
CS 240 – Data Structures and Data Management

Module 7: Dictionaries via Hashing

O. Veksler
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2024

Outline

 Dictionaries via Hashing

 Hashing Introduction

 Hashing with Chaining

 Open Addressing

 probe sequences

 cuckoo hashing

 Hash Function Strategies

Outline

 Dictionaries via Hashing

 Hashing Introduction

 Hashing with Chaining

 Open Addressing

 probe sequences

 cuckoo hashing

 Hash Function Strategies

Direct Addressing
 Special situation: every key 𝑘 is integer with 0 ≤ 𝑘 < 𝑀

 Direct addressing implementation
 store (𝑘, 𝑣) in array 𝐴 of size 𝑀 via 𝐴[𝑘] ← 𝑣

dog

cat

0

1

2

3

4

5

6

7

8

 search(𝑘): check if 𝐴[𝑘] is empty

 insert(𝑘, 𝑣): 𝐴[𝑘] ← 𝑣

𝐷 = { 2, dog , 6, cat }

insert(8, pig)

pig

Direct Addressing
 Special situation: every key 𝑘 is integer with 0 ≤ 𝑘 < 𝑀

 Direct addressing implementation
 store (𝑘, 𝑣) in array 𝐴 of size 𝑀 via 𝐴[𝑘] ← 𝑣

dog

cat

0

1

2

3

4

5

6

7

8

 search(𝑘): check if 𝐴[𝑘] is empty

 insert(𝑘, 𝑣): 𝐴[𝑘] ← 𝑣

𝐷 = { 2, dog , 6, cat , (8,pig)}

 delete(𝑘): 𝐴[𝑘] ← empty

d𝑒𝑙𝑒𝑡𝑒(2)

pig

Direct Addressing
 Special situation: every key 𝑘 is integer with 0 ≤ 𝑘 < 𝑀

 Direct addressing implementation
 store (𝑘, 𝑣) in array 𝐴 of size 𝑀 via 𝐴[𝑘] ← 𝑣

cat

0

1

2

3

4

5

6

7

8

 search(𝑘): check if 𝐴[𝑘] is empty

 insert(𝑘, 𝑣): 𝐴[𝑘] ← 𝑣

 Drawbacks
1. space is wasteful if 𝑛 << 𝑀

2. keys must be integers

𝐷 = { 6, cat , (8,pig)}

 delete(𝑘): 𝐴[𝑘] ← empty

pig

 all operations are 𝑂(1)

 total storage is Θ(𝑀)

Hashing
 Idea: first map keys to small integer range and then use direct addressing

0

1

2

3

4

5

6

7

8

9

10

 Example

 𝑈 = 𝑁, 𝑀 = 11, ℎ(𝑘) = 𝑘 𝑚𝑜𝑑 11

 keys 7, 13, 43, 45, 49, 92

 Assumption: keys come from some universe 𝑈

 typically 𝑈 = {0,1, … }, sometimes 𝑈 is finite

 Design hash function ℎ ∶ 𝑈 → {0, 1, . . . , 𝑀 − 1}

 ℎ(𝑘) is called hash value of 𝑘

 example: ℎ(𝑘) = 𝑘 𝑚𝑜𝑑 𝑀

 will see other choices later

 Store dictionary in array 𝑇 of size 𝑀, called hash table

 Item with key 𝑘 wants to be stored in slot ℎ 𝑘 of array 𝑇

Hashing

0

1

2

3

4

5

6

7

8

9

10
 as usual, store KVP, but show only keys

7

13

43

45

49

92

 Idea: first map keys to small integer range and then use direct addressing

 Assumption: keys come from some universe 𝑈

 typically 𝑈 = {0,1, … }, sometimes 𝑈 is finite

 Design hash function ℎ ∶ 𝑈 → {0, 1, . . . , 𝑀 − 1}

 ℎ(𝑘) is called hash value of 𝑘

 example: ℎ(𝑘) = 𝑘 𝑚𝑜𝑑 𝑀

 will see other choices later

 Store dictionary in array 𝑇 of size 𝑀, called hash table

 Item with key 𝑘 wants to be stored in slot ℎ 𝑘 of array 𝑇

 Example

 𝑈 = 𝑁, 𝑀 = 11, ℎ(𝑘) = 𝑘 𝑚𝑜𝑑 11

 keys 7, 13, 43, 45, 49, 92

Hash Functions and Collisions

 Generally hash function ℎ is not injective

 many keys can map to the same integer, example

 ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11,

 ℎ(46) = 2 = ℎ(13)

 Collision: want to insert (𝑘, 𝑣), but 𝑇[ℎ(𝑘)] is occupied

 Two main strategies to deal with collisions

1. Chaining: allow multiple items at each table location

2. Open addressing: alternative slots in array

 probe sequence: many alternative locations

 linear probing

 double hashing

 cuckoo hashing: just one alternative location

 Hash function

 should be fast, 𝑂(1), to compute

0

1

2

3

4

5

6

7

8

9

10

7

13

43

45

49

92

Outline

 Dictionaries via Hashing

 Hashing Introduction

 Hashing with Chaining

 Open Addressing

 probe Sequences

 cuckoo hashing

 Hash Function Strategies

Hashing with Chaining
𝑀 = 11, ℎ(𝑘) = 𝑘 𝑚𝑜𝑑 11

45

13

92

49

7

0

1

2

3

4

5

6

7

8

9

10 43

Bucket
array

 Each slot is a bucket containing 0 or more KVPs

 bucket can be implemented by
any dictionary

 even another hash table

 simplest approach is unsorted
linked list in each bucket

 this is called chaining

0

1

2

3

4

5

6

7

8

9

10

7

13

43

45

49

92

Hashing with Chaining

 Operations

 search(𝑘): look for key 𝑘 in the list at T [ℎ(𝑘)]

 apply MTF heuristic

 insert(𝑘, 𝑣): add (𝑘, 𝑣) to the front of list at 𝑇 [ℎ(𝑘)]

 delete(𝑘): search and delete from the list at 𝑇[ℎ(𝑘)]

45

13

92

49

7

0

1

2

3

4

5

6

7

8

9

10 43

Hashing with Chaining Example

𝑀 = 11, ℎ(𝑘) = 𝑘 𝑚𝑜𝑑11

45

13

92

49

7

0

1

2

3

4

5

6

7

8

9

10 43

41

insert(41)

ℎ(41) = 8

Hashing with Chaining Example

𝑀 = 11, ℎ(𝑘) = 𝑘 𝑚𝑜𝑑11

45

13

92

49

7

0

1

2

3

4

5

6

7

8

9

10 43

41

insert(46)

ℎ(46) = 2

𝑀 = 11, ℎ(𝑘) = 𝑘 𝑚𝑜𝑑11

45

46

92

49

7

0

1

2

3

4

5

6

7

8

9

10 43

41

insert(46)

ℎ(46) = 2

13

Hashing with Chaining Example

𝑀 = 11, ℎ(𝑘) = 𝑘 𝑚𝑜𝑑11

45

46

92

49

7

0

1

2

3

4

5

6

7

8

9

10 43

41

13

insert(16)

ℎ 16 = 5

Hashing with Chaining Example

𝑀 = 11, ℎ(𝑘) = 𝑘 𝑚𝑜𝑑11

45

46

92

16

7

0

1

2

3

4

5

6

7

8

9

10 43

41

insert(16)

ℎ 16 = 5

13

49

Hashing with Chaining Example

𝑀 = 11, ℎ(𝑘) = 𝑘 𝑚𝑜𝑑11

45

46

92

16

7

0

1

2

3

4

5

6

7

8

9

10 43

41

13

49

insert(79)

ℎ(79) = 2

Hashing with Chaining Example

𝑀 = 11, ℎ(𝑘) = 𝑘 𝑚𝑜𝑑11

45

79

92

16

7

0

1

2

3

4

5

6

7

8

9

10 43

41

insert(79)

ℎ(79) = 2

46

49

13

Hashing with Chaining Example

Hashing with Chaining: Running Time

2

0

1

2

3

4

5

24 13 35

 insert is 𝑂(1), unordered linked list insertion

 search and delete Θ(1 + length of list at 𝑇(ℎ 𝑘)
 we do not say Θ size of bucket 𝑇 ℎ 𝑘 , as bucket can have size 0

 In the worst case all 𝑛 items hash to same array index
 hash table is essentially a list, and search and delete Θ(𝑛)

Hashing with Chaining: Worst Case Running Time

𝑛 − 1

𝟎 𝑴 − 𝟏

𝑛 − 1 𝑛 − 1 𝑛 − 1 𝑛 − 1 𝑛 − 1 𝑛 − 1

𝑀 𝑛 − 1

 then there at most 𝑀 𝑛 − 1 elements in 𝑈, contradiction

 The user may happen to insert 𝑛 such keys that hash to the same slot

 When can all 𝑛 items hash to the same array index?
1. For bad hash function, i.e. ℎ 𝑘 = 10

2. For any hash function, if universe is large enough, there
are 𝑛 keys that hash to the same slot

Proof:

 let 𝑈 ≥ 𝑀 𝑛 − 1 + 1

 suppose at most 𝑛 − 1 keys hash to each table slot

Hashing with Chaining:
Average Case Runtime?

 Define load factor 𝛼 =
𝑛

𝑀

 𝑛 is the number of items

 𝑀 is the size of hash table
load factor

𝟏𝟎

𝟏𝟏

 Average bucket size =
𝑛

𝑀
= 𝛼

 This does not imply that average-case runtime of search and delete is Θ(1 + 𝛼)

 consider the case when all keys hash to the same slot

 average bucket-size is still

 but search and delete nevertheless take Θ 𝑛 on average

 message: when you hear ‘average’, ask ‘average over what’

 To get meaningful average-case bounds, we need some assumptions on hash-
function and keys

 hard to make realistic assumptions

 Easier to switch to randomized hashing

Hashing with Chaining: Randomization

 How can we randomize?
 do not know sequence of inserts beforehand, cannot randomize that

 cannot insert at a random location, as key 𝑘 must hash to the hash
value ℎ(𝑘)

 Idea: assume hash-function is chosen randomly from a set of all
hash functions

 Uniform Hashing Assumption (UHA): any possible hash-function
is equally likely to be chosen

 not realistic, but this assumption makes analysis possible

 In practice: chose a random hash function from a certain family
of hash functions

 prime number 𝑝 > 𝑀 and random 𝑎, 𝑏 ∈ 0, . . . 𝑝 − 1 , 𝑎 ≠ 0

 ℎ 𝑘 = 𝑎𝑘 + 𝑏 mod 𝑝 mod 𝑀

Uniform Hashing Assumption Properties
 Under UHA (any hash-function is chosen equally likely)

1. 𝑃(ℎ(𝑘) = 𝑖) =
1

𝑀
for any key 𝑘 and slot 𝑖

Proof:
Let 𝑘, 𝑖 be some key and slot

Let ℋ𝑗 (for 𝑗 = 1, . . 𝑀 − 1) be set of hash-functions ℎ s.t. ℎ(𝑘) = 𝑗

For 𝑗 ≠ 𝑖, can map ℋ𝑗 into ℋ𝑖 and vice-versa

size of ℋ𝑗 equal to size of ℋ𝑖

size of ℋ𝑗 is equal to
1

𝑀
of all hash functions

𝑃 ℎ 𝑘 = 𝑖 = 𝑃 ℎ 𝑘 ∈ ℋ𝑖

 (1,2) mean that the distribution of keys is unimportant

2. hash-values of any two keys are independent of each other

…

ℋ𝑗

…

ℋ𝑖

=
1

𝑀

Hashing with Chaining: Randomization
 𝑃(ℎ(𝑘) = 𝑖) =

1

𝑀
for any key 𝑘 and slot 𝑖

 hash-values of any two keys are independent of each other

 load factor 𝛼 =
𝑛

𝑀

Claim: for any key 𝑘, the expected size of bucket 𝑇[ℎ 𝑘] is at most 1 + 𝛼
Proof:

 Let ℎ 𝑘 = 𝑖

 Case 1: 𝑘 is not in the dictionary

 then each of 𝑛 dictionary items hashes to 𝑖 with probability
1

𝑀

 𝐸 𝑇 𝑖 =
𝑛

𝑀
= 𝛼 ≤ 1 + 𝛼

 Case 2: 𝑘 is in the dictionary

 𝑇 𝑖 definitely has key 𝑘

 the remaining 𝑛 − 1 dictionary items hash to 𝑖 with probability
1

𝑀

 𝐸 𝑇 𝑖 = 1 +
𝑛−1

𝑀
≤ 1 + 𝛼

 search, delete have runtime Θ(1 + size of bucket 𝑇[ℎ 𝑘])

 Expected runtime of search and delete is Θ(1 + 𝛼), insert is Θ(1)

Load factor and re-hashing

 Maintaining hash array of appropriate size

 start with small 𝑀

 during insert/delete, update 𝑛

 if load factor becomes too big, i.e. 𝛼 =
𝑛

𝑀
> 𝑐2, rehash

 chose new 𝑀’ ≈ 2𝑀

 find a new random hash function ℎ’ that maps 𝑈 into {0,1, …𝑀’ − 1}

 create new hash table 𝑇’ of size 𝑀’

 reinsert each KVP from 𝑇 into 𝑇’

 update 𝑇 ← 𝑇’, ℎ ← ℎ’

 If load factor becomes too small, i.e. 𝛼 =
𝑛

𝑀
< 𝑐1, rehash with smaller 𝑀’

 Rehashing costs Θ(𝑀 + 𝑛) but happens rarely, cost amortized over all operations

 Load factor 𝛼 =
𝑛

𝑀

 Space is Θ(𝑀 + 𝑛) = Θ(𝑛/𝛼 + 𝑛), time is Θ(1 + 𝛼)
 if we maintain 𝛼 ∈ Θ(1), expected running time is 𝑂(1) and space is Θ 𝑛

 Accomplished by rehashing whenever
𝑛

𝑀
< 𝑐1 or

𝑛

𝑀
> 𝑐2

 where 𝑐1, 𝑐2 are constants with 0 < 𝑐1 < 𝑐2
 𝑐1 is minimum allowed load factor, 𝑐2 is maximum allowed load factor

Rehashing

𝑀 = 5, ℎ(𝑘) = 𝑘 𝑚𝑜𝑑5

6

12

0

1

2

3

4

2 17

0

1

2

3

4

5

6

7

8

9

10

2

𝑀′ = 11, ℎ′(𝑘) = 𝑘 𝑚𝑜𝑑11

6

12

17 6

Outline

 Dictionaries via Hashing

 Hashing Introduction

 Hashing with Chaining

 Open Addressing

 probe sequences

 cuckoo hashing

 Hash Function Strategies

Open Addressing
 Chaining wastes space on links

 Can we resolve collisions in the array 𝐻?

 Idea: each hash table entry holds only one
item, but key 𝑘 can go in multiple locations

 Probe sequence
 search and insert follow a probe sequence of possible locations

for key 𝑘
ℎ(𝑘, 0), ℎ(𝑘, 1), ℎ(𝑘, 2), . . .

 until an empty spot is found

ℎ(𝑘, 0)

ℎ(𝑘, 1)

ℎ(𝑘, 2)

Open Addressing: Linear Probing

 Linear probing is the simplest method for probe sequence

 If ℎ(𝑘) is occupied, place item in the next available location

 probe sequence is

 ℎ 𝑘, 0 = ℎ 𝑘

 ℎ 𝑘, 1 = ℎ 𝑘 + 1

 ℎ 𝑘, 2 = ℎ 𝑘 + 2

 etc…

 Assume circular array, i.e. modular arithmetic

 ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 𝑚𝑜𝑑 𝑀

45

13

92

49

7

43

0

1

2

3

4

5

6

7

8

9

10

Linear Probing Example

𝑀 = 11, ℎ 𝑘 = 𝑘𝑚𝑜𝑑 11

insert 41

ℎ(41) = 8

45

13

92

49

7

41

43

0

1

2

3

4

5

6

7

8

9

10

Linear Probing Example

𝑀 = 11, ℎ 𝑘 = 𝑘𝑚𝑜𝑑 11

insert 41

ℎ(41) = 8

45

13

92

49

7

41

43

0

1

2

3

4

5

6

7

8

9

10

Linear Probing Example

𝑀 = 11, ℎ 𝑘 = 𝑘𝑚𝑜𝑑 11

insert 84

ℎ(84) = 7

45

13

92

49

7

41

43

0

1

2

3

4

5

6

7

8

9

10

Linear Probing Example

𝑀 = 11, ℎ 𝑘 = 𝑘𝑚𝑜𝑑 11

insert 84

ℎ(84) = 7

occupied

45

13

92

49

7

41

43

0

1

2

3

4

5

6

7

8

9

10

Linear Probing Example

𝑀 = 11, ℎ 𝑘 = 𝑘𝑚𝑜𝑑 11

insert 84

ℎ(84) = 7

occupied

occupied

45

13

92

49

7

41

84

43

0

1

2

3

4

5

6

7

8

9

10

Linear Probing Example

𝑀 = 11, ℎ 𝑘 = 𝑘𝑚𝑜𝑑 11

insert 84

ℎ(84) = 7

occupied

occupied

Linear Probing Formula

 Linear probing explores positions

ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀

 for 𝑖 = 0, 1, … until an empty location is found

 where ℎ 𝑘 is some hash function

Linear probing example Continued

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0, 1, …

45

13

92

49

7

41

84

43

0

1

2

3

4

5

6

7

8

9

10

insert 20

ℎ(20) = 9

ℎ 20, 0 = 9 + 0 mod 11 = 9

Linear probing example Continued

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

45

13

92

49

7

41

84

43

0

1

2

3

4

5

6

7

8

9

10

occupied

insert 20

ℎ(20) = 9

ℎ 20, 0 = 9 + 0 mod 11 = 9

Linear probing example Continued

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

45

13

92

49

7

41

84

43

0

1

2

3

4

5

6

7

8

9

10

occupied

occupied

45

13

92

49

7

41

84

43

insert 20

ℎ(20) = 9

ℎ 20, 1 = 9 + 1 mod 11 = 10

Linear probing example Continued

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

45

13

92

49

7

41

84

43

0

1

2

3

4

5

6

7

8

9

10

occupied

occupied

20

45

13

92

49

7

41

84

43

insert 20

ℎ(20) = 9

ℎ 20, 2 = 9 + 2 mod 11 = 0

Linear probing example: Search

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

20

45

13

92

49

7

41

84

43

0

1

2

3

4

5

6

7

8

9

10

search 23

ℎ(23) = 1

ℎ(23, 0) = 1 + 0 mod 11 = 1

occupied

20

45

13

92

49

7

41

84

43

Linear probing example: Search

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

20

45

13

92

49

7

41

84

43

0

1

2

3

4

5

6

7

8

9

10

occupied

occupied

20

45

13

92

49

7

41

84

43

search 23

ℎ(23) = 1

ℎ(23, 1) = 1 + 1 mod 11 = 2

Linear probing example: Search

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

20

45

13

92

49

7

41

84

43

0

1

2

3

4

5

6

7

8

9

10

occupied

occupied

not found

search 23

ℎ(23) = 1

ℎ(23, 2) = 1 + 2 mod 11 = 3

Linear probing: Delete

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

20

45

13

92

49

7

41

84

43

0

1

2

3

4

5

6

7

8

9

10

delete 84

ℎ(84) = 7

ℎ(84, 0) = 7 + 0 mod 11 = 7

Linear probing: Delete

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

20

45

13

92

49

7

41

84

43

0

1

2

3

4

5

6

7

8

9

10

occupied

delete 84

ℎ(84) = 7

ℎ(84, 0) = 7 + 0 mod 11 = 7

Linear probing: Delete

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

20

45

13

92

49

7

41

84

43

0

1

2

3

4

5

6

7

8

9

10

occupied

occupied

20

45

13

92

49

7

41

84

43

delete 84

ℎ(84) = 7

ℎ(84, 1) = 7 + 1 mod 11 = 8

Linear probing: Delete

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

20

45

13

92

49

7

8

84

43

0

1

2

3

4

5

6

7

8

9

10

occupied

occupied

found

20

45

13

92

49

7

41

84

43

delete 84

ℎ(84) = 7

ℎ(84, 2) = 7 + 2 mod 11 = 9

Linear probing: Delete

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

20

45

13

92

49

7

41

43

0

1

2

3

4

5

6

7

8

9

10

delete 84

ℎ(84) = 7

ℎ(84, 2) = 7 + 2 mod 11 = 9

Linear probing: Delete

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

20

45

13

92

49

7

41

43

0

1

2

3

4

5

6

7

8

9

10

not found

search 20

ℎ(20) = 9

ℎ(20, 0) = 9 + 0 mod 11 = 9

Open Addressing

 delete becomes problematic

 cannot leave an empty spot behind

 next search might otherwise not go far enough

 Idea: lazy deletion

 mark spot as deleted (rather than empty)

 continue searching past deleted spots

 insert in empty or deleted spot

 Can use lazy deletion for other data structures
 mark as deleted items in AVL tree instead of actual deletion

 If a lot of items are deleted, rebuild AVL tree

 While in other data structures lazy deletion can be used
to improve performance, in probing lazy deletion is
required for correct performance

Linear probing: Delete

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

20

45

13

92

49

7

41

84

43

0

1

2

3

4

5

6

7

8

9

10

occupied

occupied

found

20

45

13

92

49

7

41

84

43

delete 84

ℎ(84) = 7

20

45

13

92

49

7

41

84

43

20

45

13

92

49

7

41

84

43

ℎ(84, 0) = 7 + 0 mod 11 = 7

ℎ(84, 1) = 7 + 1 mod 11 = 8

ℎ(84, 2) = 7 + 2 mod 11 = 9

Linear probing: Delete

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

0

1

2

3

4

5

6

7

8

9

10

occupied

occupied

20

45

13

92

49

7

41

deleted

43

delete 84

ℎ(84) = 7

ℎ(84, 0) = 7 + 0 mod 11 = 7

ℎ(84, 1) = 7 + 1 mod 11 = 8

ℎ(84, 2) = 7 + 2 mod 11 = 9

20

45

13

92

49

7

41

deleted

43

Linear probing example

20

45

13

92

49

7

41

deleted

43

0

1

2

3

4

5

6

7

8

9

10

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

occupied

search 20

ℎ(20) = 9

ℎ(20, 0) = 9 + 0 mod 11 = 9

Linear probing example

20

45

13

92

49

7

41

84

43

0

1

2

3

4

5

6

7

8

9

10

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

occupied

occupied

20

45

13

92

49

7

41

84

43

search 20

ℎ(20) = 9

ℎ(20, 1) = 9 + 1 mod 11 = 10

Linear probing example

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

20

45

13

92

49

7

41

84

43

0

1

2

3

4

5

6

7

8

9

10

occupied

occupied

found20

45

13

92

49

7

41

84

43

search 20

ℎ(20) = 9

ℎ(20, 2) = 9 + 2 mod 11 = 0

Linear probing example

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

20

45

13

92

49

7

41

84

deleted

0

1

2

3

4

5

6

7

8

9

10

insert 10

ℎ(10) = 10

ℎ(10, 0) = 10 + 0 mod 11 = 10

Linear probing example

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

20

45

13

92

49

7

41

84

10

0

1

2

3

4

5

6

7

8

9

10

insert 10

ℎ(10) = 10

ℎ(10, 0) = 10 + 0 mod 11 = 10

Probe Sequence Operations

probe-sequence::insert(𝑇, (𝑘, 𝑣))

for (𝑖 = 0; 𝑖 < 𝑀; 𝑖 ++)

if 𝑇 [ℎ(𝑘, 𝑖)] is empty or deleted

𝑇 [ℎ(𝑘, 𝑖)] = (𝑘, 𝑣)

return success

return failure to insert

probe-sequence::search(𝑇 , 𝑘)

for (𝑖 = 0; 𝑖 < 𝑀; 𝑖 ++)

if 𝑇 [ℎ(𝑘, 𝑖)] is empty

return item-not-found

if 𝑇 [ℎ(𝑘, 𝑖)] has key 𝑘 return 𝑇 ℎ 𝑘, 𝑖

// 𝑇 ℎ 𝑘, 𝑖 = deleted or not in the data structure

// therefore keep searching

return item not found

 Stop inserting after 𝑀 tries

 provided 𝛼 < 1 , linear probing
does not need this

 some probing methods need this

 If insert fails, call rehash

Linear probing drawbacks

 Entries tend to cluster into contiguous regions

 Many probes for each search, insert, and delete

 How to avoid clustering?

45

92

28

7

41

84

0

1

2

3

4

5

6

7

8

9

10

Double Hashing Motivation

𝒊 = 𝟎

𝒊 = 𝟐

𝒊 = 𝟏

𝒊 = 𝟑

𝒊 = 𝟎

𝒊 = 𝟏

𝒊 = 𝟐

𝒊 = 𝟑

linear
probing

double
hashing

ℎ 𝑘

 Linear probing attempts inserting into
consecutive locations, i.e. step size 1

ℎ(𝑘) ℎ(𝑘) + 1 ℎ (𝑘) + 2

 To avoid consecutive locations, let each key have its
own step size

ℎ(𝑘) ℎ(𝑘) + 𝑠𝑡𝑒𝑝 ℎ(𝑘) + 2𝑠𝑡𝑒𝑝

 This helps to avoid the clustering side effect

 For each key 𝑘, probe sequence is always the same

 Example

 for 𝑘 = 14, probe sequence is always

 4, 7, 10, 13

 for 𝑘 = 24, probe sequence is always

 5, 10, 15, 20

Double Hashing

 Double hashing : open addressing with probe sequence

ℎ 𝑘, 𝑖 = ℎ0 (𝑘) + 𝑖 · ℎ1(𝑘) 𝑚𝑜𝑑 𝑀 for 𝑖 = 0,1, …

 Where

 ℎ1 is another (secondary) hash function s.t. ℎ1(𝑘) ≠ 0

𝒊 = 𝟎

𝒊 = 𝟐

𝒊 = 𝟏

𝒊 = 𝟑

 Double hashing with a good secondary hash function does
not cause the bad clustering produced by linear probing

 search, insert, delete work as in linear probing, but with this
different probe sequence

 linear probing is a special case of double hashing with
ℎ1(𝑘) = 1

 ℎ1(𝑘) is relative prime with 𝑀 for all keys 𝑘

 otherwise probe-sequence does not explore the
entire hash table

 easiest to choose 𝑀 prime, and ensure ℎ1(𝑘) < 𝑀

double
hashing

ℎ 𝑘, 0

ℎ 𝑘, 1

ℎ 𝑘, 2

ℎ 𝑘, 3

Independent Hash functions
 When two hash functions ℎ0, ℎ1are required, they should be independent

𝑃 ℎ0 (𝑘) = 𝑖, ℎ1(𝑘) = 𝑗 = 𝑃(ℎ0(𝑘) = 𝑖) 𝑃(ℎ1(𝑘) = 𝑗)

 Using two modular hash-functions may lead to dependencies

 Better idea: Use multiplicative method for second hash function

 let 0 < 𝐴 < 1

 ℎ 𝑘 = 𝑀 𝑘𝐴 − 𝑘𝐴

0 ≤ fractional part of 𝑘𝐴 < 1

0 ≤ 𝑀 ⋅ (fractional part of 𝑘𝐴) < 𝑀

 Example

 𝑀 = 11, 𝐴 = 0.2

 ℎ 34 = 11 ∙ 34 ∙ 0.2 − 34 ∙ 0.2 = 11 ∙ (6.8 − 6.8) = 11 ∙ 0.8 = 8

 𝐴 = 𝜑 =
5−1

2
≈ 0.618033988749 works well to scramble the keys

 For double hashing, to ensure 0 < ℎ 𝑘 < 𝑀, use
ℎ1(𝑘) = (𝑀 − 1) 𝑘𝐴 − 𝑘𝐴 + 1

for table size 𝑀 − 1: 0 ≤ values < 𝑀 − 1

Double Hashing Example

45

13

92

49

7

43

ℎ 𝑘, 𝑖 = ℎ0(𝑘) + 𝑖 · ℎ1(𝑘) 𝑚𝑜𝑑 𝑀 for sequence 𝑖 = 0,1,…

5−1

2

0

1

2

3

4

5

6

7

8

9

10

𝑀 = 11, ℎ0(𝑘) = 𝑘 mod 11, ℎ1 (𝑘) = 10 𝜑𝑘 − 𝜑𝑘 + 1

Double Hashing Example

45

13

92

49

7

43

insert(41)
ℎ0 (41) = 8
ℎ1 (41) = 4

ℎ 41, 0 = 8 + 0 · 4 𝑚𝑜𝑑 11 = 8

0

1

2

3

4

5

6

7

8

9

10

ℎ 𝑘, 𝑖 = ℎ0(𝑘) + 𝑖 · ℎ1(𝑘) 𝑚𝑜𝑑 𝑀 for sequence 𝑖 = 0,1,…

𝑀 = 11, ℎ0(𝑘) = 𝑘 mod 11, ℎ1 (𝑘) = 10 𝜑𝑘 − 𝜑𝑘 + 1

Double Hashing Example

45

13

92

49

7

41

43

0

1

2

3

4

5

6

7

8

9

10

insert(41)
ℎ0 (41) = 8
ℎ1 (41) = 4

ℎ 41, 0 = 8 + 0 · 4 𝑚𝑜𝑑 11 = 8

ℎ 𝑘, 𝑖 = ℎ0(𝑘) + 𝑖 · ℎ1(𝑘) 𝑚𝑜𝑑 𝑀 for sequence 𝑖 = 0,1,…

𝑀 = 11, ℎ0(𝑘) = 𝑘 mod 11, ℎ1 (𝑘) = 10 𝜑𝑘 − 𝜑𝑘 + 1

Double Hashing Example

45

13

92

49

7

41

43

insert 194
ℎ0(194) = 7
ℎ1(194) = 9

ℎ 194, 0 = 7 + 0 · 9 𝑚𝑜𝑑 11 = 7

0

1

2

3

4

5

6

7

8

9

10

ℎ 𝑘, 𝑖 = ℎ0(𝑘) + 𝑖 · ℎ1(𝑘) 𝑚𝑜𝑑 𝑀 for sequence 𝑖 = 0,1,…

𝑀 = 11, ℎ0(𝑘) = 𝑘 mod 11, ℎ1 (𝑘) = 10 𝜑𝑘 − 𝜑𝑘 + 1

Double Hashing Example

45

13

92

49

7

41

43

0

1

2

3

4

5

6

7

8

9

10

insert 194
ℎ0(194) = 7
ℎ1(194) = 9

ℎ 194, 0 = 7 + 0 · 9 𝑚𝑜𝑑 11 = 7

ℎ 𝑘, 𝑖 = ℎ0(𝑘) + 𝑖 · ℎ1(𝑘) 𝑚𝑜𝑑 𝑀 for sequence 𝑖 = 0,1,…

𝑀 = 11, ℎ0(𝑘) = 𝑘 mod 11, ℎ1 (𝑘) = 10 𝜑𝑘 − 𝜑𝑘 + 1

Double Hashing Example

45

13

92

49

7

41

43

0

1

2

3

4

5

6

7

8

9

10

ℎ 𝑘, 𝑖 = ℎ0(𝑘) + 𝑖 · ℎ1(𝑘) 𝑚𝑜𝑑 𝑀 for sequence 𝑖 = 0,1,…

𝑀 = 11, ℎ0(𝑘) = 𝑘 mod 11, ℎ1 (𝑘) = 10 𝜑𝑘 − 𝜑𝑘 + 1

insert 194
ℎ0(194) = 7
ℎ1(194) = 9

ℎ 194, 1 = 7 + 1 · 9 𝑚𝑜𝑑 11 = 5

Double Hashing Example

45

13

92

49

7

41

43

0

1

2

3

4

5

6

7

8

9

10

ℎ 𝑘, 𝑖 = ℎ0(𝑘) + 𝑖 · ℎ1(𝑘) 𝑚𝑜𝑑 𝑀 for sequence 𝑖 = 0,1,…

𝑀 = 11, ℎ0(𝑘) = 𝑘 mod 11, ℎ1 (𝑘) = 10 𝜑𝑘 − 𝜑𝑘 + 1

insert 194
ℎ0(194) = 7
ℎ1(194) = 9

ℎ 194, 1 = 7 + 1 · 9 𝑚𝑜𝑑 11 = 5

Double Hashing Example

45

13

92

49

7

41

43

0

1

2

3

4

5

6

7

8

9

10

ℎ 𝑘, 𝑖 = ℎ0(𝑘) + 𝑖 · ℎ1(𝑘) 𝑚𝑜𝑑 𝑀 for sequence 𝑖 = 0,1,…

𝑀 = 11, ℎ0(𝑘) = 𝑘 mod 11, ℎ1 (𝑘) = 10 𝜑𝑘 − 𝜑𝑘 + 1

insert 194
ℎ0(194) = 7
ℎ1(194) = 9

ℎ 194, 2 = 7 + 2 · 9 𝑚𝑜𝑑 11 = 3

Double Hashing Example

45

13

194

92

49

7

41

43

0

1

2

3

4

5

6

7

8

9

10

ℎ 𝑘, 𝑖 = ℎ0(𝑘) + 𝑖 · ℎ1(𝑘) 𝑚𝑜𝑑 𝑀 for sequence 𝑖 = 0,1,…

𝑀 = 11, ℎ0(𝑘) = 𝑘 mod 11, ℎ1 (𝑘) = 10 𝜑𝑘 − 𝜑𝑘 + 1

insert 194
ℎ0(194) = 7
ℎ1(194) = 9

ℎ 194, 2 = 7 + 2 · 9 𝑚𝑜𝑑 11 = 3

Outline

 Dictionaries via Hashing

 Hashing Introduction

 Hashing with Chaining

 Open Addressing

 probe Sequences

 cuckoo hashing

 Hash Function Strategies

Cuckoo Hashing

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

ℎ0(𝑘) ℎ1(𝑘)

𝑘 = 25

 Main idea: An item with key 𝑘 can be only at 𝑇0[ℎ0(𝑘)] or 𝑇1[ℎ1(𝑘)]

𝑻𝟎 𝑻𝟏

Cuckoo Hashing

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

ℎ0(𝑘) ℎ1(𝑘)

𝑘 = 25

 Main idea: An item with key k can be only at 𝑇0[ℎ0(𝑘)] or 𝑇1[ℎ1(𝑘)]

𝑘 = 15

𝑻𝟎 𝑻𝟏

 search and delete take 𝑂(1) time

Cuckoo Hashing

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

ℎ0(𝑘) ℎ1(𝑘)

 How to insert?

insert(25)

𝑻𝟎 𝑻𝟏

Cuckoo Hashing

0

1

2

3

4

5

6

7

8

9

10

25

0

1

2

3

4

5

6

7

8

9

10

ℎ0(𝑘) ℎ1(𝑘)

 How to insert?

insert(25)

𝑻𝟎 𝑻𝟏

Cuckoo Hashing

0

1

2

3

4

5

6

7

8

9

10

25

0

1

2

3

4

5

6

7

8

9

10

ℎ0(𝑘) ℎ1(𝑘)

 How to insert 𝑘when ℎ0(𝑘) is already occupied?

insert(15)

𝑻𝟎 𝑻𝟏

25

Cuckoo Hashing

0

1

2

3

4

5

6

7

8

9

10

15

0

1

2

3

4

5

6

7

8

9

10

ℎ0(𝑘) ℎ1(𝑘)

 How to insert 𝑘when ℎ0(𝑘) is already occupied?

insert(15)

𝑻𝟎 𝑻𝟏

Cuckoo Hashing

0

1

2

3

4

5

6

7

8

9

10

15

0

1

2

3

4

5

6

7

8

9

10

ℎ0(𝑘) ℎ1(𝑘)

insert(15)

 How to insert 𝑘when ℎ0(𝑘) is already occupied?

𝑻𝟎 𝑻𝟏

Cuckoo Hashing

0

1

2

3

4

5

6

7

8

9

10

15

0

1

2

3

4

5

6

7

8

9

10

ℎ0(𝑘) ℎ1(𝑘)

insert(15)

 How to insert 𝑘when ℎ0(𝑘) is already occupied?

𝑻𝟎 𝑻𝟏

Cuckoo Hashing

25

0

1

2

3

4

5

6

7

8

9

10

15

0

1

2

3

4

5

6

7

8

9

10

ℎ0(𝑘) ℎ1(𝑘)

insert(15)

 How to insert 𝑘when ℎ0(𝑘) is already occupied?

𝑻𝟎 𝑻𝟏

Cuckoo Hashing

35

0

1

2

3

4

5

6

7

8

9

10

15

0

1

2

3

4

5

6

7

8

9

10

ℎ0(𝑘) ℎ1(𝑘)

insert(15)

 How to insert 𝑘when ℎ0(𝑘) is already occupied?

𝑻𝟎 𝑻𝟏

35

Cuckoo Hashing

35

0

1

2

3

4

5

6

7

8

9

10

15

0

1

2

3

4

5

6

7

8

9

10

ℎ0(𝑘) ℎ1(𝑘)

insert(25)

 How to insert 𝑘when ℎ0(𝑘) is already occupied?

𝑻𝟎 𝑻𝟏

Cuckoo Hashing

25

0

1

2

3

4

5

6

7

8

9

10

15

0

1

2

3

4

5

6

7

8

9

10

ℎ0(𝑘) ℎ1(𝑘)

 Continue until all items placed, or failure

 rehash if failure

𝑻𝟎 𝑻𝟏

insert(25)

Cuckoo Hashing [Pagh & Rodler, 2001]

 Use independent hash functions ℎ0, ℎ1 and two tables 𝑇0, 𝑇1

 Key 𝑘 can be only at 𝑇0[ℎ0(𝑘)] or 𝑇1[ℎ1(𝑘)]

 search and delete take constant time

 insert always initially puts key 𝑘 into 𝑇0[ℎ0(𝑘)]
 evict item that my have been there already

 if so, evicted item 𝑘’ is inserted at 𝑇1[ℎ1(𝑘′)]

 may lead to a loop of evictions

 can show that if insertion is possible, then there are at most 2𝑛
evictions

 so abort after too many attempts

Cuckoo Hashing

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

ℎ0(𝑘) ℎ1(𝑘)

𝑘 = 25

 Intuitively

 each key has 2 locations (locations can coincide)

𝑘 = 15

𝑘 = 11

𝑘 = 5

11

15

25

5

 try to “match” keys to locations so that everyone is placed

Cuckoo Hashing

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

ℎ0(𝑘) ℎ1(𝑘)

𝑘 = 25

 Sometimes no solution for the “matching” problem

 would loop infinitely if not stopped by force

𝑘 = 15

𝑘 = 11

Cuckoo hashing: Insert
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

44

59

92

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

𝑖𝑛𝑠𝑒𝑟𝑡 51

𝑖 = 0

𝑘 = 51

ℎ0(𝑘) = 7

Cuckoo hashing: Insert
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

𝑖𝑛𝑠𝑒𝑟𝑡 51

𝑖 = 0

𝑘 = 51

ℎ0(𝑘) = 7

44

59

92

44

59

51

92

Cuckoo hashing: Insert
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

44

59

51

92

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

𝑖𝑛𝑠𝑒𝑟𝑡 95

𝑖 = 0

𝑘 = 95

ℎ0(𝑘) = 7

Cuckoo hashing: Insert
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

𝑖𝑛𝑠𝑒𝑟𝑡 95

𝑖 = 0

𝑘 = 95

ℎ0(𝑘) = 7

44

59

51

92

Cuckoo hashing: Insert
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

𝑖𝑛𝑠𝑒𝑟𝑡 95

𝑖 = 0

𝑘 = 95

ℎ0(𝑘) = 7

51

44

59

95

92

Cuckoo hashing: Insert
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

𝑖𝑛𝑠𝑒𝑟𝑡 95

𝑖 = 1

𝑘 = 51

ℎ1(𝑘) = 5

44

59

95

92

51

Cuckoo hashing: Insert
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

𝑖𝑛𝑠𝑒𝑟𝑡 95

𝑖 = 1

𝑘 = 51

ℎ1(𝑘) = 5

44

59

95

92

51

Cuckoo hashing: Insert
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

𝑖𝑛𝑠𝑒𝑟𝑡 95

𝑖 = 1

𝑘 = 51

ℎ1(𝑘) = 5

51

44

59

95

92

51

Cuckoo hashing: Insert
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

0

1

2

3

4

5

6

7

8

9

10

51

0

1

2

3

4

5

6

7

8

9

10

𝑖𝑛𝑠𝑒𝑟𝑡 26

𝑖 = 0

𝑘 = 26

ℎ0 𝑘 = 4

44

59

95

92

44

59

95

92

Cuckoo hashing: Insert
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

0

1

2

3

4

5

6

7

8

9

10

51

0

1

2

3

4

5

6

7

8

9

10

𝑖𝑛𝑠𝑒𝑟𝑡 26

𝑖 = 0

𝑘 = 26

ℎ0 𝑘 = 4
59

44

26

95

92

Cuckoo hashing: Insert
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

0

1

2

3

4

5

6

7

8

9

10

51

0

1

2

3

4

5

6

7

8

9

10

𝑖 = 1

𝑘 = 59

ℎ1(𝑘) = 5

51

𝑖𝑛𝑠𝑒𝑟𝑡 26

59

44

26

95

92

Cuckoo hashing: Insert
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

0

1

2

3

4

5

6

7

8

9

10

51

0

1

2

3

4

5

6

7

8

9

10

𝑖𝑛𝑠𝑒𝑟𝑡 26

𝑖 = 1

𝑘 = 59

ℎ1(𝑘) = 5

59 51

44

26

95

92

Cuckoo hashing: Insert
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

0

1

2

3

4

5

6

7

8

9

10

59

0

1

2

3

4

5

6

7

8

9

10

𝑖𝑛𝑠𝑒𝑟𝑡 26

𝑖 = 0

𝑘 = 51

ℎ0 𝑘 = 7

44

26

95

92

44

26

95

92

51

Cuckoo hashing: Insert
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

0

1

2

3

4

5

6

7

8

9

10

59

0

1

2

3

4

5

6

7

8

9

10

𝑖𝑛𝑠𝑒𝑟𝑡 26

𝑖 = 0

𝑘 = 51

ℎ0(𝑘) = 7

95

44

26

51

92

Cuckoo hashing: Insert
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

0

1

2

3

4

5

6

7

8

9

10

59

0

1

2

3

4

5

6

7

8

9

10

𝑖𝑛𝑠𝑒𝑟𝑡 26

59

𝑖 = 1

𝑘 = 95

ℎ1(𝑘) = 7

95

44

26

51

92

Cuckoo hashing: Insert
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

0

1

2

3

4

5

6

7

8

9

10

59

95

0

1

2

3

4

5

6

7

8

9

10

𝑖𝑛𝑠𝑒𝑟𝑡 26

𝑖 = 1

𝑘 = 95

ℎ1(𝑘) = 7

44

26

51

92

Cuckoo Hashing: Insert Pseudocode

cuckoo::insert(𝑘, 𝑣)

𝑖 ← 0

do at most 2𝑛 times

if 𝑇𝑖[ℎ𝑖(𝑘)] is empty

𝑇𝑖[ℎ𝑖(𝑘)] ← (𝑘, 𝑣)

return “success”

//insert 𝑇𝑖 [ℎ𝑖(𝑘)] into the other table

swap 𝑘, 𝑣 , 𝑇𝑖[ℎ𝑖(𝑘)] // kick out current occupant

𝑖 ← 1 − 𝑖 // alternate between 0 and 1

return failure // re-hash

 Practical tip

 do not wait for 2𝑛 unsuccessful tries to declare failure

 declare failure after, say, 10 unsuccessful iterations

Cuckoo hashing: Search
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

0

1

2

3

4

5

6

7

8

9

10

59

95

0

1

2

3

4

5

6

7

8

9

10

search 59

ℎ0 (59) = 4
ℎ1(59) = 5

59

95

found

44

26

51

92

44

26

51

92

Cuckoo hashing: Delete
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

delete 59

ℎ0 59 = 4
ℎ1(59) = 5

0

1

2

3

4

5

6

7

8

9

10

59

95

0

1

2

3

4

5

6

7

8

9

10

59

95

found

44

26

51

92

44

26

51

92

Cuckoo hashing: Delete
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

no need to mark
deleted spot

delete 59

ℎ0 59 = 4
ℎ1(59) = 5

95

44

26

51

92

Cuckoo hashing discussion

 Load factor 𝛼 = 𝑛/(size of 𝑇0+ size of 𝑇1)

 Can show that if the load factor is small enough, then insertion has
𝑂(1) expected time

 this requires 𝛼 < 1/2

 so wasted space

 There are many variations of cuckoo hashing

 two hash tables do not have to be of the same size

 two hash tables can be combined into one

 more flexible when inserting: always consider both possible
positions

 Use 𝑘 > 2 allowed locations

 𝑘 tables or 𝑘 hash functions

Running Time of Open Addressing Strategies

 For any open addressing scheme, we must have 𝛼 ≤ 1 (why?)

 For analysis, require 0 < 𝛼 < 1 , for Cuckoo hashing require 𝛼 < 1/2

 not arbitrarily close

 Under these restrictions and the Universal Hashing Assumption

 All strategies have 𝑂(1) expected time for search, insert, delete

 Cuckoo hashing has 𝑂(1) worst case for search, delete

 Probe sequence use 𝑂(𝑛) worst case space

 Cuckoo hashing uses 𝑂(𝑛) expected space

 For any hashing, the worst case runtime is Θ 𝑛 for insert

 In practice, double hashing is the most popular

 Or cuckoo hashing if there are many more searches than insertions

Outline

 Dictionaries via Hashing

 Hashing Introduction

 Hashing with Chaining

 Open Addressing

 probe Sequences

 cuckoo hashing

 Hash Function Strategies

Choosing Good Hash Function

 Satisfying the uniform hashing assumption is impossible

 too many hash functions and for most, computing ℎ(𝑘) is not cheap

 We need to compromise

 choose hash function that is easy to compute

 but aim for 𝑃(two keys collide) =
1

𝑀

 this is enough to prove expected runtime bounds for chaining

 In practice: hope for good performance by choosing hash-function that is

 unrelated to any possible patterns in the data, and

 depends on all parts of the key

Choosing Good Hash Function

 We saw two basic methods for integer keys

 Modular method: ℎ(𝑘) = 𝑘 𝑚𝑜𝑑 𝑀

 𝑀 should be prime

 this means finding a suitable prime quickly when re-hashing

 can be done in 𝑂 𝑀 log log𝑛 time

 Multiplicative method: ℎ(𝑘) = 𝑀 𝑘𝐴 − 𝑘𝐴

 0 < 𝐴 < 1

 multiplying with 𝐴 is used to scramble the keys

 experiments show that good scrambling is achieved for 𝐴 = 𝜑 =
5−1

2

 we should use at least log |𝑈| + log |𝑀| bits of 𝐴

 But every hash function must do badly for some sequence of inputs

 if the universe contains at least 𝑀𝑛 keys, then there are n keys that all hash to
the same value

Carter-Wegman’s Universal Hashing

 Even better: randomization that uses easy-to-compute hash functions

 Requires: all keys are in 0, . . . 𝑝 − 1 for some (big) prime 𝑝

 At initialization and whenever rehash

 choose number 𝑀 < 𝑝

 𝑀 equal to some power of 2 is ok

 choose (and store) two random numbers 𝑎, 𝑏 ∈ 0, . . . 𝑝 − 1

 𝑏 = 𝑟𝑎𝑛𝑑𝑜𝑚(𝑝)

 𝑎 = 1 + 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝 − 1

 so that 𝑎 ≠ 0

 Use as hash function

ℎ(𝑘) = (𝑎𝑘 + 𝑏 mod 𝑝)mod 𝑀

 can be computed quickly

 can prove that two keys collide with probability at most
1

𝑀

 enough to prove the expected runtime bounds for chaining

 although uniform hashing assumption is not satisfied

Multi-dimensional Data

 May need multi-dimensional non integer keys
 example: strings in Σ

∗

1. Construct 𝑓 𝑤 ∈ 𝑁 for converting string 𝑤 to integer

 ASCII representation of APPLE is 65, 80, 80, 76, 69

 simple addition: 𝑓 𝐴𝑃𝑃𝐿𝐸 = 65 + 80 + 80 + 76 + 69

 many collisions, ‘stop’=‘tops’=‘pots’

 polynomial accumulation works better

 choose radix 𝑅, e.g. 𝑅 = 255

 𝑓 𝐴𝑃𝑃𝐿𝐸 = 65𝑅4 + 80𝑅3 + 80𝑅2 + 76𝑅1 + 69𝑅0

 compute in 𝑂(|𝑤|) time with Horner’s rule

 either ignoring overflow

2. Now apply any hash function, such as ℎ(𝑤) = 𝑓(𝑤) 𝑚𝑜𝑑 𝑀

 or apply 𝑚𝑜𝑑 𝑀 after each addition

𝑓 𝐴𝑃𝑃𝐿𝐸 = 65𝑅 + 80 𝑅 + 80 𝑅 + 76 𝑅 + 69

Hashing vs. Balanced Search Trees

 Advantages of Balanced Search Trees

 𝑂(log𝑛) worst-case operation cost

 does not require any assumptions, special functions, or
known properties of input distribution

 predictable space usage (exactly 𝑛 nodes)

 never need to rebuild the entire structure

 supports ordered dictionary operations (rank, select etc.)

 Advantages of Hash Tables

 𝑂(1) expected time operations (if hashes well-spread and load

factor small)

 can choose space-time tradeoff via load factor

 cuckoo hashing achieves 𝑂(1) worst-case for search & delete

