
University of Waterloo

CS240 Winter 2025
Assignment 2

Due Date: Tuesday, February 4 at 5:00pm

Please read https://student.cs.uwaterloo.ca/~cs240/w25/assignments.phtml#guidelines
for guidelines on submission. Each question must be submitted individually to
Crowdmark. Submit early and often.

Grace period: submissions made before 11:59PM on February 4 will be accepted with-
out penalty. Your last submission will be graded. Please note that submissions made after
11:59PM will not be graded and may only be reviewed for feedback.

Notes:

• Logarithms are in base 2, if not mentioned otherwise.

• If you use MSD or LSD radix sort in this assignment, you are free to choose any value
for radix R. If you choose radix R other than 10 (standard decimal representation),
you must account for the time it takes to transform a number in decimal representation
to base R.

Question 1 [2+3+5=10 marks]

a) Let H be a max-heap of size 13 with unique elements. On which level(s) of the heap
can the smallest item be located? Recall that the topmost level in the heap is 0. No
explanation is needed.

b) Consider NewHeapify algorithm below, which calls fix-down subroutine described in
lecture notes. Does this algorithm produce the max-heap order in the input array A?
Give a proof or a counter-example.

NewHeapify(A)
A: an array
1. n← A.size()
2. for i← 0 to parent(last())
3. fix-down(A,n, i)

c) Consider a heap of size n implemented with an array H. Let the kth ancestor of
the node at index i of the array be the ancestor of i that is separated from i by k
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links. For example, the parent of i is the first ancestor of i. Design an algorithm
isAncestor(x,H, i) which takes as an input heap array H, a valid index i in the array
and a value x. This algorithm should return true if key x is stored at kth ancestors of
node i for some k ∈ Z, k ≥ 0, and return false otherwise.

In order to obtain full marks, your algorithm should be as efficient as possible. You
must write pseudo-code for this question. In addition, as for any other algorithm you
provide in assignments, you must describe the algorithm, briefly justify correctness,
and analyse its running time complexity in terms of n. Be precise about the indices
your algorithm explores.

Note: For this problem, you may assume that taking a log of any number or raising
2 to any integer power takes a constant amount of time (not true in general for our
idealized computer model).

Question 2 [5 marks]

Consider the following algorithm, which takes as an input a bitstring w of length n. Fur-
thermore, w has exactly 3 bits equal to 1. What is the average case running time of the
algorithm below? Note that on line 6, if count = 2, then the for loop on lines 6-7 will execute
n2 times.

Mystery(w)

w is a bitstring of length n ≥ 3 containing exactly three bits equal to 1
1. count← 0
2. for i = 1 to n− 1
3. if w[i− 1] > w[i]
4. count← count+ 1
5. sum← 0
6. for i = 1 to ncount

7. sum← sum+ 1
8. return sum

Question 3 [2+5=7 marks]

Consider the algorithm below, where random(k) returns an integer from the set of {0, 1, . . . , k−
1} uniformly and at random.
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ArrayAlg(A,n)
A: an array storing numbers
1. if n = 1
2. return
3. i← random(n) + 1
4. for j = 1 to i do
5. print(A[j − 1])
6. ArrayAlg(A,n− 1)

a) Provide a tight (Θ) bound for the worst-case (i.e. the worst luck) running time of
ArrayAlg on array A of size n. Justify.

b) Let T exp(n) be the expected running time of ArrayAlg for an input of size n. Show
how to derive a recurrence relation for T exp(n) and then solve it. Express T exp(n) using
big-O asymptotic notation. Your bound must be asymptotically tight, but you need
not prove that it is tight.

Question 4 [2+5=7 marks]

Consider the algorithm below, which is a variant of QuickSort . Here, subroutine use-one-
key-comparison is unknown but uses exactly one key-comparison, and algorithm partition is
the same algorithm as shown in class. Now let T best(n) and Tworst(n) be the best and worst
case number of key-comparisons performed by mysteryQS for an array of size n. Note that
we are only counting key-comparisons performed by the sub-routine use-one-key-comparison.

mysteryQS(A,n← A.size)
if n > 1

p← choose-pivot(A)
i← partition(A, p)
mysteryQS(A[0, 1, . . . , i− 1])
mysteryQS(A[i+ 1, . . . , n− 1])
for j = 0 to i do

for k = i to n− 1 do
use-one-key-comparison()

a) Show that Tworst(n) ∈ Ω(n2).

b) Show that T best(n) ∈ O(n2 log n).

Remark: Obviously not both (a) and (b) can be tight. To keep the assignment shorter
we did not ask you to get the tight bounds here.
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Question 5 [5 marks]

A student designed a data structure and named it an almost-priority-queue. This data
structure allows two operations: insert and extract almost Max, where extract almost Max

outputs either the largest priority or the second largest priority item. Also, extract almost Max

does not tell you whether it extracted the largest or second largest priority item. In case
the data structure has only one element, extract almost Max extracts that element. The
student claims that the worst case running time of both insert and extract almost Max

is o(log n). Prove that the student has made a mistake in the running time analysis of their
data structure.

Question 6 [2+2+2+3=9 marks]

a) Show the contents of array A = [54, 121, 38, 82] after one round of LSD sort, where one
round means one application of single digit bucket sort. No explanation is required.

b) Perform MSD sort on array A = [736, 212, 213, 376, 354, 850]. For each number, un-
derline the digits (if any) which are not examined by MSD sort. No explanation is
required.

c) Provide a Θ bound on the running time of bucket-sort when sorting an array of size
n3 containing elements in the range [1, . . . , n5]. Briefly explain.

d) Explain how to sort n integers in the range [0, n10) in O(n) time.
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