Tutorial 09: Mar 18

1. Quadtree

Suppose we are given n points in 2 dimensions, S. Let M be the largest distance between points and m be smallest distance between points. Suppose we also have that $\frac{M}{m} \in O(\sqrt{n})$. Then, prove that height of quadtree on such set is $O(\log n)$. To make the analysis easier, assume $(0,0)$ contains in this set.
2. Basics of Range Tree

Consider the following points being stored in a 2D range tree: $(2,12),(17,77),(23,92),(40,47),(55,91)$, $(67,27),(89,79),(99,53),(10,23),(35,7),(61,40),(95,56),(22,42),(88,15),(42,2)$.
(a) Draw the primary tree for this range tree.
(b) Draw the corresponding associate trees for the points $(88,15),(61,40)$ and $(67,27)$.
(c) Perform a range-search with the query rectangle $[35,90] \times[5,30]$, indicating all boundary nodes and topmost inside nodes.
3. Find Largest x in kd-tree

Given a 2D kd-tree with n points, design an algorithm that finds a point with largest x-coordinate. For simplicity, you may assume n is a power of 4 .

