CS 240 - Data Structures and Data Management

Module 8: Range-Searching in Dictionaries for Points

O. Veksler
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo
Winter 2024

Outline

- Range-Searching in Dictionaries for Points
- Range Search
- Multi-Dimensional Data
- Quadtrees
- kd-Trees
- Range Trees
- Conclusion

Outline

- Range-Searching in Dictionaries for Points
- Range Search
- Multi-Dimensional Data
- Quadtrees
- kd-Trees
- Range Trees
- Conclusion

Range Searches

- search(k) looks for one specific item
- New operation RangeSearch (x, x^{\prime})
- look for all items that fall within given range (interval) $Q=\left(x, x^{\prime}\right)$
- Q may have open or closed ends
- report all KVPs in the dictionary with $k \in Q$

$$
s=3, n=10
$$

- example

$\mathbf{5}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 7}$	18	$\mathbf{3 3}$	$\mathbf{4 5}$	$\mathbf{5 1}$	$\mathbf{5 5}$	$\mathbf{7 7}$
RangeSearch $(17,45]$ should return $\{18,33,45\}$									

- As usual, n is the number of input items
- Let s be the output-size, i.e. the number of items in the range
- Need $\Omega(s)$ time just to report the items in the range
- $\quad s$ can be anything between 0 and n (it depends on input interval Q)
- Therefore, running time depends both on s and n
- so keep s as a parameter when analyzing runtime
- getting $O(n)$ time is trivial
- can we get $O(\log n+s)$?

Range Search in Existing Dictionary Realizations

- Unsorted list/array/hash table
- range search requires $\Omega(n)$ time
- must check for each item explicitly if it is in the range
- Sorted array

5	10	11	17	18	33	45	51	55	77
			i				i^{\prime}		

- RangeSearch $(16,50)$
$O(\log n)$ - use binary search to find i s.t. x is at (or would be at) $A[i]$
$O(\log n)$ - use binary search to find i^{\prime} s.t. x^{\prime} is at (or would be at) $A\left[i^{\prime}\right]$
$O(s)$ - report all items in $A\left[i+1 \ldots i^{\prime}-1\right]$
O (1) - report $A[i]$ and $A\left[i^{\prime}\right]$ if they are in the range
- range search can be done in $O(\log n+s)$ time
- BST
- can do range search in $O($ height $+s)$ time
- details later

Outline

- Range-Searching in Dictionaries for Points
- Range Search Query
- Multi-Dimensional Data
- Quadtrees
- kd-Trees
- Range Trees
- Conclusion

Multi-dimensional Data

- Data with multiple aspects of interest
- laptops: price, screen size, processor speed, ...

- employees: name, age, salary, ...
- Range searches are of special interest for multidimensional data
- flights that leave between 9am and noon, and cost between $\$ 400$ and $\$ 600$
- Dictionary for multi-dimensional data
- collection of d-dimensional items (or points)
- each item has d aspects (coordinates): $\left(x_{0}, x_{1}, \cdots, x_{d-1}\right)$
- need usual dictionary operations: insert, delete, search
- also need RangeSearch
- We focus on $d=2$, i.e. points in Euclidean plane

Multi-Dimensional Range Search

- (Orthogonal) d-dimensional range search
- given a query rectangle Q, find all points that lie within Q

d-Dimensional Dictionary via 1-Dimensional Dictionary

- Option 1: Reduce to one-dimensional dictionary
- combine d-dimensional key into one dimensional key
- i.e. $(x, y) \rightarrow x+y \cdot n^{2}$
- $($ price, screenSize $) \rightarrow$ price + screenSize $\cdot n^{2}$
- two distinct (x, y) map to a distinct one dimensional key
- can search for a specific key (x, y)
- but no efficient range search

d-Dimensional Dictionary via 1-Dimensional Dictionary

- Option2: Use several dictionaries, one for each dimension
- problem: wastes space, inefficient search
- Worst Case Example
- insert all n points in horizontal dictionary
- key is x coordinate
- insert all n points in vertical dictionary
- key is y coordinate
- 1D range search in horizontal dictionary returns $n / 2$ points

- 1Drange search in vertical dictionary returns $n / 2$ points
- For 2D range search result, need to find points which are both in the red and the green clouds
- insert $n / 2$ red points in AVL tree
- for each of $n / 2$ green point, check if it is in the AVL Tree
- total time to find points in both clouds is $O(n \log n)$
- worse than exhaustive search!
- far from $O(s+\log n)$, especially since $s=0$

Multi-Dimensional Range Search

- Better idea
- design new data structures specifically for points
- Assumption: points are in general position: no two x coordinates or y-coordinates are the same
- i.e. no two points on a horizontal lines, no two points on a vertical line

- simplifies presentation, data structures can be generalized to arbitrary points

Multi-Dimensional Range Search

- Partition trees
- organize space to facilitate efficient multidimensional search
- internal nodes are associated with spatial regions
- actual dictionary points stored only at leaves
- We study 2 types of partition trees

1. quadtrees

- does not use general points position assumption

2. kd-trees

- uses general points position assumption
- Multi-dimensional range trees
- a tree that generalizes BST to support multidimensional search
- both internal and leaf nodes store points, similar to one dimensional BST
- uses general points position assumption

Outline

- Range-Searching in Dictionaries for Points
- Range Search Query
- Multi-Dimensional Data
- Quadtrees
- kd-Trees
- Range Trees
- Conclusion

Quadtrees

- Have a set S of n points in the plane
- Find bounding box $R=\left[0,2^{k}\right) \times\left[0,2^{k}\right)$
- translate points so coordinates are nonnegative
- smallest $2^{k} \times 2^{k}$ square containing all points
- find smallest k s.t. max-coordinate in S is less than 2^{k}
- Quadtree is a tree
- Each node corresponds to a region
- Higher levels responsible for larger regions
- Leaves responsible for regions small enough to store one point

Quadtree Construction Example

- Root corresponds to the whole square
- Split the square into 4 equal regions
- Convention: points on split lines belong to region on the right (or top)

Quadtree Construction Example

- keep subdividing regions (recursively) into smaller region until each region has at most one point

leaf storing empty-set of points or empty leaf

Quadtree Construction Example

0

- keep subdividing regions (recursively) into smaller region until each region has at most one point

Quadtree Construction Example

16

0

- keep subdividing regions (recursively) into smaller region until each region has at most one point

Quadtree Building Summary

- Have n points $S=\left\{\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n-1}, y_{n-1}\right)\right\}$
- all points are within a square R
- To build quadtree on S
- root r corresponds to R
- if R contains 0 (or 1) point
- then root r is an empty leaf (or a leaf that stores 1 point)
- else
- partition R into four equal subsquares (quadrants) $R_{N E}, R_{N W}, R_{S W}, R_{S E}$
- partition S into sets $S_{N E}, S_{N W}, S_{S W}, S_{S E}$
- convention: points on split lines belong to region on the right (or top)
- recursively build tree T_{i} for points S_{i} in R_{i} and make them children of root

Quadtree Search

- Whenever possible, search rules out regions at higher level of hierarchy, achieving efficiency

Quadtree Search

- Analogous to trie or BST
- Three possibilities for where search ends

1. leaf storing point we search for (found)
2. leaf storing point different from search point (not found)
3. empty leaf (not found)

- Example: search(5,7) (not found)
- Search is efficient if quadtree has small height

Quadtree Insert

- First perform search
- Two cases

1. search finds a leaf storing one point

- example: insert(5,7)

Quadtree Insert

- First perform search
- Two cases

1. search finds a leaf storing one point

- example: insert(5,7)
- repeatedly split the leaf while there are two points in one region

Quadtree Insert

- First perform search
- Two cases

1. search finds a leaf storing one point

- example: insert(5,7)
- repeatedly split the leaf while there are two points in one region

Quadtree Insert

- First perform search
- Two cases

1. search finds a leaf storing one point

2. search finds an empty leaf

- example: insert $(5,13)$

Quadtree Insert

- First perform search
- Two cases

1. search finds a leaf storing one point

2. search finds an empty leaf

- example: insert $(5,13)$
- insert the point into leaf

Quadtree Insert

- If we insert point outside the bounding box, no need to rebuild the part corresponding to the old tree, it becomes subtree in the new tree
- due to bounding box being $\left[0,2^{k}\right) \times\left[0,2^{k}\right)$

Quadtree Insert

- If we insert point outside the bounding box, no need to rebuild the part corresponding to the old tree, it becomes subtree in the new tree
- due to bounding box being $\left[0,2^{k}\right) \times\left[0,2^{k}\right)$

Quadtree Delete

- search will find a leaf containing the point
- example: delete $\left(p_{6}\right)$
- remove the point leaving the leaf empty

Quadtree Delete

- search will find a leaf containing the point
- example: delete $\left(p_{6}\right)$
- remove the point leaving the leaf empty

Quadtree Delete

- search will find a leaf containing the point
- example: delete (p_{6})
- remove the point leaving the leaf empty
- if parent now stores only one point in its region
- make parent node into a leaf storing its only child

Quadtree Delete

- search will find a leaf containing the point
- example: delete $\left(p_{6}\right)$
- remove the point leaving the leaf empty
- if parent now stores only one point in its region
- make parent node into a leaf
- check up the tree, repeating making any parent with only 1 point into a leaf

Quadtree Delete

- Another example: delete $\left(p_{8}\right)$

Quadtree Delete

- Do not make parent into a leaf as it stores multiple points

Quadtree Analysis

height $=4$

- Search, insert, delete depend on quadtree height
- What is the height of a quadtree?
- can have very large height for bad distributions of points
- example with just three points
- can make height arbitrarily large by moving red points closer together

Quadtree Analysis

- spread factor of points S

$$
\rho(S)=\frac{L}{d_{\min }}
$$

- $L=$ side length of R
- $d_{\min }$ is smallest distance between two points in S
- Worst case: height $h \in \Omega(\log \rho(S))$

red points are at at distance $d_{\text {min }}$ from each other

- While smallest region diagonal is $\geq d_{\text {min }}, 2$ red points are in same region

Quadtree Analysis

- spread factor of points S

$$
\rho(S)=\frac{L}{d_{\min }}
$$

- $L=$ side length of R
- $d_{\text {min }}$ is smallest distance between two points in S
- Worst case: height $h \in \Omega(\log \rho(S))$

- while smallest region diagonal is $\geq d_{\text {min }}, 2$ red points are in same region
- if height is h, then we do h rounds of subdivisions
- after h subdivisions, smallest regions have side length $\frac{L}{2^{h}}$
- diagonal in smallest region is $\sqrt{2} \frac{L}{2^{h}}$

- smallest region contains one red point $\Rightarrow \sqrt{2} \frac{L}{2^{h}}<d_{\text {min }}$
- rearrange: $\sqrt{2} \frac{L}{d_{\text {min }}}<2^{h}$
- take log of both sides: $h>\log \left(\sqrt{2} \frac{L}{d_{\text {min }}}\right)=\log (\sqrt{2} \rho(S))$

Quadtree Analysis

- spread factor of points S

$$
\rho(S)=\frac{L}{d_{\min }}
$$

- $\quad L=$ side length of R
- $d_{\text {min }}$ is smallest distance between two points in S

- In the worst case, height $h \in \Omega(\log \rho(S))$
- However, height can be much better even if the spread is arbitrarily large

Quadtree Analysis

- spread factor of points S

$$
\rho(S)=\frac{L}{d_{\min }}
$$

- $L=$ side length of R
- $d_{\min }$ is smallest distance between two points in S
- In the worst case, height $h \in \Omega(\log \rho(S))$
- In any case, height $h \in O(\log \rho(S))$
- let v be an internal node at depth $h-1$
- there are at lest 2 points p, q inside its region
- $d_{\text {min }} \leq d(p, q)$

- the corresponding region has side length $\frac{L}{2^{h-1}}$
- maximum distance between 2 points in such region is $\sqrt{2} \frac{L}{2^{h-1}}$

$$
\begin{aligned}
d_{\min } & \leq d(p, q) \leq \sqrt{2} \frac{L}{2^{h-1}} \\
2^{h-1} \leq \sqrt{2} \frac{L}{d_{\min }} & =\sqrt{2} \rho(S) \Rightarrow h \leq 1+\log (\sqrt{2} \rho(S))
\end{aligned}
$$

Quadtree Analysis

- spread factor of points S

$$
\rho(S)=\frac{L}{d_{\min }}
$$

- $L=$ side length of R
- $d_{\text {min }}$ is smallest distance between two points in S

- In the worst case, height $h \in \Omega(\log \rho(S))$
- In any case, height $h \in O(\log \rho(S))$
- to guarantee good performance, $\log \rho(S)$ should be much smaller than n
- Complexity to build initial tree: $\Theta(n h)$ worst-case
- expensive if large height (as compared to the number of points)

Quadtree Range Search Example

- Query rectangle $Q=[3 \leq x<13,3 \leq y<7]$
- Let R be region associated with current node, have 3 cases

1. $R \cap Q=\emptyset$: red (outside) node, do not search its children
2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)

- if R is a leaf, if it stores point inside Q, report it

Quadtree Range Search Example

- Query rectangle $Q=[3 \leq x<13,3 \leq y<7]$
- Let R be region associated with current node, have 3 cases

1. $R \cap Q=\emptyset$: red (outside) node, do not search its children
2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)

- if R is a leaf, if it stores point inside Q, report it

Quadtree Range Search Example

- Query rectangle $Q=[3 \leq x<13,3 \leq y<7]$
- Let R be region associated with current node, have 3 cases

1. $R \cap Q=\emptyset$: red (outside) node, do not search its children
2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)

- if R is a leaf, if it stores point inside Q, report it

Quadtree Range Search Example

- Query rectangle $Q=[3 \leq x<13,3 \leq y<7]$
- Let R be region associated with current node, have 3 cases

1. $R \cap Q=\emptyset$: red (outside) node, do not search its children
2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)

- if R is a leaf, if it stores point inside Q, report it

Quadtree Range Search Example

- Query rectangle $Q=[3 \leq x<13,3 \leq y<7]$
- Let R be region associated with current node, have 3 cases

1. $R \cap Q=\emptyset$: red (outside) node, do not search its children
2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)

- if R is a leaf, if it stores point inside Q, report it

Quadtree Range Search Example

- Query rectangle $Q=[3 \leq x<13,3 \leq y<7]$
- Let R be region associated with current node, have 3 cases

1. $R \cap Q=\emptyset$: red (outside) node, do not search its children
2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)

- if R is a leaf, if it stores point inside Q, report it

Quadtree Range Search Example

- Query rectangle $Q=[3 \leq x<13,3 \leq y<7]$
- Let R be region associated with current node, have 3 cases

1. $R \cap Q=\emptyset$: red (outside) node, do not search its children
2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)

- if R is a leaf, if it stores point inside Q, report it

Quadtree Range Search Example

- Query rectangle $Q=[3 \leq x<13,3 \leq y<7]$
- Let R be region associated with current node, have 3 cases

1. $R \cap Q=\emptyset$: red (outside) node, do not search its children
2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)

- if R is a leaf, if it stores point inside Q, report it

Quadtree Range Search Example

- Query rectangle $Q=[3 \leq x<13,3 \leq y<7]$
- Let R be region associated with current node, have 3 cases

1. $R \cap Q=\emptyset$: red (outside) node, do not search its children
2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)

- if R is a leaf, if it stores point inside Q, report it

Quadtree Range Search Example

- Query rectangle $Q=[3 \leq x<13,3 \leq y<7]$
- Let R be region associated with current node, have 3 cases

1. $R \cap Q=\emptyset$: red (outside) node, do not search its children
2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)

- if R is a leaf, if it stores point inside Q, report it

Quadtree Range Search Example

- Query rectangle $Q=[3 \leq x<13,3 \leq y<7]$
- Let R be region associated with current node, have 3 cases

1. $R \cap Q=\emptyset$: red (outside) node, do not search its children
2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)

- if R is a leaf, if it stores point inside Q, report it

Quadtree Range Search Example

- Query rectangle $Q=[3 \leq x<13,3 \leq y<7]$
- Let R be region associated with current node, have 3 cases

1. $R \cap Q=\emptyset$: red (outside) node, do not search its children
2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)

- if R is a leaf, if it stores point inside Q, report it

Quadtree Range Search Example

- Query rectangle $Q=[3 \leq x<13,3 \leq y<7]$
- Let R be region associated with current node, have 3 cases

1. $R \cap Q=\emptyset$: red (outside) node, do not search its children
2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)

- if R is a leaf, if it stores point inside Q, report it

Quadtree Range Search Example

- Query rectangle $Q=[3 \leq x<13,3 \leq y<7]$
- Let R be region associated with current node, have 3 cases

1. $R \cap Q=\emptyset$: red (outside) node, do not search its children
2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)

- if R is a leaf, if it stores point inside Q, report it

Quadtree Range Search

```
Qtree::RangeSearch(r \leftarrowroot,Q)
r:quadtree root, Q: query rectangle
    let R be the region associated with r
    if R\subseteqQ then //inside node, stop search
        report all points below r
        return
    if R\capQ=\emptyset then //outside node, stop search
        return
    // boundary node, recurse if not a leaf
    if r is a leaf then // leaf, do not recurse
            p}\leftarrow\mathrm{ point stored at }
            if p}\mathrm{ is not NULL and in Q return p
            else return
    for each child v of r do
            QTree-RangeSearch(v,Q)
```

- $R \subseteq Q, R \cap Q=\varnothing$ computed in constant time from coordinates of R, Q
- Code assumes each quadtree node stores the associated square
- Alternatively, these could be re-computed during search
- space-time tradeoff

RangeSearch Analysis

- Running time is number of visited nodes + output size
- No good bound on number of visited nodes
- may have to visit nearly all nodes in the worst case
- $\Theta(n h)$ worst-case
- this is worse than exhaustive search
- even if the range search returns empty result
- but in practice usually much faster

Quadtrees in other dimensions

points	0	9	12	14	24	26	28
base 2	00000	01001	01100	01110	11000	11010	11100

- Quad-tree of 1-dimensional points

- Same as a pruned trie
- with splitting stopped once key is unique

Quadtree summary

- Quadtrees easily generalize to higher dimensions
- octrees, etc.
- but rarely used beyond dimension 3
- Easy to compute and handle
- No complicated arithmetic, only divisions by 2
- bit-shift if the width/height of R is a power of 2
- Space potentially wasteful, but good if points are well-distributed
- Variation
- stop splitting earlier and allow up to k points in a leaf for some fixed k

Outline

- Range-Searching in Dictionaries for Points
- Range Search Query
- Multi-Dimensional Data
- Quadtrees
- kd-Trees
- Range Trees
- Conclusion

kd-tree motivation

- Quadtree can be very unbalanced
- kd-tree idea
- split into regions with equal number of points
- easier to split into two regions with equal number of points (rather than four regions)
- can split either vertically or horizontally
- alternating vertical and horizontal splits gives range search efficiency

kd-tree example

\mathcal{R}^{2} is split into two half regions

- No need for bounding box
- Root corresponds to the whole \mathcal{R}^{2}
- First find the best vertical split
- 【年 \rfloor on one side and $\left\lceil\frac{n}{2}\right\rceil$ and points on the other

$$
\left\lfloor\frac{n}{2}\right\rfloor=\left.\right|^{n=5}\left[\frac{n}{2}\right]=3
$$

- $m=\left\lfloor\frac{n}{2}\right\rfloor$ in sorted list of x-coordinates
- partition S into $S_{x<m}$ and $S_{x \geq m}$

kd-tree example

- Because points are in general position, always can split in two equal (or almost equal subsets)
- General position means no two x or y coordinates are the same
- $p 3$ - Consider the points below not in general position

- Cannot divide them in two equal subsets by a vertical line
\mathcal{R}^{2} is split into two half regions

kd-tree example

kd-tree example

- Recurse on the resulting regions
- if they have more than one point
- Alternate split direction

kd-tree example

- Recurse on the resulting regions
- if they have more than one point
- Alternate split direction

kd-tree example

- Recurse on the resulting regions
- if they have more than one point
- Alternate split direction

kd-tree example

- Recurse on the resulting regions
- if they have more than one point
- Alternate split direction

- Recurse on the resulting regions
- if they have more than one point
- Alternate split direction

kd-tree example

kd-tree example

kd-tree example

kd-tree example

kd-tree example

kd-tree example

Building kd-trees

- Points $S=\left\{\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n-1}, y_{n-1}\right)\right\}$
- To build kd-tree with initial x-split
- if $|S| \leq 1$ create a leaf and return
- else find x-coordinate in position $m=\left\lfloor\frac{n}{2}\right\rfloor$ in sorted list of x-coordinates or partition by calling quickSelect $\left(S,\left\lfloor\frac{n}{2}\right\rfloor\right)$
- partition S into $S_{x<m}$ and $S_{x \geq m}$ by comparing the x coordinate of a point with m
- $\left\lfloor\frac{n}{2}\right\rfloor$ goes to one side and $\left\lceil\frac{n}{2}\right\rceil$ to the other
- create left subtree recursively (splitting on y) for points $S_{x<m}$
- create right subtree recursively (splitting on y) for points $S_{x \geq m}$
- each node keeps track of the splitting line
- Building with initial y-split symmetric
- Points on split lines belong to right/top side

kd-tree Construction Running Time and Space

- Partition S in $\Theta(n)$ expected time with QuickSelect
- Both subtrees have $\approx n / 2$ points
- Sloppy recurrence
- $T^{\text {exp }}(n)=2 T^{\text {exp }}\left(\frac{n}{2}\right)+O(n)$
- resolves to $\Theta(n \log n)$ expected time
- Can improve to $\Theta(n \log n)$ worst-case runtime by pre-sorting coordinates
- Recurrence inequality for height

$$
\begin{aligned}
& h(1)=0 \\
& h(n) \leq h\left(\left[\frac{n}{2}\right]\right)+1
\end{aligned}
$$

- resolves to $O(\log n)$, specifically $\lceil\log n\rceil$
- this is tight (binary tree with n leaves)
- Space
- all interior nodes have exactly 2 children, therefore $n-1$ interior nodes
- total number of nodes is $2 n-1$
- space is $\Theta(n)$

kd-tree Dictionary Operations

- search as in binary search tree using indicated coordinate
- insert first search, insert as new leaf
- delete first search, remove leaf and any parent with one child
- Problem
- after insert or delete, split might no longer be at exact median
- height is no longer guaranteed to be $O(\log n)$
- kd-tree do not handle insertion/delection well
- remedy
- allow a certain imbalance
- re-building the entire tree when it becomes too unbalanced
- no details
- but rangeSearch will be slower

kd-tree: Range Search Example

- Every node is associated with a region
- range search is exactly as for quadtrees, except there are only two children and leaves always store points

kd-tree: Range Search Example

- Query rectangle Q
- Let R be region associated with current node, have 3 cases

1. $R \cap Q=\emptyset$: red (outside) node, do not search its children
2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)

- if R is a leaf, if it stores point inside Q, report it

kd-tree: Range Search Example

- Query rectangle Q

- Let R be region associated with current node, have 3 cases

1. $R \cap Q=\emptyset$: red (outside) node, do not search its children
2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)

- if R is a leaf, if it stores point inside Q, report it

kd-tree: Range Search Example

- Query rectangle Q
- Let R be region associated with current node, have 3 cases

1. $R \cap Q=\emptyset$: red (outside) node, do not search its children
2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)

- if R is a leaf, if it stores point inside Q, report it

kd-tree: Range Search Example

- Query rectangle Q

- Let R be region associated with current node, have 3 cases

1. $R \cap Q=\emptyset$: red (outside) node, do not search its children
2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)

- if R is a leaf, if it stores point inside Q, report it

kd-tree: Range Search Example

- Query rectangle Q

- Let R be region associated with current node, have 3 cases

1. $R \cap Q=\emptyset$: red (outside) node, do not search its children
2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)

- if R is a leaf, if it stores point inside Q, report it

kd-tree: Range Search Example

- Query rectangle Q
- Let R be region associated with current node, have 3 cases

1. $R \cap Q=\emptyset$: red (outside) node, do not search its children
2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)

- if R is a leaf, if it stores point inside Q, report it

kd-tree: Range Search Example

- Query rectangle Q
- Let R be region associated with current node, have 3 cases

1. $R \cap Q=\emptyset$: red (outside) node, do not search its children
2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)

- if R is a leaf, if it stores point inside Q, report it

kd-tree: Range Search Example

- Query rectangle Q
- Let R be region associated with current node, have 3 cases

1. $R \cap Q=\emptyset$: red (outside) node, do not search its children
2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)

- if R is a leaf, if it stores point inside Q, report it

kd-tree: Range Search Example

- Query rectangle Q
- Let R be region associated with current node, have 3 cases

1. $R \cap Q=\emptyset$: red (outside) node, do not search its children
2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)

- if R is a leaf, if it stores point inside Q, report it

kd-tree: Range Search Example

- Query rectangle Q
- Let R be region associated with current node, have 3 cases

1. $R \cap Q=\emptyset$: red (outside) node, do not search its children
2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)

- if R is a leaf, if it stores point inside Q, report it

kd-tree: Range Search Example

- Query rectangle Q
- Let R be region associated with current node, have 3 cases

1. $R \cap Q=\emptyset$: red (outside) node, do not search its children
2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)

- if R is a leaf, if it stores point inside Q, report it

kd-tree: Range Search Example

- Query rectangle Q
- Let R be region associated with current node, have 3 cases

1. $R \cap Q=\emptyset$: red (outside) node, do not search its children
2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)

- if R is a leaf, if it stores point inside Q, report it

kd-tree: Range Search Example

- Query rectangle Q
- Let R be region associated with current node, have 3 cases

1. $R \cap Q=\emptyset$: red (outside) node, do not search its children
2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)

- if R is a leaf, if it stores point inside Q, report it

kd-tree: Range Search Example

- Query rectangle Q
- Let R be region associated with current node, have 3 cases

1. $R \cap Q=\emptyset$: red (outside) node, do not search its children
2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)

- if R is a leaf, if it stores point inside Q, report it

kd-tree: Range Search Example

- Query rectangle Q
- Let R be region associated with current node, have 3 cases

1. $R \cap Q=\emptyset$: red (outside) node, do not search its children
2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)

- if R is a leaf, if it stores point inside Q, report it

kd-tree: Range Search Example

- Query rectangle Q
- Let R be region associated with current node, have 3 cases

1. $R \cap Q=\emptyset$: red (outside) node, do not search its children
2. $R \subseteq Q$: green (inside) node, no need to search children, report all points in R
3. $R \cap Q \neq \emptyset$: blue (boundary) node, search its children (if any)

- if R is a leaf, if it stores point inside Q, report it

kd-tree Range Search

```
kdTree::RangeSearch(r}\leftarrow\operatorname{root,Q)
r root of kd-tree, Q: query rectangle
    R\leftarrowregion associated with node r
    if R\subseteqQ then
        report all points below r
        return
    if R\capQ=\emptyset then return
    if}r\mathrm{ is a leaf then
    p}\leftarrow\mathrm{ point stored at r
        if p\inQ return p
        else return
    for each child v of r do
        kdTree::RangeSearch(v, Q)
```

- We assume that each node stores its associated region
- To save space, we could instead pass the region as a parameter and compute the region for each child using the splitting line

kd-tree: Range Search Running Time

- Visit blue, red, and green nodes, constant work at each node
- runtime is proportional to the number of blue, red, green nodes
- Green nodes form green subtrees
- subtree root is the topmost green node
- let v be the topmost green node
- recall that s is the number of nodes in the output of range search
- subtree of v is a kd-tree itself
- number of internal nodes is 1 less than the number of leaves
- at most s leaves over all green subtrees, and, therefore, at most $2 s$ nodes over all green subtrees
- number of green nodes is $O(s)$

kd-tree: Range Search Running Time

- Visit blue, red, and green nodes, constant time at each node
- $O(s)$ of green nodes
- red nodes ≤ 2 • blue nodes
- each red node has a blue parent
- for asymptotic runtime, enough to count blue nodes and add $O(s)$
- Let $B(n)$ is the number of blue nodes
- if R corresponds to a blue node, neither $R \cap Q=\varnothing$ nor $R \subseteq Q$
- regions that intersect Q but not completely inside Q
- Can show that $B(n)$ satisfies $B(n) \leq 2 B\left(\frac{n}{4}\right)+O(1)$
- resolves to $B(n) \in O(\sqrt{n})$
- Therefore, running time of range search is $O(s+\sqrt{n})$

kd-tree: Range Search Complexity

- search rectangle Q
- $B(n)=\#$ regions intersecting Q but not completely inside Q
- $B(n) \leq \#$ regions intersecting + \# regions intersecting
+ \# regions intersecting

+ \# regions intersecting
- Will look at \# regions intersecting
- Other cases are handled similarly

kd-tree: Range Search Complexity

- $B^{x}(n)=\#$ regions intersected by \|, if tree root split by x coordinate
- $B^{x}(n)=1+B^{y}\left(\frac{n}{2}\right)$
- 1 for the root region R
- root region is split in 2 by vertical line
- I can intersect only one of these regions

kd-tree: Range Search Complexity

- $B^{x}(n)=\#$ regions intersected by \|, if tree root split by x coordinate
- $B^{x}(n)=1+B^{y}\left(\frac{n}{2}\right)$
- 1 for the root region
- root region is split in 2 by vertical line
- I can intersect only one of these regions

- Next, $B^{y}\left(\frac{n}{2}\right)=1+2 B^{x}\left(\frac{n}{4}\right)$
- 1 for the root region
- root region is split in 2 by horizontal line
- I can intersect both of these regions
- Combining, get recurrence $Q^{x}(n)=2+2 B^{x}\left(\frac{n}{4}\right)$
- Resolves to $B^{x}(n) \in O(\sqrt{n})$

kd-tree: Higher Dimensions

- kd-trees for d-dimensional space
- at depth 0 (the root) partition is based on the $1^{\text {st }}$ coordinate
- at depth 1 partition is based on the $2^{\text {nd }}$ coordinate
- at depth $d-1$ the partition is based on the last coordinate
- at depth d start all over again, partitioning on $1^{\text {st }}$ coordinate
- Storage $O(n)$
- Height $O(\log n)$
- Construction time $O(n \log n)$
- Range query time $O\left(s+n^{1-\frac{1}{d}}\right)$
- assumes that d is a constant

Outline

- Range-Searching in Dictionaries for Points
- Range Search
- Multi-Dimensional Data
- Quadtrees
- kd-Trees
- Range Trees
- Conclusion

Towards Range Trees

- Quadtrees and kd-trees
- intuitive and simple
- but both may be slow for range searches
- quadtrees are also potentially wasteful in space
- Consider BST/AVL trees
- efficient for one-dimensional dictionaries, if balanced
- range search is also efficient
- can we use ideas from BST/AVL trees for multi dimensional dictionaries?
- First let us consider range search in BST
- all searches will be inclusive of the boundaries
- BST::RangeSearch-recursive $(T, 28,43)$
- search includes both 28 and 43
- easy to modify when one or both endpoints are excluded

BST Range Search example

BST::RangeSearch-recursive $(T, 28,43)$

- blue node: recurse either to the left, or to the right, or both (according to the key value)
- boundary node, one or both subtrees may intersect range query
- red node: range search was not called on red node, but was called on its parent
- outside node, subtree does not intersect range query
- green node : all the keys in the subtree are in the range
- inside node, subtree completely inside range query

BST Range Search example

BST::RangeSearch-recursive $(T, 28,43)$

- blue node: recurse either to the left, or to the right, or both (according to the key value)
- boundary node, one or both subtrees may intersect range query
- red node: range search was not called on red node, but was called on its parent
- outside node, subtree does not intersect range query
- green node : all the keys in the subtree are in the range
- inside node, subtree completely inside range query

BST Range Search example

BST::RangeSearch-recursive $(T, 28,43)$

- blue node: recurse either to the left, or to the right, or both (according to the key value)
- boundary node, one or both subtrees may intersect range query
- red node: range search was not called on red node, but was called on its parent
- outside node, subtree does not intersect range query
- green node : all the keys in the subtree are in the range
- inside node, subtree completely inside range query

BST Range Search example

BST::RangeSearch-recursive $(T, 28,43)$

- blue node: recurse either to the left, or to the right, or both (according to the key value)
- boundary node, one or both subtrees may intersect range query
- red node: range search was not called on red node, but was called on its parent
- outside node, subtree does not intersect range query
- green node : all the keys in the subtree are in the range
- inside node, subtree completely inside range query

BST Range Search example

BST::RangeSearch-recursive $(T, 28,43)$

- blue node: recurse either to the left, or to the right, or both (according to the key value)
- boundary node, one or both subtrees may intersect range query
- red node: range search was not called on red node, but was called on its parent
- outside node, subtree does not intersect range query
- green node : all the keys in the subtree are in the range
- inside node, subtree completely inside range query

BST Range Search example

BST::RangeSearch-recursive $(T, 28,43)$

- blue node: recurse either to the left, or to the right, or both (according to the key value)
- boundary node, one or both subtrees may intersect range query
- red node: range search was not called on red node, but was called on its parent
- outside node, subtree does not intersect range query
- green node : all the keys in the subtree are in the range
- inside node, subtree completely inside range query

BST Range Search example

BST::RangeSearch-recursive $(T, 28,43)$

- blue node: recurse either to the left, or to the right, or both (according to the key value)
- boundary node, one or both subtrees may intersect range query
- red node: range search was not called on red node, but was called on its parent
- outside node, subtree does not intersect range query
- green node : all the keys in the subtree are in the range
- inside node, subtree completely inside range query

BST Range Search example

BST::RangeSearch-recursive $(T, 28,43)$

- blue node: recurse either to the left, or to the right, or both (according to the key value)
- boundary node, one or both subtrees may intersect range query
- red node: range search was not called on red node, but was called on its parent
- outside node, subtree does not intersect range query
- green node : all the keys in the subtree are in the range
- inside node, subtree completely inside range query

BST Range Search example

BST::RangeSearch-recursive $(T, 28,43)$

- blue node: recurse either to the left, or to the right, or both (according to the key value)
- boundary node, one or both subtrees may intersect range query
- red node: range search was not called on red node, but was called on its parent
- outside node, subtree does not intersect range query
- green node : all the keys in the subtree are in the range
- inside node, subtree completely inside range query

BST Range Search example

BST::RangeSearch-recursive $(T, 28,43)$

- blue node: recurse either to the left, or to the right, or both (according to the key value)
- boundary node, one or both subtrees may intersect range query
- red node: range search was not called on red node, but was called on its parent
- outside node, subtree does not intersect range query
- green node : all the keys in the subtree are in the range
- inside node, subtree completely inside range query

BST Range Search example

BST::RangeSearch-recursive $(T, 28,43)$

- blue node: recurse either to the left, or to the right, or both (according to the key value)
- boundary node, one or both subtrees may intersect range query
- red node: range search was not called on red node, but was called on its parent
- outside node, subtree does not intersect range query
- green node : all the keys in the subtree are in the range
- inside node, subtree completely inside range query

BST Range Search example

BST::RangeSearch-recursive $(T, 28,43)$

- blue node: recurse either to the left, or to the right, or both (according to the key value)
- boundary node, one or both subtrees may intersect range query
- red node: range search was not called on red node, but was called on its parent
- outside node, subtree does not intersect range query
- green node : all the keys in the subtree are in the range
- inside node, subtree completely inside range query

BST Range Search

```
BST::RangeSearch-recursive( }r\leftarrow\mathrm{ root, }\mp@subsup{k}{1}{},\mp@subsup{k}{2}{}
r: root of a binary search tree, }\mp@subsup{k}{1}{},\mp@subsup{k}{2}{}\mathrm{ : search keys
Returns keys in subtree at r that are in range [ }\mp@subsup{k}{1}{},\mp@subsup{k}{2}{}\mathrm{ ]
if}r=NULL then return \emptyset
L\leftarrow\emptyset,R\leftarrow\emptyset
if r.key<k}<\mp@subsup{k}{2}{}\mathrm{ then
    R\leftarrowBST::RangeSearch-recusive(r.right, k},\mp@subsup{k}{1}{},\mp@subsup{k}{2}{}
if r.key > k
    L\leftarrowBST-RangeSearch-recursive(r.left, }\mp@subsup{k}{1}{},\mp@subsup{k}{2}{}\mathrm{ )
if }\mp@subsup{k}{1}{}\leqr.key\leq\mp@subsup{k}{2}{}\mathrm{ then
    return L \cup {r.key} \cup R
else return L U R
```

- Keys returned in sorted order

Modified BST Range Search

- Search for left boundary k_{1} : this gives path $\boldsymbol{P}_{\mathbf{1}}$
- Search for right boundary k_{2} : this gives path P_{2}
- Boundary (blue nodes) are exactly all the nodes on paths P_{1} and P_{2}
- Nodes are partitioned into three groups: boundary, outside, inside

Modified BST Range Search

- Boundary nodes: nodes in \boldsymbol{P}_{1} and P_{2}
- check if boundary nodes are in the search range
- Outside nodes: nodes that are left of \boldsymbol{P}_{1} or right of \boldsymbol{P}_{2}
- outside nodes are not in the search range
- range search is never called on an outside node
- Inside nodes: nodes that are right of \boldsymbol{P}_{1} and left of \boldsymbol{P}_{2}
- we will stop the search at the topmost inside node
- all descendants of such node are in the range, just report them without search
- this is not more efficient for BST range search, but useful when we develop 2D search in range trees

Modified BST Range Search Analysis

- Assume balanced BST
- Running time consists of

1. search for path \boldsymbol{P}_{1} is $O(\log n)$
2. search for path P_{2} is $O(\log n)$

3. check if boundary nodes in the range

- $O(1)$ at each boundary node, there are $O(\log n)$ of them, $O(\log n)$ total time

4. spend $O(1)$ at each topmost inside node

- since each topmost inside node is a child of boundary node, there are at most $O(\log n)$ topmost inside nodes, so total time $O(\log n)$

5. report descendants in subtrees of all topmost inside nodes

- topmost nodes are disjoint, so \#descendants for inside topmost nodes is at most s, output size

- Total time $O(s+\log n)$

How to Find Top Inside Node

- v is a top inside node if
- v is not is in P_{1} or P_{2}
- parent of v is in P_{1} or P_{2} (but not both)
- if parent is in P_{1}, then v is right child
- if parent is in P_{2}, then v is left child

- Thus for each top inside node can report all descendants, no need for search
- BST range search does not become not faster overall, but top inside nodes are important for $2 D$ range search efficiency
- also important if need to just count the number of points in the search range

Modified BST Range Search Summary

- Search for k_{1} : this gives left boundary path P_{1}
- Search for k_{2} : this gives right boundary path P_{2}
- Find all topmost inside nodes
- not in P_{1} or P_{2}
- left children of nodes in P_{2}

- right children of nodes in P_{1}
- Inside node (which is not a topmost inside) is in a subtree of some topmost inside node
- Set of inside nodes = union disjoint subtrees rooted at topmost inside nodes
- To output nodes in the search range
- test each node in P_{1}, P_{2} and report if in range
- go over all topmost inside nodes and report all nodes in their subtree

2D Range Tree Motivation

- Have a set of 2D points

$$
\text { - } \quad S=\{(1,5),(2,7),(3,1),(4,4),(5,13),(6,15)(7,11),(8,10),(9,6),(10,12),(11,8),(12,14),(13,2),(14,9),(15,16),(16,3)\}
$$

- Example of 2D range search
- BST-RangeSearch (T, 5, 14, 5, 9)
- find all points with $5 \leq x \leq 14$ and $5 \leq y \leq 9$
- Construct BST with x-coordinate key
- recall that points are in general positon, so all x-keys are distinct
- for any $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in our set of points, $x_{1} \neq x_{2}$
- can search efficiently based only on x-coordinate

2D Range Tree Motivation

- Consider $2 D$ range search BST-RangeSearch (T, 5, 14, 5, 9)
- Could first perform BST-RangeSearch $(T, 5,14)$
- let A be the set of nodes $B S T$-RangeSearch $(T, 5,14)$ returns
- $A=\{(10,12),(6,15),(5,13),(14,9),(8,10),(7,11),(9,6),(12,14),(11,8),(13,2)\}$
- let B be the set of nodes BST-RangeSearch $(T, 5,14,5,9)$ should return
- $B \subseteq A$
- Need to go over all nodes in A and check if their y-coordinate is in valid range, $O(|A|)$
- could be very inefficient
- for example, $|A|$ can be, say $\Theta(n)$ and $|B|$ could be O (1)
- $O(n)$, as bad as exhaustive search and worse than kd-trees search, $O(|B|+\sqrt{n})$

2D Range Tree Motivation

- Consider 2D range search BST-RangeSearch(T, 5, 14, 5, 9)
- First perform only partial BST-RangeSearch $(T, 5,14)$
- find boundary and topmost inside nodes, takes $O(\log n)$ time
- Next
- for boundary nodes, check if both x and y coordinates are in the range, takes $O(\log n)$ time as there are $O(\log n)$ boundary nodes
- inside nodes are stored in $O(\log n)$ subtrees, with a topmost inside node as a root of each subtree
- if we could search these subtrees, time would be very efficient
- however these subtrees do not support efficient search by y coordinate

2D Range Tree Motivation

- Need to search subtrees by y-coordinate, but they are x-coordinate based
- Brute-force solution
- need an associate balanced BST tree for each node v
- stores same items as the main (primary) subtree rooted at node v
- but key is y-coordinate

Range Tree in 'Full Glory'

2-dimensional Range Trees Full Definition

- balanced BST T storing S and uses x-coordinates as keys
- assume T is balanced, so height is $O(\log n)$
- Each node v of T stores an associated tree $T(v)$, which is a balanced BST
- let $S(v)$ be all descendants of v in T, including v
- $\quad T(v)$ stores $S(v)$ in BST, using y-coordinates as key
- note that v is not necessarily the root of $T(v)$

Range search in 2D Range Tree Overview

- RangeTree::RangeSearch $\left(T, x_{1}, x_{2}, y_{1}, y_{2}\right)$
- RangeTree::RangeSearch(T, 5, 14, 5, 9)

1. Perform modified BST-RangeSearch $(T, 5,14)$

- find boundary and topmost inside nodes, but do not go through the inside subtrees
- modified version takes $O(\log n)$ time
- does not visit all the nodes in valid range for BST-RangeSearch $(T, 5,14)$

2. Check if boundary nodes have valid x-coordinate and valid y-coordinate
3. For every topmost inside node v, search in associated tree BST::RangeSearch $(T(v), 5,9)$

Range Tree Range Search Example Finished

- RangeTree::RangeSearch($T, 5,14,5,9$)
- For every topmost inside node v, search in associated tree BST-RangeSearch $(T(v), 5,9)$

BST-RangeSearch $(T(12,14), 5,9)$

Range Tree Space Analysis

- Primary tree T uses $O(n)$ space
- For each v, associated tree $T(v)$ uses $O(|T(v)|)$ space
- Space for all associated trees is

$$
=\sum_{v \in T} \underbrace{\# \text { of ancestors of } v}_{\leq c \log n}
$$

$$
\leq \sum_{v \in T} c \log n=c n \log n
$$

- Space is $O(n \log n)$
\#of ancestors of v
- in the worst case, have $n / 2$ leaves at the last level, and space needed is $\Theta(n \log n)$

Range Trees: Dictionary Operations

- $\operatorname{Search}(x, y)$
- search by x coordinate in the primary tree T
- Insert (x, y)
- first, insert point by x-coordinate into the primary tree T
- then walk up to root and insert point by y-coordinate in all $T(v)$ of nodes v on path to root
- Delete
- analogous to insertion
- Problem
- want binary search trees to be balanced
- if we use AVL-trees, it makes insert/delete very slow
- rotations change primary tree structure and require rebuilding of associate trees
- instead of rotations, can allow certain imbalance, rebuild entire subtree if imbalance becomes too large
- no details

Range Trees: Range Search Runtime

- Find boundary nodes in the primary tree and check if keys are in the range
- $O(\log n)$
- Find topmost inside nodes in primary tree
- $O(\log n)$
- For each topmost inside node v, perform range search for y-range in associate tree

inside subtrees do not have any nodes in common
- $O(\log n)$ topmost inside nodes
- let s_{v} be \#items returned for the subtree of topmost node v
- running time for one search is $O\left(\log n+s_{v}\right)$

- Time for range search in range tree: $O\left(s+\log ^{2} n\right)$
- can make this even more efficient, but this is beyond the scope of the course

Range Trees: Higher Dimensions

- Range trees can be generalized to d-dimensional space
- space $O\left(n(\log n)^{d-1}\right)$
- construction time $O\left(n(\log n)^{d}\right)$
- range search time $\quad O\left(s+(\log n)^{d}\right)$
- Note: d is considered to be a constant
- Space-time tradeoff compared to kd trees

Outline

- Range-Searching in Dictionaries for Points
- Range Search
- Multi-Dimensional Data
- Ouadtrees
- kd-Trees
- Range Trees
- Conclusion

Range Search Data Structures Summary

- Quadtrees
- simple, easy to implement insert/delete (i.e. dynamic set of points)
- work well only if points evenly distributed
- wastes space, especially for higher than two dimensions
- kd-trees
- linear space
- range search is $O(s+\sqrt{n})$
- inserts/deletes destroy balance and range search time
- fix with occasional rebuilt
- Range trees
- fastest range search $O\left(s+\log ^{2} n\right)$
- wastes some space
- insert and delete destroy balance, but can fix this with occasional rebuilt

