktriangle For analysis, require 0<lpha<1 , for Cuckoo hashing require lpha<1/2
 - not arbitrarily close
- Under these restrictions and the Universal Hashing Assumption
 - All strategies have O(1) expected time for search, insert, delete
 - Cuckoo hashing has O(1) worst case for search, delete
 - Probe sequence use O(n) worst case space
 - Cuckoo hashing uses O(n) expected space
- For any hashing, the worst case runtime is $\Theta(n)$ for insert
- In practice, double hashing is the most popular
 - Or cuckoo hashing if there are many more searches than insertions

Outline

- Dictionaries via Hashing
 - Hashing Introduction
 - Hashing with Chaining
 - Open Addressing
 - probe Sequences
 - cuckoo hashing
 - Hash Function Strategies

Choosing Good Hash Function

- Satisfying the uniform hashing assumption is impossible
 - too many hash functions and for most, computing h(k) is not cheap
- We need to compromise
 - choose hash function that is easy to compute
 - but aim for $P(\text{two keys collide}) = \frac{1}{M}$
 - this is enough to prove expected runtime bounds for chaining
- In practice: hope for good performance by choosing hash-function that is
 - unrelated to any possible patterns in the data, and
 - depends on all parts of the key

Choosing Good Hash Function

- We saw two basic methods for integer keys
 - Modular method: $h(k) = k \mod M$
 - M should be prime
 - this means finding a suitable prime quickly when re-hashing
 - can be done in $O(M \log \log n)$ time
 - Multiplicative method: $h(k) = \lfloor M(kA \lfloor kA \rfloor) \rfloor$
 - 0 < A < 1
 - multiplying with A is used to scramble the keys
 - experiments show that good scrambling is achieved for $A = \varphi = \frac{\sqrt{5}-1}{2}$
 - we should use at least $\log |U| + \log |M|$ bits of A
- But every hash function must do badly for some sequence of inputs
 - if the universe contains at least Mn keys, then there are n keys that all hash to the same value

Carter-Wegman's Universal Hashing

- Even better: randomization that uses easy-to-compute hash functions
 - Requires: all keys are in $\{0, \dots p-1\}$ for some (big) prime p
 - At initialization and whenever rehash
 - choose number M < p
 - *M* equal to some power of 2 is ok
 - choose (and store) two random numbers $a, b \in \{0, \dots p-1\}$
 - b = random(p)
 - a = 1 + random(p 1)
 - so that $a \neq 0$
 - Use as hash function

$$h(k) = ((ak + b) \bmod p) \bmod M$$

- can be computed quickly
- can prove that two keys collide with probability at most $\frac{1}{M}$
 - enough to prove the expected runtime bounds for chaining
 - although uniform hashing assumption is not satisfied

Multi-dimensional Data

- May need multi-dimensional non integer keys
 - example: strings in Σ^*
- 1. Construct $f(w) \in N$ for converting string w to integer
 - ASCII representation of APPLE is (65, 80, 80, 76, 69)
 - simple addition: f(APPLE) = 65 + 80 + 80 + 76 + 69
 - many collisions, 'stop'='tops'='pots'
 - polynomial accumulation works better
 - choose radix R, e.g. R = 255
 - $f(APPLE) = 65R^4 + 80R^3 + 80R^2 + 76R^1 + 69R^0$
 - compute in O(|w|) time with Horner's rule
 - either ignoring overflow

$$f(APPLE) = ((65R + 80)R + 80)R + 76)R + 69$$

- or apply mod M after each addition
- 2. Now apply any hash function, such as $h(w) = f(w) \mod M$

Hashing vs. Balanced Search Trees

Advantages of Balanced Search Trees

- $O(\log n)$ worst-case operation cost
- does not require any assumptions, special functions, or known properties of input distribution
- predictable space usage (exactly n nodes)
- never need to rebuild the entire structure
- supports ordered dictionary operations (rank, select etc.)

Advantages of Hash Tables

- O(1) expected time operations (if hashes well-spread and load factor small)
- can choose space-time tradeoff via load factor
- cuckoo hashing achieves O(1) worst-case for search & delete