CS 240 — Data Structures and Data Management

Module 11: External Memory

0. Veksler

Based on lecture notes by many previous ¢s240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2024

Outline

= External Memory
= Motivation

= Stream based algorithms

= External dictionaries

2-4 Trees
red-black trees
a-b Trees
B-Trees

Outline

= External Memory
= Motivation

Different levels of memory

RAM model: access to any memory location takes constant time
= not realistic
Current architectures
= registers: super fast, very small

cache L1, L2: very fast, less small
= main memory: fast, large

disk or cloud: slow, very large
How to adapt algorithms to take memory hierarchy into consideration?
= desirable to minimize transfer between slow/fast memory
Define computer model that models hierarchy across which must transfer

= focus on 2 levels of hierarchy: main (internal) memory and disk or cloud
(external) memory

® accessing a single location in external memory automatically loads a whole
block (or “page”)

= one block access can take as much time as executing 100,000 CPU
instructions

" need to care about the number of block accesses

External-Memory Model (EMM)

||||||||||||||||||||||||||||||||||||||---|
external memory — size unbounded. Store input (size n) here

transfer in blocks of B cells (slow)

Suppose time for one block
transfer = time for 100,000 CPU B is typically from 1024 to 8192
instructions

internal memory —size M

fast random access

= Algorithm 1
1,0 ' ions + 1,000 block transfers = 1;800+1,000-100,000 =j>@5\+ 108 o
m Al ith \dommatmg
gorithm 2 factors
0,0 ions + 10 block transfers = 10:800+10-100,000 =28%+ 106

= New cost of computation: number of blocks transferred (or ‘probes’, ‘disk transfers’, ‘page
loads’) between internal and external memory

= We will revisit ADTs/problems with the objective of minimizing block transfers

Outline

= External Memory

= Stream based algorithms

Stream Based Algorithms in Internal Memory

Studied algorithms that handle input/output with streams

= access only top item in input stream, append only to tail of output stream

top
input | *| * | * | * */

CPU

Repeat
1. take item off top of the input
2. process item

3. put the result of processing at the tail of output

output

S

Stream Based Algorithms in Internal Memory

= Studied algorithms that handle input/output with streams
= access only top item in input stream, append only to tail of output stream

input | * | * | * | * output *

CPU

process %k

= Repeat
1. take item off top of the input
2. process item
3. put the result of processing at the tail of output

Stream Based Algorithms in Internal Memory

= Studied algorithms that handle input/output with streams
= access only top item in input stream, append only to tail of output stream

input | * | * | * output * | *

CPU

process %k

= Repeat
1. take item off top of the input
2. process item
3. put the result of processing at the tail of output

Stream Based Algorithms in Internal Memory

= Studied algorithms that handle input/output with streams
= access only top item in input stream, append only to tail of output stream

input | *| *| output * |k |

CPU

process %k

= Repeat
1. take item off top of the input
2. process item
3. put the result of processing at the tail of output

Stream Based Algorithms in Internal Memory

= Studied algorithms that handle input/output with streams
= access only top item in input stream, append only to tail of output stream

input | * output * | ok k | ok

CPU

process %k

= Repeat
1. take item off top of the input
2. process item
3. put the result of processing at the tail of output

Stream Based Algorithms in Internal Memory

= Studied algorithms that handle input/output with streams
= access only top item in input stream, append only to tail of output stream

input output * | k| kx| K

CPU

process %k

= Repeat
1. take item off top of the input
2. process item
3. put the result of processing at the tail of output

Stream Based Algorithms in External Memory

External Memory

input / top output { tail

Internal Memory
input block output block

CPU

= Data in external memory has to be placed in internal memory before it can be processed

= |dea: perform the same algorithm as before, but in “block-wise” manner
= have one block for input, one block for output in internal memory
= transfer a block (size B) to internal memory, process it as before, store result in output block
= when output stream is of size B (full block), transfer it to external memory
= when current block is in internal memory is fully processed, transfer next unprocessed block
from external memory

Stream Based Algorithms in External Memory

External Memory

input output

|
first block

Internal Memory
input block output block
* * * * *

CPU

process %k

Stream Based Algorithms in External Memory

External Memory

input output

|
first block

Internal Memory
input block output block
* * % * *

CPU

process %k

Stream Based Algorithms in External Memory

External Memory

input output

|
first block

Internal Memory
input block output block
* * * * *

CPU

process %k

Stream Based Algorithms in External Memory

External Memory

input output

|
first block

Internal Memory
input block output block
* * * * *

CPU

process %k

Stream Based Algorithms in External Memory

External Memory

input output

first block

Internal Memory
input block output block

* | % * * *

C P U output block is full,

transfer to external
memory

Stream Based Algorithms in External Memory

External Memory

input output

first block

Internal Memory
input block output block

input block is empty, CPU

transfer new input block
from external memory

Stream Based Algorithms in External Memory

External Memory

input output

\ J

|
next block

Internal Memory
input block output block
* * * * *

CPU

Stream Based Algorithms in External Memory

External Memory

input output

next block

Internal Memory
input block output block

* * * * *

C P U output block is full,

transfer to external
memory

Stream Based Algorithms in External Memory

External Memory

input output

next block

Internal Memory
input block output block

CPU

= Running time (recall that we only count the block transfers now)

®" input stream: % block transfers to read input of size n
= output stream: % block transfers to write output of size s

= Running time is automatically as efficient as possible for external memory
= any algorithm needs at least % block transfers to read input of size n and % block
transfers to write output of size s

Stream Based Algorithms in External Memory

= Methods below use stream input/output model, therefore need © (g) block
transfers, assuming output size is 0 (n)
= Pattern matching: Karp-Rabin, Knuth-Morris-Pratt, Boyer-Moore
= assuming pattern P fits into internal memory
= Text compression: Huffman, run-length encoding, Lempel-Ziv-Welch

= Sorting: merge-sort can be implemented with O (glog n) block transfers

= Bzip2 cannot be streamed as we described
= can compress in ‘blocks’

= not as good as the whole text compression, but better than
nothing

Outline

= External Memory

= External dictionaries

Dictionaries in External Memory: Motivation
AVL tree

= AVL tree based dictionary implementations
have poor memory locality

= ‘nearby’ tree nodes are unlikely to be
in the same block

= InanAVLtree O(log n) blocks are loaded in the worst case
= |dea: allow trees that store multiple items per node
= Many items per node = smaller height = fewer block transfers
= suppose store n = 2°0 items total, and B = 2° items in each node
log,n 50

= tree heightislogpn = =
& 58 log, B 15

= 15 times less block transfers

= First consider a special case: 2-4 trees
= 2-4 trees also used for dictionaries in internal memory
= may be even faster than AVL-trees

Outline

= External Memory

= 2-4 Trees

2-4 Trees Motivation

key k

= Binary Search Tree supports efficient

search with special key ordering
keys < K\ /[keys> k\

TO T1
= Need nodes that store more than one key
= how to support efficient search?
key k1 key ko key k3
keys < k1 k1 < keys < k2 ko < keys < k3 keys > k3

= Need additional properties to ensure tree is balanced and therefore insert,
delete are efficient

2-4 Trees

Structural

properties

= Every node is either
= 1-node: one KVP and two subtrees (possibly empty), or

= 2-node: two KVPs and three subtrees (possibly empty), or
= 3-node: three KVPs and four subtrees (possibly empty)
= allowing 3 types of nodes simplifies insertion/deletion

= All empty subtrees are at the same level

5(10| 12| 3-node
2-node 2-node 1-node 3-node
314 6| 8 n 13| 14| 15
o g 07 3 o " A

empty subtrees

necessary for ensuring height is logarithmic in the number of KVP stored

Order property: keys at any node are between the keys in the subtrees

key-subtree list of the node
< To, kl, Tll kZ, Tz, k3, T3, kl >

key k1 key k> key k3
keys < ki1 k1 < keys < k2 2 < keys < k3 keys > ks
Ty T; T, T;
subtree subtree
immediately to immediately to the
the left of k2 right of k>

2-4 Tree Example

Empty subtrees are not part of height 50 10| 12
computation

1 13| 14| 15
g 6" d o e " N o

tree of height 1

Often do not even show empty subtrees

5110] 12

3|4 6| 8 1 13| 14| 15

Will prove height is O(logn) later, when we talk about (a,b)-trees
= 2-4 tree is a special type of (a,b)-tree

2-4 Tree: Search Example

= Search
= similar to search in BST

= search(k) compares key k to ki1, k2, k3, and either finds k among k1, k2,
ks or figures out which subtree to recurse into

= jf key is not in tree, search returns parent of empty tree where search stops
= key can be inserted at that node

= search(15)
5/ 10| 12

not found
3| 4 6| 8 1 13| 14| 16

@/ Q/(L\ﬂ)/ \‘ returned node
?

2-4 Tree operations

24Tree::search(k, v «root, p <empty subtree)
k: key to search, v: node where we search; p: parent of v
if v represents empty subtree
return “not found, would be in p”
let < To,k1,...,kdq,Tq > be key-subtrees list at v

ifk > k1
I « maximal index suchthatk; < k
ifk, = k

return “at ith key inv”
else 24Tree::search(k,Ti,v)
else 24Tree::search(k, To, v)

Example: 2-4 tree Insert

= Example: 24Treelnsert(9)

node can hold one more item,
so it’s tempting to insert 9 in it

5

10

0

Iy

—>

however, need 1 more sybtree,
since Yode has 3 keys now!

subtfees must be at the sama\level

Example: 2-4 tree Insert

Example: 24Treelnsert(9)

first step: 24Tree::search(9)

10

11

Example: 2-4 tree Insert

= Example: 24Treelnsert(9)

= first step: 24Tree::search(9)
= second step: insert at the leaf node returned by search

5|10

3| 4 6

A OS A

note new subtree
inserted

= adding an empty subtree at the last level causes no problems
= order properties are preserved
= node stays valid, it now has 3 KVPs, which is allowed

Example: 2-4 tree Insert

= Example: 24Treelnsert(17)
= first step is 24Tree::search(17)

= insert at the leaf node returned by search

Example: 2-4 tree Insert

Example: 24Treelnsert(17)

now leaf has 4 KVPs, not allowed, have to fix this

10

12

11

/)

overflow, split

oy

0 0 0 ¢

Example: 2-4 tree Insert

Example: 24Treelnsert(17)

now leaf has 4 KVPs, not allowed, have to fix this

10

12

11

Example: 2-4 tree Insert

= Example: 24Treelnsert(17)

= splitting is possible because we allow variable node size
= split 3-node into 1-node and 2-node
= order property is preserved after a split

= overflow can propagate to the parent of split node

overflow, split

"

AN

Example: 2-4 tree Insert

= Example: 24Treelnsert(17)

= when splitting the root node, need to create new root

3| 4 6|8 11 13|14

Example: 2-4 tree Insert

= Example: 24Treelnsert(17)

17

2-4 Tree Insert Pseudocode

24Tree::insert(k)
v « 24Tree::search(k) //leaf where k should be
add k and an empty subtree in key-subtree-list of v
while v has 4 keys (overflow — node split)

if v has no parent
create an empty parent of v
p < parentof v

r

let < To, k1,..., ks, T4 > be key-subtrees list at v

v < new node with key k4and subtrees T3, T4

v « p //continue checking for overflow upwards

v’ < new node with keys k1, k> and subtrees Ty, T1, T

replace < v > by < v, k3, v'’ > in key-subtree-list of p

k’ k’) k)

k3

kl’

!

T~ _ v
ki ko ks ks nodespllt> k1

k;

\vll

A /

To Ti Ty T3 Ta To T, T,

\

K4

/

Tz Ta

2-4 Tree: Immediate Sibling

= A node can have an immediate left sibling, immediate right sibling, or both

5| 10| 12
immediate sibling immediate sibling
3|14 6| 8 13| 14| 16
w/ax A\)) «/ 0 \@‘
= Any node except the root must have illegal O-node

an immediate sibling

6

AN

2-4 Tree: Inorder Successor

= |norder successor of key k is the smallest key in the subtree immediately
to the right of k

12

16

3|4 6| 8 11] 13|14 [17

SN DN

inorder successor
of key 5

= |norder successor is guaranteed to be at a leaf node
= otherwise would have something smaller in the leftmost subtree

2-4 Tree

Delete

43

e
/]

N SN
/\ /\ /\

12

6

= Example:

T

delete(21)

= Search for key to delete
= if a node found has more than 1 key, it is tempting to delete it directly

(bdbdbdb 6bdbd

2-4 Tree Delete

illegal, 1 k&y but 3

36

7

25

43

N SN

/\ /\

A2 |19
6 b6 o

Example: delete(21)
Search for key to delete
if a node found has more than 1 key, it is tempting to delete it directly

however, can delete the key directly only if a node is a leaf
when we delete a key, we need to delete 1 subtree, easy only at a leaf

2N 24
TN

/\

62

(5 b b6b §bdbb

2-4 Tree Delete

[18]

VARNEEVARN

21

/

|

36

7

25

43

/\ /\ //\

12

Iava

= Example: delete(21)

22 | 24
= Search for key to delete
= can delete keys only from a leaf node, as need to delete a subtree as well

62

(5 b b6b §bdbb

= jf the key is in a node which is not a leaf, replace key with its inorder successor

2-4 Tree Delete 36

7

25 43

VARNEEVARN

[18722

/] /\ /\ /\

12 19 62

S5 bbb 666 bdbdb &bdbb

= Example: delete(21)

= Search for key to delete
= can delete keys only from a leaf node, as need to delete a subtree as well

= jf the key is in a node which is not a leaf, replace key with its inorder successor

2-4 Tree Delete

[18]

22

36

25

7

/

12

S

= Example: delete(21)

\

N SN
/\ /\ //\

62

= Search for key to delete
= can delete keys only from a leaf node, as need to delete a subtree as well

= jf the key is in a node which is not a leaf, replace key with its inorder successor
= delete key 21 and an empty subtree

b S b6 bdbdb & bdbb

2-4 Tree Delete

36

25

43

[18722

/1;\

12

6 66 6 o

4

= Example: delete(21)
= Search for key to delete

can delete keys only from a leaf node, as need to delete a subtree as well

N SN
/\ /\ //\

62

b (b bdbdb & bdbb

if the key is in a node which is not a leaf, replace key with its inorder successor
delete key 21 and an empty subtree
order property is preserved and we are done

2-4 Tree Delete 36

25 43

NN
JERAY /\ Al

(34 b b d56b6b6b 6bdbd

= Example: delete(43)

= Search for key to delete
= can delete keys only from a leaf node
= replace key with in-order successor

2-4 Tree Delete

25

2N

18

/

\ /\ /\

12

(34 b b 565654

Example: delete(43)

Search for key to delete
can delete keys only from a leaf node

replace key with in-order successor
delete key 43 and a subtree

AN

\

62

/
Iater

0

2-4 Tree Delete 36

ANENVAN
JARNAN /\42 o 56

S8 b db & bdbdh § b

= Example: delete(43)

= rich immediate sibling, transfer key from sibling, with help from the parent
= siblingisrich ifitis a 2-node or 3-node
= adjacent subtree from sibling is also transferred

2-4 Tree Delete

25

2N /

18

/

36

A

19

S8 b4 b

= Example: delete(43)
= rich immediate sibling, transfer key from sibling, with help from the parent

48

28

42

yatra!

sibling is rich if it is a 2-node or 3-node
adjacent subtree from sibling is also transferred
order property is preserved

key order is
preserved

’f N

2-4 Tree Delete

48

A NVAN
A A A

G B 58

= Example: delete(19)
= first search(19)

2-4 Tree Delete 36

25 48

VA NVAN
s AR A

Vel oW Fat et INe S

= Example: delete(19)
= first search(19)
= then delete key 19 (and an empty subtree) from the node
= immediate siblings exist, but not rich, cannot transfer

2-4 Tree Delete

25

/

36

48

SN N
/\ /\

= Example: delete(19)

®" immediate siblings exist, but not rich, cannot transfer

B (B[] [

33

42

ava¥ade

/\

62

ave

= merge with right immediate sibling with help from parent

2-4 Tree Delete

25

18

/A

aYre 5&5&/3

= Example: delete(19)

= immediate siblings exist, but not rich, cannot transfer

36

48

NN
/\ /\

33

42

/\

62

b)

= merge with right immediate sibling with help from parent

= all subtrees merged together as well

= structural and order properties are preserved

2-4 Tree Delete

25

/

N
/\ /\

A

24

66 600

= Example: delete(42)

= first search(42)

33

5&&&6&

= delete key 42 with one empty subtree

0 0

/\

62

awe

2-4 Tree Delete

25

36

/

48

SN SN
iy

/\

24

(b 4 bb

= Example: delete(42)

= first search(42)
= the only immediate sibling is not rich, perform merge

/\

41

y

ey

ape

2-4 Tree Delete

/\

25

24

(b 4 bb

= Example: delete(42)

= first search(42)
= the only immediate sibling is not rich, perform merge

36

/

/\

48

avany

= all subtrees merged together as well

VANIWAN

A

ape

2-4 Tree Delete

/\

25

24

(b 4 bb

= Example: delete(42)

" merge operation can cause underflow at the parent node
= while needed, continue fixing the tree upwards

36

/

/\

48

b6 b dbd

= possibly all the way to the root

VANIWAN

A

ape

2-4 Tree Delete 36

/

25 48

VANEWAN
ror R

24 28 51 62

(b dbb 6bdb dbb &b b

= Example: delete(42)
= the only sibling is not rich, perform a merge

2-4 Tree Delete 36

25 \. underflow

N
/\ /\ / |\

24 41 62

(b 4 bb ww@mm

= Example: delete(42)
= the only sibling is not rich, perform a merge

= subtrees are merged as well
= continue fixing the tree upwards

2-4 Tree Delete 36

\.

18 48 56

/1

24 28 3 3941 62

aww wl anibade:

= Example: delete(42)
= the only sibling is not rich, perform a merge

2-4 Tree Delete underflow

/ \.4856
/\ /\ RN

33 41

(b dbb dbdb dh JM&

" Example: delete(42)
= the only sibling is not rich, perform merge
= underflow at parent node
= jtis the root, delete root

2-4 Tree Delete

25|36

/ \4856
/\ /\ Y

(b §bb K&K&J%\JM&

" Example: delete(42)
= the only sibling is not rich, perform merge
= underflow at parent node
= jtis the root, delete root

2-4 Tree Delete

48

4 VAN

VN A A

12 33 62

«4&«4&5&6&5&5& Iawe

= Example: delete(28)
= first search(28)
= delete key 28 with one empty subtree

2-4 Tree Delete 36

/

25 48

VANNVAN
i a

12 33 62

6&«4&5& Fodbdb dbd

= Example: delete(28)
= first search(28)
= delete key 28 with one empty subtree

2-4 Tree Delete 36

/

25 48

SN N

18 31

L / \ / \

5 Thd g e 6l

= Example: delete(28)
= first search(28)
= delete key 28 with one empty subtree
= merge with the only immediate sibling, who is not rich

2-4 Tree Delete 36

/

25 48

DANVAN
A

12 31|33 62

el Ve Ji5 §bdb 64

= Example: delete(28)
= first search(28)
= delete key 28 with one empty subtree
= merge with the only immediate sibling, who is not rich

2-4 Tree Delete 36

N
VA NN
LA A

12 31|33 62

el Ve Ji5 §bdb 64

= Example: delete(28)
= transfer from a rich immediate sibling

2-4 Tree Delete 36

/

20 48

SN N

18 25

ARAN /\ /\

12 24 31|33 62

$o db 454 456b6b 4540

= Example: delete(28)
= transfer from a rich immediate sibling
= together with a subtree

2-4 Tree Delete Summary

= |f key not at a leaf node, swap with inorder successor (guaranteed at leaf node)

= Delete key and one empty subtree from the leaf node involved in swap

= |f underflow

= |f there is an immediate sibling with more than one key, transfer

no further underflows caused
= do not forget to transfer a subtree as well

convention: if two siblings have more than one key, transfer with the right
sibling

= |f allimmediate siblings have only one key, merge

there must be at least one sibling, unless root
= jf root, delete
convention: if two immediate siblings with one key, merge with the right one

merge may cause underflow at the parent node, continue to the parent and fix
it, if necessary

Deletion from a 2-4 Tree

24Tree::delete(k)
v « 24Tree::search(k) //node containing k
if vis not a leaf
swap k with its inorder successor k'
swap v with leaf that contained k'
delete k and one empty subtree in key-subtree-list of v
while v has 0 keys // underflow
if v is the root, delete v and break
if v has immediate sibling u with 2 or more KVPs // transfer, then done!
transfer the key of u that is nearesttov to p
transfer the key of p between u and v to v
transfer the subtree of u thatis nearestto vtov
break
else // merge and repeat
u < immediate sibling of v
transfer the key of p between uand vtou
transfer the subtree of vto u
delete node v

Vep

2-4 Tree Summary

2-4 tree has height O(logn)
= ininternal memory, all operations have run-time O(logn)
= thisis no better than AVL-trees in theory

= but 2-4 trees are faster than AVL-trees in practice, especially when
converted to binary search trees called red-black trees

2-4 tree has height () (logn)
= nis the number of KVPs

= for atree of height h
= n<34%+41.+4M
= <40t
= logs(n+1)—1<h
= thushis Q(logn)
So 2-4 tree is not significantly better than AVL-tree wrt block transfers

But can generalize the concept to decrease the height

Outline

= External Memory

= red-black trees

Problem with 2-4 trees

12

= Have 3 kinds of nodes
= 1-node, 2-node, 3-node
= need to store up to 7 items at each node
= 3 keys and 4 subtree references
= How should we store keys and subtrees?
= array of length 7
. wastes space
= Jinked list

= overhead for list-nodes, also wastes space

= theoretical bound not affected, but matters in practice

= Better idea

= design a class of binary search trees that mirrors 2-4 tree

2-4 tree to red-black tree

11

13

14

15

®
©

2-4 tree to red-black tree

2-4 tree to red-black tree

2-4 tree to red-black tree

9

2-4 tree to red-black tree

5|12 black depth: 2

Binary search tree that mirrors 2-4 tree
d-node becomes a black node with d — 1 red children
= assembled so that they form a BST of height at most 1
Overhead: red/black ‘color’ is stored with just 1 extra bit per node

Resulting properties
= any red node has a black parent

= any empty subtree of T has the same black-depth
= number of black nodes on path formrootto T

Red-Black tree to 2-4 tree

=" Lemma: Any red-black tree can be converted to a 2-4 tree

= Proof:
= black node with 0 < d < 2 red children becomes a (d + 1) node
= this covers all nodes
= nored node has a red child
= empty subtrees on the same level due to the same blackdepth

Red-Black tree to 2-4 tree

- E o[11] [22[25]27

|
o 0 60 0 0 0 o 0 o 0 0 0 0 0 0

0 0

Red-black trees have height O(logn)

= each level of 2-4 tree creates at most 2 levels in red-black tree
Insert/delete can be done in O(logn) time

= convert relevant part to 2-4 tree

= doinsert/delete as in 2-4 tree
= convert relevant parts back to red-black tree

Insert/delete can be done in O(log n) without conversion
" no details

Red/black trees are very popular balanced search trees (std::map)

Outline

= External Memory

= (a, b)-Trees

(a,b)-Trees

(3,5)-tree, also a valid (3, 6)-tree

35
14| 20| 26 38|44 |50 | 56
10112116 (18|22 (24| 28|30(32||34|36|/40(42|/46 |48 52|54 |58 |60
Jlb bo bbb b b b bosb obb sbo sob obb

2-4 Tree is a specific type of (a, b)-tree
(a, b)-tree satisfies

each node has at least a subtrees, unless it is the root

root must have at least 2 subtrees

each node has at most b subtrees
if node has d subtrees, then it stores d — 1 key-value pairs (KVPs)
all empty subtrees are at the same level

keys in the node are between keys in the corresponding subtrees

requirement: b =2 3and2 <a < E]

lower bound on a is needed to bound height

upper bound on a is needed during operations

(a, b)-Trees: Root

Why special condition for the root?

Needed for (a,b)-tree storing very few KVP
(3,5) tree storing only 1 KVP

Could not build it if forced the root to have at least 3 children
= remember # keys at any node is one less than number of subtrees

(a, b)-Trees: Condition on a Explained

b . : .
" Becausea < H search, insert, delete work just like for 2-4 trees

= straightforward redefinition of underflow and overflow
= For example, for (3,5)-tree
= atleast 3 children, at most 5
= allowed: 2-node, 3-node, 4-node

= duringinsert, overflow if get a 5-node
—_— 2 node 2 node

[BET4a T 55 | 60 2! 381 44
\ \ \

= 2-node is smallest allowed node

b . .
= fa> [E]’ no valid split exists for overflowed node

= this is similar to requiring you split\a pie in 2 parts, and each part is bigger
than half!
= for example if allow (4,5)-tree
= allowed: 3-node, 4-node
= overflow when get 5-node
= equal (best possible) split of 5-node results in two 2-node
= 2-node is not allowed for (4,5)-tree

(a, b)-Trees: Condition on a Explained

= Requirea < [a

= Qverflow means node has b + 1 subtrees

b + 1 subtrees

)y ey o w——
J

\ J
b Y Y
H =[(b+1)/2] [(b+1)/2]

at least a

(a, b)-Trees Delete

= For example, for (3,5)-tree
= atleast 3 children, at most 5
= each node is at least a 2-node, at most a 4-node
= during delete, underflow if get a 1-node
= if we have an immediate sibling which is rich (3 or 4-node), do transfer
= otherwise, do merge
= guaranteed to have at least one sibling which is a 2-node

Height of (a, b)-tree

= Height = number of levels not counting empty subtrees

5| 10| 12 height = 1

N

3] 4 6| 8 11 13| 14| 16

50 ¢ 0% 66 b

Height of (a, b)-tree

= Consider (a,b)-tree with the smallest number of KVP and of height h
* red node (the root) has 1 KVP, blue nodes have (a — 1) KVP

L 4

level # of nodes

0 1

1 2a°

2 2al

3 2a° Q0000 0000 0000 0000

B ogh-l ©000000000000000000000000000000000000000

h-1 h-1
of KVPs = 1 +z 2a'(a—1) =1+2(a—1)z at =2a" -1

\ L 1

= Letn the number of KVP in any (a, b)-tree of height h a—1

n > 2a — 1, therefore, loganT+1 > h

= Height of tree withn KVPsis O(log, n) = O(logn/loga)

(a, b)-Tree Analysis in Internal/External Memory

Internal memory
= search, insert, delete each require visiting @(height) nodes
= heightis O(logn/loga)

b] . . .
= recallthata < [5] is required for insert and delete to work correctly

= therefore, chose a = E] to minimize the height

= store from a to b items at a node: work at a node can be done in O(log b) time
= total cost

logn logb
0 lOgn-logb =0 & -logh =0(5 -logn> = O(logn)
log a log[g} logh — 1

= thisis not better than AVL-trees in internal memory

External memory
= we count just block transfers
= running time is O (logn/log a), assuming each node fits into one block
= makes sense to make a as large as possible so that a node still fits into one block

Outline

= External Memory

u B-Trees

B-trees: Motivation

B-tree is a type of (a, b)-tree tailored to the external memory model

Each block in external memory stores one tree node

parent U1 V3 U3
— —~ — —
‘o ky | o ky | e ky | o

Ty

f
/

f
/

T,

T,

f
/

If allow small a, would waste most block space

T

\)
!

space for k4, V4, T4

parent U1
—_ —
"o ki | ®

Ty

f
/

T,

f
/

Height is O(logn/loga), so small a leads to large height and wasted space

Choose b so that the largest node (b subtrees) fits into one block

store b — 1 keys directly (not through reference)

b — 1 value references, b subtree references, reference to parent

B-trees: Definition

= For external memory use (a, b)-tree s.t.
= |argest possible node (i.e. b subtrees) still fits into a block
» and ais as large as possible, recall that largest allowed a = [b/2]
= each block will be at least half full
Thus use ([b/2], b)- tree for external memory
This is defined as B-tree
We usually specify B-tree by just giving b
= D iscalled the order of B-tree
= B-tree ororder bisa (|b/2], b)-tree
= Example: node for B-tree of order 5

parent U1 [U3
— — — —

7 7 7 T —

T, T, T, T,

= Typically b € O(B)
= B =0p)=*const

space for k4, v4, T4

B-trees in External Memory

= Close-up on one node in one block

external memory

-
| IIIIIIIIIIII|I||IIIIIIII|I|||I||I|I||I|||I||IIII|II||I||IIIIIIII|I|||IIIIIIIIIIIIIIIIIIIIIIIIIIIII---J

-.-
-

transfer

if T1
ded : .
neeee ~internal memory
) .
parent Ty Ti T2 T3

o |® |k |Vi|®|ky|V2|® ky|Vz|e |/

unused (node not full)
o

" |n this example, 12 references and 5 keys fit into one block, so B-tree can
have order 6
= Values can be stored in the block directly if they do not need much space,
otherwise store them by reference
= storing values by reference is ok as we do not need values during tree
search

B-tree Analysis in External Memory

Search, insert, and delete each requires visiting ®(height) nodes
= O(height) block transfers

Work within a node is done in internal memory, no block transfers
The height is @(log;, n) which is @(logg n)

= sinceb € O(B)

* Proof (assuming b = B/3 and B = 9):

1 1
logn - ogn ogn

log,n = < < —=
logb ~ logB/3 " logVB

= 2loggn

So all operations require ©®(logg n) block transfers

= can show that this is asymptotically optimal

There are variants that are even better in practice

B-trees are hugely important for storing databases (cs448)

Useful Fact about (a, b)-trees
= number of of KVP = number of empty subtrees — 1 in any (a, b)-tree

Proof: put one stone on each empty subtree and pass the stones up the tree. Each node keeps 1 stone per
KVP, and passes the rest to its parent. Since for each node, #KVP = # children — 1, each node will pass
only 1 stone to its parent. This process stops at the root, and the root will pass 1 stone outside the tree.
At the end, each KVP has 1 stone, and 1 stone is outside the tree.

Useful Fact about (a, b)-trees

Example of B-tree usage

> 1 node (root)

Il b 200 nodes
fl | | \

OOUBuBuuuUuLauuuuuuuuuuuuuuuuuuuuuuuuuuuuLuuuuuuuLL, 200 3 em pty su btreeS

= PB-tree of order 200
= B-tree of order 200 and height 2 can store up to 2003 — 1 KVPs

= if we store root in internal memory, then only 2 block reads
are needed to retrieve any item

= compare: AVL tree of height at least 23 to store as many KVPs

