CS 240 – Data Structures and Data Management

Module 10: Data Compression

O. Veksler

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2024

Outline

- Data Compression
 - Background
 - Single-Character Encodings
 - Huffman Codes
 - Run-Length Encoding
 - Lempel-Ziv-Welch
 - Combining Compression Schemes: bzip2
 - Burrows-Wheeler Transform

Outline

- Data Compression
 - Background
 - Single-Character Encodings
 - Huffman Codes
 - Run-Length Encoding
 - Lempel-Ziv-Welch
 - Combining Compression Schemes: bzip2
 - Burrows-Wheeler Transform

Data Compression Introduction

- The problem: How to store and transmit data efficiently?
- Source text:
 - original data, string S of characters from source alphabet Σ_S
- Coded text
 - encoded data, string C of characters from **coded alphabet** Σ_C
- Encoding [scheme]
 - algorithm mapping source text to coded text
- Decoding [scheme]
 - algorithm mapping coded text back to original source text

$$S \xrightarrow{\text{encode}} C \xrightarrow{\text{transmit}} C \xrightarrow{\text{decode}} S$$

- Source "text" can be any sort of data (not always text)
- Usually the coded alphabet is binary $\Sigma_C = \{0,1\}$
- Consider lossless compression: exact recovery of S from C

Judging Encoding Schemes

- Main objective: for data compression, want to minimize the size of the coded text
- Measure the compression ratio

$$\frac{|C| \cdot \log|\Sigma_C|}{|S| \cdot \log|\Sigma_S|}$$

Examples:

$$(73)_{10} \rightarrow (1001001)_2$$
 compression ratio $\frac{7 \cdot \log 2}{2 \cdot \log 10} \approx 1.05$ X
 $(127)_{10} \rightarrow (7F)_{16}$ compression ratio $\frac{2 \cdot \log 16}{3 \cdot \log 10} \approx 0.8$ \checkmark

- Want to achieve compression ration better than 1
 - smaller than 1
- Can achieve compression ratio of 1 by sending S without changes

Judging Encoding Schemes

- Also measure efficiency of encoding/decoding algorithms, as for any usual algorithm
 - always need time $\Omega(|S| + |C|)$
 - sometimes need more time
- Other possible goals, not studied in this course
 - reliability (e.g. error-correcting codes)
 - security (e.g. encryption)

Impossibility of Compressing

- Observation: No lossless encoding scheme can have compression ratio < 1 for all input strings
- Proof: (for $\Sigma_S = \Sigma_C = \{0,1\}$, by contradiction) Fix n, and assume all length n strings get shorter

- So impossible to provide good worst-case compression bounds
- However real-life data is usually far from random, it has some patterns that occur more frequently
 - can design compression schemes that work well for frequently occurring patterns

Detour: Streams

- Usually texts are huge and do not fit into computer memory
- Therefore usually store S and C as streams
 - input stream
 - read one character at a time
 - pop(), top(), isEmpty()
 - sometimes need reset() to start processing from the start
 - output stream
 - write one character at a time
 - append(), isEmpty()
- Advantage of streams
 - can start processing text while it is still being loaded
 - avoids needing to hold the entire text in memory at once

Outline

- Data Compression
 - Background
 - Single-Character Encodings
 - Huffman Codes
 - Run-Length Encoding
 - Lempel-Ziv-Welch
 - Combining Compression Schemes: bzip2
 - Burrows-Wheeler Transform

Character Encodings

• **Definition:** character encoding E (or single-character encoding) maps each character in the source alphabet to a *string* in coded alphabet

$$E: \Sigma_S \to \Sigma_C^*$$

- for $c \in \Sigma_S$, E(c) is called the *codeword* (or *code*) of c
- Two possibilities
 - 1. Fixed-length code: all codewords have the same length
 - compression ratio ≥ 1 (not good)
 - 2. Variable-length code: codewords may have different lengths

Fixed Length Character Encoding

Example: ASCII (American Standard Code for Information Interchange), 1963

$charin\Sigma_{\mathcal{S}}$	null	start of heading		• • •	0	1	 А	В	•••	~	delete
code	0	1	2		48	49	 65	66		126	127
code in binary	0000000	0000001	0000010		0110000	0110001	01000001	01000010		1111110	1111111

- Each codeword E(c) has length 7 bits
- Encoding/Decoding is easy: just concatenate/decode the next 7 bits
 - APPLE \leftrightarrow (65, 80, 80, 76, 69) \leftrightarrow 01000001 1010000 1010000 1001100 1000101
 - here |S| = 5, $|C| = 5 \cdot 7$, $|\Sigma_S| = 128$
- Standard in all computers and often our source alphabet
- Other (earlier) fixed-length codes: Baudot code, Murray code
- Fixed-length codes do not compress
 - let |E(c)| = b and assume binary coded alphabet

$$\frac{|C| \cdot \log|\Sigma_C|}{|S| \cdot \log|\Sigma_S|} = \frac{|C|}{b \cdot |C| \cdot \log 2^b} = 1$$

Better Idea: Variable-Length Codes

- Observation: Some alphabet letters occur more often than others
 - example: frequency of letters in typical English text

е	12.70%	d	4.25%	р	1.93%
t	9.06%	1	4.03%	b	1.49%
а	8.17%	C	2.78%	V	0.98%
0	7.51%	u	2.76%	k	0.77%
i	6.97%	m	2.41%	j	0.15%
n	6.75%	W	2.36%	X	0.15%
S	6.33%	f	2.23%	q	0.10%
h	6.09%	g	2.02%	Z	0.07%
r	5.99%	у	1.97%		

- Idea: use shorter codes for more frequent characters
 - as before, map source alphabet to codewords: $E: \Sigma_S \to \Sigma_C^*$
 - but not all codewords have the same length
 - this could make the coded text shorter

Variable-Length Codes

Example 1: Morse code

- Example 2: UTF-8 encoding of Unicode
 - there are roughly 150,000 Unicode characters
 - 1-4 bytes to encode any Unicode character

Encoding

- Assume we have some character encoding $E: \Sigma_S \to \Sigma_C^*$
- E is a dictionary with keys in Σ_S

```
singleChar::Encoding(E,S,C)
E: encoding dictionary, S: input stream with characters in \Sigma_S
C: output stream

while S is non-empty
w \leftarrow E.search(S.pop())
append each bit of w to C
```

$c \in \Sigma_S$	Ц	Α	E	N	0	T
E(c)	000	01	101	001	100	11

Decoding

- The decoding algorithm must map Σ_C^* to Σ_S
- The code must be *uniquely decodable*
 - false for Morse code as described

- Morse code uses 'end of character' pause to avoid ambiguity
- From now on only consider *prefix-free* codes *E*
 - no codeword is a prefix of another codeword
- Store codes in a *trie* with characters of Σ_S at the leaves

Do not need symbol \$, codewords are prefix-free by definition

Decode from a trie

■ Decode $1110000010101111 \rightarrow \top$

Decode from a trie

■ Decode $111000001010111 \rightarrow \top \bigcirc$

Decode from a trie

■ Decode $111000001010111 \rightarrow \top \bigcirc \sqcup$

Decode from a trie

- Decode $111000001010111 \rightarrow TO \sqcup EAT$
- Run-time: O(|C|)

Decoding of Prefix-Free Codes

Any prefix-free code is uniquely decodable

```
prefixFree::decoding(T, C, S)
T: trie of a prefix-free code, C: input-stream with characters in \Sigma_C
S: output-stream
    while C is non-empty // iterate over all codewords
       z \leftarrow T.root
       while z is not a leaf // read next codeword
              if C is empty or z has no child labelled C.top()
                      return "invalid encoding"
              z \leftarrow \text{child of } z \text{ that is labelled with } C.pop()
        S. append (character stored at z)
```

- Run-time: O(|C|)
- Detects if the encoding is invalid

Encoding from the Trie

Explained previously how to encode from a table

$c \in \Sigma_S$	Ш	Α	E	N	0	Т
E(c)	000	01	101	001	100	11

- Table wastes space, codewords can be quite long
- Better idea: store codewords via links to the trie leaves

Encoding from the Trie

Can encode directly from the trie *T*

```
prefixFree::encoding(T, S, C)
T: prefix-free code trie, S: input-stream with characters in \Sigma_S
          E \leftarrow \text{array of nodes in } T \text{ indexed by } \Sigma_S
          for all leaves l in T
                 E[\text{character at } l] \leftarrow l
```

while v is not the root

 $w \leftarrow \text{empty bitstring}; v \leftarrow E[S.pop()]$

w.prepend (character from v to its parent)

// now
$$w$$
 is the encoding of S

append each bit w of to C Run-time: O(|T| + |C|)

 $v \leftarrow \mathsf{parent}(v)$

- have to visit all trie nodes, and insert leaves into E
- if T has no nodes with one child
- $\#leaves -1 \ge \#leaves$
 - $|\Sigma_S|$ ·2 -1 \geq #internal nodes + #leaves = |T|
 - $O(|\Sigma_S| + |C|)$

 $C = 100 \ 001$

$$w = \Lambda$$

 $w = 0$

$$w = 00$$

$$w = 00$$
$$w = 100$$

$$C = 100$$

 $i = 1$ (letter N)

$$w = \Lambda$$

 $w = 1$

$$w = 01$$

w = 001

Outline

Data Compression

- Background
- Single-Character Encodings
- Huffman Codes
- Run-Length Encoding
- Lempel-Ziv-Welch
- Combining Compression Schemes: bzip2
- Burrows-Wheeler Transform

Huffman's Algorithm: Building the Best Trie

- How to determine the best try for a given source text S?
 - i.e. try giving shortest |C|
- Idea: infrequent characters should be far down in the trie

- Example text: GREENENERGY, $\Sigma_S = \{G, R, E, N, Y\}$
- Calculate character frequencies

- Put each character into its own trie (single node, height 0)
 - each trie has a frequency
 - initially, frequency is equal to its character frequency

2 4 G R E

- Example text: GREENENERGY, $\Sigma_S = \{G, R, E, N, Y\}$
- Calculate character frequencies

- Join two least frequent tries into a new trie
 - frequency of the new trie = sum of old trie frequencies

- Example text: GREENENERGY, $\Sigma_S = \{G, R, E, N, Y\}$
- Calculate character frequencies

- Join two least frequent tries into a new trie
 - frequency of the new trie = sum of old trie frequencies

- Example text: GREENENERGY, $\Sigma_S = \{G, R, E, N, Y\}$
- Calculate character frequencies

- Join two least frequent tries into a new trie
 - frequency of the new trie = sum of old trie frequencies

- Example text: GREENENERGY, $\Sigma_S = \{G, R, E, N, Y\}$
- Calculate character frequencies

- Join two least frequent tries into a new trie
 - frequency of the new trie = sum of old trie frequencies

- Example text: GREENENERGY, $\Sigma_S = \{G, R, E, N, Y\}$
- Calculate character frequencies

- Join two least frequent tries into a new trie
 - frequency of the new trie = sum of old trie frequencies

- Example text: GREENENERGY, $\Sigma_S = \{G, R, E, N, Y\}$
- Calculate character frequencies

- Join two least frequent tries into a new trie
 - frequency of the new trie = sum of old trie frequencies

- Example text: GREENENERGY, $\Sigma_S = \{G, R, E, N, Y\}$
- Calculate character frequencies

- Join two least frequent tries into a new trie
 - frequency of the new trie = sum of old trie frequencies

- Example text: GREENENERGY, $\Sigma_S = \{G, R, E, N, Y\}$
- Calculate character frequencies

Final Huffman tree

- GREENENERGY \rightarrow 000 10 01 01 11 01 10 000 001
- Compression ratio

$$\frac{25}{11 \cdot \log 5} \approx 97\%$$

Frequencies are not skewed enough to lead to good compression

Huffman Algorithm Summary

- Greedy algorithm: always pair up most frequent characters
 - 1) determine frequency of each character $c \in \Sigma$ in S
 - 2) for each $c \in \Sigma$, create trie of height 0 holding only c
 - call it c-trie
 - 3) assign weight to each trie
 - weight trie character

- new interior node added
- the new weight is the sum of merged tries weights
- corresponds to adding one bit to encoding of each character
- 5) repeat Steps 4 until there is only 1 trie left
 - this is D, the final decoder
- Min-heap for efficient implementation: step 4 is two delete-min one insert

Heap Storing Tries during Huffman Tree Construction

- (key,value) = (trie weight, link to trie)
- step 4 is two delete-mins, one insert

delete-min

Heap Storing Tries during Huffman Tree Construction

- (key,value) = (trie weight, link to trie)
- step 4 is two delete-mins, one insert

Heap Storing Tries during Huffman Tree Construction

- (key,value) = (trie weight, link to trie)
- step 4 is two delete-mins, one insert

Heap Storing Tries during Huffman Tree Construction

- (key,value) = (trie weight, link to trie)
- step 4 is two delete-mins, one insert

Huffman's Algorithm Pseudocode

```
Huffman::encoding(S,C)
S: input-stream (length n) with characters in \Sigma_S, C: output-stream, initially empty
        f \leftarrow \text{array indexed by } \Sigma_{S} initialized to 0
        while S is non-empty do increase f[S.pop()] by 1 // get frequencies
                                                                                             O(n)
        Q \leftarrow \text{min-oriented priority queue to store tries}
        for all c \in \Sigma_S with f[c] > 0
                                                                                             O(|\Sigma_S|\log|\Sigma_S|)
                  Q.insert(single-node trie for c, f[c])
        while Q.size() > 1
             (T_1, f_1) \leftarrow Q. deleteMin()
                                                                                             O(|\Sigma_S|\log|\Sigma_S|)
             (T_2, f_2) \leftarrow Q. deleteMin()
             Q.insert(trie with T_1, T_2 as subtries, f_1 + f_2)
        T \leftarrow Q.deleteMin() // trie for decoding
        reset input-stream S // read all of S, need to read again for encoding
       prefixFree::encoding(T, S, C) // perform actual encoding
```

■ Total time is $O(|\Sigma_S| \log |\Sigma_S| + |C|)$ ■ n < |C|

Huffman Coding Discussion

- We require $|\Sigma_S| \ge 2$
- The constructed trie is *optimal* in the sense that the coded text C is shortest among all prefix-free character encodings with $\Sigma_C = \{0, 1\}$
 - proof is in the course notes
- Constructed trie is not unique
 - so decoding trie must be transmitted along with the coded text
 - this may make encoding bigger than source text!
- Many variations
 - tie-breaking rules, estimate frequencies, adaptively change encoding, etc.
- Encoding must pass through stream twice
 - 1. to compute frequencies and to encode
 - 2. cannot use stream unless it can be reset
- Encoding runtime: $O(|\Sigma_S| \log |\Sigma_S| + |C|)$
- Decoding run-time: O(|C|)

Outline

Data Compression

- Background
- Single-Character Encodings
- Huffman Codes
- Run-Length Encoding
- Lempel-Ziv-Welch
- Combining Compression Schemes: bzip2
- Burrows-Wheeler Transform

Single-Character vs Multi-Character Encoding

Single character encoding: each source-text character receives one codeword

$$S = b$$
 a n a n a 01 1 11 1 11 1

Multi-character encoding: multiple source-text characters can receive one codeword

$$S = b \quad a \quad n \quad a \quad n \quad a$$

$$01 \quad 11 \quad 101$$

Run-Length Encoding

- RLE is an example of multi-character encoding
- Source alphabet and coded alphabet are both binary: $\Sigma = \{0, 1\}$
 - can be extended to non-binary alphabets
- Useful S has long runs of the same character: 00000 111 0000
- Dictionary is uniquely defined by algorithm
 - no need to store it explicitly

Run-Length Encoding

- Encoding idea
 - give the first bit of S (either 0 or 1)
 - then give a sequence of integers indicating run lengths
 - do not have to give the bit for runs since they alternate
- Example <u>00000</u> <u>111</u> <u>0000</u>
 - becomes: 0 5 3 4
- Need to encode run length in binary, how?
 - cannot use variable length binary encoding 10111100
 - do not know how to parse in individual run lengths
 - fixed length binary encoding (say 16 bits) wastes space, bad compression

Towards Prefix-free Encoding for Positive Integers

- To know where each number begins/ends, need to know number length
 - first say how many digits the number has
 - by printing as many zeros as the number of digits
 - then print the actual number

number		encoding
1		81
10		8010
11		8011
100		№00100
101		%00101

- The first zero is actually not necessary
 - # digits = #zeros + 1
 - get shorter encoding if remove the first zero

Prefix-free Encoding for Positive Integers

- Use Elias gamma code to encode k
 - $\lfloor \log k \rfloor$ copies of 0, followed by
 - binary representation of k (always starts with 1)

k	$\lfloor \log k \rfloor$	$m{k}$ in binary	encoding
1	0	1	1
2	1	10	010
3	1	11	011
4	2	100	00100
5	2	101	00101
6	2	110	00110

- Easy to decode
 - (number of zeros+1) tells you the length of k (in binary representation)
 - after zeros, read binary representation of k (it starts with 1)

k	$\lfloor \log k \rfloor$	k in binary	encoding
1	0	1	1
2	1	10	010
3	1	11	011
4	2	100	00100
5	2	101	00101
6	2	110	00110
7	2	111	00111

Encoding

$$C = 1$$

k	$\lfloor \log k \rfloor$	k in binary	encoding
1	0	1	1
2	1	10	010
3	1	11	011
4	2	100	00100
5	2	101	00101
6	2	110	00110
7	2	111	00111

Encoding

k = 7

C = 100111

k	[log k]	$m{k}$ in binary	encoding
1	0	1	1
2	1	10	010
3	1	11	011
4	2	100	00100
5	2	101	00101
6	2	110	00110
7	2	111	00111

Encoding

k = 2

 $C = 100111 \, 010$

k	[log k]	$m{k}$ in binary	encoding
1	0	1	1
2	1	10	010
3	1	11	011
4	2	100	00100
5	2	101	00101
6	2	110	00110
7	2	111	00111

Encoding

k = 1

C = 1001110101

k	[log <i>k</i>]	k in binary	encoding
1	0	1	1
2	1	10	010
3	1	11	011
4	2	100	00100
5	2	101	00101
6	2	110	00110
7	2	111	00111
20	4	10100	000010100

Encoding

k = 20

 $C = 1001110101 \, 000010100$

k	[log k]	k in binary	encoding
1	0	1	1
2	1	10	010
3	1	11	011
4	2	100	00100
5	2	101	00101
6	2	110	00110
7	2	111	00111
11	3	1011	0001011

Encoding

k = 11

C = 10011101010000101000001011

Compression ratio

26/41 ≈ **63**%

RLE Encoding

```
RLE::encoding(S,C)
S: input-stream of bits, C: output-stream
       b \leftarrow S.top()
       C.append(b) // C is initialized to the first bit of S
       while S is non-empty do
            k \leftarrow 1 // initialize run length
            while (S is non-empty and S. top() = b) //compute run length
                 k + +; S. pop()
           // compute Elias gamma code K (binary string) for k
            w \leftarrow \text{empty string}
            while (k > 1)
                  C.append(0) // 0 appended to output C directly
                  w.prepend(k mod 2) // K is built from last digit forwards
                  k \leftarrow |k/2|
            w.prepend(1) // the very first digit of K was not computed
            append each bit of w to C
           h \leftarrow 1 - h
```

 Recall that (# zeros+1) tells you the length of k in binary representation

Decoding

$$C = 00001101001001010$$
 $b = 0$
 $l = 4$
 $k = 13$
 $S = 000000000000$

k	[log k]	$m{k}$ in binary	encoding
1	0	1	1
2	1	10	010
3	1	11	011
4	2	100	00100
5	2	101	00101
6	2	110	00110
13	3	1101	0001101

Decoding

$$C = 00001101001001010$$

 $b = 1$
 $l = 3$
 $k = 4$

S = 0000000000001111

k	$\lfloor \log k \rfloor$	$m{k}$ in binary	encoding
1	0	1	1
2	1	10	010
3	1	11	011
4	2	100	00100
5	2	101	00101
6	2	110	00110
13	3	1101	0001101

Decoding

$$C = 00001101001001010$$
 $b = 0$
 $l = 1$
 $k = 1$
 $S = 00000000000011110$

k	$\lfloor \log k \rfloor$	k in binary	encoding
1	0	1	1
2	1	10	010
3	1	11	011
4	2	100	00100
5	2	101	00101
6	2	110	00110
13	3	1101	0001101

Decoding

$$C = 000011010010010$$

 $b = 1$

l = 2

k = 2

S = 0000000000001111011

k	$\lfloor \log k \rfloor$	$m{k}$ in binary	encoding
1	0	1	1
2	1	10	010
3	1	11	011
4	2	100	00100
5	2	101	00101
6	2	110	00110
13	3	1101	0001101

RLE Decoding

```
RLE::decoding(C,S)
C: input stream of bits, S: output-stream
    b \leftarrow C.pop() // bit-value for the first run
    while C is non-empty
             l \leftarrow 0 // length of base-2 number - 1
             while C.pop() = 0
                 l++
             k \leftarrow 1 // base-2 number converted
             for (j = 1 \text{ to } l) // translate k from binary string to integer
                   k \leftarrow k * 2 + C.pop()
             // if C runs out of bits then encoding was invalid
             for (j = 1 \text{ to } k)
                  S.append(b)
             b \leftarrow 1 - b // alternate bit-value
```

RLE Discussion

- Best compression (for most n) is for $S = 000 \dots 000$ of length n
 - compressed to $2[\log n] + 2 \in o(n)$ bits
 - 1 for the initial bit
 - $\lfloor \log n \rfloor$ zeros to encode the length of binary representation of integer n
 - $\lfloor \log n \rfloor + 1$ digits that represent n itself in binary
- Usually not that lucky
 - no compression until run-length $k \geq 6$
 - expansion when run-length k=2 or 4
- RLE was popular for fax-machines
- Can be adapted to larger alphabet sizes
 - but then the encoding for each run must also store the character
- Can be adapted to encode only runs of 0
 - used inside bzip2 (will see later)

Outline

Compression

- Encoding Basics
- Huffman Codes
- Run-Length Encoding
- Lempel-Ziv-Welch
- bzip2
- Burrows-Wheeler Transform

Longer Patterns in Input

- Huffman and RLE take advantage of frequent or repeated single characters
- Observation: certain substrings are much more frequent than others
- Examples
 - English text
 - most frequent digraphs: TH, ER, ON, AN, RE, HE, IN, ED, ND, HA
 - most frequent trigraphs: THE, AND, THA, ENT, ION, TIO, FOR, NDE
 - HTML
 - "<a href", "<img src", "
"
 - Video
 - repeated background between frames, shifted sub-image
 - Could find the most frequent substrings of length up to k and store them in a dictionary (in addition to characters, i.e. strings of length 1)

	null	start of heading	start of text	 А	 delete	er	in		ed	the
code	0	1	2	 65	 127	128	129	•••		255
code in binary	00000000	0000001	00000010	001000001	01111111	11000001	11000010		11111110	11111111

however, each text has its own set of most frequently occurring substrings

Lempel-Ziv-Welch Compression

- Ingredient 1 for Lempel-Ziv-Welch compression
 - encode characters and frequent substrings
 - discover and encode frequent substring as we process text
 - no need to know frequent substrings beforehand

Adaptive Dictionaries

- ASCII and RLE use fixed dictionaries
 - same dictionary for any text encoded
 - no need to pass dictionary to the decoder
- Huffman's dictionary is not fixed but it is static
 - dictionary is not fixed: each text has its own dictionary
 - dictionary is static: dictionary does not change for entire encoding/decoding
 - need to pass dictionary to the decoder
- Ingredient 2 for LZW: adaptive dictionary
 - dictionary constructed during encoding/decoding
 - no need to send dictionary with the encoding,
 - start with some initial fixed dictionary D_0
 - usually ASCII
 - at iteration $i \geq 0$, D_i is used to determine the *i*th output
 - after ith output (iteration i), update D_i to D_{i+1}
 - $D_{i+1} \leftarrow D_i.insert$ (new character combination)
 - decoder must know (i.e. be able to reconstruct from the coded text) how encoder changed the dictionary

LZW Encoding: Main Idea

- Iteration i of encoding
- Current $D_i = \{a:65, b:66, ab:140, bb:145, bbc:146\}$

$$S = abbbcbbad$$
 $C = 78 95 145$

- find longest substring that starts at current pointer and is in the dictionary
- encode 'bb' with 145
- $D_{i+1} = D_i .insert('bba', nextAvailableCodenumber)$
- 'bba' would have been useful at iteration i, so likely useful in the future
- After iteration i

$$D_{i+1} = \{a:65, b:66, ab:140, bb:145, bbc:146, bba:147\}$$

codenumber = codeword = code

Tries for LZW Encoding

- Store (string, codeword) pairs, with string being the key
- Variation of tries different from what we have seen before
- Trie stores codenumbers at all nodes (external and internal) except the root
 - works because a string is inserted only after all its prefixes are inserted
- Do not store the string key explicitly, store only the codenumber
 - read the string key corresponding to each codenumber from the edges

- Start dictionary D
 - ASCII characters
 - codes from 0 to 127
 - next inserted code will be 128
 - variable idx keeps track of next available codenumber
 - initialize idx = 128
- Text A N A N A N A N A

65

83

• idx = 129

■ Text A N A N A N

add to dictionary

65

Encoding

- Dictionary D
 - idx = 130

Text

A

Α

Α

N

Encoding

65

78

Ν

Dictionary D

Encoding

• idx = 131

add to dictionary

65

83

128

129

128

78

65

- Dictionary D
 - idx = 132

Text
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A</li

- Dictionary D
 - idx = 133

130

add to dictionary

131

Text
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 A
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N
 N</li

•
$$idx = 133$$

LZW Example

•
$$idx = 133$$

- Use fixed length (12 bits) per codenumber
 - 12 bit binary string representation for each code
 - total of 2^{12} = 4096 codesnumbers available during encoding
 - if you run out of codenumbers, stop inserting new elements in the dictionary

LZW encoding pseudocode

```
LZW::encoding(S,C)
S: input stream of characters, C: output-stream
       initialize dictionary D with ASCII in a trie
       idx \leftarrow 128
       while S is not empty do
           v \leftarrow \text{root of trie } D
           while S is non-empty and v has a child c labelled S. top()
                                                                                trie
                  v \leftarrow c
                                                                               search
                  S.pop()
           C. append (codenumber stored at v)
                                                                             new
          if S is non-empty
                                                                             dictionary
                  create child of v labelled S.top() with code idx
                                                                             entry
                  idx + +
```

- Running time is O(|S|)
 - assuming can look up child labeled with c in O(1) time
 - i.e. trie node stores children in an array

LZW Encoder vs Decoder

- For decoding, need a dictionary
- Construct a dictionary during decoding, imitating what encoder does
- But will be forced to be one step behind
 - at iteration i of decoding can reconstruct substring which encoder inserted into dictionary at iteration i-1
 - delay is due to not having access to the original text

Given encoding to decode back to the source text

65

78

128

130

78

129

- Build dictionary adaptively, while decoding
- Decoding starts with the same initial dictionary as encoding
 - use array instead of trie, need D that allows efficient search by code
- We will show the original text during decoding in this example, but just for reference
 - do not need original text to decode

ınıtı	al <i>D</i>
65	А
78	N
83	S

idx = 128

Α

Ν

Ν

Α

Λ

Ν

Α

- Encoding
- 65

Α

/

78

128

130

78

129

Decoding

iter
$$i = 0$$

	65	Α
	78	N
6	83	S
D =		
'		

idx = 128

- First step: s = D(65) = A
- Encoding iteration i = 0
 - looked ahead in the text, saw N, and added AN to the dictionary
- Decoding iteration i = 0
 - know text starts with A, but cannot look ahead as the text is not available
 - no new word added at iteration i = 0
 - keep track of s_{prev} = string decoded at previous iteration
 - s_{prev} is also string encoder encoded at previous iteration

Text

A N

- Encoding
- Decoding iter i = 1

	IN
65	78 i=1
Α	N

	65	Α
	78	N
D	83	S
D =	128	AN

idx = 129

- $s_{prev} = A$
 - string encoded/decoded at previous iteration
- First step: s = D(78) = N
- The first letter of s is exactly what the encoder looked ahead at during previous iteration!
- So at previous iteration, encoder added to the dictionary $s_{prev} + s[0]$

- Starting at iteration i = 1 of decoding
 - add $s_{prev} + s[0]$ to dictionary

LZW Decoding Example Continued

			1-1							
	Text	Α	N	A N	Α	N	Α	N	N	Α
•	Encoding	65	78	i=2 128		130		78	129	
	Decoding	Α	N	AN						

	65	A
	78	N
_	83	S
D =	128	AN
	129	NA

iter i = 2

$$idx = 130$$

- $s_{prev} = N$
 - string encoded/decoded at previous iteration
- First step: s = D(128) = AN
- Next step: add to dictionary $s_{prev} + s[0]$

$$N + A = NA$$

encoder added this string at previous iteration

iter
$$i = 3$$

	65	A
	78	N
.	83	S
D =	128	AN
	129	NA
	idx =	= 130

65

$$s_{prev} = AN$$

- string encoded/decoded at previous iteration
- First step: s = D(130) = ??? (code 130 is not in D)
- Dictionary is exactly one step behind at decoding
- Encoder added (s,130) to D at previous iteration
- What did the encoder add at the previous iteration?

$$s_{prev}^{\text{known}} + s[0] = s$$

$$s[0] = s$$

$$s[0] = s_{prev}[0] = A$$

$$ANA = s$$

N

Ν

Text	Α
------------------------	---

Encoding

■ Decoding A iter
$$i = 3$$

$$D = \begin{array}{|c|c|c|c|c|} \hline 65 & A \\ \hline 78 & N \\ \hline 83 & S \\ \hline 128 & AN \\ \hline 129 & NA \\ \hline \hline 130 & ANA \\ \hline \end{array}$$

$$idx = 131$$

General rule: if code C is not in D

•
$$s = s_{prev} + s_{prev} [0]$$

in our example, $s_{prev} = AN$

•
$$s = AN + A = ANA$$

- Now that we recovered s, continue as usual
- Add to dictionary $s_{prev} + s[0]$

Α

	Text	Α	N	A N	Α	N	Α	N	N A	1
•	Encoding	65	78	128		130		78	129	
•	Decoding iter $i = 4$	Α	N	AN		ANA		N		

65

$$idx = 132$$

•
$$s_{prev} = ANA$$

$$s = s_{prev} + s_{prev} [0]$$

• Add to dictionary $s_{prev} + s[0]$

•	Text	Α	N	A N	A N A	N	N A
	Encoding	65	78	128	130	78	129
•	Decoding	Α	N	AN	ANA	N	NA

iter i = 5

	65	Α
	78	N
.	83	S
D =	128	AN
	129	NA
	130	ANA
	131	ANAN

$$idx = 132$$

•
$$s_{prev} = N$$

■ If code *C* is not in *D*

$$s = s_{prev} + s_{prev} [0]$$

• Add to dictionary $s_{prev} + s[0]$

LZW decoding

- To save space, store new codes using its prefix code + one character
 - given a codenumber, can find corresponding string s in O(|s|) time

	65	А
	78	N
	83	S
D =	128	AN
	129	NA
	130	ANA
	131	ANAN

wasteful storage

Encoding: 98 97 114 128 114 97 131 134 129 101 135

	code	string (human)	string (implementation)
	97	Α	
	98	В	
	101	E	
D =	110	Ν	
next	114	R	
available	128		
code			
,			

Encoding: 98 97 114 128 114 97 131 134 129 101 135

Decoding: B

code	string (human)	string (implementation)
97	А	
98	В	
101	E	
110	N	
114	R	
128		

$$s = B$$

nothing added to dictionary at iteration 0

Encoding: 98 97 114 128 114 97 131 134 129 101 135

Decoding: B A

	code	string (human)	string (implementation)
	97	Α	
	98	В	
	101	E	
D =	110	N	
	114	R	
	128	BA	98, A

$$s_{prev} = {\rm B,} \ code_{prev} = 98$$

$$s = {\rm A}$$
 add to dictionary $s_{prev} + \ s[0] = {\rm BA}$

Encoding: 98 97 114 128 114 97 131 134 129 101 135

Decoding: B A R

	code	string (human)	string (implementation)
	97	Α	
	98	В	
	101	E	
D =	110	N	
	114	R	
	128	ВА	98, A
	129	AR	97, R

$$s_{prev} = {\rm A,} \ code_{prev} = 97$$

$$s = {\rm R}$$
 add to dictionary $s_{prev} + \ s[0] = {\rm AR}$

Encoding: 98 97 114 128 114 97 131 134 129 101 135

Decoding: B A R BA

	code	string (human)	string (implementation)
	97	Α	
	98	В	
	101	E	
D =	110	N	
	114	R	
	128	BA	98, A
	129	AR	97,R
	130	RB	114, B

$$s_{prev} = {\rm R,} \ code_{prev} = 114$$

$$s = {\rm BA}$$
 add to dictionary $s_{prev} + \ s[0] = {\rm RB}$

Encoding: 98 97 114 128 114 97 131 134 129 101 135

Decoding: B A R BA R

code	string (human)	string (implementation)
97	Α	
98	В	
101	E	
110	Ν	
114	R	
128	BA	98, A
129	AR	97,R
130	RB	114,B
131	BAR	128, R

$$s_{prev} = {\rm BA} \ , \ code_{prev} = 128$$

$$s = {\rm R}$$
 add to dictionary $s_{prev} + \ s[0] = {\rm BAR}$

Encoding: 98 97 114 128 114 97 131 134 129 101 135

Decoding: B A R BA R A

	code	string	string
	code	(human)	(implementation)
	97	Α	
	98	В	
	101	E	
D = 0	110	Ν	
	114	R	
	128	BA	98, A
	129	AR	97,R
	130	RB	114,B
	131	BAR	128,R
	132	RA	114, A

$$s_{prev} = R$$
, $code_{prev} = 114$ $s = A$

add to dictionary $s_{prev} + s[0] = RA$

17\M\ docoding Another Example

L	LZW decoding, Another Example											
Enc	oding:	98	97	114	128	114	97	131	134	129	101	135
Deg	oding:	В	Α	R	ВА	R	Α	BAR				
	code	string (human)	(impl	string ementa	ition)			.S		= A. <i>c</i> .	ode_{m}	$r_{ev} = 97$
	97	А						J	-	= BAR	-	ev
	98	В				244	to d	iction	ary s_{r}			— ΛR
	101	E				auu	to u	iction	ary s_p	rev [–]	3[Մ]	— AD
D =	110	N										
	114	R										
	128	ВА		98, A								
	129	AR		97,R								
	130	RB		114,B								
	131	BAR		128,R								
	132	RA		114,A								
	133	AB		97, B								

	_		'0''											
Enc	oding:	98	97	114	128	114	97	131	134	129	101	135		
Dec	coding:	В	Α	R	ВА	R	Α	BAR	BARE	3				
	code	string (human)	(impl	string lementa	ition)			S		= BAR	. cod	$e_{prev} = 131$		
	97	А							L	= ?	, 0000	oprev 101		
	98	В												
	101	E				if code is not in dictionary $s = s_{prev} + s_{prev} [0]$								
D =	110	N												
	114	R				S = BAR + B = BARB								
	128	ВА		98, A										
	129	AR		97,R		add	to d	iction	ary s_p	rev +	s[0]	= BARB		
	130	RB		114,B										
	131	BAR		128,R										
	132	RA		114,A										
	133	AB		97,B										
	134	BARB		131, B										

Enc	oding:	98	97	114	128	114	97	131	134	129	101	135
Deg	coding:	В	Α	R	BA	R	Α	BAR	BARB	AR		
	code	string (human)	(impl	string ementa	ition)			Sm	,,,, =	BARB	. code	Pprev =
	97	А						J p	s =		, • • • • •	prev
	98	В					: ا	- + :			[0]ء	D ^ C
	101	E				add	το αι	ctiona	ary s_{p_I}	rev +	S[0]	= BAF
D = 0	110	N										
	114	R										
	128	ВА		98, A								
	129	AR		97,R								
	130	RB		114,B								
	131	BAR		128,R								
	132	RA		114,A								
	133	AB		97,B								
	134	BARB		131,B								
	135	BARBA		134, A								

 $s_{prev} = BARB$, $code_{prev} = 134$ s = ARadd to dictionary $s_{prev} + s[0] = BARBA$

Enc	oding:	98	97	114	128	114	97	131	134	129	101	135
Deg	coding:	В	Α	R	BA	R	Α	BAR	BARB	AR	Е	
	code	string (human)	(impl	string ementa	ntion)			S	Sprev =	= AR.	$code_{r}$	=
	97	А							S =		, , , , , , , , , , , , , , , , , , ,	nev
	98	В				ماما	اء ما	: - + :		_	ر01ء	ADI
	101	Е				add	ιο α	iction	ary s_p	rev +	S[U]	= AK
O = [110	N										
	114	R										
	128	ВА		98, A								
	129	AR		97,R								
	130	RB		114,B								
	131	BAR		128,R								
	132	RA		114,A								
	133	AB		97,B								
	134	BARB		131,B								
	135	BARBA		134,A								
	136	ARE		129, E								

 $s_{prev} = AR$, $code_{prev} = 129$ s = Eadd to dictionary $s_{prev} + s[0] = ARE$

Enc	oding:	98	97	114	128	114	97 131 134 129 101 135
Deg	coding:	В	Α	R	BA	R	A BAR BARB AR E BARBA
	code	string (human)	(imp	string lementa	ition)		$s_{prev} = E$
	97	А					s = BARBA
	98	В					
	101	E					
D =	110	N					
	114	R					
	128	ВА		98, A			
	129	AR		97,R			
	130	RB		114,B			
	131	BAR		128,R			
	132	RA		114,A			
	133	AB		97,B			
	134	BARB		131,B			
	135	BARBA		134,A			
	136	ARE		129,E			

LZW Decoding Pseudocode

```
LZW::decoding(C,S)
C: input-stream of integers, S: output-stream
       D \leftarrow \text{dictionary that maps } \{0, \dots, 127\} \text{ to ASCII}
       idx \leftarrow 128 // next available code
       code \leftarrow C.pop(); s \leftarrow D.search(code); S.append(s)
       while there are more codes in C do
            s_{prev} \leftarrow s; code \leftarrow C.pop()
            if code < idx then
                s \leftarrow D.search(code) //code in D, look up string s
            if code = idx // code not in D yet, reconstruct string
                 s \leftarrow s_{prev} + s_{prev} [0]
            else Fail // invalid encoding
            append each character of s to S
             D.insert(idx, s_{prev} + s[0])
             idx ++
```

• Running time is O(|S|)

LZW Discussion

- Encoding is O(|S|) time, uses a trie of encoded substrings to store the dictionary
- Decoding is O(|S|) time, uses an array indexed by code numbers to store the dictionary
- Encoding and decoding need to go through the string only one time and do not need to see the whole string
 - can do compression while streaming the text
- Works badly if no repeated substrings
 - dictionary gets bigger, but no new useful substrings inserted
- In practice, compression rate is around 45% on English text

Lempel-Ziv Family

- Lempel-Ziv is a family of adaptive compression algorithms
 - LZ77 Original version ("sliding window")
 - Derivatives: LZSS, LZFG, LZRW, LZP, DEFLATE, . . .
 - DEFLATE used in (pk)zip, gzip, PNG
 - LZ78 Second (slightly improved) version
 - Derivatives LZW, LZMW, LZAP, LZY, . . .
 - LZW used in compress, GIF
 - patent issues

Outline

- Data Compression
 - Background
 - Single-Character Encodings
 - Huffman Codes
 - Run-Length Encoding
 - Lempel-Ziv-Welch
 - Combining Compression Schemes: bzip2
 - Burrows-Wheeler Transform

Overview of bzip2

- Idea: Combine multiple compression schemes and text transforms
 - text transform: change input text into a different text
 - ouput is not shorter, but likely to compresses better

Move-to-Front transform

- Recall the MTF heuristic
 - after an element is accessed, move it to array front

- Use this idea for MTF (move to front) text transformation
 - transformed text is likely to have text with repeated zeros and skewed frequencies

- Source alphabet Σ_S with size $|\Sigma_S| = m$
- Put alphabet in array L, initially in sorted order, but allow L to get unsorted

- This gives encoding dictionary L
 - single character encoding E
- Code of any character = index of array where character stored in dictionary L
 - E('B') = 1
 - E('H') = 7
- After each encoding, update *L* with Move-To-Front heuristic
- Coded alphabet is $\Sigma_C = \{0, 1, \dots, m-1\}$
- Change dictionary D dynamically (like LZW)
 - unlike LZW
 - no new items added to dictionary
 - codeword for one or more letters can change at each iteration

$$S = MISSISSIPPI$$

$$C =$$

$$S = MISSISSIPPI$$

$$C = 12$$

$$S = MISSISSIPPI$$

$$C = 129$$

$$C = 12918$$

$$S = MISSISSIPPI$$

$$C = 129180$$

$$C = 1291801$$

$$C = 1291801$$

$$C = 129180110$$

$$C = 12 \ 9 \ 18 \ 0 \ 1 \ 1 \ 0 \ 1 \ 16 \ 0 \ 1$$

- What does a run in C mean about the source S?
 - zeros tell us about consecutive character runs

$$S = C = 12 9 18 0 1 1 0 1 16 0 1$$

- Decoding is similar
- Start with the same dictionary D as encoding
- Apply the same MTF transformation at each iteration
 - dictionary D undergoes exactly the transformations when decoding
 - no delays, identical dictionary at encoding and decoding iteration i
 - can always decode original letter

$$S = M$$

 $C = 12 9 18 0 1 1 0 1 16 0 1$

$$S = M \mid S$$

 $C = 12918011011601$

Move-to-Front Transform: Properties

```
S = affs \$efIIIaaata MTF C = 13053435006006 Transformation
```

- If a character in S repeats k times, then C has a run of k-1 zeros
- C contains a lot of small numbers and a few big ones
- C has the same length as S, but better properties for encoding

Move-to-Front Encoding/Decoding Pseudocode

```
MTF::encoding(S,C)
L \leftarrow array \ with \ \Sigma_S \ in \ some \ pre-agreed, \ fixed \ order \ (i.e. \ ASCII)
while \ S \ is \ non-empty \ do
c \leftarrow S. \ pop()
i \leftarrow index \ such \ that \ L[i] = c
for \ j = i - 1 \ down \ to \ 0
swap \ L[j] \ and \ L[j + 1]
```

```
 \begin{aligned} \textit{MTF::decoding}(C,S) \\ L &\leftarrow \text{array with } \Sigma_S \text{ in some pre-agreed, fixed order (i.e. ASCII)} \\ \textbf{while } C &\text{ is non-empty } \textbf{do} \\ i &\leftarrow \text{next integer of } C \\ S. & append(L[i]) \\ \textbf{for } j = i-1 \text{ down to } 0 \\ &\text{swap } L[j] \text{ and } L[j+1] \end{aligned}
```

Move-to-Front Transform Summary

MTF text transform

- source alphabet is Σ_S with size $|\Sigma_S| = m$
- store alphabet in an array
 - code of any character = index of array where character stored
 - coded alphabet is $\Sigma_C = \{0,1,...,m-1\}$
- Dictionary is adaptive
 - nothing new is added, but meaning of codewords are changed
- MTF is an adaptive text-transform algorithm
 - it does not compress input
 - the output has the same length as input
 - but output has better properties for compression

Outline

Data Compression

- Background
- Single-Character Encodings
- Huffman Codes
- Run-Length Encoding
- Lempel-Ziv-Welch
- Combining Compression Schemes: bzip2
- Burrows-Wheeler Transform

Burrows-Wheeler Transform

- Transformation (not compression) algorithm
 - transforms source text to coded text with same letters but in different order
 - source and coded alphabets are the same
 - if original text had frequently occurring substrings, transformed text should have many runs of the same character
 - more suitable for MTF transformation

- Required: the source text S ends with end-of-word character \$
 - \$ occurs nowhere else in S
 - count \$ towards length of \$
- Based on cyclic shifts for a string
 - example stringabcde

- Formal definition
 - a cyclic shift of string X of length n is the concatenation of X[i+1...n-1] and X[0...i], for $0 \le i < n$

```
S = alfeatsalfalfa$
```

- Write all consecutive cyclic shifts
 - forms an array of shifts
 - last letter in any row is the first letter of the previous row

alfeatsalfalfa\$ lfeatsalfalfa\$a featsalfalfa\$al eatsalfalfa\$alf atsalfalfa\$alfe tsalfalfa\$alfea salfalfa\$alfeat alfalfa\$alfeats lfalfa\$alfeatsa falfa\$alfeatsal alfa\$alfeatsalf lfa\$alfeatsalfa fa\$alfeatsalfal a\$alfeatsalfalf \$alfeatsalfalfa

```
S = alfeatsalfalfa$
```

- Array of cyclic shifts
 - the first column is the original S

```
alfeatsalfalfa$
1 featsalfalfa$a
featsalfalfa$al
eatsalfalfa$alf
atsalfalfa$alfe
tsalfalfa$alfea
salfalfa$alfeat
alfalfa$alfeats
1 falfa$alfeatsa
falfa$alfeatsal
alfa$alfeatsalf
1 fa$alfeatsalfa
fa$alfeatsalfal
a $ a l f e a t s a l f a l f
$alfeatsalfalfa
```

$$S = a | 1 f e a t s a | 1 f a | 1 f a$$

- Array of cyclic shifts
- S has alf repeated 3 times
 - 3 different shifts start with If and end with a

```
alfeatsalfalfa$
lfeatsalfalfa$a
featsalfalfa$al
eatsalfalfa$alf
atsalfalfa$alfe
tsalfalfa$alfea
salfalfa$alfeat
alfalfa$alfeats
lfalfa$alfeatsa
falfa$alfeatsal
alfa$alfeatsalf
lfa$alfeatsalfa
fa$alfeatsalfal
a$alfeatsalfalf
$alfeatsalfalfa
```

$$S = a | featsa | fa | fa |$$

- Array of cyclic shifts
- Sort (lexographically) cyclic shifts
 - strict sorting order due to \$
- First column (of course) has many consecutive character runs
- But also the last column has many consecutive character runs
 - 3 different shifts start with If and end with a
 - sort groups If lines together, and they all end with a

sorted shifts array

\$alfeatsalfalfa a\$alfeatsalfalf alfa\$alfeatsalf alfalfa\$alfeats alfeatsalfalfa\$ atsalfalfa\$alfe eatsalfalfa\$alf fa\$alfeatsalfal falfa\$alfeatsal featsalfalfa\$al 1fa\$alfeatsalfa 1falfa\$alfeatsa lfeatsalfalfa\$a salfalfa\$alfeat tsalfalfa\$alfea

$$S = a | featsa | fa | fa |$$

- Array of cyclic shifts
- Sort (lexographically) cyclic shifts
 - strict sorting order due to '\$'
- First column (of course) has many consecutive character runs
- But also the last column has many consecutive character runs
 - 3 different shifts start with If and end with a
 - sort groups If lines together, and they all end with a
 - could happen that another pattern will interfere
 - hlfd broken into h and lfd
 - chance of interference is small

sorted shifts array

\$alfeatsalfalfa a\$alfeatsalfalf alfa\$alfeatsalf alfalfa\$alfeats alfeatsalfalfa\$ atsalfalfa\$alfe eatsalfalfa\$alf fa\$alfeatsalfal falfa\$alfeatsal featsalfalfa\$al 1fa\$alfeatsalfa 1falfa\$alfeatsa lfd lfeatsalfalfa\$a salfalfa\$alfeat tsalfalfa\$alfea

S = alfeatsalfalfa\$

- Sorted array of cyclic shifts
- First column is useless for encoding
 - cannot decode it
- Last column can be decoded
- BWT Encoding
 - last characters from sorted shifts
 - i.e. the last column

 $C = affs \leq flllaaata$

```
$alfeatsalfalfa
a$alfeatsalfalf
alfa$alfeatsalf
alfalfa$alfeats
alfeatsalfalfa$
atsalfalfa$alfe
eatsalfalfa$alf
fa$alfeatsalfa1
falfa$alfeatsa1
featsalfalfa$a1
lfa$alfeatsalfa
lfalfa$alfeatsa
lfeatsalfalfa$a
salfalfa$alfeat
tsalfalfa$alfea
```

S = alfeatsalfalfa

i	cyclic shift
0	alfeatsalfalfa\$
1	lfeatsalfalfa\$a
2	featsalfalfa\$al
3	eatsalfalfa\$alf
4	atsalfalfa\$alfe
5	tsalfalfa\$alfea
6	salfalfa\$alfeat
7	alfalfa\$alfeats
8	lfalfa\$alfeatsa
9	falfa\$alfeatsal
10	alfa\$alfeatsalf
11	lfa\$alfeatsalfa
12	fa\$alfeatsalfal
13	a\$alfeatsalfalf
14	\$alfeatsalfalfa

- Refer to a cyclic shift by the start index in the text, no need to write it out explicitly
- For sorting, letters after \$ do not matter

S = alfeatsalfalfa

i	cyclic shift
0	alfeatsalfalfa\$
1	lfeatsalfalfa\$a
2	featsalfalfa\$al
3	eatsalfalfa\$alf
4	atsalfalfa\$alfe
5	tsalfalfa\$alfea
6	salfalfa\$alfeat
7	alfalfa\$alfeats
8	lfalfa\$alfeatsa
9	falfa\$alfeatsal
10	alfa\$alfeatsalf
11	lfa\$alfeatsalfa
12	fa\$alfeatsalfal
13	a\$alfeatsalfalf
14	\$alfeatsalfalfa

- Refer to a cyclic shift by the start index in the text, no need to write it out explicitly
- For sorting, letters after \$ do not matter

lfa\$alfeatsalfa

lfalfa\$alfeatsa

S = alfeatsalfalfa

i	cyclic shift
0	alfeatsalfalfa\$
1	lfeatsalfalfa\$a
2	featsalfalfa\$al
3	eatsalfalfa\$alf
4	atsalfalfa\$alfe
5	tsalfalfa\$alfea
6	salfalfa\$alfeat
7	alfalfa\$alfeats
8	lfalfa\$alfeatsa
9	falfa\$alfeatsal
10	alfa\$alfeatsalf
11	lfa\$alfeatsalfa
12	fa\$alfeatsalfal
13	a\$alfeatsalfalf
14	\$alfeatsalfalfa

- Refer to a cyclic shift by the start index in the text, no need to write it out explicitly
- For sorting, letters after \$ do not matter
- This is the same as sorting suffixes of S
- We already know how to do it
 - exactly as for suffix arrays, with MSD-Radix-Sort
 - $O(n \log n)$ running time

S = alfeatsalfalfa\$

i	cyclic shift							
0	alfeatsalfalfa\$							
1	lfeatsalfalfa\$a							
2	featsalfalfa\$al							
3	eatsalfalfa\$alf							
4	atsalfalfa\$alfe							
5	tsalfalfa\$alfea							
6	salfalfa\$alfeat							
7	alfalfa\$alfeats							
8	lfalfa\$alfeatsa							
9	falfa\$alfeatsal							
10	alfa\$alfeatsalf							
11	lfa\$alfeatsalfa							
12	fa\$alfeatsalfal							
13	a\$alfeatsalfalf							
14	\$alfeatsalfalfa							

j	$A^{s}[j]$	sorted cyclic shifts
0	14	<pre>\$alfeatsalfalfa</pre>
1	13	a\$alfeatsalfalf
2	10	alfa\$alfeatsalf
3	7	alfalfa\$alfeats
4	0	alfeatsalfalfa\$
5	4	atsalfalfa\$alfe
6	3	eatsalfalfa\$alf
7	12	fa\$alfeatsalfal
8	9	falfa\$alfeatsal
9	2	featsalfalfa\$al
10	11	lfa\$alfeatsalfa
11	8	lfalfa\$alfeatsa
12	1	lfeatsalfalfa\$a
13	6	salfalfa\$alfeat
14	5	tsalfalfa\$alfea

• Can read BWT encoding from suffix array in O(n) time

cyclic shift starts at S[14] need last letter of that cyclic shift, it is at S[13]

a

• Can read BWT encoding from suffix array in O(n) time

$$S = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\ a & I & f & e & a & t & s & a & I & f & a & I & f & a & $\$ \end{bmatrix}$$

cyclic shift starts at S[13] need last letter of that cyclic shift, it is at S[12]

a f

• Can read BWT encoding from suffix array in O(n) time

$$S = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\ a & I & f & e & a & t & s & a & I & f & a & I & f & a & $$$

$$A^{S} = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\ 14 & 13 & 10 & 7 & 0 & 4 & 3 & 12 & 9 & 2 & 11 & 8 & 1 & 6 & 5 \end{bmatrix}$$

cyclic shift starts at S[10] need last letter of that cyclic shift, it is at S[9]

a f f

• Can read BWT encoding from suffix array in O(n) time

cyclic shift starts at S[5] need last letter of that cyclic shift, it is at S[4]

affs\$eflllaaata

Can read BWT encoding from suffix array in Q

$$S = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 \\ a & I & f & e & a & t \end{bmatrix}$$

cyclic shift starts at S[5]need last letter of that cyclic shift, it is at S[4]

affs\$eflll

6

S

7

a

8

9

• Can read BWT encoding from suffix array in O(n) time

cyclic shift starts at S[5]need last letter of that cyclic shift, it is at S[4]

affs\$eflllaaata

- Formula: $C[i] = S[A^s[i] 1]$
 - array is circular, i.e. S[-1] = S[n-1]

```
C = affs$eflllaaata
```

- In unsorted shifts array, first column is S
- So decoding = determining the first letter of each row in unsorted shifts array
 - when decoding, do not have unsorted shifts array

```
alfeatsalfalfa$
1 featsalfalfa$a
featsalfalfa$al
eatsalfalfa$alf
atsalfalfa$alfe
tsalfalfa$alfea
salfalfa$alfeat
alfalfa$alfeats
1 falfa$alfeatsa
falfa$alfeatsal
alfa$alfeatsalf
1 fa$alfeatsalfa
fa$alfeatsalfal
a$alfeatsalfalf
$alfeatsalfalfa
```

$$C = affs$$
eflllaaata

- Given C, last column of sorted shifts array
- Can reconstruct the first column of sorted shifts array by sorting
 - first column has exactly the same characters as the last column
 - and they must be sorted

•	•	•	•	•	•	•	•	а
•	•	•	•	•	•	•	•	f
•	•	•	•	•	•	•	•	f
•	•	•	•	•	•	•	•	S
•	•	•	•	•	•	•	•	\$
•	•	•	•	•	•	•	•	е
•	•	•	•	•	•	•	•	f
•	•	•	•	•	•	•	•	1
•	•	•	•	•	•	•	•	1
•	•	•	•	•	•	•	•	1
•	•	•	•	•	•	•	•	a
•	•	•	•	•	•	•	•	а
•	•	•	•	•	•	•	•	а
•	•	•	•	•	•	•	•	t
								a

C = affs\$eflllaaata

- Now have first and last columns of sorted shifts array
- Need the first column of unsorted shifts array

unsorted shifts array

```
S[0] alfeatsalfalfa$
S[1] lfeatsalfalfa$a
S[2] featsalfalfa$al
S[3] eatsalfalfa$alfa
```

- Where in sorted shifts array are rows 0, 1, ..., n-1 of unsorted shifts array?
- Where is row 0 of unsorted shifts array?

\$	•	•	•	•	•	•	•	a
a	•	•	•	•	•	•	•	f
а	•	•	•	•	•	•	•	f
а	•	•	•	•	•	•	•	S
a	•	•	•	•	•	•	•	\$
а	•	•	•	•	•	•	•	е
е		•	•	•	•	•	•	f
f		•	•	•	•	•	•	1
f		•	•	•	•	•	•	1
f	•	•	•	•	•	•	•	1
1		•	•	•	•	•	•	а
1	•	•	•	•	•	•	•	а
1	•	•	•	•	•	•	•	а
S	•	•	•	•	•	•	•	t
t	•	•	•	•	•	•	•	а

```
C = affs$eflllaaata
```

- Now have first and last columns of sorted shifts array
- Need the first column of unsorted shifts array

unsorted shifts array

```
S[0] alfeatsalfalfa$
S[1] lfeatsalfalfa$a
S[2] featsalfalfa$al
S[3] eatsalfalfa$alfa
```

- Where in sorted shifts array are rows 0, 1, ..., n-1 of unsorted shifts array?
- Where is row 0 of unsorted shifts array?
 - must end with \$

1.									
\$	•	•	•	•	•	•	•	a	
a	•	•	•	•	•	•	•	f	
а	•	•	•	•	•	•	•	f	
а	•	•	•	•	•	•	•	S	
a	•	•	•	•	•	•	•	\$	row 0
а	•	•	•	•	•	•	•	е	
е	•	•	•	•	•	•	•	f	
f	•	•	•	•	•	•	•	1	
f	•	•	•	•	•	•	•	1	
f	•	•	•	•	•	•	•	1	
1	•	•	•	•	•	•	•	a	
1	•	•	•	•	•	•	•	a	
1	•	•	•	•	•	•	•	а	
S	•	•	•	•	•	•	•	t	
t	•	•	•	•	•	•	•	а	

$$C = affs$$
\$eflllaaata $S = a$

- Row 0 of unsorted shifts starts with a
- Therefore string S starts with a
- Where is row 1 of unsorted shifts array?

unsorted shifts array

```
alfeatsalfalfa$
row ends with
first letter of
previous row

alfeatsalfalfa$

featsalfalfa$a

featsalfalfa$a1

eatsalfalfa$a1
```

- Row 1 ends with the first letter of row 0
 - with a in our example

\$	•	•	•	•	•	•	•	a	
а	•	•	•	•	•	•	•	f	
а	•	•	•	•	•	•	•	f	
a	•	•	•	•	•	•	•	S	
a	•	•	•	•	•	•	•	\$	row 0
а	•	•	•	•	•	•	•	е	
е	•	•	•	•	•	•	•	f	
f	•	•	•	•	•		•	1	
f	•	•	•	•	•	•	•	1	
f	•	•	•	•	•	•	•	1	
1	•	•	•	•	•	•	•	a	
1	•	•	•	•	•	•	•	a	
1	•	•	•	•	•	•	•	a	
S	•	•	•	•	•	•	•	t	
t	•	•	•	•	•	•	•	a	

Row 1 of unsorted shifts array ends with a

_									
\$	•	•	•	•	•	•	•	a	
а	•	•	•	•	•	•	•	f	
a	•	•	•	•	•	•	•	f	
а	•	•	•	•	•	•	•	S	
a	•	•	•	•	•	•	•	\$	row 0
а	•	•	•	•	•	•	•	е	
е	•	•	•	•	•	•	•	f	
f	•	•	•	•	•	•	•	1	
f	•	•	•	•	•	•	•	1	
f	•		•	•	•	•	•	1	
1	•	•	•	•	•	•	•	a	
1	•	•	•	•	•	•	•	а	
1	•	•	•	•	•	•	•	a	
S	•	•	•	•	•	•	•	t	
t	•	•	•	•	•	•	•	а	

- Row 1 of unsorted shifts array ends with a
- Multiple rows end with a, which one is row 1 of unsorted shifts?
 - row 1 is a cyclic shift by one of row 0

```
$ . . . . . . a ?
a....f
a....f
a . . . . . . s
a . . . . . . . $ row 0
a . . . . . e
e....f
f . . . . . . 1
f.....
f.....
l.....a ?
l . . . . . . a
1 . . . . . . a
s....t
t....a ?
```

- Multiple rows end with a, which one is row 1 of unsorted shifts?
 - row 1 is a cyclic shift by one of row 0
- Rows that end with a are cyclic shifts by one of rows that start with a
- Rows that start with a appear in exactly the same order as their cyclic shifts by 1 (i.e. rows that end with a)

```
$alfeatsalfalfa
a$alfeatsalfalf
alfa$alfeatsalf
alfalfa$alfeats
alfeatsalfalfa$row0
atsalfalfa$alfe
eatsalfalfa$alf
fa$alfeatsalfal
falfa$alfeatsal
featsalfalfa$al
lfa$alfeatsalfa
lfalfa$alfeatsa
lfeatsalfalfa$a
salfalfa$alfeat
tsalfalfa$alfea
```

for both group of patterns, sorting does not depend on a, and all other letters are the same between these two groups

```
rows starting with a
 a$alfeatsalfalf
 alfa$alfeatsalf
 alfalfa$alfeats
 atsalfalfa$alfe
row 0 of unsorted shifts is #4
```

```
their cyclic shifts by 1
```

```
$alfeatsalfalfa
                  lfa$alfeatsalfa
                 lfalfa$alfeatsa
alfeatsalfalfa$ lfeatsalfalfa$
                   tsalfalfa$alfe
```

its cyclic shift by one is also #4

- Multiple rows end with a, which one is row 1 of unsorted shifts?
 - row 1 is a cyclic shift by one of row 0
- Rows that end with a are cyclic shifts by one of rows that start with a
- Rows that start with a appear in exactly the same order as their cyclic shifts by 1 (i.e. rows that end with a)
- But direct 'counting' takes O(n) to find row 1

```
$alfeatsalfalfa 1
1 a$alfeatsalfalf
2 alfa$alfeatsalf
3 alfalfa$alfeats
4 alfeatsalfalfa$ row 0
 atsalfalfa$alfe
 eatsalfalfa$alf
 fa$alfeatsalfal
 falfa$alfeatsal
 featsalfalfa$al
 lfa$alfeatsalfa2
 lfalfa$alfeatsa3
 lfeatsalfalfa$a 4 row 1
 salfalfa$alfeat
 tsalfalfa$alfea
```

- Form KVP=(letter, row) in the last column, and sort KVPs using stable sort
 - bucket sort, $O(n + |\Sigma_S|)$

```
. . . . . . . . . . a , 0
. . . . . . . . . . . f , 1
. . . . . . . . . . f , 2
. . . . . . . . . . . . . . . . 3
. . . . . . . . . . e , 5
. . . . . . . . . . f , 6
· · · · · · · · · 1 , 9
. . . . . . . . . . a , 10
. . . . . . . . . . . a , 11
. . . . . . . . . . a , 1 2
. . . . . . . . . . . t , 13
. . . . . . . . . . . a , 1 4
```

sorted shifts array

- Form KVP=(letter, row) in the last column, and sort KVPs using stable sort
 - bucket sort, $O(n + |\Sigma_S|)$
- Equal letters stay in the same relative order because we used stable sort
- Each letter in the first column 'remembers' which row (before sorting) it came from
- Row number read in constant time!

#4 among all rows starting with a

#4 among all rows starting with a

	\$,	4	•	•	•	•	•	•	•	a	,	0	
	a	"	0	•	•	•	•	•	•	•	f	,	1	
	a	,	1	0	•	•	•	•	•	•	f	,	2	
	a	"	1	1	•	•	•	•	•	•	S	,	3	
	a	"	1	2	•	•	•	•	•	•	\$,	4	row 0
/	a	,	1	4	•	•	•	•	•	•	е	,	5	
	е	,	5	•	•	•	•	•	•	•	f	,	6	
	f	,	1	•	•	•	•	•	•	•	1	,	7	
	f	,	2	•	•	•	•	•	•	•	1	,	8	
	f	,	6	•	•	•	•	•	•	•	1	,	9	
	1	,	7	•	•	•	•	•	•	•	a	"	1	0
	1	,	8	•	•	•	•	•	•	•	a	,	1	1
A	1	,	9	•	•	•	•	•	•	•	a	"	1	2 row 1
	S	,	3	•	•	•	•	•	•	•	t	,	1	3
	t	,	1	3	•	•	•	•	•	•	a	"	1	4

sorted shifts array

```
C = affs$eflllaaataS = a
```

Multiple rows end with a, which one is row 1 of unsorted shifts?

```
$,4....a,0
     a, 0....f, 1
      a, 10....f, 2
      a, 11....s, 3
     a,12)....$,4
                    row 0
      e,5...f,6
      f, 2...\....8
      1,7.....a,10
     1,8...\a,11
S[1] = 1 \leftarrow 1, 9 . . . . . . . . . a , 1 2 row 1
      s, 3....t, 13
     t,13....a,14
```

```
$,4....a,0
C = affs$eflllaaata
                       a, 0....f, 1
S = a 1 f
                       a, 10....f, 2
                       a, 11....s, 3
                                          row 0
                       a, 12....$, 4
                       a, 14...e, 5
                       e,5....f,6
                       S[2] = \mathbf{f} \leftarrow \mathbf{f} , 6 \dots \dots , \mathbf{1} , 9
                                          row 2
                       1,7.....a,10
                        , 8 . . / . . . a , 1 1
                              . . . . . a , 1 2 row 1
                       s,3....t,13
                       t, 13....a, 14
```

```
$,4....a,0
C = affs$eflllaaata
                    a, 0....f, 1
S = alf e
                    a, 10....f, 2
                    a, 11....s, 3
                                   row 0
                    a, 12....$, 4
                    a, 14...e, 5
                                   row 3
              S[3] = e \leftarrow e, 5...., f, 6
                    f, 1..., 7
                   row 2
                    1,7....a,10
                    1,8....a,11
                    1,9....a,12 row 1
                    s,3....t,13
                    t, 13....a, 14
```

```
$,4....a,0
C = affs$eflllaaata
                   a, 0....f, 1
S = alfea
                   a,10...f,2
                   a, 11....s, 3
                                   row 0
                   a,12...$,4
                                   row 4
             S[4] = \mathbf{a} \leftarrow \mathbf{a}, 14 \dots \mathbf{e}, 5
                   e,5....f,6
                                   row 3
                   row 2
                   1,7....a,10
                   1,8....a,11
                   1,9....a,12 row 1
                   s,3....t,13
                   t, 13....a, 14
```

$\mathcal{C}=$ affs\$eflllaaata S=alfeatsalfalfa\$

```
$,4....a,0
              row 14
a, 0....f, 1
              row 13
              row 10
a, 10....f, 2
              row 7
a, 11....s, 3
              row 0
a, 12....$, 4
              row 4
a, 14...e, 5
              row 3
e,5....f,6
              row 12
row 9
row 2
row 11
1,7....a,10
              row 8
1,8....a,11
              row 1
1,9....a,12
s, 3....t, 13
t, 13....a, 14 row 5
```

BWT Decoding Pseudocode

```
BWT::decoding(C,S)
\mathit{C}: string of characters over alphabet \Sigma_{C}, one of which is $
S: output stream
     initialize array A // leftmost column
     for all indices i of C
           A[i] \leftarrow (C[i], i) // store character and index
     stably sort A by character (the first aspect)
     for all indices j of C // find $
         if C[j] = $ break
     do
          S. append (character stored in A[j])
          j \leftarrow \text{index stored in } A|j|
     while appended character is not $
```

What sorting algorithm would you use?

BWT and bzip2 Discussion

BWT

- encoding cost
 - $O(n \log n)$ with special sorting algorithm
 - read encoding from the suffix array
- decoding cost
 - $O(n + |\Sigma_S|)$
 - faster than encoding
- encoding and decoding both use O(n) space
- they need all of the text (no streaming possible)
- can use on blocks of text (block compression method)

bzip2

- encoding cost: $O(n [\log n + |\Sigma|])$ with a big multiplicative constant
- decoding cost: $O(n|\Sigma|)$ with a big multiplicative constant
- tends to be slower than other methods but gives better compression

Compression Summary

Huffman	Run-length encoding	Lempel-Ziv- Welch	bzip2 (uses Burrows-Wheeler)	
variable-length	variable-length	fixed-length	multi-step	
single-character	multi-character	multi-character	multi-step	
2-pass, must send dictionary	1-pass	1-pass	not streamable	
optimal 01-prefix- code requires uneven fre- quencies rarely used directly	good on long runs (e.g., pictures) requires runs rarely used directly	good on English text requires repeated substrings frequently used	better on English text requires repeated substrings used but slow	
part of pkzip, JPEG, MP3	fax machines, TIFF	GIF, some variants of PDF, compress	bzip2 and variants	