CS 240 – Data Structures and Data Management

Module 8: Range-Searching in Dictionaries for Points

O. Veksler

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2024

Outline

- Range-Searching in Dictionaries for Points
 - Range Search
 - Multi-Dimensional Data
 - Quadtrees
 - kd-Trees
 - Range Trees
 - Conclusion

Outline

- Range-Searching in Dictionaries for Points
 - Range Search
 - Multi-Dimensional Data
 - Quadtrees
 - kd-Trees
 - Range Trees
 - Conclusion

Range Searches

- search(k) looks for one specific item
- New operation RangeSearch (x, x')
 - look for all items that fall within given range (interval) Q = (x, x')
 - Q may have open or closed ends
 - report all KVPs in the dictionary with $k \in Q$

$$s = 3, n = 10$$

example

5	10	11	17	18	33	45	51	55	77
---	----	----	----	----	----	----	----	----	----

RangeSearch (17,45] should return {18, 33, 45}

- As usual, n is the number of input items
- Let s be the output-size, i.e. the number of items in the range
- Need $\Omega(s)$ time just to report the items in the range
 - s can be anything between 0 and n (it depends on input interval Q)
- Therefore, running time depends both on s and n
 - so keep s as a parameter when analyzing runtime
 - getting O(n) time is trivial
 - can we get $O(\log n + s)$?

Range Search in Existing Dictionary Realizations

- Unsorted list/array/hash table
 - range search requires $\Omega(n)$ time
 - must check for each item explicitly if it is in the range
- Sorted array



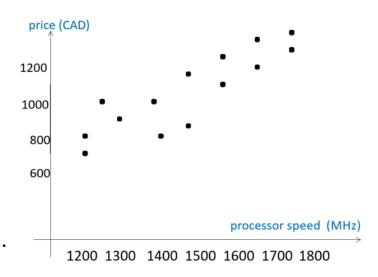
- RangeSearch (16,50)
- $O(\log n)$ use binary search to find i s.t. x is at (or would be at) A[i]
- $O(\log n)$ use binary search to find i' s.t. x' is at (or would be at) A[i']
 - O(s) report all items in A[i+1...i'-1]
 - O(1) report A[i] and A[i'] if they are in the range
 - range search can be done in $O(\log n + s)$ time
 - BST
- can do range search in O(height + s) time
 - details later

Outline

- Range-Searching in Dictionaries for Points
 - Range Search Query
 - Multi-Dimensional Data
 - Quadtrees
 - kd-Trees
 - Range Trees
 - Conclusion

Multi-dimensional Data

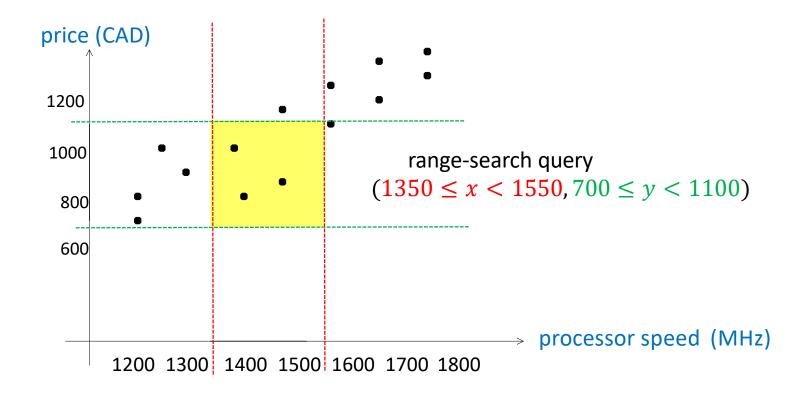
- Data with multiple aspects of interest
 - laptops: price, screen size, processor speed, ...
 - employees: name, age, salary, ...



- Range searches are of special interest for multidimensional data
 - flights that leave between 9am and noon, and cost between \$400 and \$600
- Dictionary for multi-dimensional data
 - collection of *d*-dimensional items (or points)
 - each item has d aspects (coordinates): $(x_0, x_1, \dots, x_{d-1})$
 - need usual dictionary operations: insert, delete, search
 - also need RangeSearch
- We focus on d=2, i.e. points in Euclidean plane

Multi-Dimensional Range Search

- (Orthogonal) d-dimensional range search
 - given a query rectangle Q, find all points that lie within Q

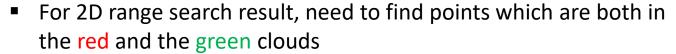


d-Dimensional Dictionary via 1-Dimensional Dictionary

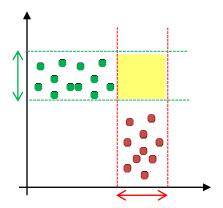
- Option 1: Reduce to one-dimensional dictionary
 - lacktriangle combine d-dimensional key into one dimensional key
 - i.e. $(x, y) \to x + y \cdot n^2$
 - $(price, screenSize) \rightarrow price + screenSize \cdot n^2$
 - two distinct (x, y) map to a distinct one dimensional key
 - can search for a specific key (x, y)
 - but no efficient range search

d-Dimensional Dictionary via 1-Dimensional Dictionary

- Option2: Use several dictionaries, one for each dimension
 - problem: wastes space, inefficient search
 - Worst Case Example
 - insert all n points in horizontal dictionary
 - key is x coordinate
 - insert all n points in vertical dictionary
 - key is y coordinate
 - 1D range search in horizontal dictionary returns n/2 points
 - 1Drange search in vertical dictionary returns n/2 points



- insert n/2 red points in AVL tree
- for each of n/2 green point, check if it is in the AVL Tree
- total time to find points in both clouds is $O(n \log n)$
 - worse than exhaustive search!
 - far from $O(s + \log n)$, especially since s = 0

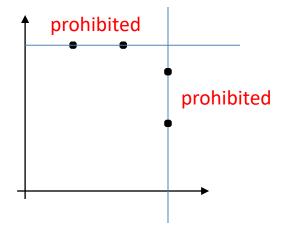


Multi-Dimensional Range Search

- Better idea
 - design new data structures specifically for points
- Assumption: points are in *general position*: no two x-coordinates or y-coordinates are the same

• i.e. no two points on a horizontal lines, no two points on a

vertical line



 simplifies presentation, data structures can be generalized to arbitrary points

Multi-Dimensional Range Search

Partition trees

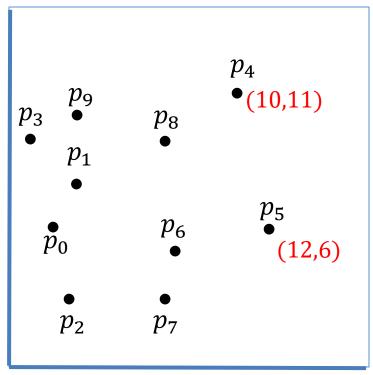
- organize space to facilitate efficient multidimensional search
 - internal nodes are associated with spatial regions
 - actual dictionary points stored only at leaves
- We study 2 types of partition trees
 - 1. quadtrees
 - does not use general points position assumption
 - 2. kd-trees
 - uses general points position assumption
- Multi-dimensional range trees
 - a tree that generalizes BST to support multidimensional search
 - both internal and leaf nodes store points, similar to one dimensional BST
 - uses general points position assumption

Outline

- Range-Searching in Dictionaries for Points
 - Range Search Query
 - Multi-Dimensional Data
 - Quadtrees
 - kd-Trees
 - Range Trees
 - Conclusion

Quadtrees

16

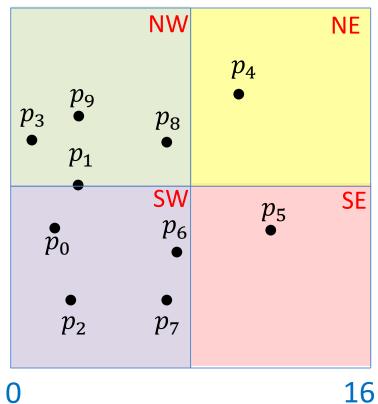


- Have a set S of n points in the plane
- Find bounding box $R = [0, 2^k) \times [0, 2^k)$
 - translate points so coordinates are nonnegative
 - smallest $2^k \times 2^k$ square containing all points
 - find smallest k s.t. max-coordinate in S is less than 2k
- Quadtree is a tree

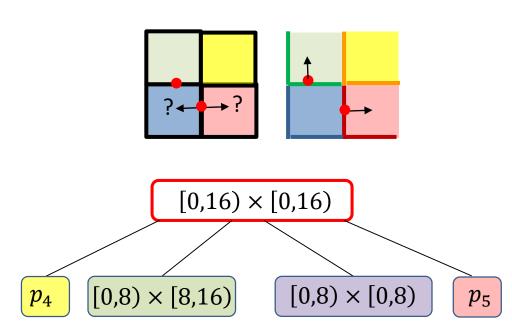
16

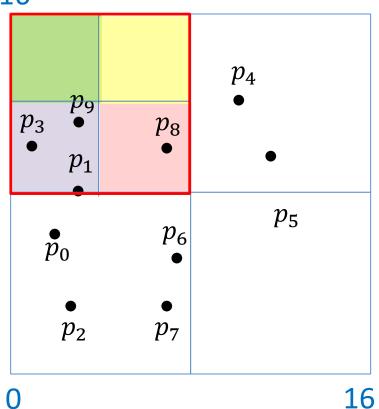
- Each node corresponds to a region
- Higher levels responsible for larger regions
- Leaves responsible for regions small enough to store one point

16

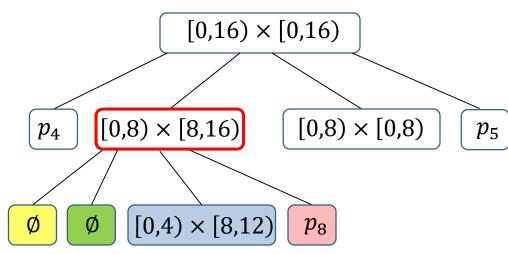


- Root corresponds to the whole square
- Split the square into 4 equal regions
- Convention: points on split lines belong to region on the right (or top)



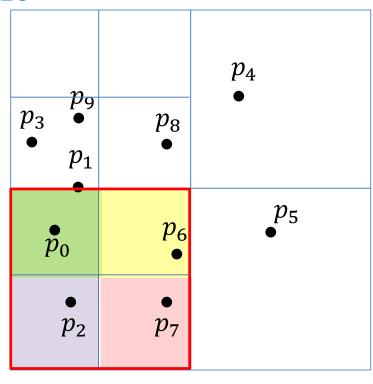


 keep subdividing regions (recursively) into smaller region until each region has at most one point

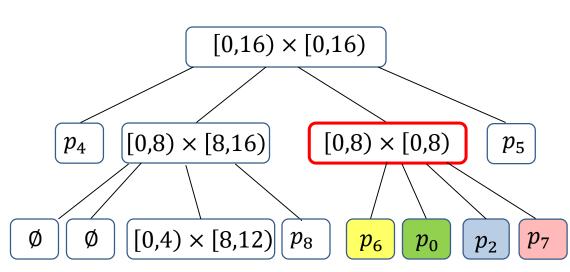


leaf storing empty-set of points or empty leaf

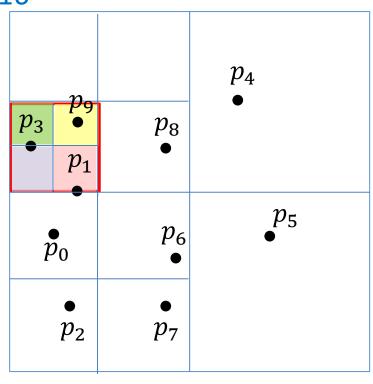
16



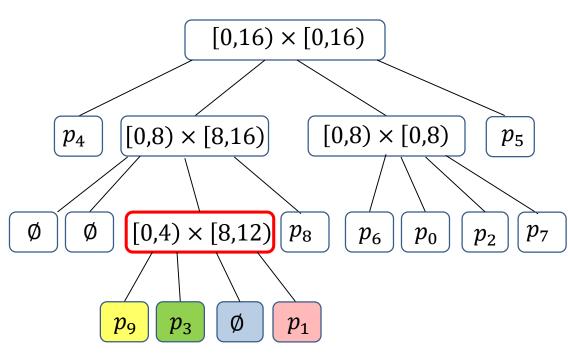
 keep subdividing regions (recursively) into smaller region until each region has at most one point



0



 keep subdividing regions (recursively) into smaller region until each region has at most one point



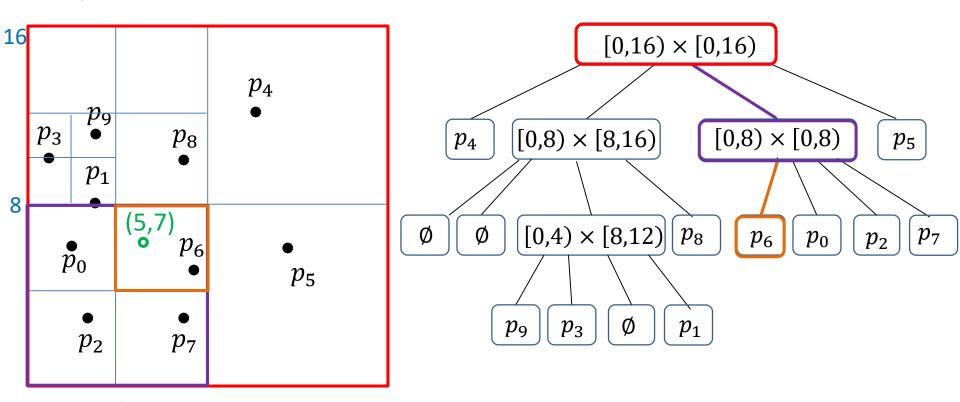
Quadtree Building Summary

- Have n points $S = \{(x_0, y_0), (x_1, y_1), ..., (x_{n-1}, y_{n-1})\}$
 - all points are within a square R
- To build quadtree on S
 - root *r* corresponds to *R*
 - if R contains 0 (or 1) point
 - then root r is an empty leaf (or a leaf that stores 1 point)
 - else
- partition R into four equal subsquares (quadrants) R_{NE} , R_{NW} , R_{SW} , R_{SE}
- partition S into sets S_{NE} , S_{NW} , S_{SW} , S_{SE}
 - convention: points on split lines belong to region on the right (or top)
- recursively build tree T_i for points S_i in R_i and make them children of root

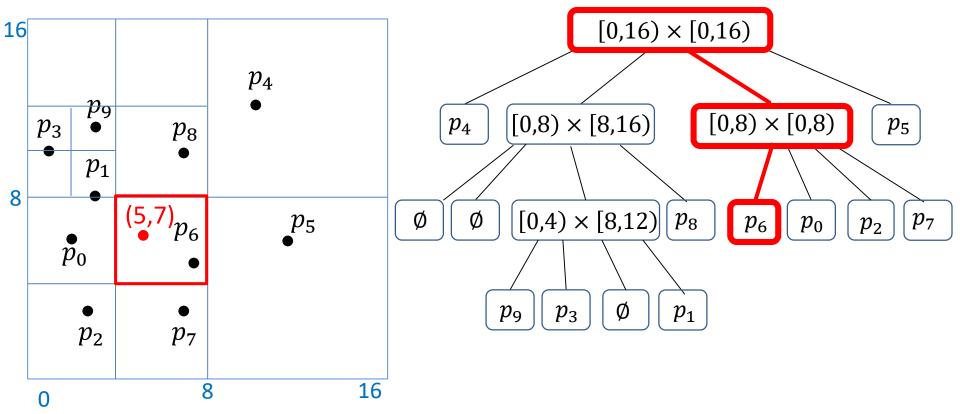
Quadtree Search

 Whenever possible, search rules out regions at higher level of hierarchy, achieving efficiency

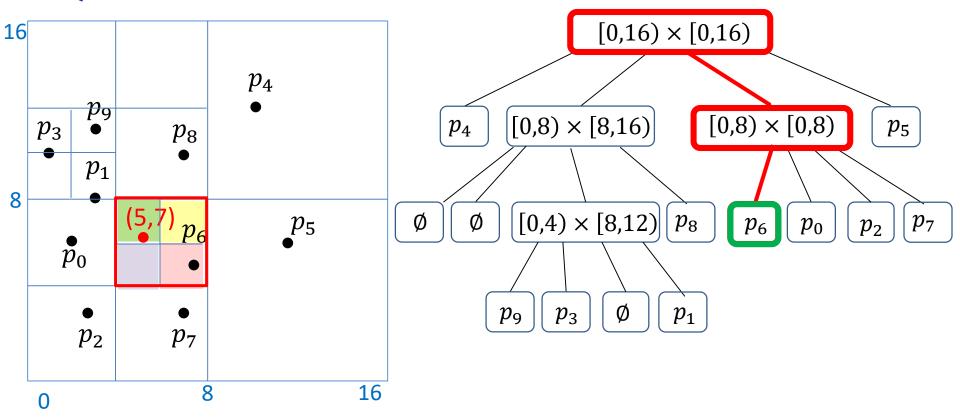
Quadtree Search



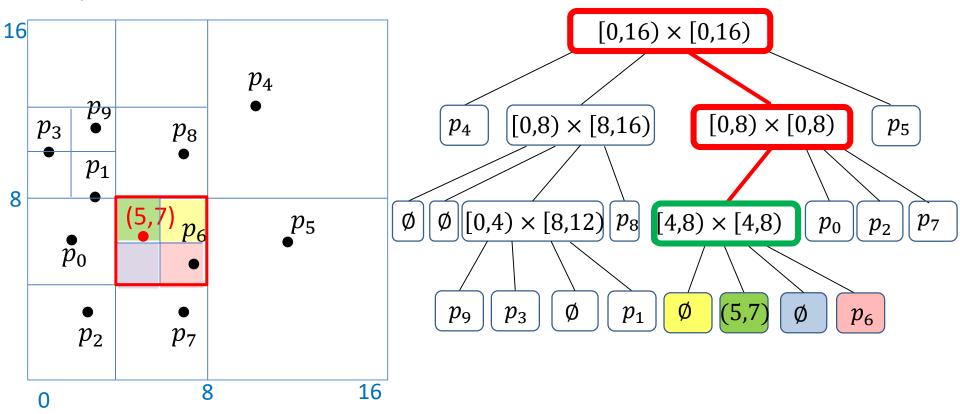
- Analogous to trie or BST
- Three possibilities for where search ends
 - 1. leaf storing point we search for (found)
 - 2. leaf storing point different from search point (not found)
 - 3. empty leaf (not found)
- Example: search(5,7) (not found)
- Search is efficient if quadtree has small height



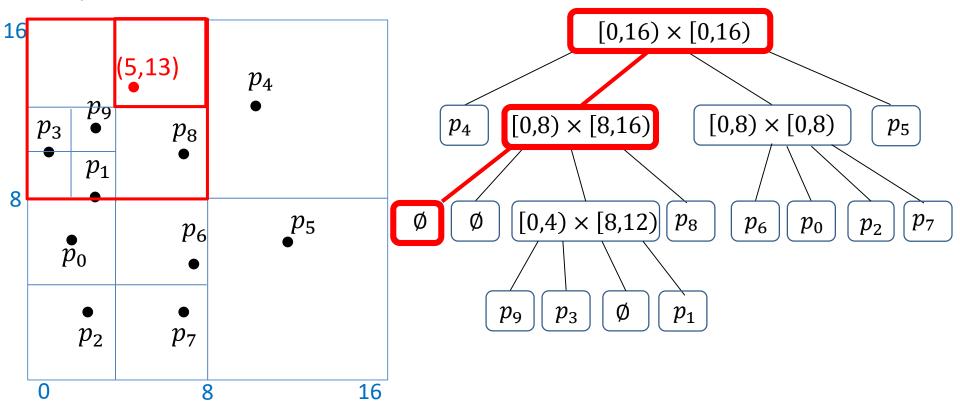
- First perform search
- Two cases
 - 1. search finds a leaf storing one point
 - example: insert(5,7)



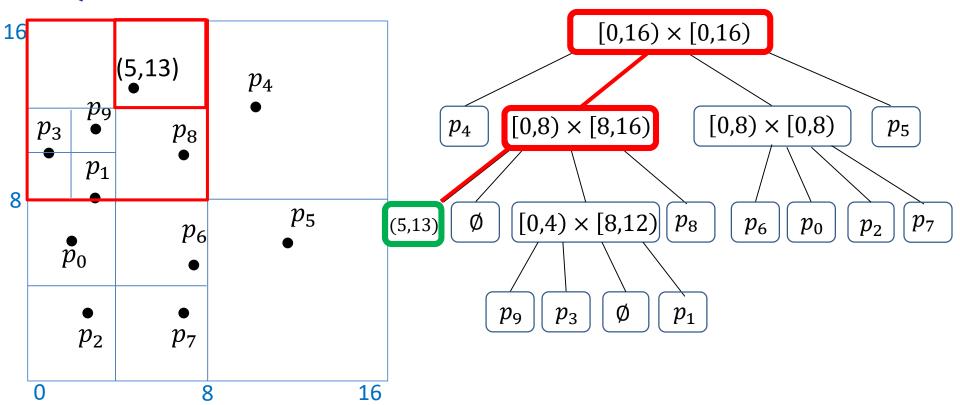
- First perform search
- Two cases
 - 1. search finds a leaf storing one point
 - example: insert(5,7)
 - repeatedly split the leaf while there are two points in one region



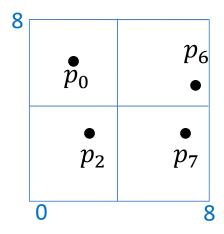
- First perform search
- Two cases
 - 1. search finds a leaf storing one point
 - example: insert(5,7)
 - repeatedly split the leaf while there are two points in one region

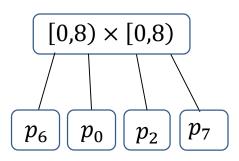


- First perform search
- Two cases
 - 1. search finds a leaf storing one point
 - 2. search finds an empty leaf
 - example: insert (5,13)

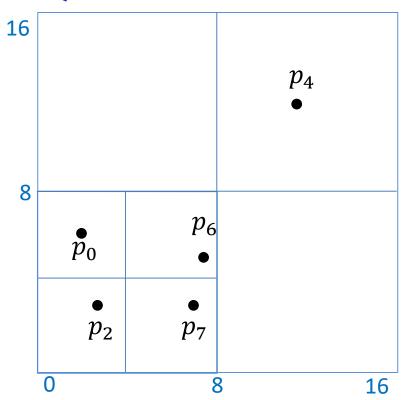


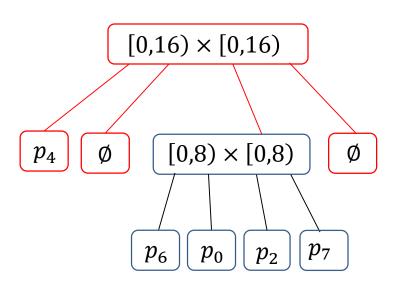
- First perform search
- Two cases
 - 1. search finds a leaf storing one point
 - 2. search finds an empty leaf
 - example: insert(5,13)
 - insert the point into leaf



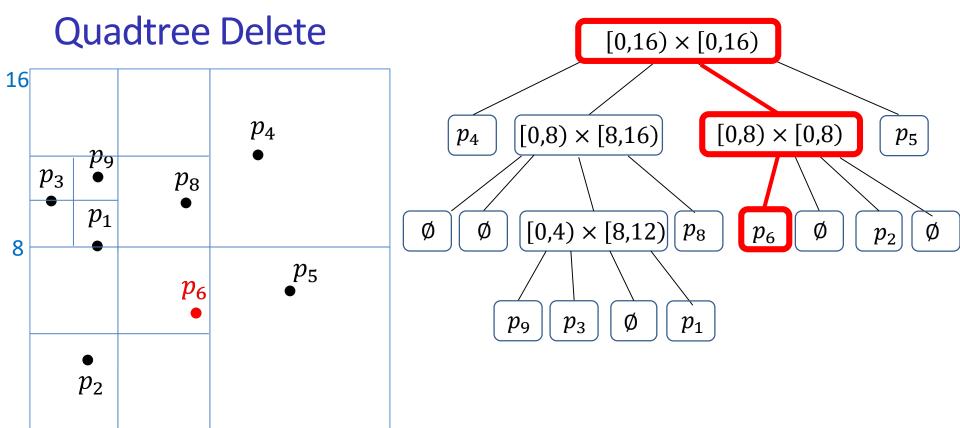


■ If we insert point outside the bounding box, no need to rebuild the tree due to bounding box being $[0, 2^k) \times [0, 2^k)$





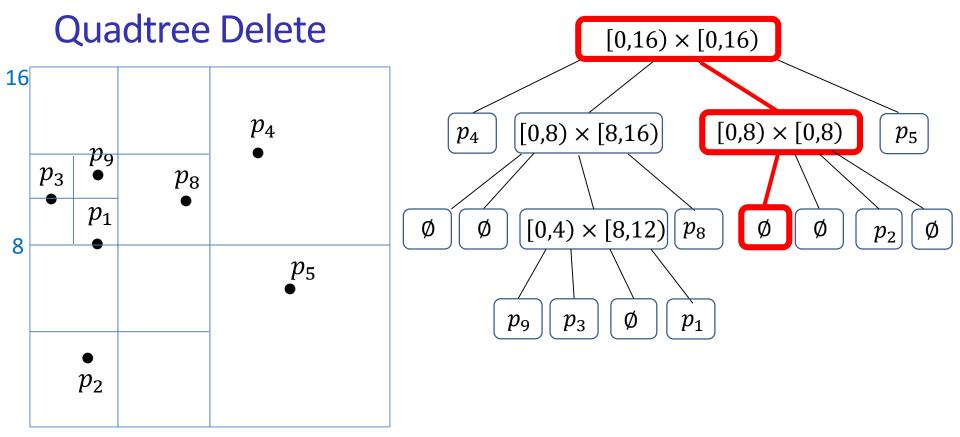
If we insert point outside the bounding box, no need to rebuild the tree due to bounding box being $[0, 2^k) \times [0, 2^k)$



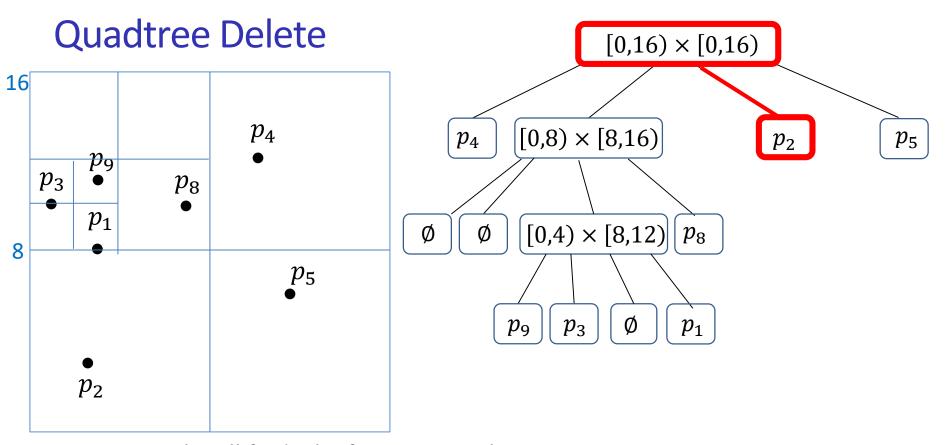
- search will find a leaf containing the point
 - example: $delete(p_6)$
- remove the point leaving the leaf empty

Quadtree Delete $[0,16) \times [0,16)$ 16 p_4 $[0,8) \times [8,16)$ $[0,8) \times [0,8)$ p_5 p_4 p_9 p_3 p_8 p_1 $[0,4) \times [8,12)$ p_8 p_5 p_1 p_9 p_3 p_2

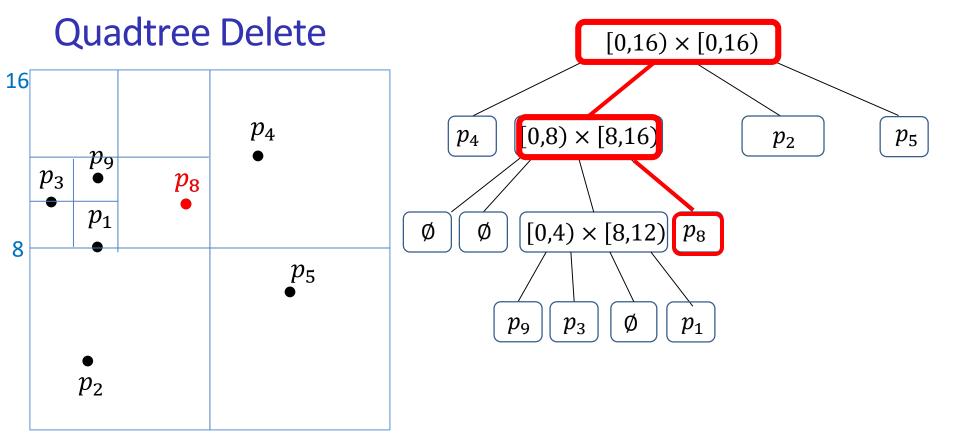
- search will find a leaf containing the point
 - example: $delete(p_6)$
- remove the point leaving the leaf empty



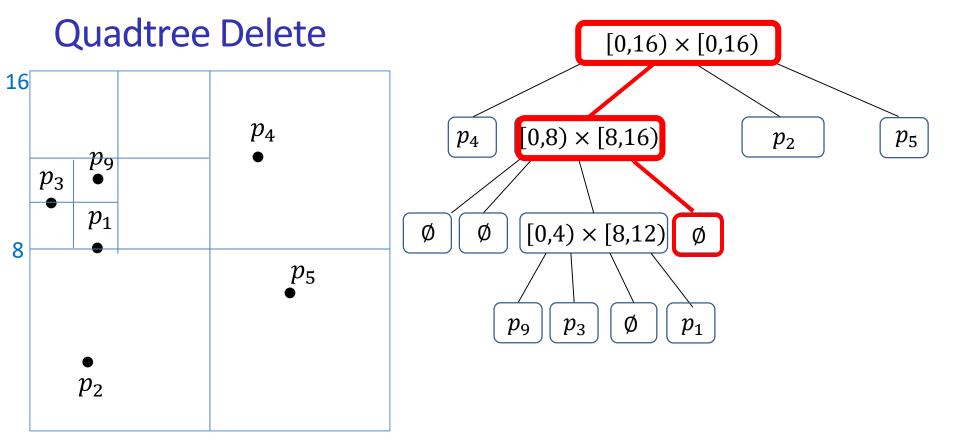
- search will find a leaf containing the point
 - example: $delete(p_6)$
- remove the point leaving the leaf empty
- if parent now stores only one point in its region
 - make parent node into a leaf storing its only child



- search will find a leaf containing the point
 - example: $delete(p_6)$
- remove the point leaving the leaf empty
- if parent now stores only one point in its region
 - make parent node into a leaf
 - check up the tree, repeating making any parent with only 1 point into a leaf



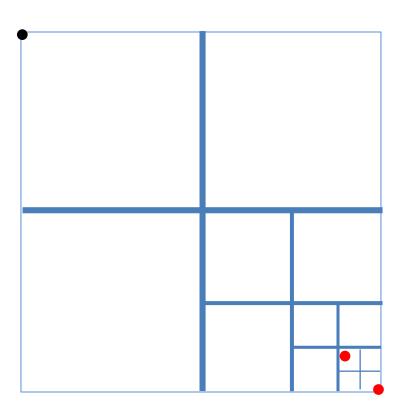
• Another example: $delete(p_8)$



Do not make parent into a leaf as it stores multiple points

Quadtree Analysis

$$height = 4$$



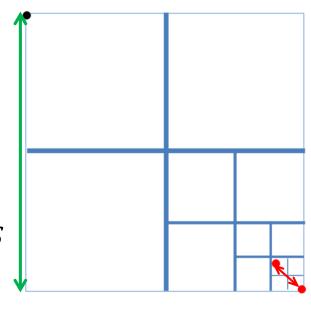
- Search, insert, delete depend on quadtree height
- What is the height of a quadtree?
 - can have very large height for bad distributions of points
 - example with just three points
 - can make height arbitrarily large by moving red points closer together

Quadtree Analysis

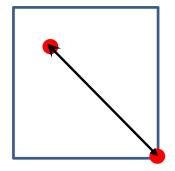
spread factor of points S

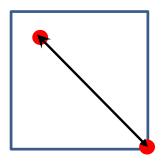
$$\rho(S) = \frac{L}{d_{min}}$$

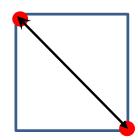
- L = side length of R
- d_{min} is smallest distance between two points in S
- Worst case: height $h \in \Omega(\log \rho(S))$



red points are at at distance d_{min} from each other



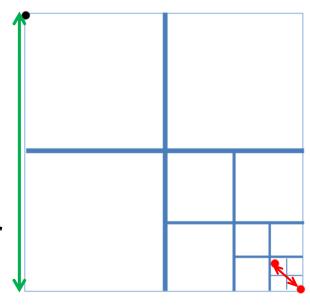


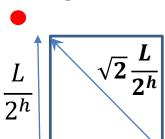


• While smallest region diagonal is $\geq d_{min}$, 2 red points are in same region

$$\rho(S) = \frac{L}{d_{min}}$$

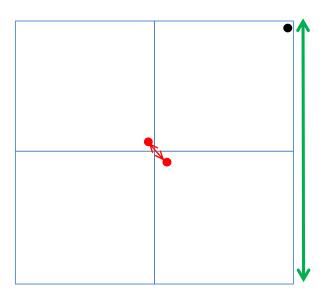
- L = side length of R
- d_{min} is smallest distance between two points in S
- Worst case: height $h \in \Omega(\log \rho(S))$
 - while smallest region diagonal is $\geq d_{min}$, 2 red points are in same region
 - if height is h, then we do h rounds of subdivisions
 - after h subdivisions, smallest regions have side length $\frac{L}{2h}$
 - diagonal in smallest region is $\sqrt{2} \frac{L}{2^h}$
 - smallest region contains one red point $\Rightarrow \sqrt{2} \frac{L}{2^h} < d_{min}$
 - rearrange: $\sqrt{2} \frac{L}{d_{min}} < 2^h$
 - take log of both sides: $h > \log\left(\sqrt{2}\frac{L}{d_{min}}\right) = \log\left(\sqrt{2}\rho(S)\right)$





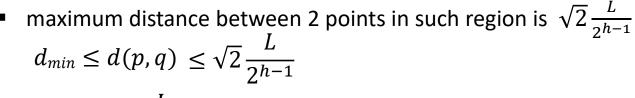
$$\rho(S) = \frac{L}{d_{min}}$$

- L = side length of R
- d_{min} is smallest distance between two points in S
- In the *worst* case, height $h \in \Omega(\log \rho(S))$
- However, height can be much better even if the spread is arbitrarily large

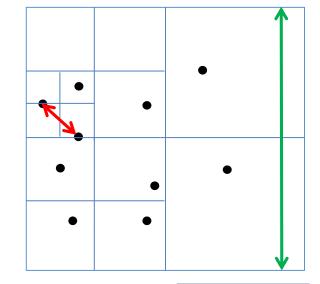


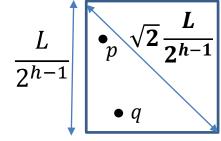
$$\rho(S) = \frac{L}{d_{min}}$$

- L = side length of R
- d_{min} is smallest distance between two points in S
- In the worst case, height $h \in \Omega(\log \rho(S))$
- In any case, height $h \in O(\log \rho(S))$
 - let v be an internal node at depth h-1
 - there are at lest 2 points p, q inside its region
 - $d_{min} \leq d(p,q)$
 - the corresponding region has side length $\frac{L}{2^{h-1}}$



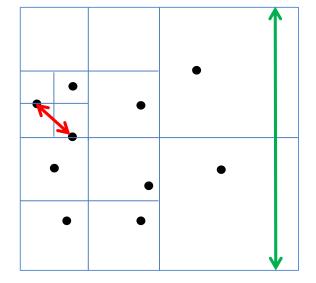
$$2^{h-1} \le \sqrt{2} \frac{L}{d_{min}} = \sqrt{2} \rho(S) \Rightarrow h \le 1 + \log(\sqrt{2}\rho(S))$$



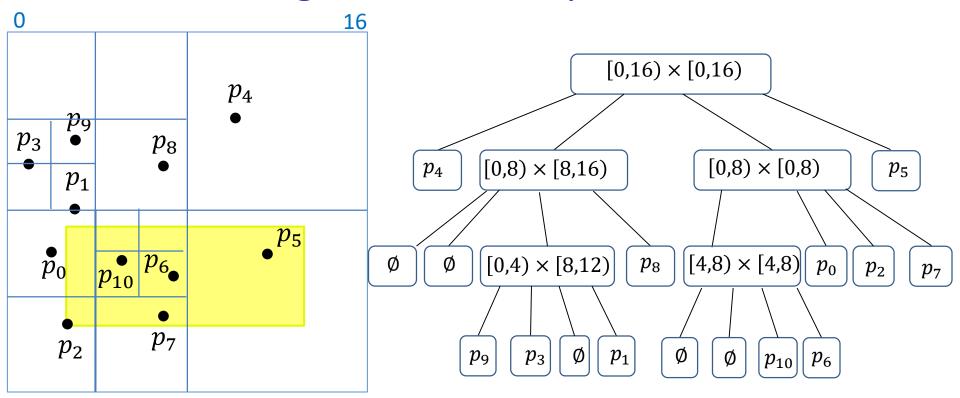


$$\rho(S) = \frac{L}{d_{min}}$$

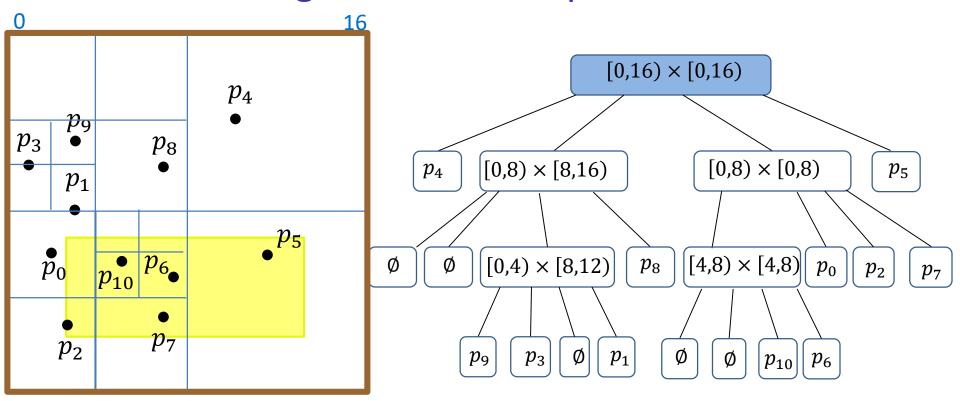
- L = side length of R
- d_{min} is smallest distance between two points in S



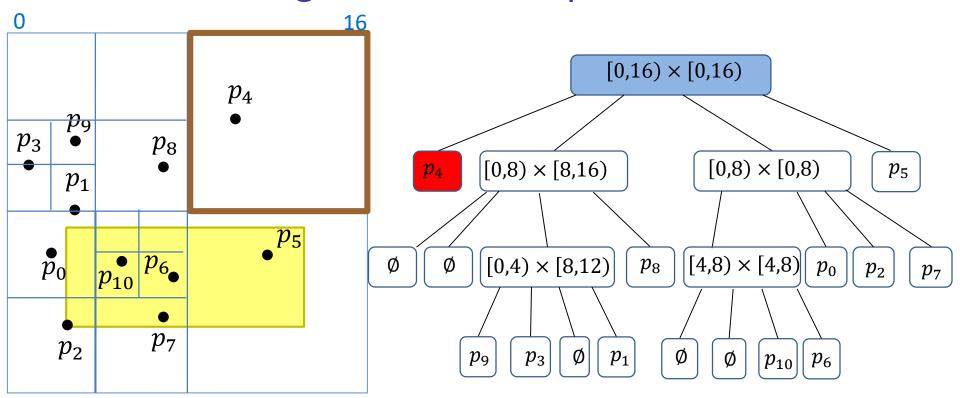
- In the worst case, height $h \in \Omega(\log \rho(S))$
- In any case, height $h \in O(\log \rho(S))$
 - to guarantee good performance, $\log \rho(S)$ should be much smaller than n
- Complexity to build initial tree: $\Theta(nh)$ worst-case
 - expensive if large height (as compared to the number of points)



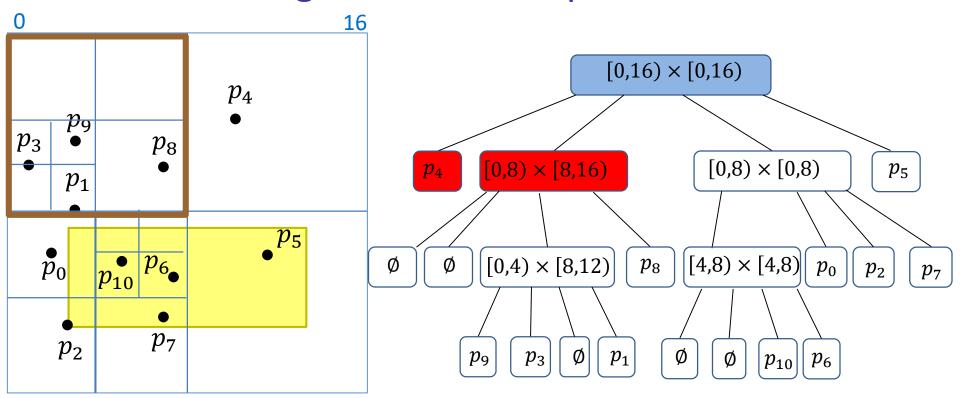
- Query rectangle $Q = [3 \le x < 13, 3 \le y < 7]$
- Let R be region associated with current node, have 3 cases
 - 1. $R \cap Q = \emptyset$: red (outside) node, do not search its children
 - 2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
 - 3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)
 - if R is a leaf, if it stores point inside Q, report it



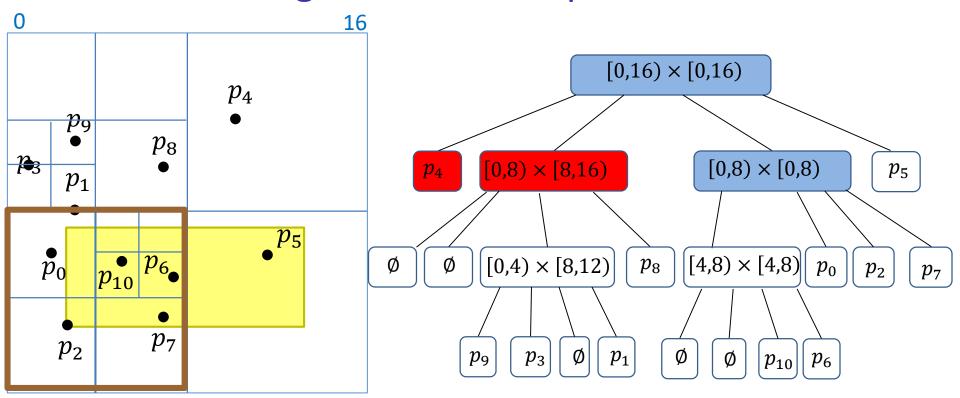
- Query rectangle $Q = [3 \le x < 13, 3 \le y < 7]$
- Let R be region associated with current node, have 3 cases
 - 1. $R \cap Q = \emptyset$: red (outside) node, do not search its children
 - 2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
 - 3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)
 - if R is a leaf, if it stores point inside Q, report it



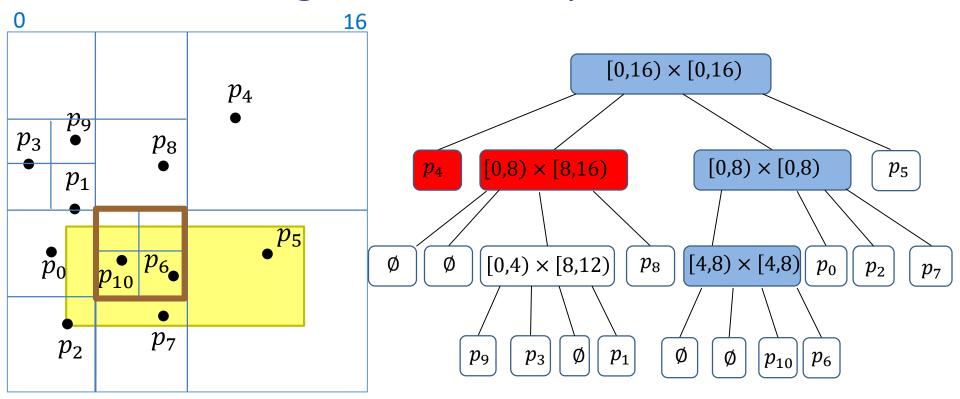
- Query rectangle $Q = [3 \le x < 13, 3 \le y < 7]$
- Let R be region associated with current node, have 3 cases
 - 1. $R \cap Q = \emptyset$: red (outside) node, do not search its children
 - 2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
 - 3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)
 - if R is a leaf, if it stores point inside Q, report it



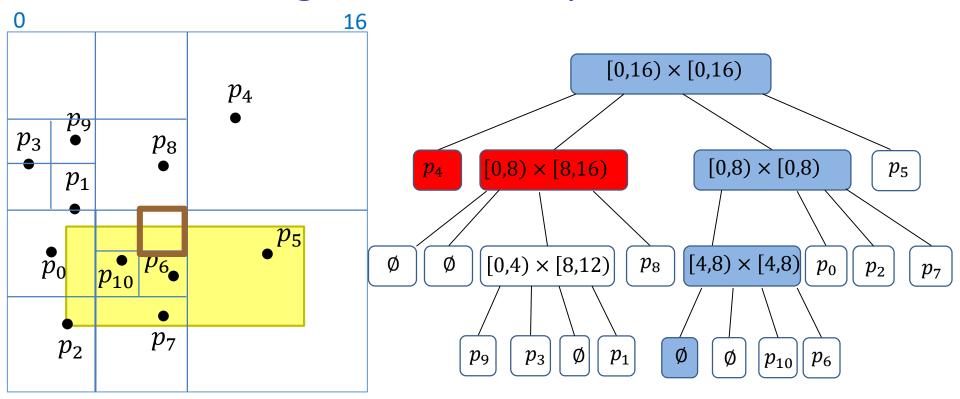
- Query rectangle $Q = [3 \le x < 13, 3 \le y < 7]$
- Let R be region associated with current node, have 3 cases
 - 1. $R \cap Q = \emptyset$: red (outside) node, do not search its children
 - 2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
 - 3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)
 - if R is a leaf, if it stores point inside Q, report it



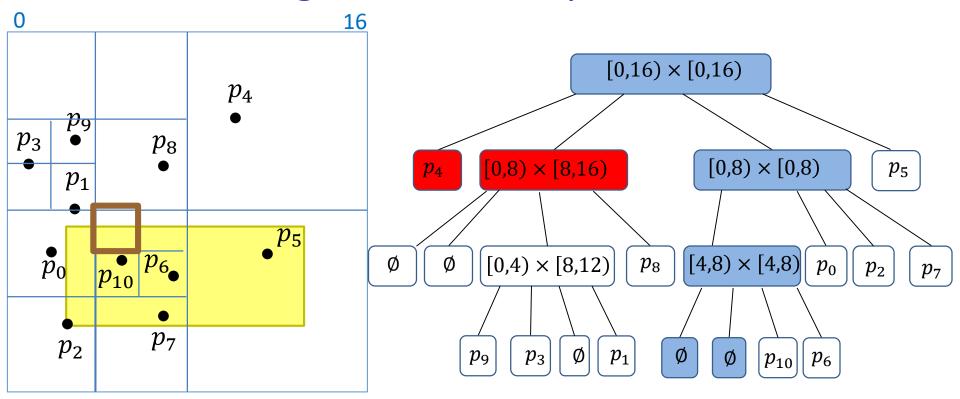
- Query rectangle $Q = [3 \le x < 13, 3 \le y < 7]$
- Let R be region associated with current node, have 3 cases
 - 1. $R \cap Q = \emptyset$: red (outside) node, do not search its children
 - 2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
 - 3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)
 - if R is a leaf, if it stores point inside Q, report it



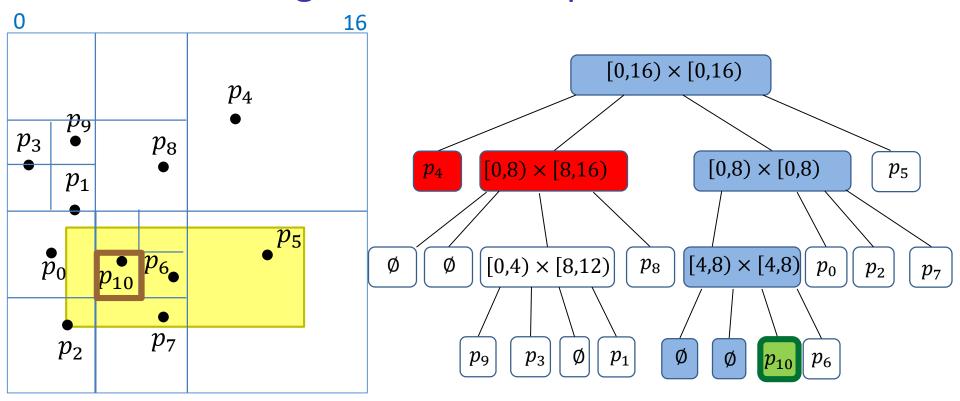
- Query rectangle $Q = [3 \le x < 13, 3 \le y < 7]$
- Let R be region associated with current node, have 3 cases
 - 1. $R \cap Q = \emptyset$: red (outside) node, do not search its children
 - 2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
 - 3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)
 - if R is a leaf, if it stores point inside Q, report it



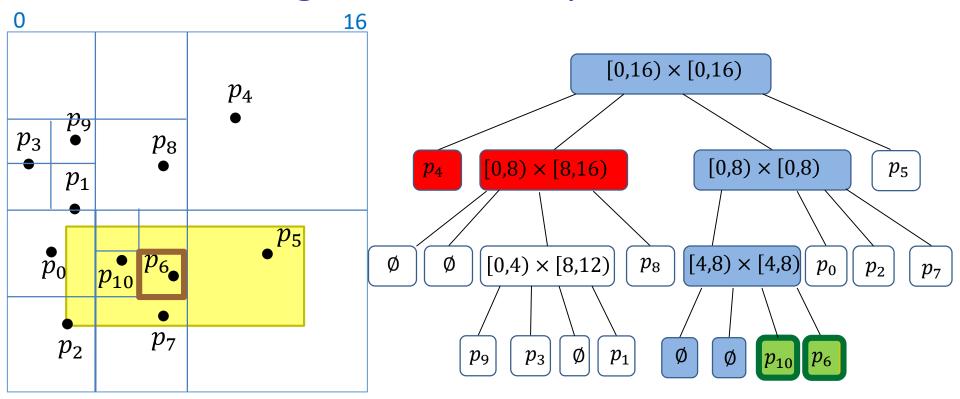
- Query rectangle $Q = [3 \le x < 13, 3 \le y < 7]$
- Let R be region associated with current node, have 3 cases
 - 1. $R \cap Q = \emptyset$: red (outside) node, do not search its children
 - 2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
 - 3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)
 - if R is a leaf, if it stores point inside Q, report it



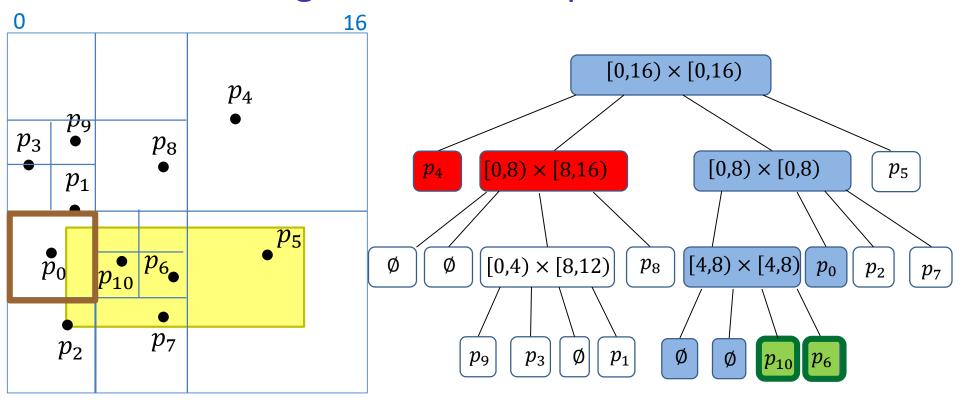
- Query rectangle $Q = [3 \le x < 13, 3 \le y < 7]$
- Let R be region associated with current node, have 3 cases
 - 1. $R \cap Q = \emptyset$: red (outside) node, do not search its children
 - 2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
 - 3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)
 - if R is a leaf, if it stores point inside Q, report it



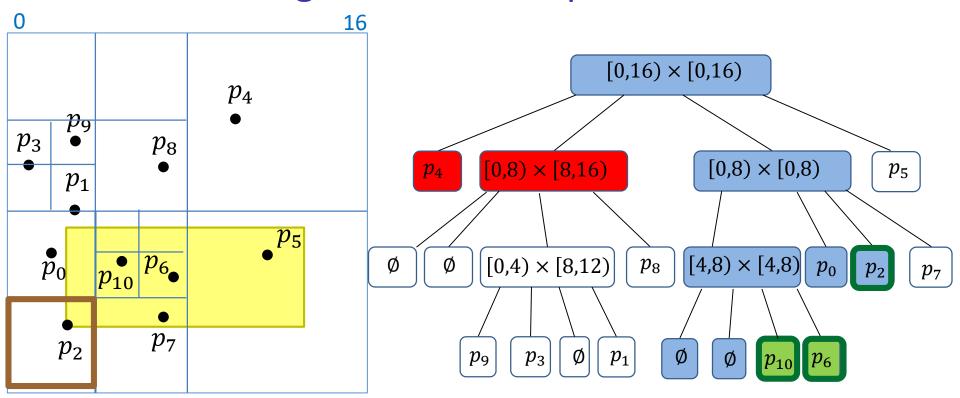
- Query rectangle $Q = [3 \le x < 13, 3 \le y < 7]$
- Let R be region associated with current node, have 3 cases
 - 1. $R \cap Q = \emptyset$: red (outside) node, do not search its children
 - 2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
 - 3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)
 - if R is a leaf, if it stores point inside Q, report it



- Query rectangle $Q = [3 \le x < 13, 3 \le y < 7]$
- Let R be region associated with current node, have 3 cases
 - 1. $R \cap Q = \emptyset$: red (outside) node, do not search its children
 - 2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
 - 3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)
 - if R is a leaf, if it stores point inside Q, report it



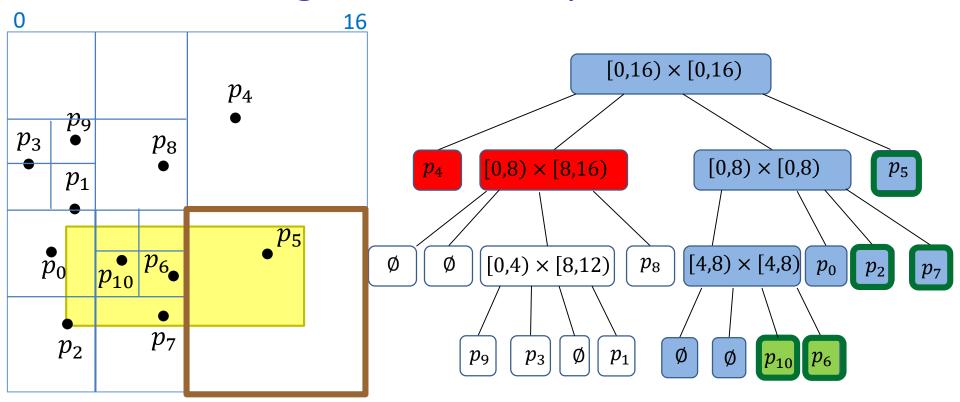
- Query rectangle $Q = [3 \le x < 13, 3 \le y < 7]$
- Let R be region associated with current node, have 3 cases
 - 1. $R \cap Q = \emptyset$: red (outside) node, do not search its children
 - 2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
 - 3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)
 - if R is a leaf, if it stores point inside Q, report it



- Query rectangle $Q = [3 \le x < 13, 3 \le y < 7]$
- Let R be region associated with current node, have 3 cases
 - 1. $R \cap Q = \emptyset$: red (outside) node, do not search its children
 - 2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
 - 3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)
 - if R is a leaf, if it stores point inside Q, report it



- Query rectangle $Q = [3 \le x < 13, 3 \le y < 7]$
- Let R be region associated with current node, have 3 cases
 - 1. $R \cap Q = \emptyset$: red (outside) node, do not search its children
 - 2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
 - 3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)
 - if R is a leaf, if it stores point inside Q, report it



- Query rectangle $Q = [3 \le x < 13, 3 \le y < 7]$
- Let R be region associated with current node, have 3 cases
 - 1. $R \cap Q = \emptyset$: red (outside) node, do not search its children
 - 2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
 - 3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)
 - if R is a leaf, if it stores point inside Q, report it

Quadtree Range Search

```
Qtree::RangeSearch(r \leftarrow root, Q)
r: quadtree root, Q: query rectangle
      let R be the region associated with r
      if R \subseteq Q then //inside node, stop search
          report all points below r
          return
      if R \cap Q = \emptyset then //outside node, stop search
          return
      // boundary node, recurse if not a leaf
      if r is a leaf then // leaf, do not recurse
          p \leftarrow \text{point stored at } r
          if p is not NULL and in Q return p
          else return
      for each child v of r do
          QTree-RangeSearch(v,Q)
```

- $R \subseteq Q, R \cap Q = \emptyset$ computed in constant time from coordinates of R, Q
- Code assumes each quadtree node stores the associated square
- Alternatively, these could be re-computed during search
 - space-time tradeoff

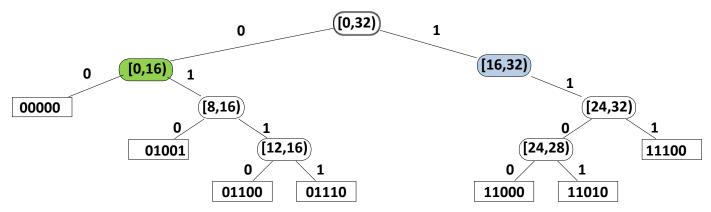
RangeSearch Analysis

- Running time is number of visited nodes + output size
- No good bound on number of visited nodes
 - may have to visit nearly all nodes in the worst case
 - $\Theta(nh)$ worst-case
 - this is worse than exhaustive search
 - even if the range search returns empty result
 - but in practice usually much faster

Quadtrees in other dimensions

points	0	9	12	14	24	26	28
base 2	00000	01001	01100	01110	11000	11010	11100

Quad-tree of 1-dimensional points



- Same as a pruned trie
 - with splitting stopped once key is unique

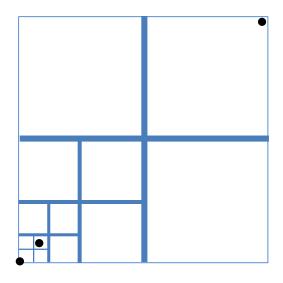
Quadtree summary

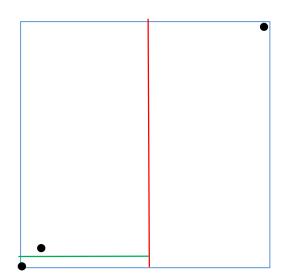
- Quadtrees easily generalize to higher dimensions
 - octrees, etc.
 - but rarely used beyond dimension 3
- Easy to compute and handle
- No complicated arithmetic, only divisions by 2
 - bit-shift if the width/height of R is a power of 2
- Space potentially wasteful, but good if points are well-distributed
- Variation
 - stop splitting earlier and allow up to k points in a leaf for some fixed k

Outline

- Range-Searching in Dictionaries for Points
 - Range Search Query
 - Multi-Dimensional Data
 - Quadtrees
 - kd-Trees
 - Range Trees
 - Conclusion

kd-tree motivation



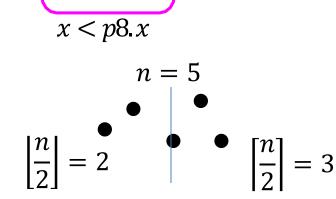


- Quadtree can be very unbalanced
- kd-tree idea
 - split into regions with equal number of points
 - easier to split into two regions with equal number of points (rather than four regions)
 - can split either vertically or horizontally
 - alternating vertical and horizontal splits gives range search efficiency



 \mathcal{R}^2 is split into two half regions

- No need for bounding box
- lacktriangle Root corresponds to the whole \mathcal{R}^2
- First find the best vertical split
 - $\left|\frac{n}{2}\right|$ on one side and $\left[\frac{n}{2}\right]$ and points on the other



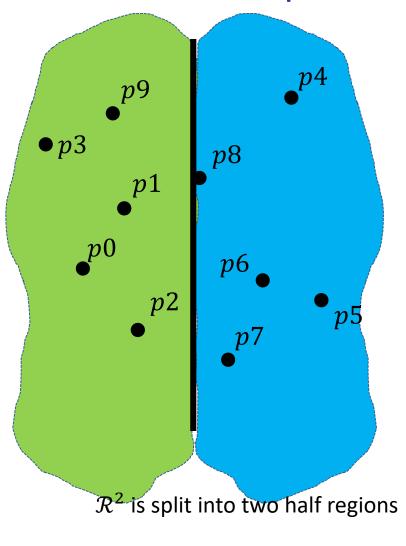
- $m = \left| \frac{n}{2} \right|$ in sorted list of x -coordinates
- partition S into $S_{x < m}$ and $S_{x \ge m}$

p3

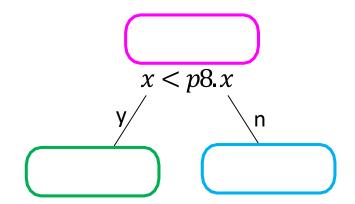
- Because points are in general position, always can split in two equal (or almost equal subsets)
- General position means no two x or y coordinates are the same
- Consider the points below not in general position

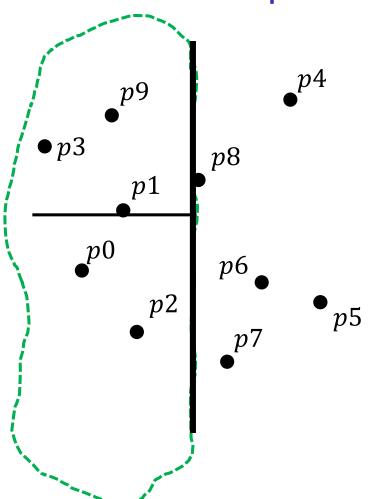
Cannot divide them in two equal subsets by a vertical line

 \mathcal{R}^2 is split into two half regions

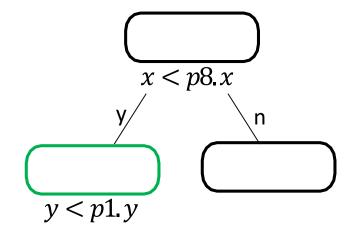


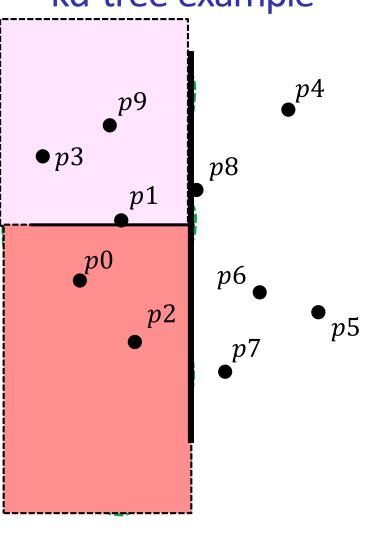
- No need for bounding box
- lacktriangle Root corresponds to the whole \mathcal{R}^2
- First find the best vertical split
- \blacksquare $\left|\frac{n}{2}\right|$ on one side and $\left[\frac{n}{2}\right]$ and points on the other



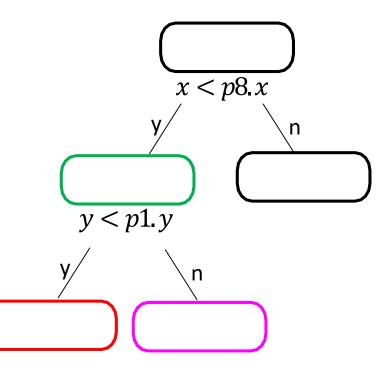


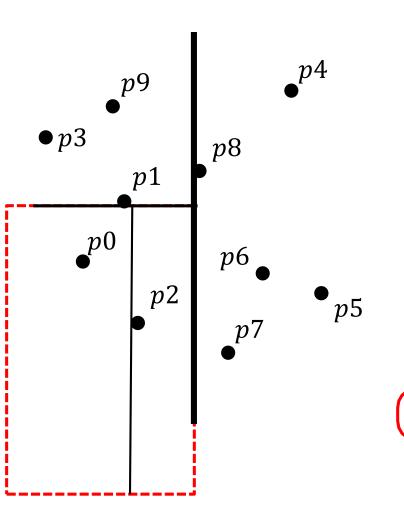
- Recurse on the resulting regions
 - if they have more than one point
- Alternate split direction



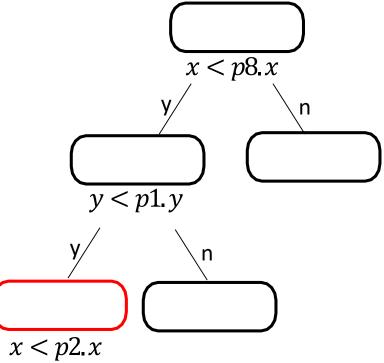


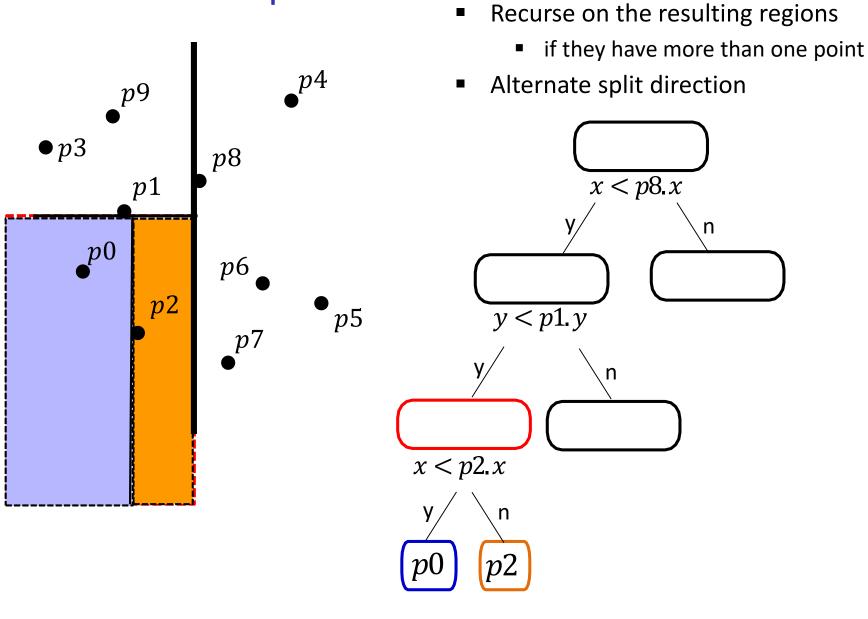
- Recurse on the resulting regions
 - if they have more than one point
- Alternate split direction





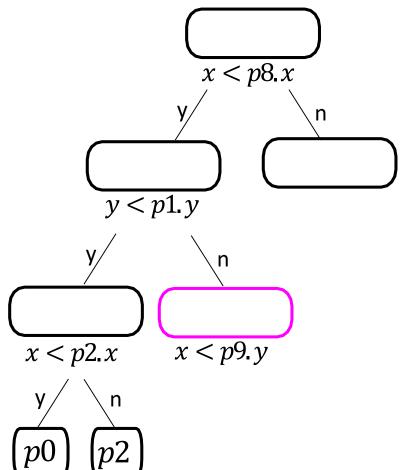
- Recurse on the resulting regions
 - if they have more than one point
- Alternate split direction



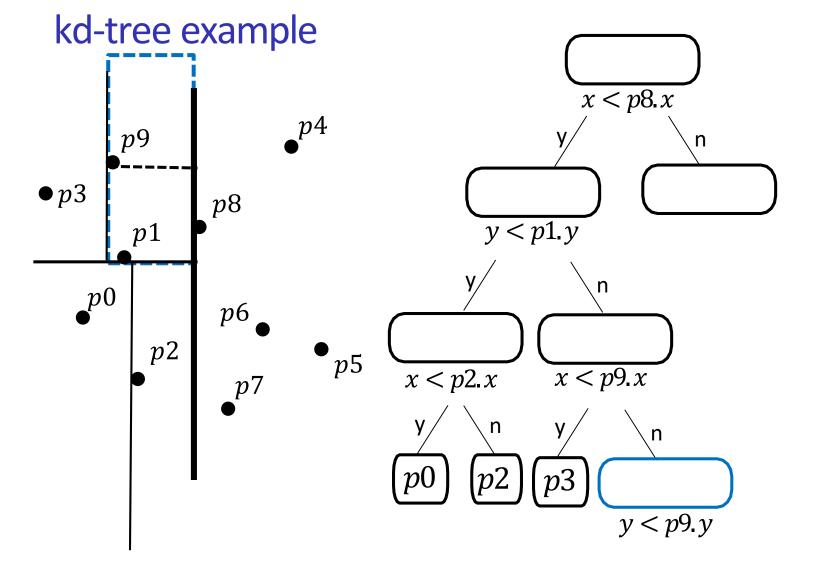


kd-tree example p4*p*9 **●** *p*3 *p*8 *p*1 p0*p*6 *p*5

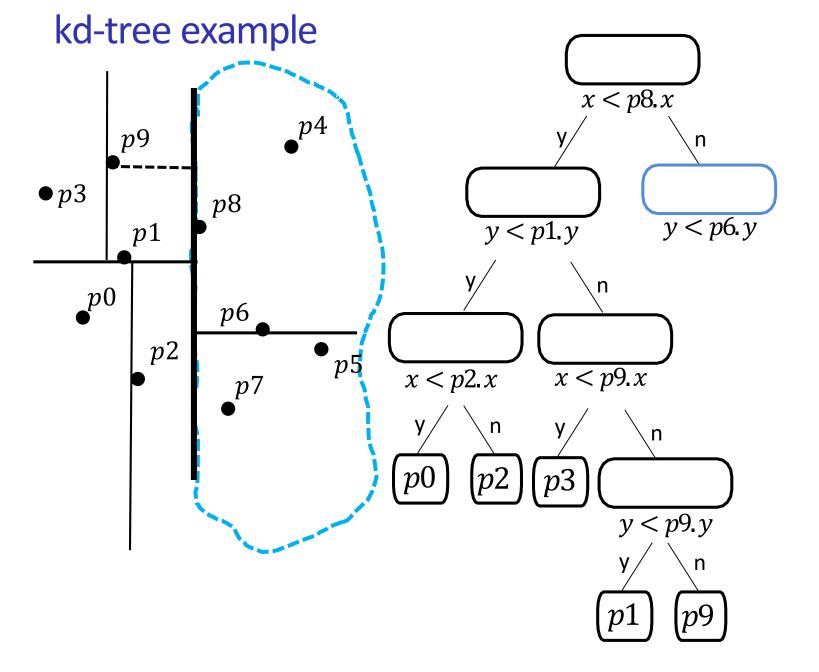
- Recurse on the resulting regions
 - if they have more than one point
- Alternate split direction

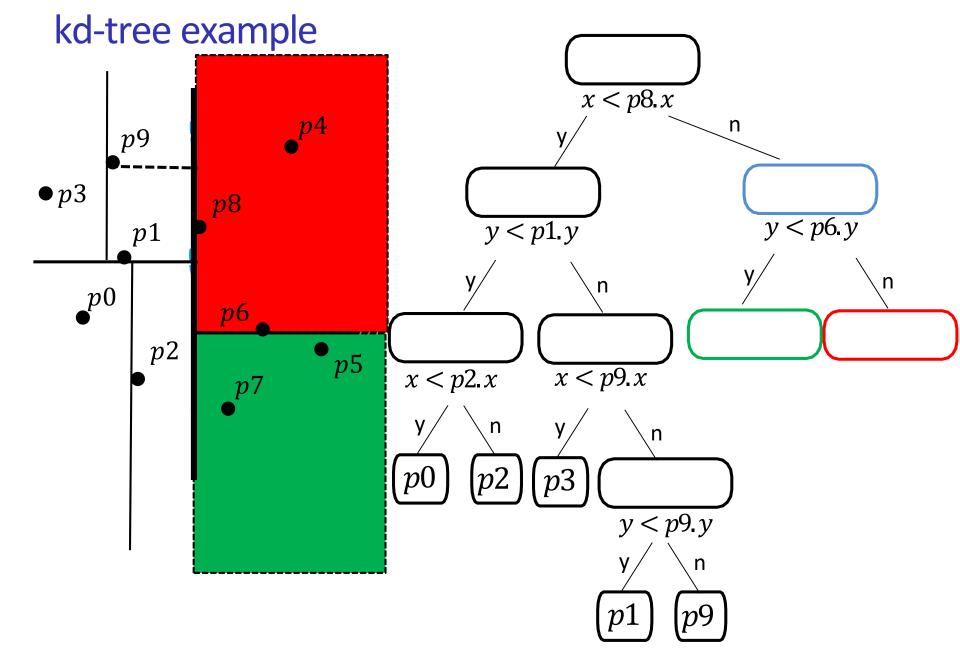


kd-tree example Recurse on the resulting regions if they have more than one point p4Alternate split direction *p*9 **●** *p*3 *p*8 $x < \overline{p8.x}$ n p0*p*6 *p*2 y < p1.y*p*5 $\overline{x} < p9.x$ x < p2.x

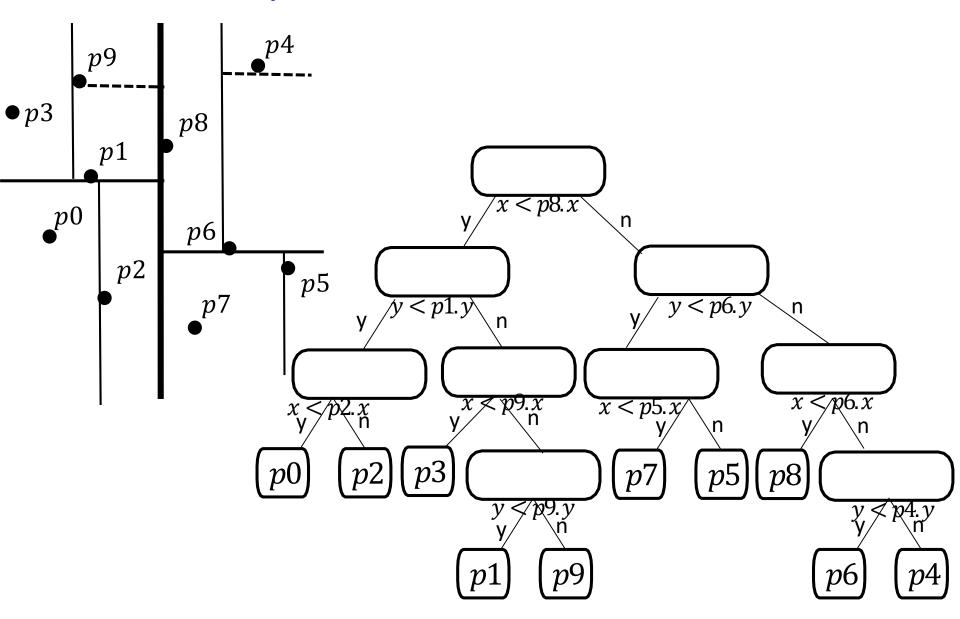




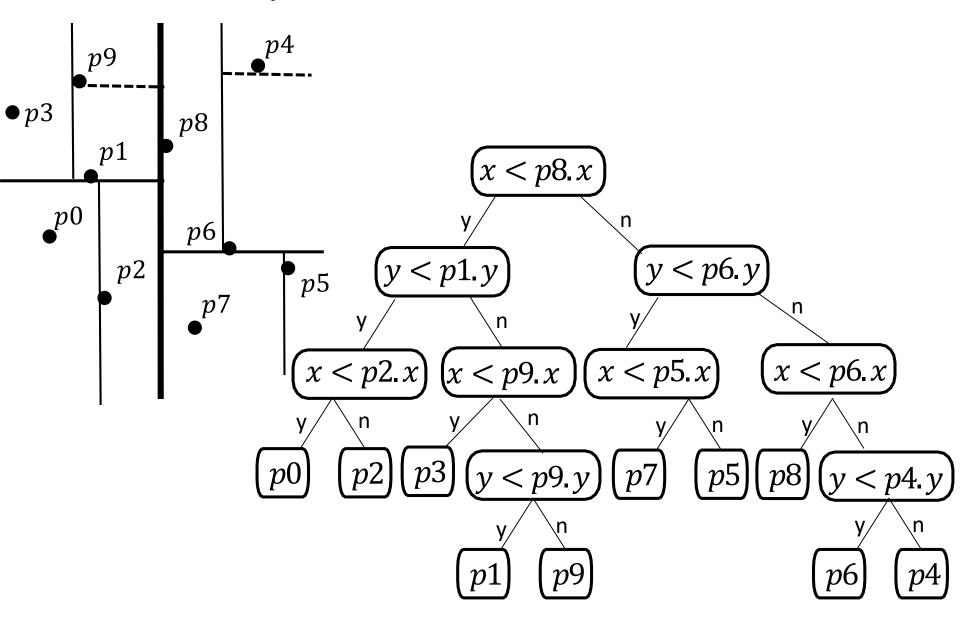




kd-tree example



kd-tree example



Building kd-trees

- Points $S = \{(x_0, y_0), (x_1, y_1), \dots, (x_{n-1}, y_{n-1})\}$
- To build kd-tree with initial x-split
 - if $|S| \le 1$ create a leaf and return
 - else find x-coordinate in position $m = \left\lfloor \frac{n}{2} \right\rfloor$ in sorted list of x -coordinates or partition by calling $quickSelect(S, \left\lfloor \frac{n}{2} \right\rfloor)$
 - partition S into $S_{x < m}$ and $S_{x \ge m}$ by comparing the x coordinate of a point with m
 - \blacksquare $\left|\frac{n}{2}\right|$ goes to one side and $\left[\frac{n}{2}\right]$ to the other
 - create left subtree recursively (splitting on y) for points $S_{x < m}$
 - create right subtree recursively (splitting on y) for points $S_{x \ge m}$
 - each node keeps track of the splitting line
- Building with initial y-split symmetric
- Points on split lines belong to right/top side

kd-tree Construction Running Time and Space

- Partition S in $\Theta(n)$ expected time with QuickSelect
- Both subtrees have $\approx n/2$ points
- Sloppy recurrence

$$T^{exp}(n) = 2T^{exp}\left(\frac{n}{2}\right) + O(n)$$

- resolves to $\Theta(n \log n)$ expected time
- Can improve to $\Theta(n \log n)$ worst-case runtime by pre-sorting coordinates
- Recurrence inequality for height

$$h(1) = 0$$

$$h(n) \le h\left(\left\lceil \frac{n}{2}\right\rceil\right) + 1$$

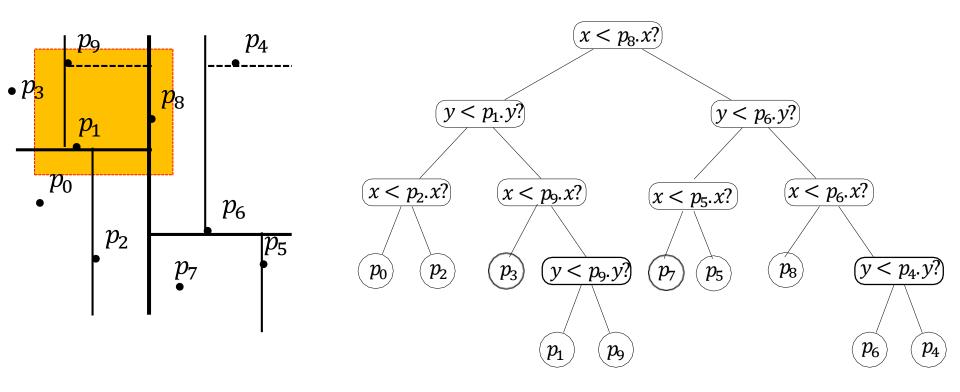
- resolves to $O(\log n)$, specifically $\lceil \log n \rceil$
- this is tight (binary tree with n leaves)
- Space
 - all interior nodes have exactly 2 children, therefore n-1 interior nodes
 - total number of nodes is 2n-1
 - space is $\Theta(n)$

kd-tree Dictionary Operations

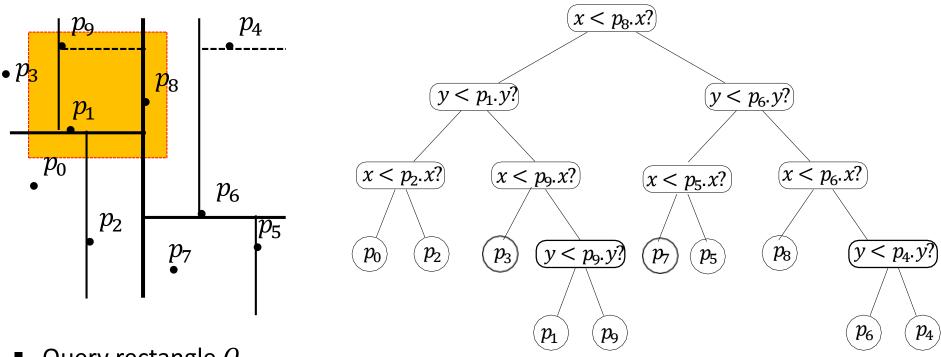
- search as in binary search tree using indicated coordinate
- insert first search, insert as new leaf
- delete first search, remove leaf and any parent with one child

Problem

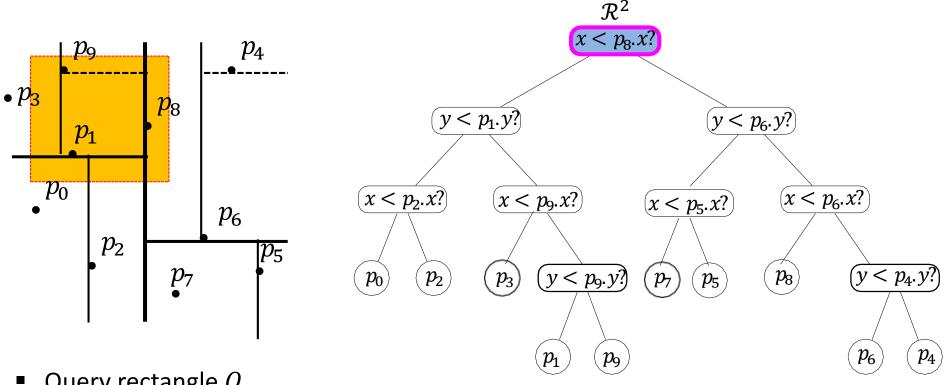
- after insert or delete, split might no longer be at exact median
- height is no longer guaranteed to be $O(\log n)$
- kd-tree do not handle insertion/delection well
- remedy
 - allow a certain imbalance
 - re-building the entire tree when it becomes too unbalanced
 - no details
 - but rangeSearch will be slower



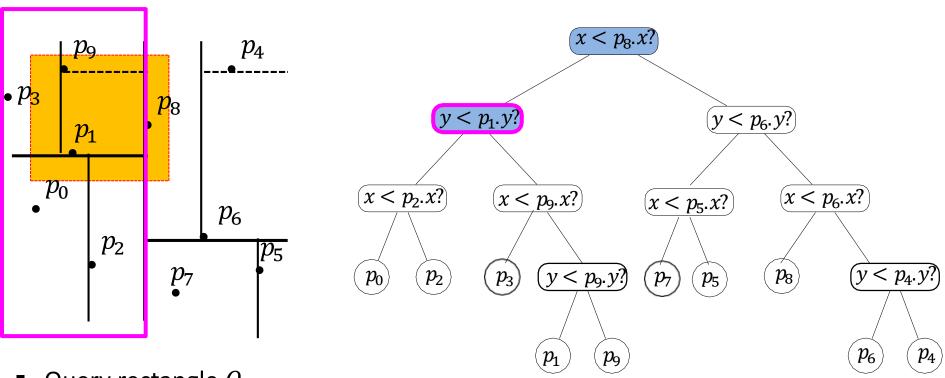
- Every node is associated with a region
 - range search is exactly as for quadtrees, except there are only two children and leaves always store points



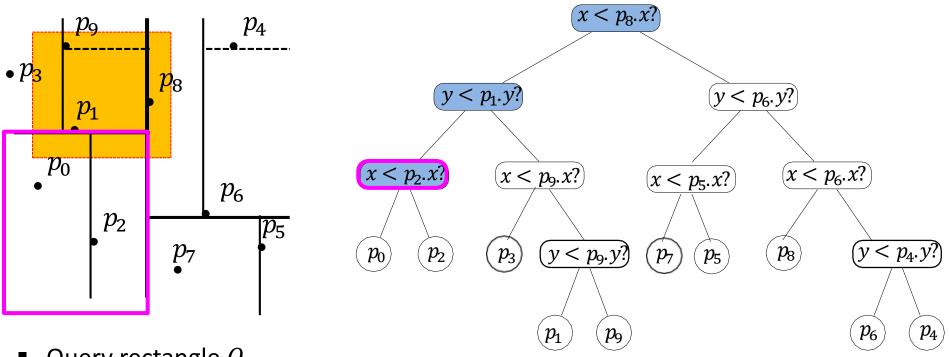
- Query rectangle Q
- Let R be region associated with current node, have 3 cases
 - 1. $R \cap Q = \emptyset$: red (outside) node, do not search its children
 - 2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
 - 3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)
 - if R is a leaf, if it stores point inside Q, report it



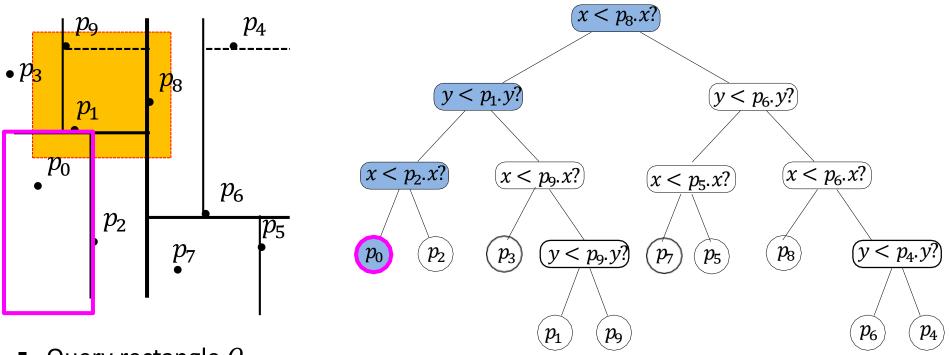
- Query rectangle Q
- Let R be region associated with current node, have 3 cases
 - $R \cap Q = \emptyset$: red (outside) node, do not search its children
 - $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
 - $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)
 - if R is a leaf, if it stores point inside Q, report it



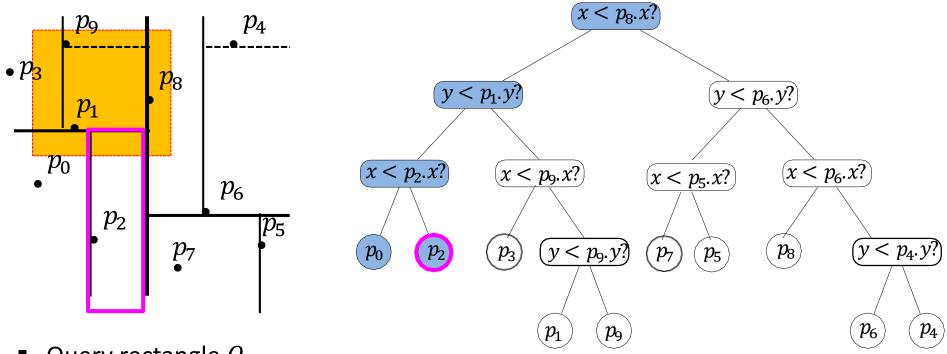
- Query rectangle Q
- Let R be region associated with current node, have 3 cases
 - 1. $R \cap Q = \emptyset$: red (outside) node, do not search its children
 - 2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
 - 3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)
 - if R is a leaf, if it stores point inside Q, report it



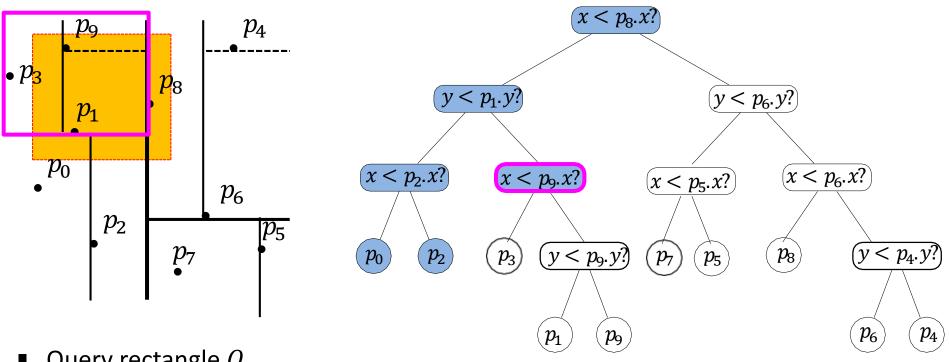
- Query rectangle Q
- Let R be region associated with current node, have 3 cases
 - 1. $R \cap Q = \emptyset$: red (outside) node, do not search its children
 - 2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
 - 3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)
 - if R is a leaf, if it stores point inside Q, report it



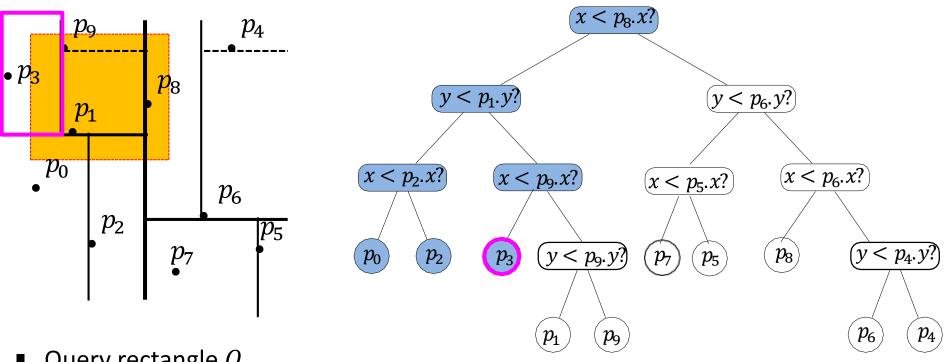
- Query rectangle Q
- Let R be region associated with current node, have 3 cases
 - 1. $R \cap Q = \emptyset$: red (outside) node, do not search its children
 - 2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
 - 3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)
 - if R is a leaf, if it stores point inside Q, report it



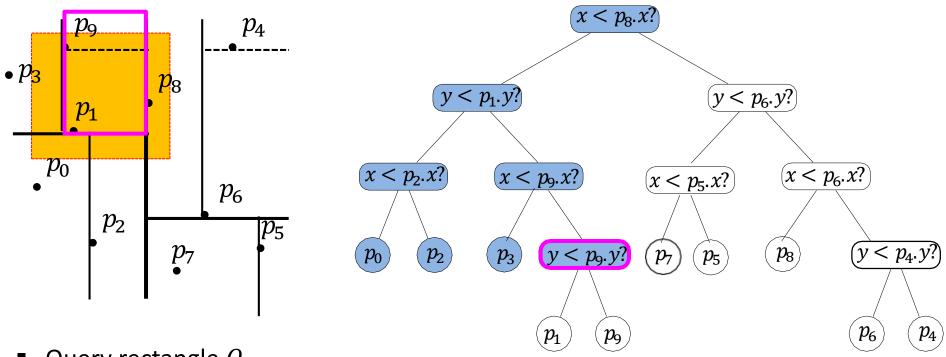
- Query rectangle Q
- Let R be region associated with current node, have 3 cases
 - 1. $R \cap Q = \emptyset$: red (outside) node, do not search its children
 - 2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
 - 3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)
 - if R is a leaf, if it stores point inside Q, report it



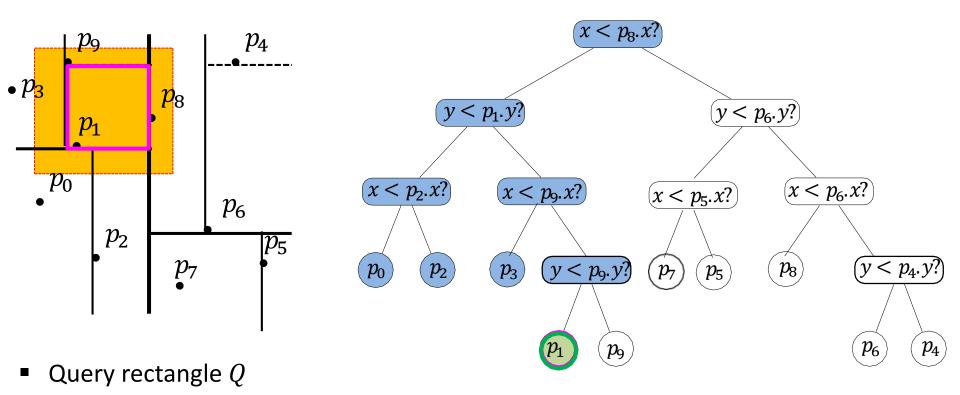
- Query rectangle Q
- Let R be region associated with current node, have 3 cases
 - 1. $R \cap Q = \emptyset$: red (outside) node, do not search its children
 - 2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
 - 3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)
 - if R is a leaf, if it stores point inside Q, report it



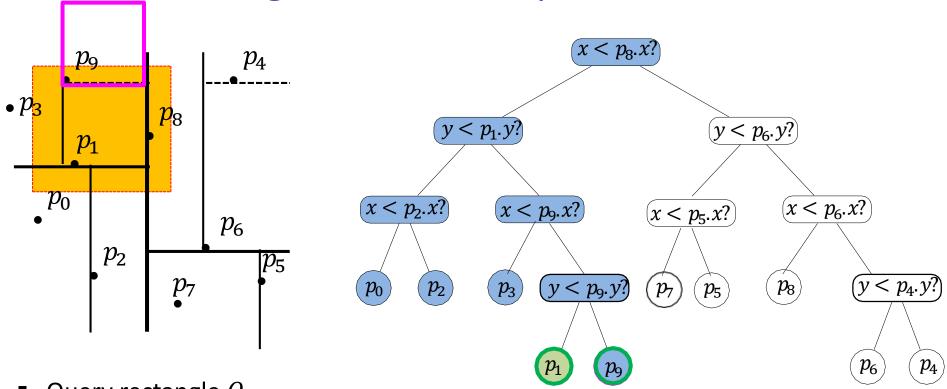
- Query rectangle Q
- Let R be region associated with current node, have 3 cases
 - 1. $R \cap Q = \emptyset$: red (outside) node, do not search its children
 - 2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
 - 3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)
 - if R is a leaf, if it stores point inside Q, report it



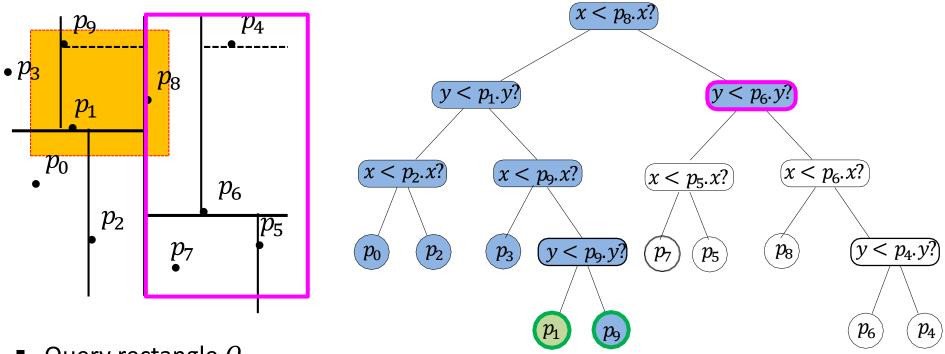
- Query rectangle Q
- Let R be region associated with current node, have 3 cases
 - 1. $R \cap Q = \emptyset$: red (outside) node, do not search its children
 - 2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
 - 3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)
 - if R is a leaf, if it stores point inside Q, report it



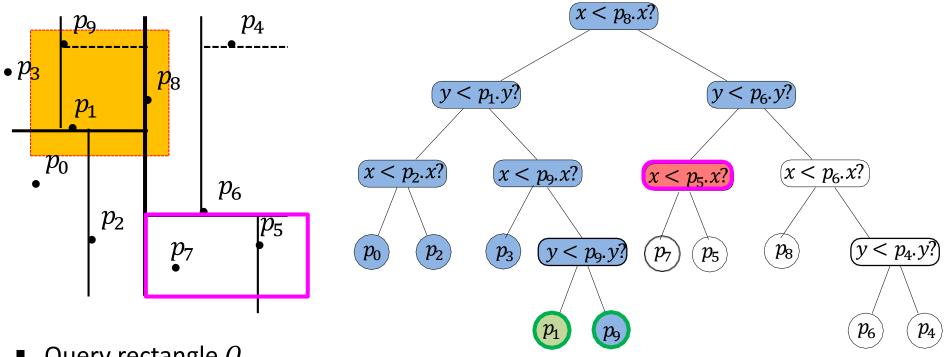
- Let *R* be region associated with current node, have 3 cases
 - 1. $R \cap Q = \emptyset$: red (outside) node, do not search its children
 - 2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
 - 3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)
 - if R is a leaf, if it stores point inside Q, report it



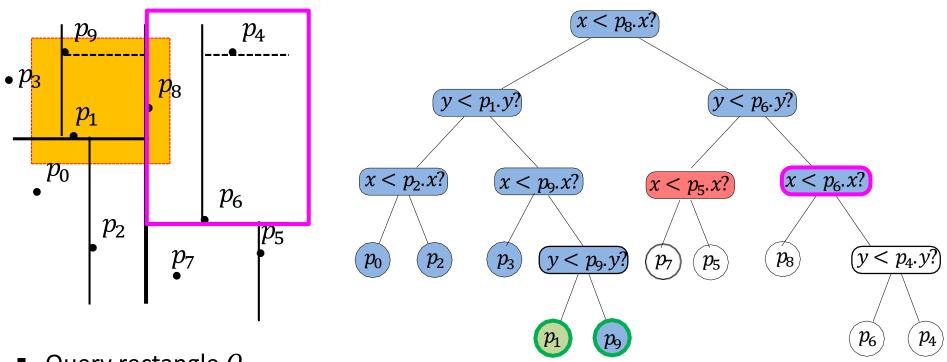
- Query rectangle Q
- Let R be region associated with current node, have 3 cases
 - 1. $R \cap Q = \emptyset$: red (outside) node, do not search its children
 - 2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
 - 3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)
 - if R is a leaf, if it stores point inside Q, report it



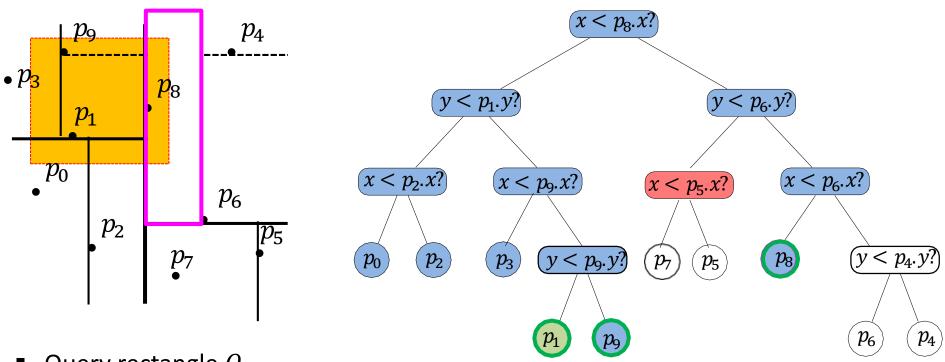
- Query rectangle Q
- Let R be region associated with current node, have 3 cases
 - 1. $R \cap Q = \emptyset$: red (outside) node, do not search its children
 - 2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
 - 3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)
 - if R is a leaf, if it stores point inside Q, report it



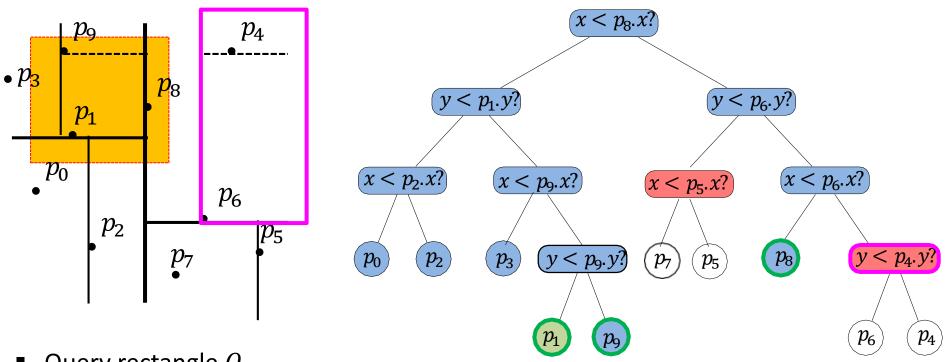
- Query rectangle Q
- Let R be region associated with current node, have 3 cases
 - 1. $R \cap Q = \emptyset$: red (outside) node, do not search its children
 - 2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
 - 3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)
 - if R is a leaf, if it stores point inside Q, report it



- Query rectangle Q
- Let R be region associated with current node, have 3 cases
 - 1. $R \cap Q = \emptyset$: red (outside) node, do not search its children
 - 2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
 - 3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)
 - if R is a leaf, if it stores point inside Q, report it



- Query rectangle Q
- Let R be region associated with current node, have 3 cases
 - 1. $R \cap Q = \emptyset$: red (outside) node, do not search its children
 - 2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
 - 3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)
 - if R is a leaf, if it stores point inside Q, report it



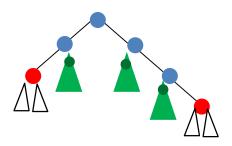
- Query rectangle Q
- Let R be region associated with current node, have 3 cases
 - 1. $R \cap Q = \emptyset$: red (outside) node, do not search its children
 - 2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
 - 3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)
 - if R is a leaf, if it stores point inside Q, report it

kd-tree Range Search

```
kdTree::RangeSearch(r \leftarrow root, Q)
r : root of kd-tree, Q: query rectangle
          R \leftarrow \text{region associated with node } r
           if R \subseteq Q then
                    report all points below r
                    return
          if R \cap Q = \emptyset then return
          if r is a leaf then
                 p \leftarrow \text{point stored at } r
                 if p \in Q return p
                 else return
          for each child v of r do
                 kdTree::RangeSearch(v, Q)
```

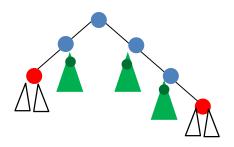
- We assume that each node stores its associated region
- To save space, we could instead pass the region as a parameter and compute the region for each child using the splitting line

kd-tree: Range Search Running Time



- Visit blue, red, and green nodes, constant work at each node
 - runtime is proportional to the number of blue, red, green nodes
- Green nodes form green subtrees
 - subtree root is the topmost green node
 - let v be the topmost green node
 - recall that s is the number of nodes in the output of range search
 - subtree of v is a kd-tree itself
 - number of internal nodes is 1 less than the number of leaves
 - at most s leaves over all green subtrees, and, therefore, at most 2s nodes over all green subtrees
 - number of green nodes is O(s)

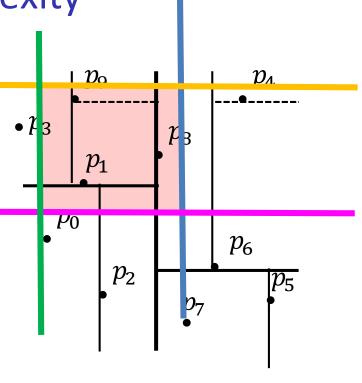
kd-tree: Range Search Running Time



- Visit blue, red, and green nodes, constant time at each node
 - O(s) of green nodes
- red nodes $\leq 2 \cdot \text{blue nodes}$
 - each red node has a blue parent
 - for asymptotic runtime, enough to count blue nodes and add O(s)
- Let B(n) is the number of blue nodes
 - if R corresponds to a blue node, neither $R \cap Q = \emptyset$ nor $R \subseteq Q$
 - regions that intersect Q but not completely inside Q
- Can show that B(n) satisfies $B(n) \le 2B\left(\frac{n}{4}\right) + O(1)$
 - resolves to $B(n) \in O(\sqrt{n})$
- Therefore, running time of range search is $O(s + \sqrt{n})$

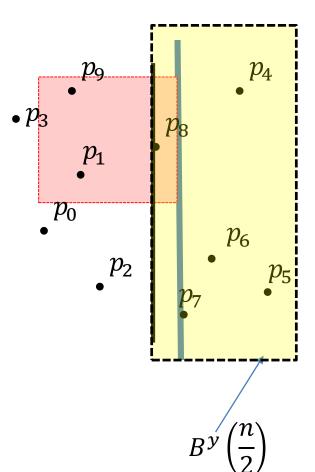
kd-tree: Range Search Complexity

- search rectangle Q
- B(n) = # regions intersecting Q but not completely inside Q
- B(n) ≤ # regions intersecting
 + # regions intersecting
 + # regions intersecting
 + # regions intersecting
- Will look at # regions intersecting
- Other cases are handled similarly



kd-tree: Range Search Complexity

- $B^x(n) = 1 + B^y\left(\frac{n}{2}\right)$
 - 1 for the root region *R*
 - root region is split in 2 by vertical line
 - can intersect only one of these regions

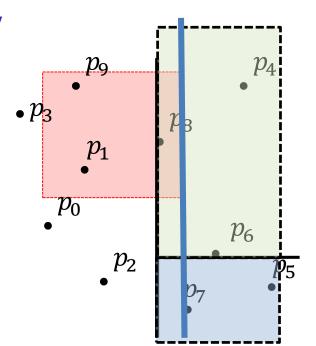


kd-tree: Range Search Complexity

- $B^x(n) = 1 + B^y\left(\frac{n}{2}\right)$
 - 1 for the root region
 - root region is split in 2 by vertical line
 - can intersect only one of these regions

• Next,
$$B^{y}\left(\frac{n}{2}\right) = 1 + 2B^{x}\left(\frac{n}{4}\right)$$

- 1 for the root region
- root region is split in 2 by horizontal line
- I can intersect both of these regions
- Combining, get recurrence $Q^x(n) = 2 + 2B^x(\frac{n}{4})$
- Resolves to $B^{x}(n) \in O(\sqrt{n})$



kd-tree: Higher Dimensions

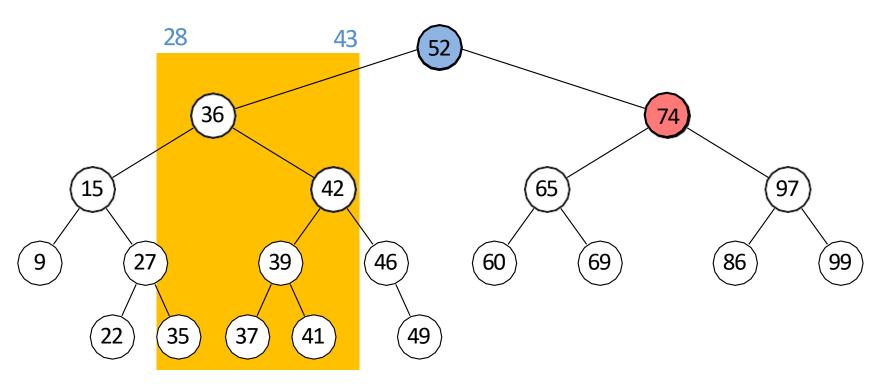
- kd-trees for d-dimensional space
 - at depth 0 (the root) partition is based on the 1st coordinate
 - at depth 1 partition is based on the 2nd coordinate
 - **-** ...
 - at depth d-1 the partition is based on the last coordinate
 - at depth d start all over again, partitioning on 1^{st} coordinate
- Storage O(n)
- Height $O(\log n)$
- Construction time $O(n \log n)$
- Range query time $O(s + n^{1 \frac{1}{d}})$
 - assumes that d is a constant

Outline

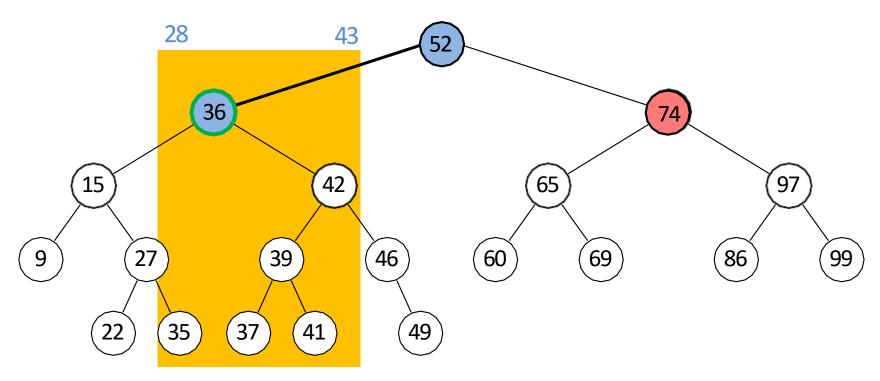
- Range-Searching in Dictionaries for Points
 - Range Search
 - Multi-Dimensional Data
 - Quadtrees
 - kd-Trees
 - Range Trees
 - Conclusion

Towards Range Trees

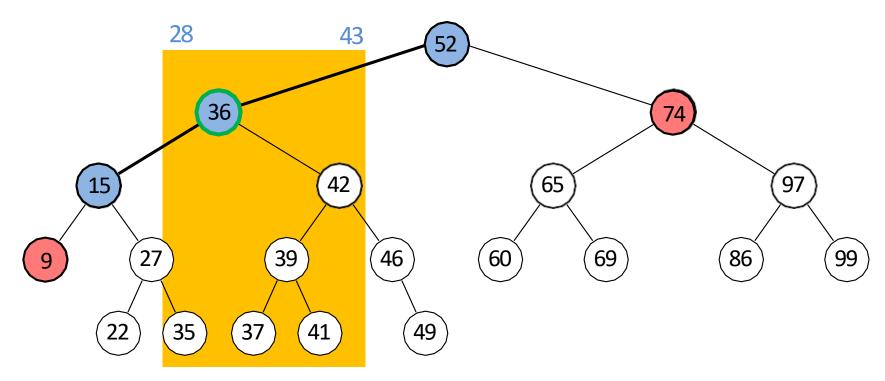
- Quadtrees and kd-trees
 - intuitive and simple
 - but both may be slow for range searches
 - quadtrees are also potentially wasteful in space
- Consider BST/AVL trees
 - efficient for one-dimensional dictionaries, if balanced
 - range search is also efficient
 - can we use ideas from BST/AVL trees for multi dimensional dictionaries?
- First let us consider range search in BST
 - all searches will be inclusive of the boundaries
 - BST::RangeSearch-recursive(T,28,43)
 - search includes both 28 and 43
 - easy to modify when one or both endpoints are excluded



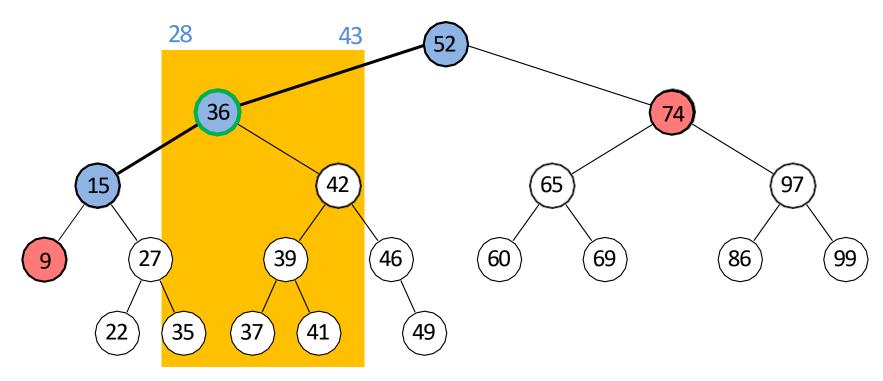
- blue node: recurse either to the left, or to the right, or both (according to the key value)
 - boundary node, one or both subtrees may intersect range query
- red node: range search was not called on red node, but was called on its parent
 - outside node, subtree does not intersect range query
- green node : all the keys in the subtree are in the range
 - inside node, subtree completely inside range query



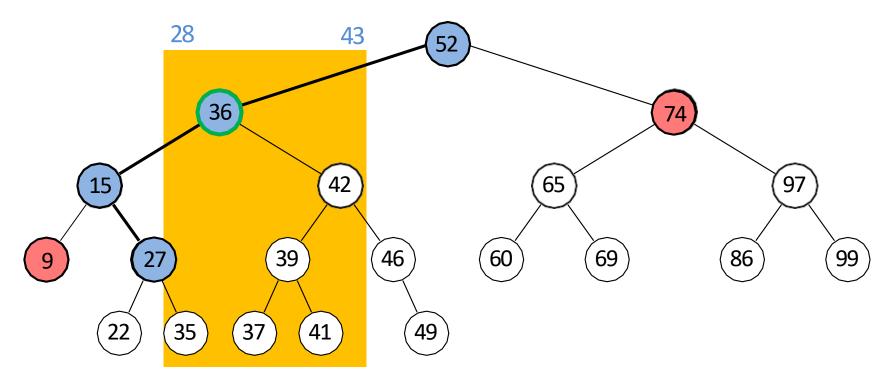
- blue node: recurse either to the left, or to the right, or both (according to the key value)
 - boundary node, one or both subtrees may intersect range query
- red node: range search was not called on red node, but was called on its parent
 - outside node, subtree does not intersect range query
- green node : all the keys in the subtree are in the range
 - inside node, subtree completely inside range query



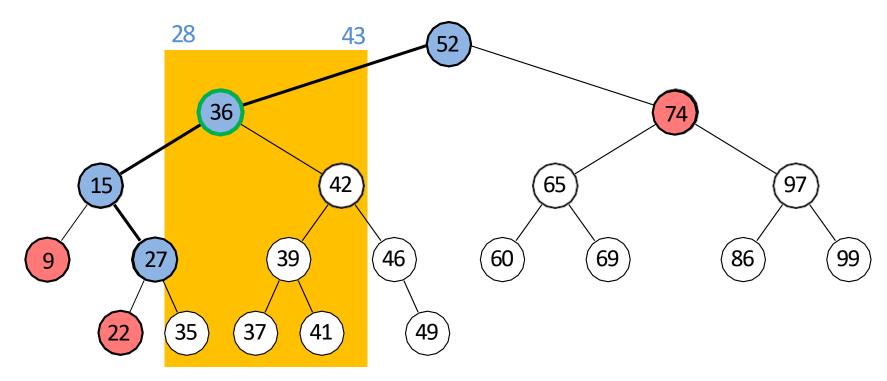
- blue node: recurse either to the left, or to the right, or both (according to the key value)
 - boundary node, one or both subtrees may intersect range query
- red node: range search was not called on red node, but was called on its parent
 - outside node, subtree does not intersect range query
- green node : all the keys in the subtree are in the range
 - inside node, subtree completely inside range query



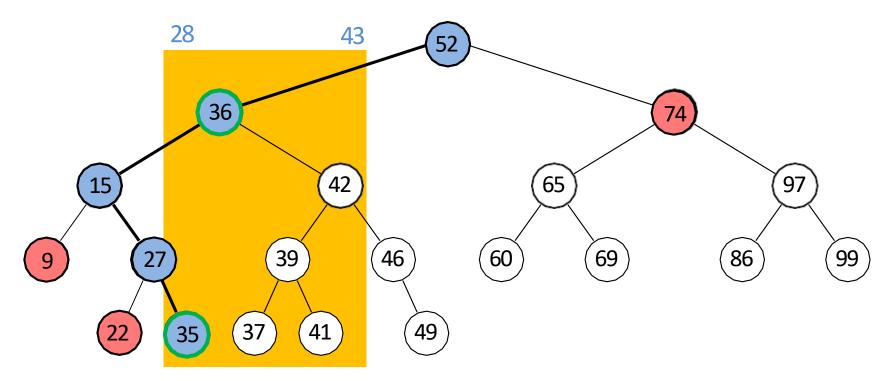
- blue node: recurse either to the left, or to the right, or both (according to the key value)
 - boundary node, one or both subtrees may intersect range query
- red node: range search was not called on red node, but was called on its parent
 - outside node, subtree does not intersect range query
- green node : all the keys in the subtree are in the range
 - inside node, subtree completely inside range query



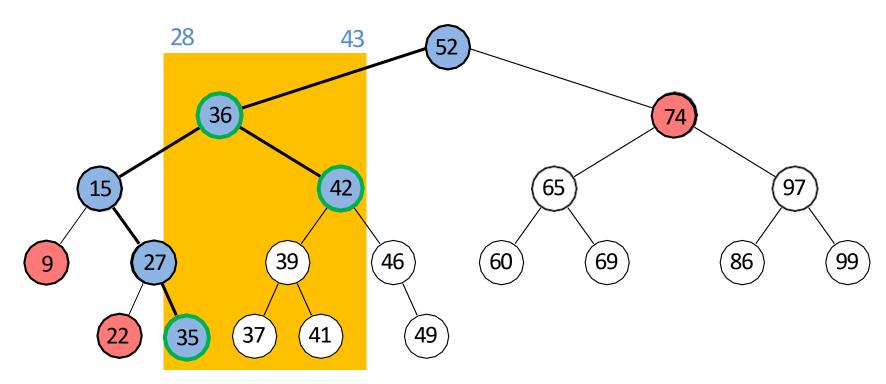
- blue node: recurse either to the left, or to the right, or both (according to the key value)
 - boundary node, one or both subtrees may intersect range query
- red node: range search was not called on red node, but was called on its parent
 - outside node, subtree does not intersect range query
- green node : all the keys in the subtree are in the range
 - inside node, subtree completely inside range query



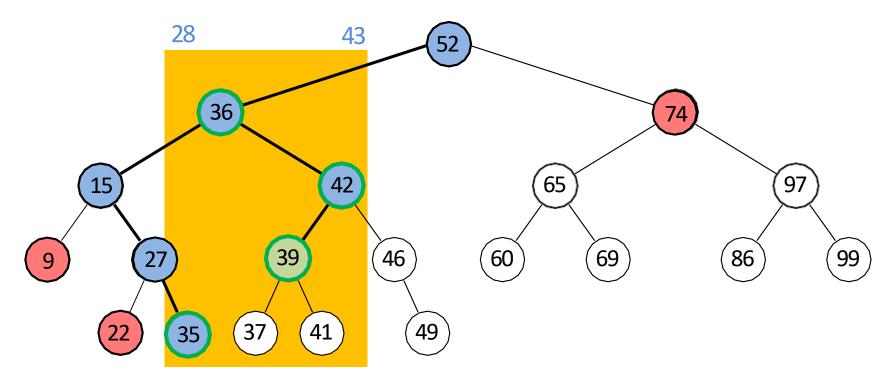
- blue node: recurse either to the left, or to the right, or both (according to the key value)
 - boundary node, one or both subtrees may intersect range query
- red node: range search was not called on red node, but was called on its parent
 - outside node, subtree does not intersect range query
- green node : all the keys in the subtree are in the range
 - inside node, subtree completely inside range query



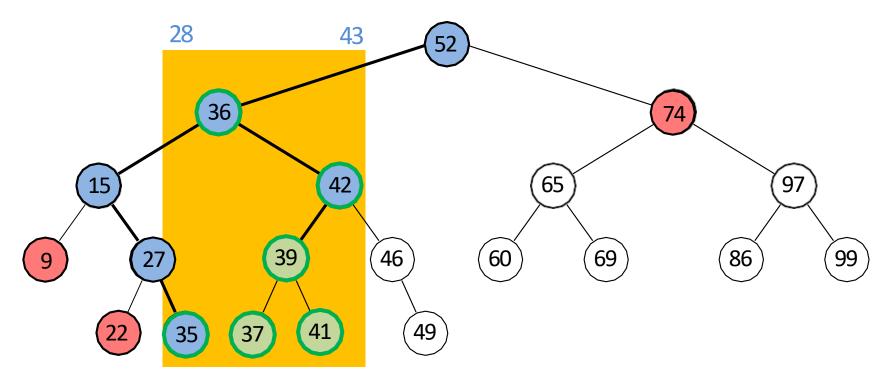
- blue node: recurse either to the left, or to the right, or both (according to the key value)
 - boundary node, one or both subtrees may intersect range query
- red node: range search was not called on red node, but was called on its parent
 - outside node, subtree does not intersect range query
- green node : all the keys in the subtree are in the range
 - inside node, subtree completely inside range query



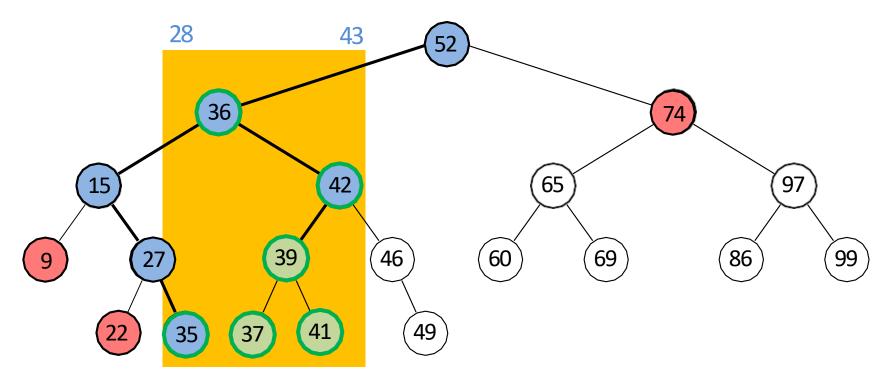
- blue node: recurse either to the left, or to the right, or both (according to the key value)
 - boundary node, one or both subtrees may intersect range query
- red node: range search was not called on red node, but was called on its parent
 - outside node, subtree does not intersect range query
- green node : all the keys in the subtree are in the range
 - inside node, subtree completely inside range query



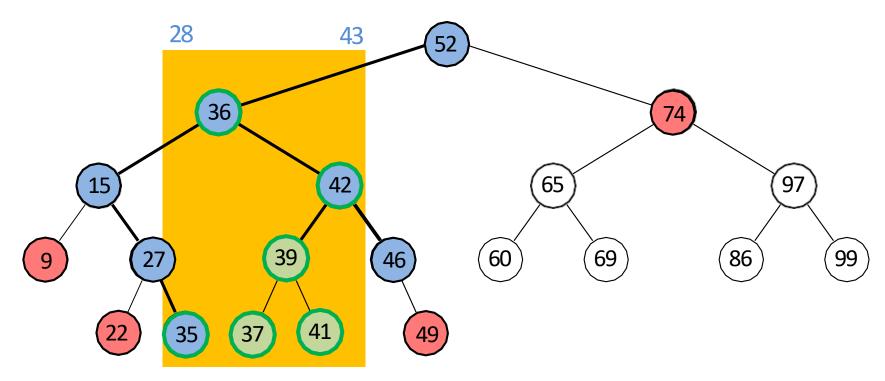
- blue node: recurse either to the left, or to the right, or both (according to the key value)
 - boundary node, one or both subtrees may intersect range query
- red node: range search was not called on red node, but was called on its parent
 - outside node, subtree does not intersect range query
- green node : all the keys in the subtree are in the range
 - inside node, subtree completely inside range query



- blue node: recurse either to the left, or to the right, or both (according to the key value)
 - boundary node, one or both subtrees may intersect range query
- red node: range search was not called on red node, but was called on its parent
 - outside node, subtree does not intersect range query
- green node : all the keys in the subtree are in the range
 - inside node, subtree completely inside range query



- blue node: recurse either to the left, or to the right, or both (according to the key value)
 - boundary node, one or both subtrees may intersect range query
- red node: range search was not called on red node, but was called on its parent
 - outside node, subtree does not intersect range query
- green node : all the keys in the subtree are in the range
 - inside node, subtree completely inside range query



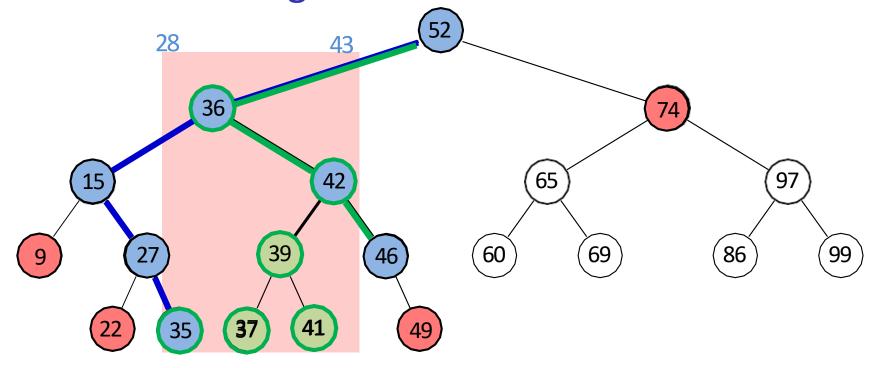
- blue node: recurse either to the left, or to the right, or both (according to the key value)
 - boundary node, one or both subtrees may intersect range query
- red node: range search was not called on red node, but was called on its parent
 - outside node, subtree does not intersect range query
- green node : all the keys in the subtree are in the range
 - inside node, subtree completely inside range query

BST Range Search

```
BST::RangeSearch-recursive(r \leftarrow root, k_1, k_2)
r: root of a binary search tree, k_1, k_2: search keys
Returns keys in subtree at r that are in range [k_1, k_2]
if r = NULL then return \emptyset
L \leftarrow \emptyset . R \leftarrow \emptyset
if r. key < k_1 then
        R \leftarrow BST::RangeSearch-recusive(r.right, k_1, k_2)
if r.key > k_2 then
        L \leftarrow BST-RangeSearch-recursive(r.left, k_1, k_2)
if k_1 \le r. key \le k_2 then
       return L \cup \{r.key\} \cup R
 else return L \cup R
```

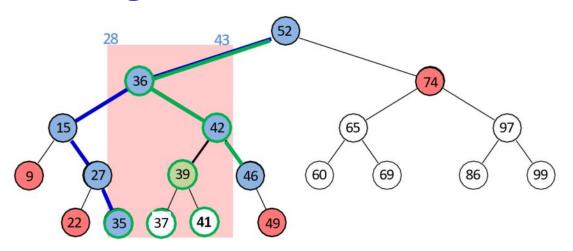
Keys returned in sorted order

Modified BST Range Search



- Search for left boundary k_1 : this gives path P_1
- Search for right boundary k_2 : this gives path P_2
- Boundary (blue nodes) are exactly all the nodes on paths P₁ and P₂
- Nodes are partitioned into three groups: boundary, outside, inside

Modified BST Range Search



- Boundary nodes: nodes in P₁ and P₂
 - check if boundary nodes are in the search range
- Outside nodes: nodes that are left of P₁ or right of P₂
 - outside nodes are not in the search range
 - range search is never called on an outside node
- Inside nodes: nodes that are right of P₁ and left of P₂
 - we will stop the search at the topmost inside node
 - all descendants of such node are in the range, just report them without search
 - this is not more efficient for BST range search, but useful when we develop 2D search in range trees

Modified BST Range Search Analysis

- Assume balanced BST
- Running time consists of
 - 1. search for path P_1 is $O(\log n)$
 - 2. search for path P_2 is $O(\log n)$

• O(1) at each boundary node, there are $O(\log n)$ of them, $O(\log n)$ total time

35

37

(22)

- 4. spend O(1) at each topmost inside node
 - since each topmost inside node is a child of boundary node, there are at most $O(\log n)$ topmost inside nodes, so total time $O(\log n)$
- 5. report descendants in subtrees of all topmost inside nodes

topmost inside node *v*

• topmost nodes are disjoint, so #descendants for inside topmost nodes is at most s, output size

• Total time $O(s + \log n)$

#descendants of $v \leq s$

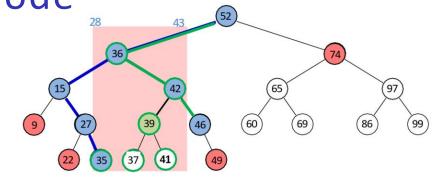
(60)

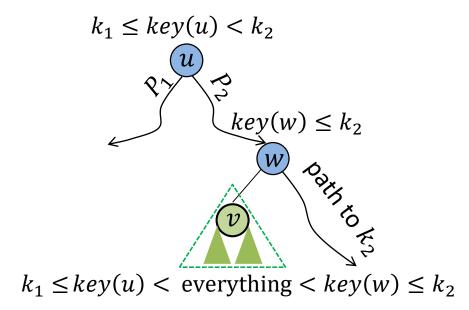
69

86

How to Find Top Inside Node

- lacksquare is a top inside node if
 - v is not is in P_1 or P_2
 - parent of v is in P_1 or P_2 (but not both)
 - if parent is in P_1 , then v is right child
 - if parent is in P_2 , then v is left child

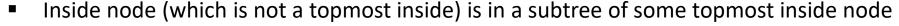




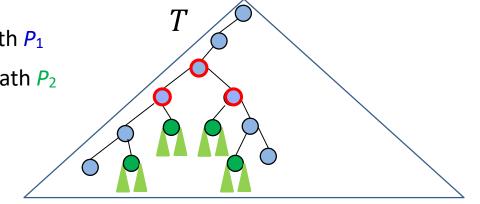
- Thus for each top inside node can report all descendants, no need for search
 - BST range search does not become not faster overall, but top inside nodes are important for 2D range search efficiency
 - also important if need to just count the number of points in the search range

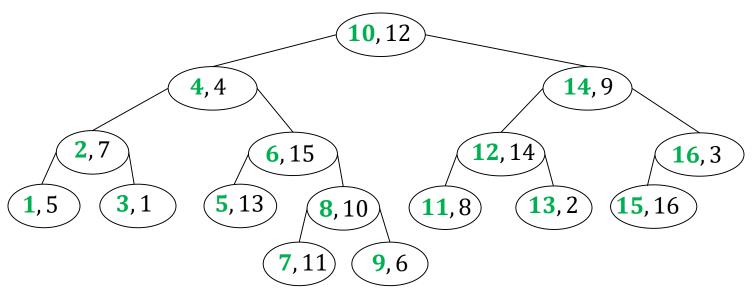
Modified BST Range Search Summary

- Search for k_1 : this gives left boundary path P_1
- Search for k_2 : this gives right boundary path P_2
- Find all topmost inside nodes
 - not in P_1 or P_2
 - left children of nodes in P₂
 - right children of nodes in P₁

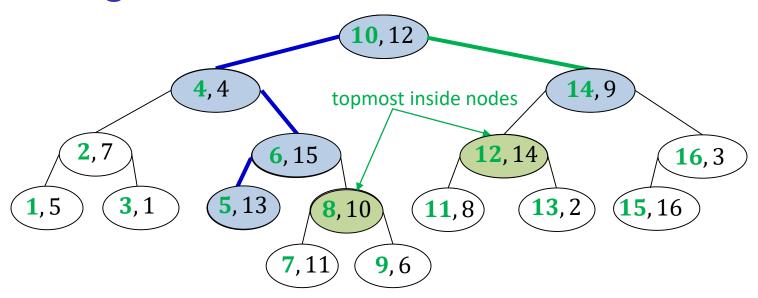


- Set of inside nodes = union disjoint subtrees rooted at topmost inside nodes
- To output nodes in the search range
 - test each node in P_1 , P_2 and report if in range
 - go over all topmost inside nodes and report all nodes in their subtree

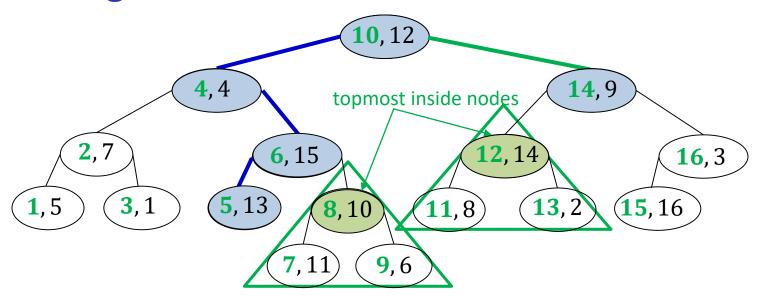




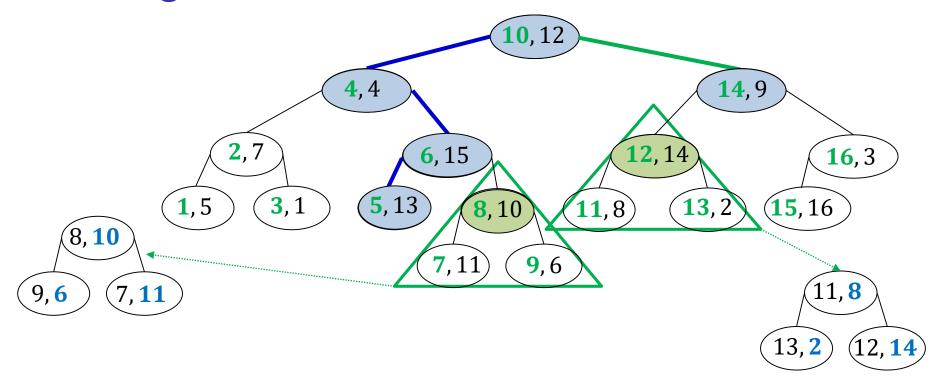
- Have a set of 2D points
 - $S = \{(1,5), (2,7), (3,1), (4,4), (5,13), (6,15)(7,11), (8,10), (9,6), (10,12), (11,8), (12,14), (13,2), (14,9), (15,16), (16,3)\}$
- Example of 2D range search
- BST-RangeSearch(T, 5, 14, 5, 9)
 - find all points with $5 \le x \le 14$ and $5 \le y \le 9$
- Construct BST with x-coordinate key
 - recall that points are in general position, so all x-keys are distinct
 - for any (x_1, y_1) and (x_2, y_2) in our set of points, $x_1 \neq x_2$
 - can search efficiently based only on x-coordinate



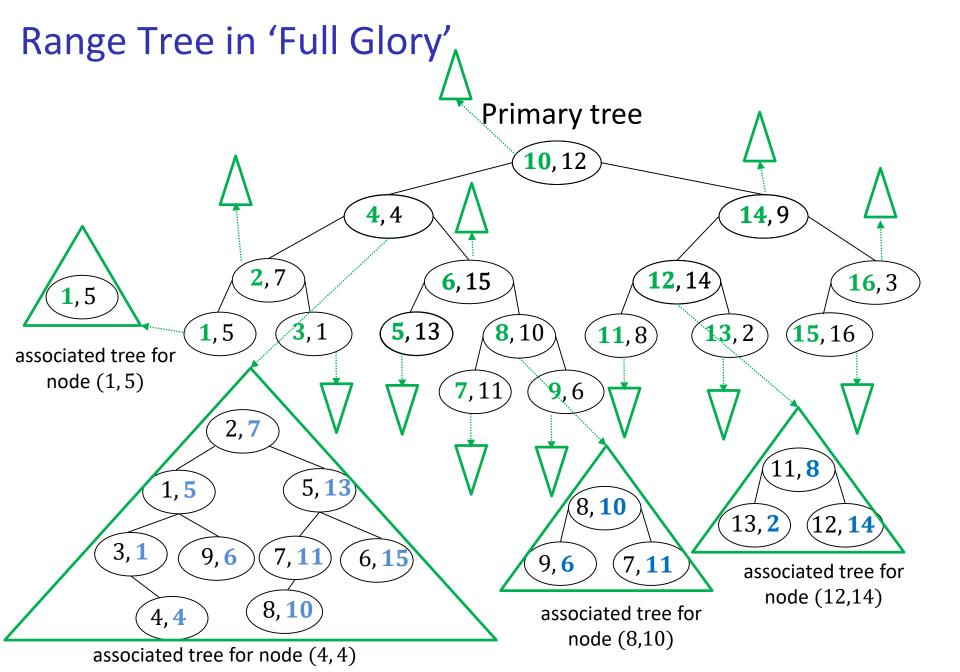
- Consider 2D range search BST-RangeSearch (T, 5, 14, 5, 9)
- Could first perform BST-RangeSearch(T, 5, 14)
 - let A be the set of nodes BST-RangeSearch(T, 5, 14) returns
 - $A = \{(10,12), (6,15), (5,13), (14,9), (8,10), (7,11), (9,6), (12,14), (11,8), (13,2)\}$
 - let B be the set of nodes BST-RangeSearch(T, 5, 14, 5, 9) should return
 - $B \subseteq A$
 - Need to go over all nodes in A and check if their y-coordinate is in valid range, O(|A|)
 - could be very inefficient
 - for example, |A| can be, say $\Theta(n)$ and |B| could be O(1)
 - O(n), as bad as exhaustive search and worse than kd-trees search, $O(|B| + \sqrt{n})$



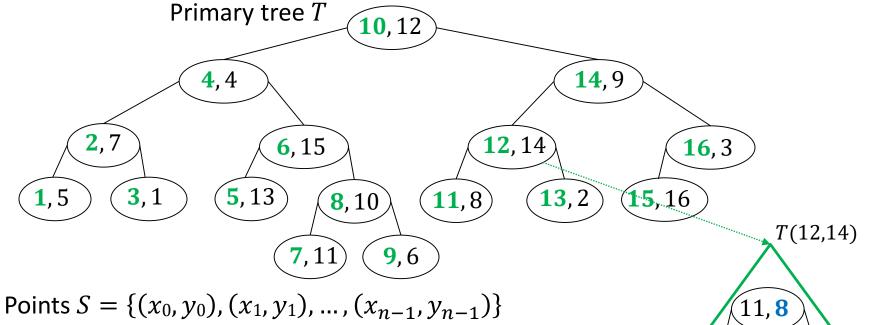
- Consider 2D range search BST-RangeSearch(T, 5, 14, 5, 9)
- First perform only **partial** BST-RangeSearch(T, 5, 14)
 - find boundary and topmost inside nodes, takes $O(\log n)$ time
- Next
- for boundary nodes, check if **both** x and y coordinates are in the range, takes $O(\log n)$ time as there are $O(\log n)$ boundary nodes
- inside nodes are stored in $O(\log n)$ subtrees, with a topmost inside node as a root of each subtree
 - if we could search these subtrees, time would be very efficient
 - however these subtrees do not support efficient search by y coordinate



- Need to search subtrees by y-coordinate, but they are x-coordinate based
- Brute-force solution
 - need an associate balanced BST tree for each node v
 - stores same items as the main (primary) subtree rooted at node $oldsymbol{v}$
 - but key is y-coordinate



2-dimensional Range Trees Full Definition



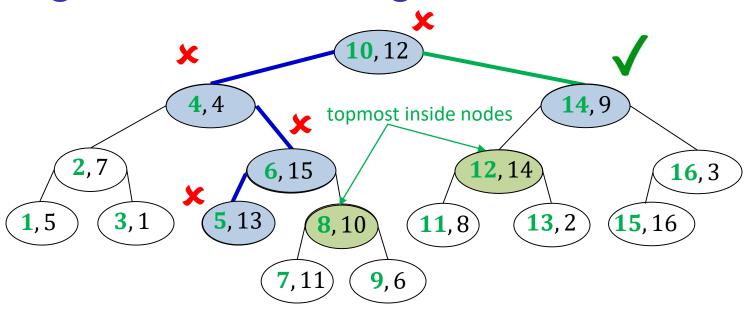
- Range tree is a tree of trees (a *multi-level* data structure)
 - Primary structure
 - balanced BST T storing S and uses x-coordinates as keys
 - assume T is balanced, so height is O(log n)
 - Each node v of T stores an associated tree T(v), which is a balanced BST

13, **2**

(12, 14)

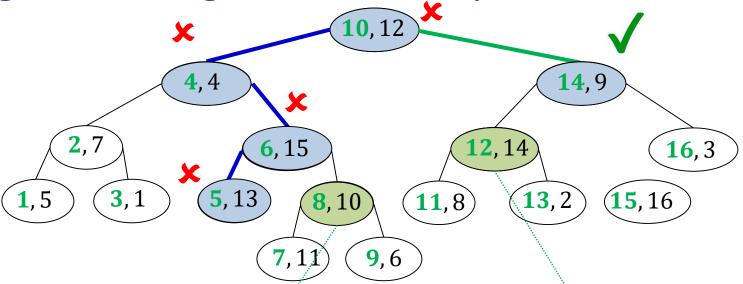
- let S(v) be all descendants of v in T, including v
- T(v) stores S(v) in BST, using y-coordinates as key
 - note that v is not necessarily the root of T(v)

Range search in 2D Range Tree Overview

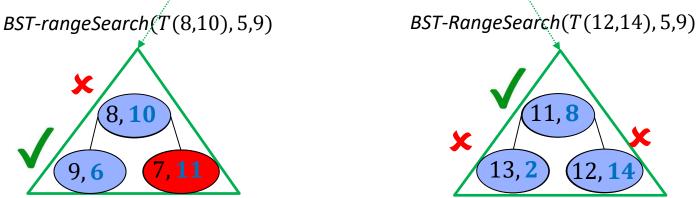


- RangeTree::RangeSearch (T, x_1, x_2, y_1, y_2)
 - RangeTree::RangeSearch(T, 5, 14, 5, 9)
- 1. Perform modified BST-RangeSearch(T, 5, 14)
 - find boundary and topmost inside nodes, but do not go through the inside subtrees
 - modified version takes $O(\log n)$ time
 - does not visit all the nodes in valid range for BST-RangeSearch(T, 5, 14)
- 2. Check if boundary nodes have valid x-coordinate **and** valid y-coordinate
- 3. For every topmost inside node v, search in associated tree BST::RangeSearch(T(v), 5, 9)

Range Tree Range Search Example Finished



- RangeTree::RangeSearch(T, 5, 14, 5, 9)
- For every topmost inside node v, search in associated tree BST-RangeSearch(T(v), 5, 9)



Range Tree Space Analysis

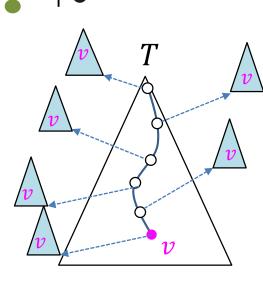
- Primary tree T uses O(n) space
- For each v, associated tree T(v) uses O(|T(v)|) space

$$= \sum_{v \in T} \# \text{of ancestors of } v$$

$$\leq c \log n$$

$$\leq \sum_{v \in T} c \log n = c n \log n$$

- Space is $O(n \log n)$
 - in the worst case, have n/2 leaves at the last level, and space needed is $\Theta(n \log n)$



#of ancestors of v

Range Trees: Dictionary Operations

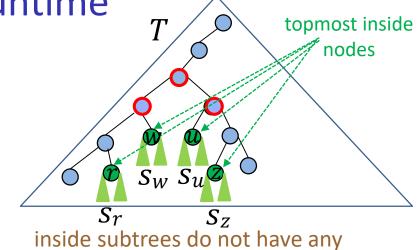
- Search(x, y)
 - search by x coordinate in the primary tree T
- Insert(x, y)
 - first, insert point by x-coordinate into the primary tree T
 - then walk up to root and insert point by y-coordinate in all T(v) of nodes v on path to root
- Delete
 - analogous to insertion
- Problem
 - want binary search trees to be balanced
 - if we use AVL-trees, it makes insert/delete very slow
 - rotations change primary tree structure and require rebuilding of associate trees
 - instead of rotations, can allow certain imbalance, rebuild entire subtree if imbalance becomes too large
 - no details

Range Trees: Range Search Runtime

- Find boundary nodes in the primary tree and check if keys are in the range
 - $O(\log n)$
- Find topmost inside nodes in primary tree
 - $O(\log n)$
- For each topmost inside node v, perform range search for y-range in associate tree
 - $O(\log n)$ topmost inside nodes
 - let s_v be #items returned for the subtree of topmost node v
 - running time for one search is $O(\log n + s_v)$

$$\sum_{\substack{\text{topmost inside} \\ \text{node } v}} c(\log n + s_v) = \sum_{\substack{\text{topmost inside} \\ \text{node } v}} c\log n + \sum_{\substack{\text{topmost inside} \\ \text{node } v}} cs_v$$

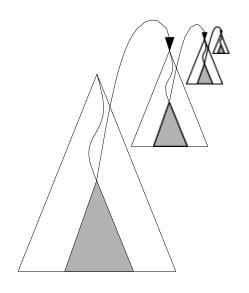
- Time for range search in range tree: $O(s + \log^2 n)$
 - can make this even more efficient, but this is beyond the scope of the course



nodes in common

Range Trees: Higher Dimensions

- Range trees can be generalized to d -dimensional space
 - space $O(n (\log n)^{d-1})$
 - construction time $O(n (\log n)^d)$
 - range search time $O(s + (\log n)^d)$
- Note: d is considered to be a constant
- Space-time tradeoff compared to kd trees



Outline

- Range-Searching in Dictionaries for Points
 - Range Search
 - Multi-Dimensional Data
 - Quadtrees
 - kd-Trees
 - Range Trees
 - Conclusion

Range Search Data Structures Summary

Quadtrees

- simple, easy to implement insert/delete (i.e. dynamic set of points)
- work well only if points evenly distributed
- wastes space, especially for higher than two dimensions

kd-trees

- linear space
- range search is $O(s + \sqrt{n})$
- inserts/deletes destroy balance and range search time
 - fix with occasional rebuilt

Range trees

- fastest range search $O(s + \log^2 n)$
- wastes some space
- insert and delete destroy balance, but can fix this with occasional rebuilt