
University of Waterloo

CS240 Winter 2025
Programming Question 2

Due Date: Tuesday, March 11 at 5:00pm

Please read https://student.cs.uwaterloo.ca/~cs240/w25/assignments.phtml#guidelines
for guidelines on submission. Submit the file pq2.cpp electronically to Marmoset.
Grace period: submissions made before 11:59PM on March 11 will be accepted without
penalty. Your last submission will be graded. Please note that submissions made after
11:59PM will not be graded and may only be reviewed for feedback.

Question 1 [20 marks]

Design and implement PrunedTrie over alphabet Σ = {a, e, o}. Your pruned trie should be
implemented exactly as the pruned trie in Module06, except it is over alphabet with three
letters (a, e, o). Provide an implementation of the class below. The running time for all
methods should be O(|w|), where |w| is the word length. All printing should be done to the
standard output.

Your program will read words from the standard input. Words are guaranteed to be over
alphabet Σ = {a, e, o}. For the first four functions you are required to implement, words
will end with the special end of word character ’$’. For each word w, we define goodness
function, which adds up 100 for each character ’o’, 10 for each character ’e’, and 1 for each
character ’a’. For example, goodness(aoaaee$) = 1 · 3 + 10 · 2 + 100 · 1 = 123. We define
goodness of an empty string as -1, i.e. goodness($) = −1.

Important: If your trie is not pruned, i.e. the standard trie, you will receive at most 5/20
marks.

1

https://student.cs.uwaterloo.ca/~cs240/w25/assignments.phtml#guidelines

PrunedTrie{

// add any fields and methods, as necessary

public:

int size(); // returns total number of keys stored in the trie

void insert(const string& w); // inserts word w; word w ends with $

void remove(const string& w); // removes word w; word w ends with $

bool search(const string& w); // returns true if word w is in the trie

// false otherwise; word w ends with $

int prefix_search(const string& p); // finds the word w in the trie with

// prefix p and returns the goodness of w.

// If there are multiple w matching prefix p

// returns w with largest goodness

// p ends with $$

// if prefix p not found, returns -1

int num_nodes(const string& w);// First search for w in the trie. Search stops

// at node v. Return the number of nodes in subtree

// of v, including v.

// Note that w may or may not end with $

int num_keys(const string& w); // First search for w in the trie. Search stops

// at node v. Return the number of keys in subtree

// of v, including v.

// Note that w may or may not end with $

You may use C++ vector, stack, string, and pair data structures and smart pointers. No
other data structures/algorithms are allowed.

Place your program in file pq2.cpp. We provide you with a starter code that has the
main function that accepts commands from the standard input. You may assume all inputs
are valid, i.e. we will never input a word having characters outside the alphabet. See the
starter code for the description of the commands. You are not allowed to modify the main
function.

2

a

a

e

o

aaa$

$

aoee$

ea

aaao$

$ o
a

ao$

eee$

aoao$

nodes = 11
keys = 6

nodes = 9
keys = 5

nodes = 4
keys = 3

nodes = 4
keys = 2

nodes = 3
keys = 2

goodness = 30

goodness = 121goodness=202

goodness=3 goodness=103

goodness=101

Figure 1: PrunedTrie

Below we provide several example outputs for the Pruned trie in Fig. 1.

• prefix search(e$) = 30.

• prefix search(a$) = 202.

• prefix search(aaa$) = 103.

• prefix search($) = 202.

• num nodes(aaa) = 3. (search stops at the red node)

• num keys(aaa) = 2. (search stops at the red node)

• num nodes(aaa$) = 1. (search stops at the blue leaf)

• num keys(aaa$) = 1. (search stops at the blue leaf)

• num nodes(a) = 9. (search stops at the green node)

• num keys(a) = 5. (search stops at the green node)

• num nodes(o) = 11. (search stops at the root)

• num keys(o) = 6. (search stops at the root)

We also provide several sample inputs and outputs.

3

	[20 marks]

