CS 240 - Data Structures and Data Management

Module 11: External Memory

O. Veksler

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo
Winter 2024

Outline

- External Memory
- Motivation
- Stream based algorithms
- External dictionaries
- 2-4 Trees
- red-black trees
- $a-b$ Trees
- B-Trees

Outline

- External Memory
- Motivation
- Stream based algorithms
- External dictionaries
- 2-4 Trees
- red-black trees
- (a, b)-Trees
- B-Trees

Different levels of memory

- RAM model: access to any memory location takes constant time
- not realistic
- Current architectures
- registers: super fast, very small
- cache L1, L2: very fast, less small
- main memory: fast, large
- disk or cloud: slow, very large
- How to adapt algorithms to take memory hierarchy into consideration?
- desirable to minimize transfer between slow/fast memory
- Define computer model that models hierarchy across which must transfer
- focus on 2 levels of hierarchy: main (internal) memory and disk or cloud (external) memory
- accessing a single location in external memory automatically loads a whole block (or "page")
- one block access can take as much time as executing 100,000 CPU instructions
- need to care about the number of block accesses

External-Memory Model (EMM)

П|

external memory - size unbounded. Store input (size n) here

Suppose time for one block transfer = time for 100,000 CPU instructions

- Algorithm 1
fast random access

1,000 CPU instructions $+1,000$ block transfers $=1,000+1,000 \cdot 100,000=18^{3}+10^{8}$

- Algorithm 2

10,000 CPU instructions +10 block transfers $=10,060+10 \cdot 100,000=104+10^{6}$

- New cost of computation: number of blocks transferred (or 'probes', 'disk transfers', 'page loads') between internal and external memory
- We will revisit ADTs/problems with the objective of minimizing block transfers

Outline

- External Memory
- Motivation
- Stream based algorithms
- External dictionaries
- 2-4 Trees
- red-black trees
- (a, b)-Trees
- B-Trees

Stream Based Algorithms in Internal Memory

- Studied algorithms that handle input/output with streams
- access only top item in input stream, append only to tail of output stream

- Repeat

1. take item off top of the input
2. process item
3. put the result of processing at the tail of output

Stream Based Algorithms in Internal Memory

- Studied algorithms that handle input/output with streams
- access only top item in input stream, append only to tail of output stream

CPU
process *
process*

- Repeat

1. take item off top of the input
2. process item
3. put the result of processing at the tail of output

Stream Based Algorithms in Internal Memory

- Studied algorithms that handle input/output with streams
- access only top item in input stream, append only to tail of output stream

CPU
process *
process*

- Repeat

1. take item off top of the input
2. process item
3. put the result of processing at the tail of output

Stream Based Algorithms in Internal Memory

- Studied algorithms that handle input/output with streams
- access only top item in input stream, append only to tail of output stream

CPU
process *
process*

- Repeat

1. take item off top of the input
2. process item
3. put the result of processing at the tail of output

Stream Based Algorithms in Internal Memory

- Studied algorithms that handle input/output with streams
- access only top item in input stream, append only to tail of output stream

CPU
process *
process*

- Repeat

1. take item off top of the input
2. process item
3. put the result of processing at the tail of output

Stream Based Algorithms in Internal Memory

- Studied algorithms that handle input/output with streams
- access only top item in input stream, append only to tail of output stream

CPU
process *

process*

- Repeat

1. take item off top of the input
2. process item
3. put the result of processing at the tail of output

Stream Based Algorithms in External Memory

External Memory

CPU

- Data in external memory has to be placed in internal memory before it can be processed
- Idea: perform the same algorithm as before, but in "block-wise" manner
- have one block for input, one block for output in internal memory
- transfer a block (size B) to internal memory, process it as before, store result in output block
- when output stream is of size B (full block), transfer it to external memory
- when current block is in internal memory is fully processed, transfer next unprocessed block from external memory

Stream Based Algorithms in External Memory

External Memory

input
output

first block

CPU
process *

Stream Based Algorithms in External Memory

External Memory

input
output

first block

CPU
process *

Stream Based Algorithms in External Memory

External Memory

input
output

first block

CPU
process *

Stream Based Algorithms in External Memory

External Memory

input
output

first block

CPU
process *

Stream Based Algorithms in External Memory

External Memory

input
output
$\cdot \cdot \cdot \cdot|\cdot| \cdot|\cdot| \cdot|\cdot| \cdot|\cdot| \cdot \mid$
first block

CPU

output block is full, transfer to external memory

Stream Based Algorithms in External Memory

External Memory

first block

> input block is empty,

CPU
from external memory

Stream Based Algorithms in External Memory

External Memory

Stream Based Algorithms in External Memory

External Memory

CPU

output block is full, transfer to external memory

Stream Based Algorithms in External Memory

External Memory

input
output

next block

CPU

- Running time (recall that we only count the block transfers now)
- input stream: $\frac{n}{B}$ block transfers to read input of size n
- output stream: $\frac{S}{B}$ block transfers to write output of size s
- Running time is automatically as efficient as possible for external memory
- any algorithm needs at least $\frac{n}{B}$ block transfers to read input of size n and $\frac{S}{B}$ block transfers to write output of size S

Stream Based Algorithms in External Memory

- Methods below use stream input/output model, therefore need $\Theta\left(\frac{n}{B}\right)$ block transfers, assuming output size is $O(n)$
- Pattern matching: Karp-Rabin, Knuth-Morris-Pratt, Boyer-Moore
- assuming pattern P fits into internal memory
- Text compression: Huffman, run-length encoding, Lempel-Ziv-Welch
- Sorting: merge-sort can be implemented with $O\left(\frac{n}{B} \log n\right)$ block transfers
- Bzip2 cannot be streamed as we described
- can compress in 'blocks'
- not as good as the whole text compression, but better than nothing

Outline

- External Memory
- Motivation
- Stream based algorithms
- External dictionaries
- 2-4 Trees
- red-black trees
- ($a, b)$-Trees
- B-Trees

Dictionaries in External Memory: Motivation

- AVL tree based dictionary implementations have poor memory locality
- 'nearby' tree nodes are unlikely to be in the same block

- In an AVL tree $\Theta(\log n)$ blocks are loaded in the worst case
- Idea: allow trees that store multiple items per node
- Many items per node \Rightarrow smaller height \Rightarrow fewer block transfers
- suppose store $n=2{ }^{50}$ items total, and $B=2{ }^{15}$ items in each node
- tree height is $\log _{B} n=\frac{\log _{2} n}{\log _{2} B}=\frac{50}{15}$
- 15 times less block transfers
- First consider a special case: 2-4 trees
- 2-4 trees also used for dictionaries in internal memory
- may be even faster than AVL-trees

Outline

- External Memory
- Motivation
- Stream based algorithms
- External dictionaries
- 2-4 Trees
- red-black trees
- (a, b)-Trees
- B-Trees

2-4 Trees Motivation

- Binary Search Tree supports efficient search with special key ordering

- Need nodes that store more than one key
- how to support efficient search?

- Need additional properties to ensure tree is balanced and therefore insert, delete are efficient

2-4 Trees

- Structural properties
- Every node is either

- 1-node: one KVP and two subtrees (possibly empty), or
- 2-node: two KVPs and three subtrees (possibly empty), or
- 3-node: three KVPs and four subtrees (possibly empty)
- allowing 3 types of nodes simplifies insertion/deletion
- All empty subtrees are at the same level
- necessary for ensuring height is logarithmic in the number of KVP stored
- Order property: keys at any node are between the keys in the subtrees

2-4 Tree Example

- Empty subtrees are not part of height computation

- Often do not even show empty subtrees

- Will prove height is $O(\log n)$ later, when we talk about (a, b)-trees
- 2-4 tree is a special type of (a,b)-tree

2-4 Tree: Search Example

- Search
- similar to search in BST
- $\quad \operatorname{search}(k)$ compares key k to k_{1}, k_{2}, k_{3}, and either finds k among k_{1}, k_{2}, k_{3} or figures out which subtree to recurse into
- if key is not in tree, search returns parent of empty tree where search stops
- key can be inserted at that node
- search(15)

2-4 Tree operations

```
24Tree::search(k,v \leftarrowroot, p\leftarrowempty subtree)
k: key to search, v: node where we search; p: parent of v
    if v represents empty subtree
            return "not found, would be in p"
    let < To,k},\ldots,\mp@subsup{k}{d}{},\mp@subsup{T}{d}{}>>\mathrm{ be key-subtrees list at v
    if }k\geq\mp@subsup{k}{1}{
            i}\leftarrow\mathrm{ maximal index such that }\mp@subsup{k}{i}{}\leq
            if }\mp@subsup{k}{i}{}=
                return "at ith key in v"
            else 24Tree::search(k,Ti,v)
    else 24Tree::search(k,T0,v)
```


Example: 2-4 tree Insert

- Example: 24Treelnsert(9)
node can hold one more item, so it's tempting to insert 9 in it

Example: 2-4 tree Insert

- Example: 24Treelnsert(9)
- first step: 24Tree::search(9)

Example: 2-4 tree Insert

- Example: 24Treelnsert(9)
- first step: 24 Tree::search(9)
- second step: insert at the leaf node returned by search

- adding an empty subtree at the last level causes no problems
- order properties are preserved
- node stays valid, it now has 3 KVPs, which is allowed

Example: 2-4 tree Insert

- Example: 24TreeInsert(17)
- first step is 24Tree::search(17)
- insert at the leaf node returned by search

Example: 2-4 tree Insert

- Example: 24TreeInsert(17)
- now leaf has 4 KVPs, not allowed, have to fix this

Example: 2-4 tree Insert

- Example: 24TreeInsert(17)
- now leaf has 4 KVPs, not allowed, have to fix this

Example: 2-4 tree Insert

- Example: 24TreeInsert(17)
- splitting is possible because we allow variable node size
- split 3-node into 1-node and 2-node
- order property is preserved after a split
- overflow can propagate to the parent of split node

Example: 2-4 tree Insert

- Example: 24TreeInsert(17)
- when splitting the root node, need to create new root

Example: 2-4 tree Insert

- Example: 24TreeInsert(17)

2-4 Tree Insert Pseudocode

```
24Tree::insert(k)
    v}\leftarrow24Tree::search(k)//leaf where k should b
    add }k\mathrm{ and an empty subtree in key-subtree-list of v
    while}v\mathrm{ has }4\mathrm{ keys (overflow }->\mathrm{ node split)
    let < To,k},\ldots,\mp@subsup{k}{4}{},\mp@subsup{T}{4}{}>>\mathrm{ be key-subtrees list at v
    if v}\mathrm{ has no parent
            create an empty parent of v
p}\leftarrow\mathrm{ parent of v
v ^ { \prime } \leftarrow \text { new node with keys } k _ { 1 } , k _ { 2 } \text { and subtrees } T _ { 0 } , T _ { 1 } , T _ { 2 }
v'
```



```
v \leftarrow p / / c o n t i n u e ~ c h e c k i n g ~ f o r ~ o v e r f l o w ~ u p w a r d s
```


2-4 Tree: Immediate Sibling

- A node can have an immediate left sibling, immediate right sibling, or both

- Any node except the root must have an immediate sibling

2-4 Tree: Inorder Successor

- Inorder successor of key k is the smallest key in the subtree immediately to the right of k

inorder successor of key 5
- Inorder successor is guaranteed to be at a leaf node
- otherwise would have something smaller in the leftmost subtree

2-4 Tree Delete

36

- Example: delete(21)
- Search for key to delete
- if a node found has more than 1 key, it is tempting to delete it directly

2-4 Tree Delete

36

- Example: delete(21)
- Search for key to delete
- if a node found has more than 1 key, it is tempting to delete it directly
- however, can delete the key directly only if a node is a leaf
- when we delete a key, we need to delete 1 subtree, easy only at a leaf

2-4 Tree Delete

36

- Example: delete(21)
- Search for key to delete
- can delete keys only from a leaf node, as need to delete a subtree as well
- if the key is in a node which is not a leaf, replace key with its inorder successor

2-4 Tree Delete

36

- Example: delete(21)
- Search for key to delete
- can delete keys only from a leaf node, as need to delete a subtree as well
- if the key is in a node which is not a leaf, replace key with its inorder successor

2-4 Tree Delete

36

- Example: delete(21)
- Search for key to delete
- can delete keys only from a leaf node, as need to delete a subtree as well
- if the key is in a node which is not a leaf, replace key with its inorder successor
- delete key 21 and an empty subtree

2-4 Tree Delete

36

- Example: delete(21)
- Search for key to delete
- can delete keys only from a leaf node, as need to delete a subtree as well
- if the key is in a node which is not a leaf, replace key with its inorder successor
- delete key 21 and an empty subtree
- order property is preserved and we are done

2-4 Tree Delete

- Example: delete(43)
- Search for key to delete
- can delete keys only from a leaf node
- replace key with in-order successor

2-4 Tree Delete

- Example: delete(43)
- Search for key to delete
- can delete keys only from a leaf node
- replace key with in-order successor
- delete key 43 and a subtree

2-4 Tree Delete

- Example: delete(43)
- rich immediate sibling, transfer key from sibling, with help from the parent
- sibling is rich if it is a 2-node or 3-node
- adjacent subtree from sibling is also transferred

2-4 Tree Delete

- Example: delete(43)
- rich immediate sibling, transfer key from sibling, with help from the parent
- sibling is rich if it is a 2 -node or 3 -node
- adjacent subtree from sibling is also transferred
- order property is preserved

2-4 Tree Delete

- Example: delete(19)
- first search(19)

2-4 Tree Delete

- Example: delete(19)
- first search(19)
- then delete key 19 (and an empty subtree) from the node
- immediate siblings exist, but not rich, cannot transfer

2-4 Tree Delete

- Example: delete(19)
- immediate siblings exist, but not rich, cannot transfer
- merge with right immediate sibling with help from parent

2-4 Tree Delete

- Example: delete(19)
- immediate siblings exist, but not rich, cannot transfer
- merge with right immediate sibling with help from parent
- all subtrees merged together as well
- structural and order properties are preserved

2-4 Tree Delete

- Example: delete(42)
- first search(42)
- delete key 42 with one empty subtree

2-4 Tree Delete

- Example: delete(42)
- first search(42)
- the only immediate sibling is not rich, perform merge

2-4 Tree Delete

- Example: delete(42)
- first search(42)
- the only immediate sibling is not rich, perform merge
- all subtrees merged together as well

2-4 Tree Delete

- Example: delete(42)
- merge operation can cause underflow at the parent node
- while needed, continue fixing the tree upwards
- possibly all the way to the root

2-4 Tree Delete

- Example: delete(42)
- the only sibling is not rich, perform a merge

2-4 Tree Delete

- Example: delete(42)
- the only sibling is not rich, perform a merge
- subtrees are merged as well
- continue fixing the tree upwards

2-4 Tree Delete

- Example: delete(42)
- the only sibling is not rich, perform a merge

2-4 Tree Delete

- Example: delete(42)
- the only sibling is not rich, perform merge
- underflow at parent node
- it is the root, delete root

2-4 Tree Delete

- Example: delete(42)
- the only sibling is not rich, perform merge
- underflow at parent node
- it is the root, delete root

2-4 Tree Delete

- Example: delete(28)
- first search(28)
- delete key 28 with one empty subtree

2-4 Tree Delete

- Example: delete(28)
- first search(28)
- delete key 28 with one empty subtree

2-4 Tree Delete

- Example: delete(28)
- first search(28)
- delete key 28 with one empty subtree
- merge with the only immediate sibling, who is not rich

2-4 Tree Delete

- Example: delete(28)
- first search(28)
- delete key 28 with one empty subtree
- merge with the only immediate sibling, who is not rich

2-4 Tree Delete

- Example: delete(28)
- transfer from a rich immediate sibling

2-4 Tree Delete

- Example: delete(28)
- transfer from a rich immediate sibling
- together with a subtree

2-4 Tree Delete Summary

- If key not at a leaf node, swap with inorder successor (guaranteed at leaf node)
- Delete key and one empty subtree from the leaf node involved in swap
- If underflow
- If there is an immediate sibling with more than one key, transfer
- no further underflows caused
- do not forget to transfer a subtree as well
- convention: if two siblings have more than one key, transfer with the right sibling
- If all immediate siblings have only one key, merge
- there must be at least one sibling, unless root
- if root, delete
- convention: if two immediate siblings with one key, merge with the right one
- merge may cause underflow at the parent node, continue to the parent and fix it, if necessary

Deletion from a 2-4 Tree

```
24Tree::delete(k)
    v}\leftarrow24Tree::search(k)//node containing 
    if v}\mathrm{ is not a leaf
    swap k with its inorder successor }\mp@subsup{k}{}{\prime
    swap v}\mathrm{ with leaf that contained }\mp@subsup{k}{}{\prime
    delete }k\mathrm{ and one empty subtree in key-subtree-list of v
    while v}\mathrm{ has 0 keys // underflow
            if}v\mathrm{ is the root, delete v}\mathrm{ and break
            if v}\mathrm{ has immediate sibling }u\mathrm{ with 2 or more KVPs // transfer, then done!
            transfer the key of u that is nearest to v to p
            transfer the key of p between }u\mathrm{ and v to v
            transfer the subtree of }u\mathrm{ that is nearest to v to v
            break
            else // merge and repeat
            u}\leftarrow\mathrm{ immediate sibling of v
            transfer the key of p between }u\mathrm{ and v to u
            transfer the subtree of v to }
            delete node v
            v}\leftarrow
```


2-4 Tree Summary

- 2-4 tree has height $O(\log n)$
- in internal memory, all operations have run-time $O(\log n)$
- this is no better than AVL-trees in theory
- but 2-4 trees are faster than AVL-trees in practice, especially when converted to binary search trees called red-black trees
- 2-4 tree has height $\Omega(\log n)$
- n is the number of KVPs
- for a tree of height h
- $n \leq 3\left(4^{0}+4^{1} \ldots+4^{h}\right)$
- $n \leq 4^{h+1}-1$
- $\log _{4}(n+1)-1 \leq h$
- thus h is $\Omega(\log n)$
- So 2-4 tree is not significantly better than AVL-tree wrt block transfers
- But can generalize the concept to decrease the height

Outline

- External Memory
- Motivation
- Stream based algorithms
- External sorting
- External dictionaries
- 2-4 Trees
- red-black trees
- (a,b)-Trees
- B-Trees

Problem with 2-4 trees

- Have 3 kinds of nodes
- 1-node, 2-node, 3-node
- need to store up to 7 items at each node
- 3 keys and 4 subtree references
- How should we store keys and subtrees?
- array of length 7
- wastes space
- linked list
- overhead for list-nodes, also wastes space
- theoretical bound not affected, but matters in practice
- Better idea
- design a class of binary search trees that mirrors 2-4 tree

2-4 tree to red-black tree

2-4 tree to red-black tree

2-4 tree to red-black tree

2-4 tree to red-black tree

2-4 tree to red-black tree

- Binary search tree that mirrors 2-4 tree
- d-node becomes a black node with $d-1$ red children
- assembled so that they form a BST of height at most 1
- Overhead: red/black 'color' is stored with just 1 extra bit per node
- Resulting properties
- any red node has a black parent
- any empty subtree of T has the same black-depth
- number of black nodes on path form root to T

Red-Black tree to 2-4 tree

- Lemma: Any red-black tree can be converted to a 2-4 tree
- Proof:
- black node with $0 \leq d \leq 2$ red children becomes a $(d+1)$ node
- this covers all nodes
- no red node has a red child
- empty subtrees on the same level due to the same blackdepth

Red-Black tree to 2-4 tree

- Red-black trees have height $O(\log n)$
- each level of 2-4 tree creates at most 2 levels in red-black tree
- Insert/delete can be done in $O(\log n)$ time
- convert relevant part to 2-4 tree
- do insert/delete as in 2-4 tree
- convert relevant parts back to red-black tree
- Insert/delete can be done in $\mathrm{O}(\log n)$ without conversion
- no details
- Red/black trees are very popular balanced search trees (std::map)

Outline

- External Memory
- Motivation
- Stream based algorithms
- External sorting
- External dictionaries
- 2-4 Trees
- red-black trees
- $\quad(a, b)$-Trees
- B-Trees
(a, b)-Trees

- 2-4 Tree is a specific type of (a, b)-tree
- (a, b)-tree satisfies
- each node has at least a subtrees, unless it is the root
- root must have at least 2 subtrees
- each node has at most b subtrees
- if node has d subtrees, then it stores $d-1$ key-value pairs (KVPs)
- all empty subtrees are at the same level
- keys in the node are between keys in the corresponding subtrees
- requirement: $b \geq 3$ and $2 \leq a \leq\left\lceil\frac{b}{2}\right\rceil$
- lower bound on a is needed to bound height
- upper bound on a is needed during operations

(a, b)-Trees: Root

- Why special condition for the root?
- Needed for (a,b)-tree storing very few KVP
- $(3,5)$ tree storing only 1 KVP

- Could not build it if forced the root to have at least 3 children
- remember \# keys at any node is one less than number of subtrees

(a, b)-Trees: Condition on a Explained

- Because $a \leq\left\lceil\frac{b}{2}\right\rceil$ search, insert, delete work just like for 2-4 trees
- straightforward redefinition of underflow and overflow
- For example, for $(3,5)$-tree
- at least 3 children, at most 5
- allowed: 2-node, 3-node, 4-node
- during insert, overflow if get a 5 -node

- If $a>\left\lceil\frac{b}{2}\right\rceil$, no valid split exists for overflowed node
- this is similar to requiring you split a pie in 2 parts, and each part is bigger than half!
- for example if allow $(4,5)$-tree
- allowed: 3-node, 4-node
- overflow when get 5 -node
- equal (best possible) split of 5 -node results in two 2 -node
- 2 -node is not allowed for $(4,5)$-tree

(a, b)-Trees: Condition on a Explained

- Require $a \leq\left\lceil\frac{b}{2}\right\rceil$
- Overflow means node has $b+1$ subtrees

(a, b)-Trees Delete

- For example, for $(3,5)$-tree
- at least 3 children, at most 5
- each node is at least a 2-node, at most a 4-node
- during delete, underflow if get a 1-node
- if we have an immediate sibling which is rich (3 or 4-node), do transfer
- otherwise, do merge
- guaranteed to have at least one sibling which is a 2-node

Height of (a, b)-tree

- Height $=$ number of levels not counting empty subtrees

Height of (a, b)-tree

- Consider (a,b)-tree with the smallest number of KVP and of height h
- red node (the root) has 1 KVP, blue nodes have $(a-1)$ KVP level \# of nodes

0	1
1	$2 a^{0}$
2	$2 a^{1}$
3	$2 a^{2}$
\boldsymbol{h}	$2 a^{h-1}$

$$
\begin{aligned}
& \text { \# of KVPs }=1+\sum_{i=0}^{h-1} 2 a^{i}(a-1)=1+2(a-1) \sum_{i=0}^{h-1} a^{i}=2 a^{h}-1 \\
& \text { et } n \text { the number of KVP in any }(a, b) \text {-tree of height } h
\end{aligned}
$$

$$
n \geq 2 a^{h}-1, \text { therefore, } \log _{a} \frac{n+1}{2} \geq h
$$

- Height of tree with n KVPs is $O\left(\log _{a} n\right)=O(\log n / \log a)$

(a, b)-Tree Analysis in Internal/External Memory

- Internal memory
- search, insert, delete each require visiting Θ (height) nodes
- height is $O(\log n / \log a)$
- recall that $a \leq\left[\frac{b}{2}\right\rceil$ is required for insert and delete to work correctly
- therefore, chose $a=\left\lceil\frac{b}{2}\right\rceil$ to minimize the height
- store from a to b items at a node: work at a node can be done in $O(\log b)$ time
- total cost
$O\left(\frac{\log n}{\log a} \cdot \log b\right)=O\left(\frac{\log n}{\log \left\lceil\frac{b}{2}\right\rceil} \cdot \log b\right)=O\left(\frac{\log b}{\log b-1} \cdot \log n\right)=O(\log n)$
- this is not better than AVL-trees in internal memory
- External memory
- we count just block transfers
- running time is $O(\log n / \log a)$, assuming each node fits into one block
- makes sense to make a as large as possible so that a node still fits into one block

Outline

- External Memory
- Motivation
- Stream based algorithms
- External sorting
- External dictionaries
- 2-4 Trees
- red-black trees
- (a, b)-Trees
- B-Trees

B-trees: Motivation

- B-tree is a type of (a, b)-tree tailored to the external memory model
- Each block in external memory stores one tree node

- If allow small a, would waste most block space

- Height is $O(\log n / \log a)$, so small a leads to large height and wasted space
- Choose b so that the largest node (b subtrees) fits into one block
- store $b-1$ keys directly (not through reference)
- $b-1$ value references, b subtree references, reference to parent

B-trees: Definition

- For external memory use (a, b)-tree s.t.
- largest possible node (i.e. b subtrees) still fits into a block
- and a is as large as possible, recall that largest allowed $a=\lceil b / 2\rceil$
- each block will be at least half full
- Thus use ($[b / 2\rceil, b)$ - tree for external memory
- This is defined as B-tree
- We usually specify B-tree by just giving b
- $\quad b$ is called the order of B-tree
- B-tree or order b is a $([b / 2\rceil, b)$-tree
- Example: node for B-tree of order 5

- Typically $b \in \Theta(B)$
- $B=b *$ const

B-trees in External Memory

- Close-up on one node in one block
external memory

- In this example, 12 references and 5 keys fit into one block, so B-tree can have order 6
- Values can be stored in the block directly if they do not need much space, otherwise store them by reference
- storing values by reference is ok as we do not need values during tree search

B-tree Analysis in External Memory

- Search, insert, and delete each requires visiting Θ (height) nodes
- Θ (height) block transfers
- Work within a node is done in internal memory, no block transfers
- The height is $\Theta\left(\log _{b} n\right)$ which is $\Theta\left(\log _{B} n\right)$
- \quad since $b \in \Theta(B)$
- Proof (assuming $b \geq B / 3$ and $B \geq 9$):

$$
\log _{b} n=\frac{\log n}{\log b} \leq \frac{\log n}{\log B / 3} \leq \frac{\log n}{\log \sqrt{B}}=2 \log _{B} n
$$

- So all operations require $\Theta\left(\log _{B} n\right)$ block transfers
- can show that this is asymptotically optimal
- There are variants that are even better in practice
- B-trees are hugely important for storing databases (cs448)

Useful Fact about (a, b)-trees

- number of of KVP = number of empty subtrees - 1 in any (a, b)-tree

Proof: Put one stone on each empty subtree and pass the stones up the tree. Each node keeps 1 stone per KVP, and passes the rest to its parent. Since for each node, \#KVP = \# children - 1, each node will pass only 1 stone to its parent. This process stops at the root, and the root will pass 1 stone outside the tree. At the end, each KVP has 1 stone, and 1 stone is outside the tree.

Useful Fact about (a, b)-trees

Example of B-tree usage

- B-tree of order 200
- B-tree of order 200 and height 2 can store up to $200^{3}-1 \mathrm{KVPs}$
- if we store root in internal memory, then only 2 block reads are needed to retrieve any item
- compare: AVL tree of height at least 23 to store as many KVPs

