
CS 240 – Data Structures and Data Management

Module 11: External Memory

O. Veksler

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2024

Outline

 External Memory
 Motivation

 Stream based algorithms

 External dictionaries

 2-4 Trees

 red-black trees

 a-b Trees

 B-Trees

Outline

 External Memory
 Motivation

 Stream based algorithms

 External dictionaries

 2-4 Trees

 red-black trees

 (a, b)-Trees

 B-Trees

Different levels of memory
 RAM model: access to any memory location takes constant time

 not realistic

 Current architectures

 registers: super fast, very small

 cache L1, L2: very fast, less small

 main memory: fast, large

 disk or cloud: slow, very large

 How to adapt algorithms to take memory hierarchy into consideration?

 desirable to minimize transfer between slow/fast memory

 Define computer model that models hierarchy across which must transfer

 focus on 2 levels of hierarchy: main (internal) memory and disk or cloud
(external) memory

 main memory: fast, large

 disk or cloud: slow, very large

 accessing a single location in external memory automatically loads a whole
block (or “page”)

 one block access can take as much time as executing 100,000 CPU
instructions

 need to care about the number of block accesses

External-Memory Model (EMM)

CPU

transfer in blocks of 𝐵 cells (slow)

 New cost of computation: number of blocks transferred (or ‘probes’, ‘disk transfers’, ‘page
loads’) between internal and external memory

 We will revisit ADTs/problems with the objective of minimizing block transfers

internal memory – size M

. . .

external memory – size unbounded. Store input (size 𝑛) here

fast random access

𝐵 is typically from 1024 to 8192

 Algorithm 1

1,000 CPU instructions + 1,000 block transfers

 Algorithm 2

10,000 CPU instructions + 10 block transfers

dominating
factors

= 1,000+1,000⋅100,000 = 103 + 108

= 10,000+10⋅100,000 = 104 + 106

Suppose time for one block
transfer = time for 100,000 CPU
instructions

Outline

 External Memory
 Motivation

 Stream based algorithms

 External dictionaries

 2-4 Trees

 red-black trees

 (a, b)-Trees

 B-Trees

Stream Based Algorithms in Internal Memory
 Studied algorithms that handle input/output with streams

 access only top item in input stream, append only to tail of output stream

* * * * *input output
top tail

 Repeat

1. take item off top of the input

2. process item

3. put the result of processing at the tail of output

CPU

Stream Based Algorithms in Internal Memory

* * * * *input output

process *

*

CPU

 Studied algorithms that handle input/output with streams
 access only top item in input stream, append only to tail of output stream

 Repeat

1. take item off top of the input

2. process item

3. put the result of processing at the tail of output

Stream Based Algorithms in Internal Memory

* * * *input output **

CPU
process *

 Studied algorithms that handle input/output with streams
 access only top item in input stream, append only to tail of output stream

 Repeat

1. take item off top of the input

2. process item

3. put the result of processing at the tail of output

Stream Based Algorithms in Internal Memory

* * *input output ***

CPU
process *

 Studied algorithms that handle input/output with streams
 access only top item in input stream, append only to tail of output stream

 Repeat

1. take item off top of the input

2. process item

3. put the result of processing at the tail of output

Stream Based Algorithms in Internal Memory

* *input output ****

CPU
process *

 Studied algorithms that handle input/output with streams
 access only top item in input stream, append only to tail of output stream

 Repeat

1. take item off top of the input

2. process item

3. put the result of processing at the tail of output

Stream Based Algorithms in Internal Memory

*input output *****

CPU
process *

 Studied algorithms that handle input/output with streams
 access only top item in input stream, append only to tail of output stream

 Repeat

1. take item off top of the input

2. process item

3. put the result of processing at the tail of output

Stream Based Algorithms in External Memory

* * * * * * * * * *

External Memory

input outputtop tail

Internal Memory

CPU

input block output block

 Data in external memory has to be placed in internal memory before it can be processed

 Idea: perform the same algorithm as before, but in “block-wise” manner
 have one block for input, one block for output in internal memory

block

 transfer a block (size 𝐵) to internal memory, process it as before, store result in output block

 when output stream is of size 𝐵 (full block), transfer it to external memory

 when current block is in internal memory is fully processed, transfer next unprocessed block
from external memory

Stream Based Algorithms in External Memory

* * * * * * * * * *

External Memory

input output

Internal Memory

CPU

input block output block

first block

* * * * *

process *

*

Stream Based Algorithms in External Memory

* * * * * * * * * *

External Memory

input output

Internal Memory

CPU

input block output block

first block

* * * *

process *

**

Stream Based Algorithms in External Memory

* * * * * * * * * *

External Memory

input output

Internal Memory

CPU

input block output block

first block

* * *

process *

Stream Based Algorithms in External Memory

* * * * * * * * * *

External Memory

input output

Internal Memory

CPU

input block output block

first block

* *

process *

Stream Based Algorithms in External Memory

* * * * * * * * * *

External Memory

input output

Internal Memory

CPU

input block output block

first block

* *****

output block is full,
transfer to external

memory

Stream Based Algorithms in External Memory

* * * * * * * * * * * * * * *

External Memory

input output

Internal Memory

CPU

input block output block

first block

*

input block is empty,
transfer new input block
from external memory

Stream Based Algorithms in External Memory

* * * * * * * * * * * * * * *

External Memory

input output

Internal Memory

CPU

input block output block

next block

** * * * *

first block

Stream Based Algorithms in External Memory

* * * * * * * * * * * * * * *

External Memory

input output

Internal Memory

CPU

input block output block

next block

* * * * * *

output block is full,
transfer to external

memory

Stream Based Algorithms in External Memory

* * * * * * * * * * * * * * * * * * * *

External Memory

input output

Internal Memory

CPU

input block output block

next block

*

 Running time (recall that we only count the block transfers now)

 input stream:
𝑛

𝐵
block transfers to read input of size 𝑛

 output stream:
𝑠

𝐵
block transfers to write output of size 𝑠

 Running time is automatically as efficient as possible for external memory

 any algorithm needs at least
𝑛

𝐵
block transfers to read input of size 𝑛 and

𝑠

𝐵
block

transfers to write output of size 𝑠

Stream Based Algorithms in External Memory

 Methods below use stream input/output model, therefore need Θ
𝑛

𝐵
block

transfers, assuming output size is 𝑂(𝑛)
 Pattern matching: Karp-Rabin, Knuth-Morris-Pratt, Boyer-Moore

 assuming pattern 𝑃 fits into internal memory

 Text compression: Huffman, run-length encoding, Lempel-Ziv-Welch

 Sorting: merge-sort can be implemented with 𝑂
𝑛

𝐵
log 𝑛 block transfers

 Bzip2 cannot be streamed as we described
 can compress in ‘blocks’

 not as good as the whole text compression, but better than
nothing

Outline

 External Memory
 Motivation

 Stream based algorithms

 External dictionaries

 2-4 Trees

 red-black trees

 (a, b)-Trees

 B-Trees

Dictionaries in External Memory: Motivation

 AVL tree based dictionary implementations
have poor memory locality

 ‘nearby’ tree nodes are unlikely to be
in the same block

7

2

4

9

3

1

5

8 10

AVL tree
block 1

block 10

block 7

block 5

 In an AVL tree Θ(log 𝑛) blocks are loaded in the worst case

 Idea: allow trees that store multiple items per node

 Many items per node ⟹ smaller height ⟹ fewer block transfers

 suppose store 𝑛 = 250 items total, and 𝐵 = 215 items in each node

 tree height is log𝐵 𝑛 =
50

15
=
log2 𝑛

log2 𝐵

 15 times less block transfers

 First consider a special case: 2-4 trees

 2-4 trees also used for dictionaries in internal memory

 may be even faster than AVL-trees

Outline

 External Memory
 Motivation

 Stream based algorithms

 External dictionaries

 2-4 Trees

 red-black trees

 (a, b)-Trees

 B-Trees

2-4 Trees Motivation

 Binary Search Tree supports efficient
search with special key ordering

key 𝑘1 key 𝑘2 key 𝑘3

keys < 𝑘1 𝑘1< keys < 𝑘2 𝑘2< keys < 𝑘3 keys > 𝑘3

key 𝑘

keys < 𝑘

𝑇0

keys > 𝑘

𝑇1

 Need nodes that store more than one key

 how to support efficient search?

 Need additional properties to ensure tree is balanced and therefore insert,
delete are efficient

2-4 Trees

 Structural properties

 Every node is either
 1-node: one KVP and two subtrees (possibly empty), or

 2-node: two KVPs and three subtrees (possibly empty), or

 3-node: three KVPs and four subtrees (possibly empty)

𝑇0 𝑇1 𝑇2 𝑇3

5 10 12

∅ ∅ ∅

11

∅ ∅ ∅ ∅ ∅ ∅

3 4 13 14 156 8

∅ ∅ ∅

1-node

3-node

3-node2-node 2-node

empty subtrees

 allowing 3 types of nodes simplifies insertion/deletion

 All empty subtrees are at the same level

 necessary for ensuring height is logarithmic in the number of KVP stored

 Order property: keys at any node are between the keys in the subtrees

subtree
immediately to the

right of 𝑘2

subtree
immediately to

the left of 𝑘2

key 𝑘1 key 𝑘2 key 𝑘3

keys < 𝑘1 𝑘1< keys < 𝑘2 𝑘2< keys < 𝑘3 keys > 𝑘3

key-subtree list of the node
< 𝑇0, 𝑘1, 𝑇1, 𝑘2, 𝑇2, 𝑘3, 𝑇3, 𝑘1 >

2-4 Tree Example

 Often do not even show empty subtrees
5 10 12

113 4 13 14 156 8

 Empty subtrees are not part of height
computation

 Will prove height is O(log 𝑛) later, when we talk about (a,b)-trees

 2-4 tree is a special type of (a,b)-tree

5 10 12

∅ ∅ ∅

11

∅ ∅ ∅ ∅ ∅ ∅

3 4 13 14 156 8

∅ ∅ ∅

tree of height 1

2-4 Tree: Search Example

5 10 12

∅ ∅ ∅

11

∅ ∅ ∅ ∅ ∅ ∅

3 4 13 14 166 8

∅ ∅ ∅

 Search

 similar to search in BST

 search(𝑘) compares key 𝑘 to 𝑘1, 𝑘2 , 𝑘3, and either finds 𝑘 among 𝑘1, 𝑘2 ,
𝑘3 or figures out which subtree to recurse into

 if key is not in tree, search returns parent of empty tree where search stops

 key can be inserted at that node

 search(15)

not found

returned node

2-4 Tree operations

24Tree::search(𝑘, 𝑣 ←root, 𝑝 ←empty subtree)

𝑘: key to search, 𝑣: node where we search; 𝑝: parent of 𝑣

if 𝑣 represents empty subtree

return “not found, would be in 𝑝”

let < 𝑇0, 𝑘1, . . . , 𝑘𝑑 , 𝑇𝑑 > be key-subtrees list at 𝑣

if 𝑘 ≥ 𝑘1

𝑖 ← maximal index such that 𝑘𝑖 ≤ 𝑘

if 𝑘𝑖 = 𝑘

return “at 𝑖th key in 𝑣 ”

else 24Tree::search(𝑘, 𝑇𝑖 , 𝑣)

else 24Tree::search(𝑘, 𝑇0, 𝑣)

Example: 2-4 tree Insert

 Example: 24TreeInsert(9)

5 10

∅ ∅ ∅

11

∅ ∅

3 4 6 8

∅ ∅ ∅

node can hold one more item,
so it’s tempting to insert 9 in it

5 9 10

∅ ∅ ∅

11

∅ ∅

3 4 6 8

∅ ∅ ∅

however, need 1 more subtree,
since node has 3 keys now!

∅

adding an empty subtree as the 4th

subtree does not work, as all empty
subtrees must be at the same level

Example: 2-4 tree Insert

 Example: 24TreeInsert(9)

 first step: 24Tree::search(9)

5 10

∅ ∅ ∅

11

∅ ∅

3 4

∅ ∅ ∅

6 86 8

Example: 2-4 tree Insert

 Example: 24TreeInsert(9)

 first step: 24Tree::search(9)

 second step: insert at the leaf node returned by search

5 10

∅ ∅ ∅

11

∅ ∅

3 4

∅ ∅ ∅

6 8 9

∅

note new subtree
inserted

 adding an empty subtree at the last level causes no problems

 order properties are preserved

 node stays valid, it now has 3 KVPs, which is allowed

13 14 16

Example: 2-4 tree Insert
 Example: 24TreeInsert(17)

 first step is 24Tree::search(17)

5 10 12

∅ ∅ ∅

11

∅ ∅ ∅ ∅ ∅ ∅

3 4 13 14 166 8

∅ ∅ ∅

 insert at the leaf node returned by search

13 14 16 17

Example: 2-4 tree Insert
 Example: 24TreeInsert(17)

5 10 12

∅ ∅ ∅

11

∅ ∅ ∅ ∅ ∅ ∅

3 4 6 8

∅ ∅ ∅

overflow, split

∅

 now leaf has 4 KVPs, not allowed, have to fix this

Example: 2-4 tree Insert
 Example: 24TreeInsert(17)

5 10 12

∅ ∅ ∅

11

∅ ∅ ∅ ∅ ∅ ∅ ∅

3 4 6 8

∅ ∅ ∅

13 14 16 17

 now leaf has 4 KVPs, not allowed, have to fix this

Example: 2-4 tree Insert
 Example: 24TreeInsert(17)

5 10 12 15

∅ ∅ ∅

11

∅ ∅

3 4 6 8

∅ ∅ ∅

17

∅ ∅

13 14

∅ ∅ ∅

5 10 12 16 overflow, split5 10 12 16

 splitting is possible because we allow variable node size

 split 3-node into 1-node and 2-node

 order property is preserved after a split

 overflow can propagate to the parent of split node

Example: 2-4 tree Insert
 Example: 24TreeInsert(17)

5 10 12 15

∅ ∅ ∅

11

∅ ∅

3 4 6 8

∅ ∅ ∅

17

∅ ∅

13 14

∅ ∅ ∅

5 10 12 16

 when splitting the root node, need to create new root

split

Example: 2-4 tree Insert
 Example: 24TreeInsert(17)

∅ ∅ ∅

11

∅ ∅

3 4 6 8

∅ ∅ ∅

17

∅ ∅

13 14

∅ ∅ ∅

12

5 10 16

2-4 Tree Insert Pseudocode
24Tree::insert(𝑘)

𝑣 ← 24Tree::search(𝑘) //leaf where k should be

add 𝑘 and an empty subtree in key-subtree-list of 𝑣

while 𝑣 has 4 keys (overflow → node split)

let < 𝑇0, 𝑘1, . . . , 𝑘4, 𝑇4 > be key-subtrees list at 𝑣

if 𝑣 has no parent

create an empty parent of 𝑣

𝑝 ← parent of 𝑣

𝑣′← new node with keys 𝑘1, 𝑘2 and subtrees 𝑇0, 𝑇1, 𝑇2

𝑣 ′′ ← new node with key 𝑘4 and subtrees 𝑇3, 𝑇4

replace < 𝑣 > by < 𝑣′, 𝑘3, 𝑣 ′′ > in key-subtree-list of 𝑝

𝑣 ← 𝑝 //continue checking for overflow upwards

𝑘’ 𝑘’’

𝑘1 𝑘2 𝑘3 𝑘4

𝑇0 𝑇1 𝑇2 𝑇3 𝑇4

𝑘’ 𝑘3 𝑘’’

𝑘1 𝑘2

𝑇0 𝑇1 𝑇2 𝑇3 𝑇4

node split 𝑘4

𝑣′ 𝑣′′

2-4 Tree: Immediate Sibling

 A node can have an immediate left sibling, immediate right sibling, or both

13 14 16

5 10 12

∅ ∅ ∅

11

∅ ∅ ∅ ∅ ∅ ∅

3 4 6 8

∅ ∅ ∅

immediate sibling immediate sibling

 Any node except the root must have
an immediate sibling

illegal 0-node

6

2-4 Tree: Inorder Successor
 Inorder successor of key 𝑘 is the smallest key in the subtree immediately

to the right of 𝑘

∅ ∅ ∅

11

∅ ∅

3 4 6 8

∅ ∅ ∅

17

∅ ∅

13 14

∅ ∅ ∅

12

5 10 16

inorder successor
of key 5

5 10

 Inorder successor is guaranteed to be at a leaf node

 otherwise would have something smaller in the leftmost subtree

2-4 Tree Delete 36

25

18 21

12 19

31

28 33

43

41

39 42

51

48 56 62

 Example: delete(21)

 Search for key to delete

∅ ∅ ∅∅ ∅∅ ∅ ∅ ∅∅ ∅ ∅ ∅∅ ∅ ∅ ∅ ∅∅ ∅

 if a node found has more than 1 key, it is tempting to delete it directly

22 24

2-4 Tree Delete 36

25

18

12 19

31

28 33

43

41

39 42

51

48 56 62

 Example: delete(21)

 Search for key to delete

∅ ∅∅ ∅ ∅ ∅∅ ∅ ∅ ∅∅ ∅ ∅ ∅ ∅∅ ∅

 if a node found has more than 1 key, it is tempting to delete it directly

illegal, 1 key but 3
subtrees

 however, can delete the key directly only if a node is a leaf
 when we delete a key, we need to delete 1 subtree, easy only at a leaf

∅ ∅ ∅

22 24

2-4 Tree Delete 36

25

18 21

12 19

31

28 33

43

41

39 42

51

48 56 62

 Example: delete(21)

 Search for key to delete

∅ ∅∅ ∅ ∅ ∅∅ ∅ ∅ ∅∅ ∅ ∅ ∅ ∅∅ ∅

 can delete keys only from a leaf node, as need to delete a subtree as well

 if the key is in a node which is not a leaf, replace key with its inorder successor

∅ ∅ ∅

22 2422

2-4 Tree Delete 36

25

18 22

12 19

31

28 33

43

41

39 42

51

48 56 62

 Example: delete(21)

 Search for key to delete

∅ ∅∅ ∅ ∅ ∅∅ ∅ ∅ ∅∅ ∅ ∅ ∅ ∅∅ ∅

 can delete keys only from a leaf node, as need to delete a subtree as well

 if the key is in a node which is not a leaf, replace key with its inorder successor

∅ ∅ ∅

21 24

2-4 Tree Delete 36

25

18 22

12 19

31

28 33

43

41

39 42

51

48 56 62

 Example: delete(21)

 Search for key to delete

∅ ∅∅ ∅ ∅ ∅∅ ∅ ∅ ∅∅ ∅ ∅ ∅ ∅∅ ∅

 can delete keys only from a leaf node, as need to delete a subtree as well

 if the key is in a node which is not a leaf, replace key with its inorder successor

∅ ∅ ∅

21 24

 delete key 21 and an empty subtree

2-4 Tree Delete 36

25

18 22

12 19

31

28 33

43

41

39 42

51

48 56 62

 Example: delete(21)

 Search for key to delete

∅ ∅∅ ∅ ∅ ∅∅ ∅ ∅ ∅∅ ∅ ∅ ∅ ∅∅ ∅

 can delete keys only from a leaf node, as need to delete a subtree as well

 if the key is in a node which is not a leaf, replace key with its inorder successor

∅ ∅

 delete key 21 and an empty subtree

 order property is preserved and we are done

24

2-4 Tree Delete 36

25

18 21

12 19 24

31

28 33

43

41

39 42

51

48 56 62

 Example: delete(43)

 Search for key to delete

∅ ∅∅ ∅∅ ∅ ∅ ∅∅ ∅ ∅ ∅∅ ∅ ∅ ∅ ∅∅ ∅

 can delete keys only from a leaf node

 replace key with in-order successor

2-4 Tree Delete 36

25

18 21

12 19 24

31

28 33

48

41

39 42

51

43 56 62

 Example: delete(43)

 Search for key to delete

∅ ∅∅ ∅∅ ∅ ∅ ∅∅ ∅ ∅ ∅∅ ∅ ∅ ∅ ∅∅ ∅

 can delete keys only from a leaf node

 replace key with in-order successor
 delete key 43 and a subtree

36

25

18 21

12 19 24

31

28 33

48

41

39 42

51

56 62

2-4 Tree Delete

 Example: delete(43)

underflow

 rich immediate sibling, transfer key from sibling, with help from the parent
 sibling is rich if it is a 2-node or 3-node

 adjacent subtree from sibling is also transferred

∅ ∅∅ ∅∅ ∅ ∅ ∅∅ ∅ ∅ ∅∅ ∅ ∅ ∅ ∅∅ ∅

25

18 21

12 19 24

31

28 33

48

41

39 42

56

51 62

2-4 Tree Delete

key order is
preserved

∅ ∅∅ ∅∅ ∅ ∅ ∅∅ ∅ ∅ ∅∅ ∅ ∅ ∅∅ ∅

36

 Example: delete(43)
 rich immediate sibling, transfer key from sibling, with help from the parent

 sibling is rich if it is a 2-node or 3-node

 adjacent subtree from sibling is also transferred

 order property is preserved

36

25

18 21

12 19 24

31

28 33

48

41

39 42

56

51 62

2-4 Tree Delete

 Example: delete(19)
 first search(19)

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

36

25

18 21

12 24

31

28 33

48

41

39 42

56

51 62

2-4 Tree Delete

 Example: delete(19)

underflow

 first search(19)

 then delete key 19 (and an empty subtree) from the node

 immediate siblings exist, but not rich, cannot transfer

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

36

25

18 21

12 24

31

28 33

48

41

39 42

56

51 62

2-4 Tree Delete

 Example: delete(19)

 immediate siblings exist, but not rich, cannot transfer
 merge with right immediate sibling with help from parent

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

36

25

12 21 24

31

28 33

48

41

39 42

56

51 62

2-4 Tree Delete

18

 Example: delete(19)

 immediate siblings exist, but not rich, cannot transfer
 merge with right immediate sibling with help from parent

 all subtrees merged together as well

 structural and order properties are preserved

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

36

25

18

12 21 24

31

28 33

48

41

39 42

56

51 62

2-4 Tree Delete

 Example: delete(42)

 first search(42)

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅∅ ∅ ∅

 delete key 42 with one empty subtree

36

25

18

12 21 24

31

28 33

48

41

39

56

51 62

2-4 Tree Delete

 Example: delete(42)

 first search(42)

 the only immediate sibling is not rich, perform merge

underflow

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅∅ ∅ ∅

36

25

18

12 21 24

31

28 33

48

39 41

56

51 62

2-4 Tree Delete

 Example: delete(42)

 first search(42)

 the only immediate sibling is not rich, perform merge
 all subtrees merged together as well

underflow

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅∅ ∅ ∅

36

25

18

12 21 24

31

28 33

48

39 41

56

51 62

2-4 Tree Delete

 Example: delete(42)

 merge operation can cause underflow at the parent node

underflow

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅∅ ∅ ∅

 while needed, continue fixing the tree upwards
 possibly all the way to the root

36

25

18

12 21 24

31

28 33

48

39 41

56

51 62

2-4 Tree Delete

 Example: delete(42)

 the only sibling is not rich, perform a merge

underflow

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅∅ ∅ ∅

36

25

18

12 21 24

31

28 33

48 56

39 41 51 62

2-4 Tree Delete

 Example: delete(42)

underflow

 the only sibling is not rich, perform a merge

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅∅ ∅ ∅

 subtrees are merged as well
 continue fixing the tree upwards

36

25

18

12 21 24

31

28 33

48 56

39 41 51 62

2-4 Tree Delete

 Example: delete(42)
 the only sibling is not rich, perform a merge

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅∅ ∅ ∅

25 36

18

12 21 24

31

28 33

48 56

39 41 51 62

2-4 Tree Delete

 Example: delete(42)

 the only sibling is not rich, perform merge

 underflow at parent node

underflow

 it is the root, delete root

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅∅ ∅ ∅

2-4 Tree Delete

25 36

18

12 21 24

31

28 33

48 56

39 41 51 62

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅∅ ∅ ∅

 Example: delete(42)

 the only sibling is not rich, perform merge

 underflow at parent node

 it is the root, delete root

36

25

12

31

28 33

48

41

39 42

56

51 62

2-4 Tree Delete

 Example: delete(28)

 first search(28)

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅∅ ∅

 delete key 28 with one empty subtree

18 20

19 24

∅ ∅

36

25

12

31

33

48

41

39 42

56

51 62

2-4 Tree Delete

 Example: delete(28)

 first search(28)

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅∅ ∅

 delete key 28 with one empty subtree

18 20

19 24

∅ ∅

underflow

36

25

12

31

33

48

41

39 42

56

51 62

2-4 Tree Delete

 Example: delete(28)

 first search(28)

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅∅ ∅

 delete key 28 with one empty subtree

 merge with the only immediate sibling, who is not rich

18 20

19 24

∅ ∅

underflow

36

25

12

48

41

39 42

56

51 62

2-4 Tree Delete

 Example: delete(28)

 first search(28)

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅∅ ∅

 delete key 28 with one empty subtree

 merge with the only immediate sibling, who is not rich

18 20

19 24

∅ ∅

31 33

underflow

36

25

12

48

41

39 42

56

51 62

2-4 Tree Delete

 Example: delete(28)

 transfer from a rich immediate sibling

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅∅ ∅

18 20

19 24

∅ ∅

31 33

36

20

12

48

41

39 42

56

51 62

2-4 Tree Delete

 Example: delete(28)

 transfer from a rich immediate sibling

 together with a subtree

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅∅ ∅

19 24

∅ ∅

31 33

2518

2-4 Tree Delete Summary

 If key not at a leaf node, swap with inorder successor (guaranteed at leaf node)

 Delete key and one empty subtree from the leaf node involved in swap

 If underflow

 If there is an immediate sibling with more than one key, transfer

 no further underflows caused

 do not forget to transfer a subtree as well

 convention: if two siblings have more than one key, transfer with the right
sibling

 If all immediate siblings have only one key, merge

 there must be at least one sibling, unless root

 if root, delete

 convention: if two immediate siblings with one key, merge with the right one

 merge may cause underflow at the parent node, continue to the parent and fix
it, if necessary

Deletion from a 2-4 Tree
24Tree::delete(𝑘)

𝑣 ← 24Tree::search(𝑘) //node containing k

if 𝑣 is not a leaf

swap 𝑘 with its inorder successor 𝑘′

swap 𝑣 with leaf that contained 𝑘′

delete 𝑘 and one empty subtree in key-subtree-list of 𝑣

while 𝑣 has 0 keys // underflow

if 𝑣 is the root, delete 𝑣 and break

if 𝑣 has immediate sibling 𝑢 with 2 or more KVPs // transfer, then done!

transfer the key of 𝑢 that is nearest to 𝑣 to 𝑝

transfer the key of 𝑝 between 𝑢 and 𝑣 to 𝑣

transfer the subtree of 𝑢 that is nearest to 𝑣 to 𝑣

break

else // merge and repeat

𝑢 ← immediate sibling of 𝑣

transfer the key of 𝑝 between 𝑢 and 𝑣 to 𝑢

transfer the subtree of 𝑣 to 𝑢

delete node 𝑣

𝑣 ← 𝑝

2-4 Tree Summary

 2-4 tree has height O(log𝑛)

 in internal memory, all operations have run-time O(log 𝑛)

 this is no better than AVL-trees in theory

 but 2-4 trees are faster than AVL-trees in practice, especially when
converted to binary search trees called red-black trees

 no details

 2-4 tree has height Ω (log 𝑛)

 𝑛 is the number of KVPs

 for a tree of height ℎ

 𝑛 ≤ 3(40 + 41…+ 4ℎ)

 𝑛 ≤ 4ℎ+1 − 1

 log4 𝑛 + 1 − 1 ≤ ℎ

 thus ℎ is Ω (log𝑛)

 So 2-4 tree is not significantly better than AVL-tree wrt block transfers

 But can generalize the concept to decrease the height

Outline

 External Memory

 Motivation

 Stream based algorithms

 External sorting

 External dictionaries

 2-4 Trees

 red-black trees

 (a, b)-Trees

 B-Trees

Problem with 2-4 trees

 Have 3 kinds of nodes

 1-node, 2-node, 3-node

 need to store up to 7 items

 up to 3 keys and up to 4 subtree references

 How should we store keys and subtrees?

 array of length 7

 wastes space

 linked list

 overhead for list-nodes, also wastes space

 theoretical bound not affected, but matters in practice

 Better idea

 design a class of binary search trees that mirrors 2-4 tree

5 10 12

113 4 158

2-4 tree to red-black tree

 Binary search tree that mirrors 2-4 tree

 𝑑-node becomes a black node with 𝑑 − 1 red children

 assembled so that they form a BST of height at most 1

 Resulting properties

 any red node has a black parent

 any empty subtree of 𝑇 has the same black-depth

 Number of black nodes on path form root to 𝑇

Outline

 External Memory

 Motivation

 Stream based algorithms

 External sorting

 External dictionaries

 2-4 Trees

 red-black trees

 (a, b)-Trees

 B-Trees

(𝑎, 𝑏)-Trees

 2-4 Tree is a specific type of (𝑎, 𝑏)-tree

 (𝑎, 𝑏)-tree satisfies

 each node has at least 𝑎 subtrees, unless it is the root

 root must have at least 2 subtrees

 each node has at most 𝑏 subtrees

 if node has 𝑑 subtrees, then it stores 𝑑 − 1 key-value pairs (KVPs)

 all empty subtrees are at the same level

 keys in the node are between keys in the corresponding subtrees

 requirement: 𝑎 ≤
𝑏

2
= (𝑏 + 1)/2

∅ ∅ ∅

35

14 20 26 38 44 50 56

10 12 16 18 22 24 28 30 32 52 54 58 6046 4840 4234 36

∅ ∅∅ ∅ ∅ ∅

(3, 5)-tree, also a valid (3, 6)-tree

(𝑎, 𝑏)-Trees: Root

 Why special condition for the root?

 Needed for (a,b)-tree storing very few KVP

 (3,5) tree storing only 1 KVP

35

∅ ∅

 Could not build it if forced the root to have at least 3 children

 remember # keys at any node is one less than number of subtrees

(𝑎, 𝑏)-Trees: Condition on 𝑎 Explained
 Because 𝑎 ≤ (Τ𝑏 + 1) 2 search, insert, delete work just like for 2-4 trees

 straightforward redefinition of underflow and overflow

 For example, for (3,5)-tree

 at least 3 children, at most 5

 allowed: 2-node, 3-node, 4-node

 during insert, overflow if get a 5-node

38 44 50 55 60 38 44 38 44

2 node 2 node

 2-node is smallest allowed node

 If 𝑎 > (Τ𝑏 + 1) 2 , no valid split exists for overflowed node

 this is similar to requiring you split a pie in 2 parts, and each part is bigger
than half!

 for example if allow (4,5)-tree

 allowed: 3-node, 4-node

 overflow when get 5-node

 equal (best possible) split of 5-node results in two 2-node

 2-node is not allowed for (4,5)-tree

⇒

(𝑎, 𝑏)-Trees: Condition on 𝑎 Explained

 Require 𝑎 ≤ (Τ𝑏 + 1) 2

 In general, overflow means node has 𝑏 + 1 subtrees
 split in the middle ⇒ two new nodes have (Τ𝑏 + 1) 2 and (Τ𝑏 + 1) 2 subtrees

 since 𝑎 ≤ (Τ𝑏 + 1) 2 ≤ (Τ𝑏 + 1) 2 , each new node has at least 𝑎 subtrees, as required

….
…. ….

(Τ𝑏 + 1) 2 (Τ𝑏 + 1) 2

𝑏 + 1 subtrees

at least 𝑎

(𝑎, 𝑏)-Trees Delete
 For example, for (3,5)-tree

 at least 3 children, at most 5

 each node is at least a 2-node, at most a 4-node

 during delete, underflow if get a 1-node

 if we have an immediate sibling which is rich (3 or 4-node), do transfer

 otherwise, do merge

 guaranteed to have at least one sibling which is a 2-node

Height of (𝑎, 𝑏)-tree

 Height = number of levels not counting empty subtrees

13 14 16

∅ ∅ ∅

11

∅ ∅ ∅ ∅ ∅ ∅

3 4 6 8

∅ ∅ ∅

5 10 12 height = 1

Height of (𝑎, 𝑏)-tree

11

2𝑎0

2𝑎1

2𝑎2

of nodes

0

1

2

h

level

3
………….

2𝑎ℎ−1

 Consider (a,b)-tree with the smallest number of KVP and of height ℎ

 Let 𝑛 the number of KVP in any (𝑎, 𝑏)-tree of height ℎ

= 2𝑎ℎ − 1+
𝑖=0

ℎ−1

2𝑎𝑖 = 𝟏 + 2(𝑎 − 1)
𝑖=0

ℎ−1

𝑎𝑖

𝒂𝒉 − 𝟏

𝒂 − 𝟏

 Height of tree with 𝑛 KVPs is 𝑂 log𝑎 𝑛 = 𝑂 Τlog𝑛 log 𝑎

(𝑎 − 1)𝟏

𝑛 ≥ 2𝑎ℎ − 1

 red node (the root) has 1 KVP, blue nodes have (𝑎 − 1) KVP

, therefore, log𝑎
𝑛+1

2
≥ ℎ

of KVPs =

(𝑎, 𝑏)-Tree Analysis in Internal/External Memory

 Internal memory

 search, insert, delete each require visiting Θ ℎ𝑒𝑖𝑔ℎ𝑡 nodes

 height is 𝑂 Τlog𝑛 log𝑎

 recall that 𝑎 ≤
𝑏

2
is required for insert and delete to work correctly

 therefore, chose 𝑎 =
𝑏

2
to minimize the height

 store from 𝑎 to 𝑏 items at a node: work at a node can be done in 𝑂 log 𝑏 time

 total cost

 this is not better than AVL-trees in internal memory

 External memory

 we count just block transfers

 running time is 𝑂 Τlog𝑛 log 𝑎 , assuming each node fits into one block

 makes sense to make a as large as possible so that a node still fits into one block

= 𝑂
log 𝑏

log 𝑏 − 1
⋅ log 𝑛 = 𝑂 log 𝑛𝑂

log𝑛

log 𝑎
⋅ log 𝑏 = 𝑂

log 𝑛

log
𝑏
2

⋅ log 𝑏

Outline

 External Memory

 Motivation

 Stream based algorithms

 External sorting

 External dictionaries

 2-4 Trees

 red-black trees

 (a, b)-Trees

 B-Trees

B-trees: Motivation
 B-tree is a type of (𝑎, 𝑏)-tree tailored to the external memory model

 Each block in external memory stores one tree node

 Choose 𝑏 so that the largest node (𝑏 subtrees) fits into one block

 store 𝑏 − 1 keys directly (not through reference)

 𝑏 − 1 value references, 𝑏 subtree references, reference to parent

 If 𝑎 is small, would allow wasting most block space

parent

𝑻𝟎

𝒗𝟏

𝑻𝟏

𝒌𝟏 𝒌𝟐

𝑻𝟐

𝒌𝟑

𝒗𝟑

𝑻𝟑 space for 𝒌𝟒, 𝒗𝟒, 𝑻𝟒

parent

𝑻𝟎

𝒗𝟏

𝑻𝟏

𝒌𝟏

 Height is 𝑂 Τlog𝑛 log 𝑎 , so small 𝑎 leads to large height and bad running time

B-trees: Definition
 For external memory use (𝑎, 𝑏)-tree s.t.

 largest possible node (i.e. 𝑏 subtrees) still fits into a block

 and 𝑎 is as large as possible, recall that largest allowed 𝑎 = 𝑏/2

 each block will be at least half full

 Thus use (𝑏/2 , 𝑏)- tree for external memory

 This is defined as B-tree

 We usually specify B-tree by just giving 𝑏

 𝑏 is called the order of B-tree

 B-tree or order 𝑏 is a (𝑏/2 , 𝑏)-tree

 Example: node for B-tree of order 5

parent

𝑻𝟎

𝒗𝟏

𝑻𝟏

𝒌𝟏 𝒌𝟐

𝑻𝟐

𝒌𝟑

𝒗𝟑

𝑻𝟑 space for 𝒌𝟒, 𝒗𝟒, 𝑻𝟒

 Typically 𝑏 ∈ Θ 𝐵

 𝐵 = 𝑏 ∗ 𝑐𝑜𝑛𝑠𝑡

B-trees in External Memory
 Close-up on one node in one block

 In this example, 12 references and 5 keys fit into one block, so B-tree can
have order 6

 Values can be stored in the block directly if they do not need much space,
otherwise store them by reference

 storing values by reference is ok as we do not need values during tree
search

B-tree Analysis in External Memory
 Search, insert, and delete each requires visiting Θ(ℎ𝑒𝑖𝑔ℎ𝑡) nodes

 Θ(ℎ𝑒𝑖𝑔ℎ𝑡) block transfers

 Work within a node is done in internal memory, no block transfers

 The height is Θ log𝑏 𝑛 = Θ log𝐵 𝑛

 since 𝑏 ∈ Θ 𝐵

 So all operations require Θ log𝐵 𝑛 block transfers

 this is asymptotically optimal

 There are variants that are even better in practice

 B-trees are hugely important for storing databases (cs448)

11 24

2 6 8 10 12 13 15 27 32 33

11 24

2 6 8 10 12 13 15 27 32 33

Useful Fact about (𝑎, 𝑏)-trees

Proof: Put one stone on each empty subtree and pass the stones up the tree. Each node keeps 1 stone per

KVP, and passes the rest to its parent. Since for each node, #KVP = # children – 1, each node will pass
only 1 stone to its parent. This process stops at the root, and the root will pass 1 stone outside the tree.
At the end, each KVP has 1 stone, and 1 stone is outside the tree.

 number of of KVP = number of empty subtrees – 1 in any (𝑎, 𝑏)-tree

11 24

2 6 8 10 12 13 15 27 32 33

11 24

2 6 8 10 12 13 15 27 32 33

Useful Fact about (𝑎, 𝑏)-trees

Example of B-tree usage

 𝐵-tree of order 200

……………

…………………………………

200 nodes

2002 nodes

2003 empty subtrees

 if we store root in internal memory, then only 2 block reads
are needed to retrieve any item

 AVL tree of height at least 23 to store as many KVPs

1 node (root)

∅∅∅

 𝐵-tree of order 200 and height 2 can store up to 2003− 1 KVPs
 from the ‘useful fact’ proven before

