
Module 1: Introduction and Asymptotic Analysis

CS 240 – Data Structures and Data Management

 O. Veksler
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science,
University of Waterloo

Winter 2025

Outline

▪ CS240 overview
▪ course objectives

▪ course topics

▪ Introduction and Asymptotic Analysis
▪ algorithm design

▪ pseudocode

▪ measuring efficiency

▪ asymptotic analysis

▪ analysis of algorithms

▪ analysis of recursive algorithms

▪ helpful formulas

Outline

▪ CS240 overview
▪ course objectives

▪ course topics

▪ Introduction and Asymptotic Analysis
▪ algorithm design

▪ pseudocode

▪ measuring efficiency

▪ asymptotic analysis

▪ analysis of algorithms

▪ analysis of recursive algorithms

▪ helpful formulas

▪ Computer Science is mostly about problem solving
▪ write program that converts given input to expected output

▪ When first learn to program, emphasize correctness
▪ does program output the expected results?

▪ This course is also concerned with efficiency
▪ does program use computer resources efficiently?

▪ processor time, memory space

▪ strong emphasis on mathematical analysis of efficiency

▪ Study efficient methods of storing, accessing, and
organizing large collections of data

▪ typical operations: inserting new data items, deleting data
items, searching for specific data items, sorting

Course Objectives: What is this course about?

Course Objectives: What is this course about?

▪ New abstract data types (ADTs)
▪ how to implement ADT efficiently using appropriate

data structures

▪ New algorithms solving problems in data management
▪ sorting, pattern matching, compression

▪ Algorithms
▪ presented in pseudocode

▪ analyzed using order notation (big-Oh, etc.)

Course Topics

▪ asymptotic (big-Oh) analysis

▪ priority queues and heaps

▪ sorting, selection

▪ binary search trees, AVL trees

▪ skip lists

▪ tries

▪ hashing

▪ quadtrees, kd-trees, range search

▪ string matching

▪ data compression

▪ external memory

Data Structures and
Algorithms

mathematical tool
for efficiency

CS Background

▪ Topics covered in previous courses with relevant sections [Sedgewick]

▪ arrays, linked lists (Sec. 3.2–3.4)

▪ strings (Sec. 3.6)

▪ stacks, queues (Sec. 4.2–4.6)

▪ abstract data types (Sec. 4-intro, 4.1, 4.8–4.9)

▪ recursive algorithms (5.1)

▪ binary trees (5.4–5.7)

▪ basic sorting (6.1–6.4)

▪ binary search (12.4)

▪ binary search trees (12.5)

▪ probability and expectation (Goodrich & Tamassia, Section 1.3.4)

Outline

▪ CS240 overview
▪ Course objectives

▪ Course topics

▪ Introduction and Asymptotic Analysis
▪ algorithm design

▪ pseudocode

▪ measuring efficiency

▪ asymptotic analysis

▪ analysis of algorithms

▪ analysis of recursive algorithms

▪ helpful formulas

Algorithm Design Terminology

▪ Problem: description of input and required output

▪ for example, given an input array, rearrange elements in non-
decreasing order

▪ Problem Instance: one possible input for specified problem

▪ 𝐼 = [5, 2, 1, 8, 2]

▪ Size of a problem instance size(𝐼)

▪ non-negative integer measuring size of instance 𝐼

▪ size([5, 2, 1, 8, 2]) = 5

▪ size([]) = 0

▪ Often input is array, and instance size is usually array size

Algorithm Design Terminology

▪ Algorithm: step-by-step process (can be described in finite
length) for carrying out a series of computations, given an
arbitrary instance 𝐼

▪ Solving a problem: algorithm 𝑨 solves problem 𝚷 if for every
instance 𝐼 of 𝚷, 𝑨 computes a valid output for instance 𝐼 in finite
time

▪ Program: implementation of an algorithm using a
specified computer language

▪ In this course, the emphasis is on algorithms
▪ as opposed to programs or programming

Algorithms and Programs

▪ From problem 𝚷 to program that solves it
1. Algorithm Design: design algorithm(s) that solves 𝚷

2. Algorithm Analysis: assess correctness and efficiency of algorithm(s)

3. Implementation: if acceptable (correct and efficient), implement
algorithms(s)

▪ for each algorithm, multiple implementations are possible

4. If multiple acceptable algorithms/implementations, run experiments to
determine a better solution

▪ CS240 focuses on the first two steps
▪ the main point is to avoid implementing obviously bad algorithms

Outline

▪ CS240 overview
▪ Course objectives

▪ Course topics

▪ Introduction and Asymptotic Analysis
▪ algorithm design

▪ pseudocode

▪ measuring efficiency

▪ asymptotic analysis

▪ analysis of algorithms

▪ analysis of recursive algorithms

▪ helpful formulas

Pseudocode
▪ Pseudocode is a method of communicating algorithm to a human

▪ whereas program is a method of communicating algorithm to a computer

▪ preferred language for describing algorithms

▪ omits obvious details, e.g. variable declarations

▪ sometimes uses English descriptions (swap)

▪ has limited if any error detection, e.g. assumes 𝐴 is initialized

▪ sometimes uses mathematical notation

▪ should use good variable names

Pseudocode Details

▪ Control flow
if … then … [else …]
while … do …
repeat … until …
for … do …
indentation replaces braces

▪ Expressions
← assignment
== equality testing
n2 superscripts and other mathematical formatting allowed

▪ Method declaration
Algorithm method (arg, arg…)
 Input …
 Output …

Algorithm arrayMax(A, n)

 Input: array A of n integers

 Output: maximum element of A

 currentMax A[0]

 for i 1 to n − 1 do

 if A[i] currentMax then

 currentMax A[i]

 return currentMax

Outline

▪ CS240 overview
▪ Course objectives

▪ Course topics

▪ Introduction and Asymptotic Analysis
▪ algorithm design

▪ pseudocode

▪ measuring efficiency

▪ asymptotic analysis

▪ analysis of algorithms

▪ analysis of recursive algorithms

▪ helpful formulas

Efficiency of Algorithms/Programs
▪ Efficiency

▪ Running Time: amount of time program takes to run

▪ Auxiliary Space: amount of additional memory program
requires

▪ additional to the memory needed for the input instance

▪ Primarily concerned with time efficiency in this course

▪ but also look at space efficiency sometimes

▪ same techniques as for time apply to space efficiency

▪ When we say efficiency, assume time efficiency

▪ unless we explicitly say space efficiency

▪ Running time is sometimes called time complexity

▪ Auxiliary space sometimes is called space complexity

Efficiency is a Function of Input
▪ The amount of time and/or memory required by a program usually depends on

given instance (instance size and sometimes elements instance stores)

Algorithm hasNegative(A, n)

 Input: array A of n integers

 for i 0 to n − 1 do

 if A[i] < 0

 return True

 return False

▪ So we express time or memory efficiency as a function of instances, i.e. 𝑇(𝐼)

𝑇([3, 4]) < 𝑇 ([3, 1, 4, 7,0])
𝑇([3, −𝟏, 4, 7,10]) < 𝑇 ([3, 1, 4])

▪ Deriving 𝑇 𝐼 for each specific instance 𝐼 is impractical

▪ Usually running time is longer for larger instances

▪ Group all instances of size 𝑛 into set 𝐼𝑛 = { 𝐼 |𝑠𝑖𝑧𝑒 𝐼 = 𝑛}

▪ 𝐼4 is all arrays of size 4

▪ Measure efficiency over the set 𝐼𝑛: 𝑇 𝑛 = “time for instances in 𝐼𝑛”
▪ average over 𝐼𝑛?
▪ smallest time instance in 𝐼𝑛 ?
▪ largest time instance in 𝐼𝑛 ?

Running Time, Option 1: Experimental Studies
▪ Write program implementing the algorithm

▪ Run program with inputs of varying size and
composition

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 50 100

Input Size

T
im

e
 (

m
s
)

Algorithm hasNegative(A, n)

 Input: array A of n integers

 for i 0 to n − 1 do

 if A[i] < 0

 return True

 return False

▪ Shortcomings

▪ implementation may be complicated/costly

▪ timings are affected by many factors

▪ hardware (processor, memory)

▪ software environment (OS, compiler, programming language)

▪ human factors (programmer)

▪ cannot test all inputs, hard to select good sample inputs

Running Time, Option 2: Theoretical Analysis

▪ Does not require implementing the algorithm

▪ Independent of hardware/software environment

▪ Takes into account all possible input instances

▪ [Side note: experimental studies are still useful]
▪ especially when theoretical analysis yields no useful results for

deciding between multiple algorithms

▪ For theoretical analysis, need an idealized computer model

▪ “run” algorithms on idealized computer model
▪ allows to understand how to compute running time and

space theoretically

▪ i.e. states explicitly all the assumptions we make when
computing efficiency

Random Access Machine (RAM) Idealized Computer Model

▪ Has a set of memory cells, each of which stores one data item
▪ number, character, reference

▪ memory cells are big enough to hold stored items

▪ Any access to a memory location takes the same constant time
▪ constant time means that time is independent of the input size 𝑛

▪ Memory access is an example of a primitive operations

▪ Can run other primitive operations on this machine (arithmetic,
etc., more on this later)

▪ primitive operations take the same constant time

▪ These assumptions may be invalid for a real computer

CPU

memory cells (unbounded number)

random access (equally fast to all cells)

Theoretical Framework For Algorithm Analysis

▪ Write algorithms in pseudo-code

▪ Run algorithms on idealized computer model

▪ Time efficiency: count # primitive operations
▪ as a function of problem size 𝒏

▪ running time is proportional to number of primitive operations

▪ since all primitive operations take the same constant time

▪ can get complicated functions like 99𝑛3 + 8𝑛2 + 43421

▪ measure time efficiency in terms of growth rate

▪ behaviour of the algorithm as the input gets larger

▪ avoids complicated functions and isolates the factor that effects the
efficiency the most for large inputs

▪ Space efficiency: count maximum # of memory cells ever in use

▪ This framework makes many simplifying assumptions
▪ makes analysis of algorithms easier

Theoretical Analysis of Running time

▪ Pseudocode is a sequence of primitive operations

▪ A primitive operation is
▪ independent of input size

▪ Examples of Primitive Operations
▪ arithmetic: -, +, %, *, mod, round

Algorithm arrayMax(A, n)

 Input: array A of n integers

 Output: maximum element of A

 currentMax A[0]

 for i 1 to n − 1 do

 if A[i] currentMax then

 currentMax A[i]

 return currentMax

Algorithm arrayMax(A, n)

 Input: array A of n integers

 Output: maximum element of A

 currentMax A[0]

 for i 1 to n − 1 do

 if A[i] currentMax then

 currentMax A[i]

 return currentMax

▪ assigning a value to a variable

Algorithm arrayMax(A, n)

 Input: array A of n integers

 Output: maximum element of A

 currentMax A[0]

 for i 1 to n − 1 do

 if A[i] currentMax then

 currentMax A[i]

 return currentMax

▪ indexing into an array

Algorithm arrayMax(A, n)

 Input: array A of n integers

 Output: maximum element of A

 currentMax A[0]

 for i 1 to n − 1 do

 if A[i] currentMax then

 currentMax A[i]

 return currentMax
▪ returning from a method

▪ comparisons, calling subroutine,
entering a loop, breaking, etc.

Algorithm arrayMax(A, n)

 Input: array A of n integers

 Output: maximum element of A

 currentMax A[0]

 for i 1 to n − 1 do

 if A[i] currentMax then

 currentMax A[i]

 return currentMax

▪ To find running time, count the number of primitive operations
▪ as a function of input size 𝒏

Primitive Operation Exercise

▪ 𝑥𝑛 is a primitive operation

a) True

b) False

▪ 𝑛 is the input size

▪ Runtime to compute it depends on input size 𝑛

▪ 𝑥𝑛 = 𝑥 ∙ 𝑥 ∙ ⋯ ∙ 𝑥

▪ there is a faster algorithm, but it still depends on 𝑛

√

𝑛 times

Primitive Operation Exercise

▪ 𝑥100000000000 is a primitive operation

a) True

b) False

▪ 𝑛 is the input size

▪ Runtime to compute it does not depend on input size 𝑛

▪ 𝑥100000000000 = 𝑥 ∙ 𝑥 ∙ ⋯ ∙ 𝑥

√

100000000000 times

▪ To find running time, count the number of primitive operations 𝑇(𝒏)
▪ function of input size 𝒏

Algorithm arraySum(A, n)

 sum A[0]
 for i 1 to n − 1 do

 sum sum + A[i]

 { increment counter i }

 return sum

Theoretical Analysis of Running time

operations

2

Theoretical Analysis of Running time

operations

2

Algorithm arraySum(A, n)

 sum A[0]
 for i 1 to n − 1 do

 sum sum + A[i]

 { increment counter i }

 return sum

i 1
𝑛 − 1
𝑖 = 1, check 𝑖 ≤ 𝑛 − 1 (go inside loop)
𝑖 = 2, check 𝑖 ≤ 𝑛 − 1 (go inside loop)
…
𝑖 = 𝑛 − 1, check 𝑖 ≤ 𝑛 − 1(go inside loop)
𝑖 = 𝑛, check 𝑖 ≤ 𝑛 − 1 (do not go inside loop)

Total: 2+n

▪ To find running time, count the number of primitive operations 𝑇(𝒏)
▪ function of input size 𝒏

Theoretical Analysis of Running time

operations

2

2 + n

3(n − 1)

2(n − 1)

1

Total: 6n

Algorithm arraySum(A, n)

 sum A[0]
 for i 1 to n − 1 do

 sum sum + A[i]

 { increment counter i }

 return sum

▪ To find running time, count the number of primitive operations 𝑇(𝒏)
▪ function of input size 𝒏

▪ Algorithm arraySum executes 𝑻(𝒏) = 6𝒏 primitive operations

▪ On a real computer, primitive operations will have different runtimes

▪ Let 𝑎 = time taken by fastest primitive operation

 𝑏 = time taken by slowest primitive operation

▪ Actual runtime is bounded by two linear functions
 𝑎 6𝒏 actual runtime(𝒏) 𝑏(6𝒏)

▪ Changing hardware/software affects runtime by a multiplicative factor

▪ 𝑎 and will 𝑏 change, but the runtime is always bounded by 𝑐𝑜𝑛𝑠𝑡 ∙ 𝑛

▪ therefore, multiplicative constants are not essential

▪ Want to ignore constant multiplicative factors and say 𝑻 𝒏 = 𝟔𝒏 is
essentially 𝒏

▪ in a theoretically justified way

Theoretical Analysis of Running time: Multiplicative factors

Theoretical Analysis of Running time: Lower Order Terms

≈ 10,000,000,000

▪ Interested in runtime for large inputs (large 𝑛)
▪ datasets keep increasing in size

▪ Consider 𝑻(𝒏) = 𝒏2 + 𝒏

▪ For large 𝒏, fastest growing factor contributes the most

 𝑻(100,000) = 10,000,000,000 + 100,000

▪ Want to ignore lower order terms in a theoretically justified way

▪ Perform analysis for large 𝑛 (or ‘eventual’ behaviour)

▪ this further simplifies analysis
and comparing algorithms 𝑓 𝑛

do not care what happens here

𝑔 𝑛

Theoretical Analysis of Running time

▪ We want
1) ignore multiplicative constant factors

2) focus on behaviour for large 𝑛 (i.e. ignore lower order terms)

▪ This means focusing on the growth rate of the function

▪ Want to say

 𝒇 𝒏 = 10𝒏2 + 100𝒏 has growth rate of 𝒈 𝒏 = 𝒏𝟐

 𝒇 𝒏 = 10𝒏 + 10 has growth rate of 𝒈 𝒏 = 𝒏

▪ Asymptotic analysis gives tools to formally focus on growth rate

▪ To say that function 𝒇(𝒏) has growth rate expressed by 𝒈 𝒏
1) upper bound: asymptotically bound 𝒇(𝒏) from above by 𝒈(𝒏)

2) lower bound: asymptotically bound 𝒇(𝒏) from below by 𝒈(𝒏)

▪ asymptotically means: for large enough 𝑛, ignoring constant
multiplicative factors

Outline

▪ CS240 overview
▪ Course objectives
▪ Course topics

▪ Introduction and Asymptotic Analysis
▪ algorithm design
▪ pseudocode
▪ measuring efficiency
▪ asymptotic analysis

▪ analysis of algorithms

▪ analysis of recursive algorithms
▪ helpful formulas

Order Notation: big-Oh

𝑓 𝑛 ∈ Ο 𝑔 𝑛 if there exist constants 𝑐 > 0 and 𝑛0 ≥ 0 s.t.

𝑓 𝑛 ≤ 𝑐 𝑔 𝑛 for all 𝑛 ≥ 𝑛0

▪ Upper bound: asymptotically bound 𝒇(𝒏) from above by 𝒈 𝒏
▪ 𝒇(𝒏) is running time, is function expressing growth rate 𝒈 𝒏

𝑓 𝑛

𝑛0

do not care what happens here 𝑓 𝑛 ≤ 𝑐𝑔(𝑛)

▪ Need 𝑐 to get rid of multiplicative constant in growth rate

▪ cannot say 5𝑛2≤ 𝑛2, but can say 5𝑛2 ≤ 𝑐𝑛2 for some constant 𝑐

▪ Absolute value not relevant for run-time, but useful in other applications

▪ Unless say otherwise, assume 𝑛 (and 𝑛0) are real numbers

𝑐𝑔 𝑛

a set of
functions

big-Oh Example

𝑓 𝑛 ∈ Ο 𝑔 𝑛 if there exist constants 𝑐 > 0 and 𝑛0 ≥ 0 s.t.

 𝑓 𝑛 ≤ 𝑐 𝑔 𝑛 for all 𝑛 ≥ 𝑛0

15 205 100

3,000

2,500

2,000

1,500

1,000

500

0
25

▪ Take 𝑐 = 1, 𝑛0 = 20

▪ many other choices work, such as 𝑐 = 10, 𝑛0 = 30

▪ Conclusion: 𝑓 𝑛 has same or slower growth rate as 𝑔 𝑛

𝑓 𝑛 = 75𝑛 + 500

𝑔 𝑛 = 5𝑛2

𝑛0

Order Notation: big-Oh

▪ Big-O gives asymptotic upper bound

▪ 𝑓 𝑛 ∈ Ο 𝑔 𝑛 means function 𝑓(𝑛) is “bounded” above by function 𝑔(𝑛)

1. eventually, for large enough 𝑛

2. ignoring multiplicative constant

▪ Growth rate of 𝑓(𝑛) is slower or the same as growth rate of 𝑔(𝑛)

▪ Use big-O to upper bound the growth rate of algorithm
▪ 𝑓(𝑛) for running time

▪ 𝑔(𝑛) for growth rate

▪ should choose 𝑔(𝑛) as simple as possible

▪ Saying 𝑓 𝑛 is Ο 𝑔 𝑛 is equivalent to saying 𝑓 𝑛 ∈ Ο 𝑔 𝑛

▪ Ο 𝑔 𝑛 is a set of functions with the same or larger growth rate as 𝑔 𝑛

𝑓 𝑛

𝑛0

do not care what happens here
𝑓 𝑛 ≤ 𝑐𝑔(𝑛)

𝑔 𝑛𝑐

Order Notation: big-Oh
𝑓 𝑛 ∈ Ο 𝑔 𝑛

if there exist constants 𝑐 > 0 and 𝑛0 ≥ 0

s. t. 𝑓 𝑛 ≤ 𝑐 𝑔 𝑛 for all 𝑛 ≥ 𝑛0

3,000

2,500

2,000

1,500

1,000

500

▪ Choose 𝑔(𝑛) as simple as possible

𝑓(𝑛)

𝑔(𝑛)

▪ Previous example: 𝑓 𝑛 = 75𝑛 + 500, 𝑔 𝑛 = 5𝑛2

▪ Simpler function for growth rate: 𝑔 𝑛 = 𝑛2

▪ Can show 𝑓 𝑛 ∈ Ο 𝑔 𝑛 as follows

▪ set 𝑓 𝑛 = 𝑔(𝑛) and solve quadratic equation

▪ intersection point is 𝑛 = 82

82

▪ take 𝑐 = 1, 𝑛0 = 82

Order Notation: big-Oh

▪ Do not have to solve equations

▪ 𝑓 𝑛 = 75𝑛 + 500, 𝑔 𝑛 = 𝑛2

▪ For all 𝑛 ≥ 1

75𝑛 ≤ 75𝑛 ∙ 𝑛

𝑓 𝑛 ∈ Ο 𝑔 𝑛 if there exist constants 𝑐 > 0 and 𝑛0 ≥ 0

s. t. 𝑓 𝑛 ≤ 𝑐 𝑔 𝑛 for all 𝑛 ≥ 𝑛0

75𝑛 > 75𝑛 ∙ 𝑛
= 75𝑛2

Side note: for 0 < 𝑛 < 1

= 75𝑛2

500 ≤ 500 ∙ 𝑛 ∙ 𝑛 = 500𝑛2

75𝑛 + 500 ≤ 75𝑛2 = 575𝑛2

▪ So take 𝑐 = 575, 𝑛0 = 1

+500𝑛2

▪ Therefore, for all 𝑛 ≥ 1

Order Notation: big-Oh

▪ Better (i.e. “tighter”) bound on growth

▪ can bound 𝑓 𝑛 = 75𝑛 + 500 by slower growth than 𝑛2

▪ 𝑓 𝑛 = 75𝑛 + 500, 𝑔 𝑛 = 𝑛

▪ Show 𝑓 𝑛 ∈ Ο 𝑔 𝑛

75𝑛 + 500 ≤ 75𝑛 + 500𝑛 = 575𝑛

for all 𝑛 ≥ 1

▪ So take 𝑐 = 575, 𝑛0 = 1

𝑓 𝑛 ∈ Ο 𝑔 𝑛 if there exist constants 𝑐 > 0 and 𝑛0 ≥ 0 s. t. 𝑓 𝑛

≤ 𝑐 𝑔 𝑛 for all 𝑛 ≥ 𝑛0

More big-O Examples

▪ Prove that
2𝑛2 + 3𝑛 + 11 ∈ 𝑂 𝑛2

▪ Need to find 𝑐 > 0 and 𝑛0 ≥ 0 s.t.

2𝑛2 + 3𝑛 + 11 ≤ 𝑐𝑛2 for all 𝑛 ≥ 𝑛0

2𝑛2 + 3𝑛 + 11 ≤ 2𝑛2 = 16𝑛2

for all 𝑛 ≥ 1

▪ Take 𝑐 = 16, 𝑛0 = 1

+3𝑛2 +11𝑛2

More big-O Examples

▪ Prove that
2𝑛2 − 3𝑛 + 11 ∈ 𝑂 𝑛2

▪ Need to find 𝑐 > 0 and 𝑛0 ≥ 0 s.t.

2𝑛2 − 3𝑛 + 11 ≤ 𝑐𝑛2 for all 𝑛 ≥ 𝑛0

2𝑛2 − 3𝑛 + 11 ≤ 2𝑛2 = 13𝑛2

for all 𝑛 ≥ 1

▪ Take 𝑐 = 13, 𝑛0 = 1

+11𝑛2− 3𝑛2+3𝑛2+ 0

More big-O Examples

▪ Be careful with logs

▪ Prove that
2𝑛2 log 𝑛 + 3𝑛 ∈ 𝑂 𝑛2 log 𝑛

▪ Need to find 𝑐 > 0 and 𝑛0 ≥ 0 s.t.
2𝑛2 log 𝑛 + 3𝑛 ≤ 𝑐𝑛2 log 𝑛 for all 𝑛 ≥ 𝑛0

2𝑛2 log 𝑛 + 3𝑛 ≤ 2𝑛2 log 𝑛 ≤ 5𝑛2 log 𝑛
for all 𝑛 ≥ 1

▪ Take 𝑐 = 5, 𝑛0 = 2

+3𝑛2 log 𝑛

for all 𝑛 ≥ 2

Algorithm arraySum(A, n)

 sum A[0]
 for i 1 to n − 1 do

 sum sum + A[i]

 { increment counter i }

 return sum

▪ To find running time, count the number of primitive operations 𝑇(𝒏)
▪ function of input size 𝒏

▪ Last step: express the running time using asymptotic notation

Theoretical Analysis of Running time

operations

𝑐1

𝑐2𝑛

𝑐3

Total: 𝑐1+𝑐3 + 𝑐2𝑛 which is 𝑂(𝑛)

Algorithm arraySum(A, n)

 sum A[0]
 for i 1 to n − 1 do

 sum sum + A[i]

 { increment counter i }

 return sum

Theoretical Analysis of Running time

operations

𝑐𝑛

Total: 𝑐 + 𝑐𝑛 which is 𝑂(𝑛)

𝑐

▪ Distinguishing between 𝑐1 𝑐2 𝑐3 has no influence on asymptotic
running time

▪ can just use on constant 𝑐 throughout

Need for Asymptotic Tight bound

▪ 2𝑛2 + 3𝑛 + 11 ∈ 𝑂 𝑛2

▪ But also 2𝑛2 + 3𝑛 + 11 ∈ 𝑂 𝑛10
▪ this is a true but hardly a useful statement

▪ if I say I have less than a million $ in my pocket, it is a true, but useless
statement

▪ i.e. this statement does not give a tight upper bound

▪ upper bound is tight if it uses the slowest growing function possible

▪ Want an asymptotic notation that guarantees a tight upper bound

▪ For tight bound, also need asymptotic lower bound

Aymptotic Lower Bound

▪ Ω-notation (asymptotic lower bound)

𝑓(𝑛) ∈ Ω 𝑔(𝑛) if there exist constants 𝑐 > 0 and 𝑛0 ≥ 0

 s.t. 𝑓 𝑛 ≥ 𝑐 𝑔 𝑛 for all 𝑛 ≥ 𝑛0

▪ 𝑓 𝑛 ∈ Ω 𝑔 𝑛 means function 𝑓(𝑛) is asymptotically bounded

below by function 𝑔(𝑛)

1. eventually, for large enough 𝑛

2. ignoring multiplicative constant

▪ Growth rate of 𝑓(𝑛) is larger or the same as growth rate of 𝑔(𝑛)

▪ 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 , 𝑓(𝑛) ∈ Ω 𝑔(𝑛) ⇒ 𝑓 𝑛 has same growth as 𝑔(𝑛)

𝑐𝑔 𝑛

𝑛0

do not care what happens here
𝑓 𝑛 ≥ 𝑐𝑔(𝑛)

𝑓 𝑛

Asymptotic Lower Bound

𝑓(𝑛) ∈ Ω 𝑔(𝑛) if ∃ constants 𝑐 > 0, 𝑛0 ≥ 0 s.t. 𝑓 𝑛 ≥ 𝑐 𝑔 𝑛 for 𝑛 ≥ 𝑛0

▪ Prove that 2𝑛2 + 3𝑛 + 11 ∈ Ω 𝑛2

▪ Find 𝑐 > 0 and 𝑛0 ≥ 0 s.t.

 2𝑛2 + 3𝑛 + 11 ≥ 𝑐𝑛2 for all 𝑛 ≥ 𝑛0

 2𝑛2 + 3𝑛 + 11

▪ Take 𝑐 = 2, 𝑛0 = 0

≥ 2𝑛2 for all 𝑛 ≥ 0

Asymptotic Lower Bound

▪ Prove that
1

2
𝑛2 − 5𝑛 ∈ Ω 𝑛2

▪ to handle absolute value correctly, need to insure 𝑓 𝑛 ≥ 0 for 𝑛 ≥ 𝑛0

▪ Need to find 𝑐 and 𝑛0 s.t.
1

2
𝑛2 − 5𝑛 ≥ 𝑐𝑛2 for all 𝑛 ≥ 𝑛0

▪ Unlike before, cannot just drop lower growing term, as
1

2
𝑛2 − 5𝑛 ≤

1

2
𝑛2

𝑓(𝑛) ∈ Ω 𝑔(𝑛) if ∃ constants 𝑐 > 0, 𝑛0 ≥ 0 s.t. 𝑓 𝑛 ≥ 𝑐 𝑔 𝑛 for 𝑛 ≥ 𝑛0

1

2
𝑛2 − 5𝑛 =

1

4
𝑛2 +

1

4
𝑛2 − 5𝑛

▪ Take 𝑐 =
1

4
, 𝑛0 = 20

▪ 𝑓 𝑛 ≥
1

4
𝑛2 for 𝑛 ≥ 20 ⇒ 𝑓 𝑛 ≥ 0 for 𝑛 ≥ 20

▪ as needed to handle absolute value correctly

=
1

4
𝑛2 +

1

4
𝑛2 − 5𝑛

≥ 0, if 𝑛 ≥ 20

≥
1

4
𝑛2 if 𝑛 ≥ 20

Tight Asymptotic Bound
▪ Θ-notation

 𝑓(𝑛) ∈ Θ 𝑔(𝑛) if there exist constants 𝑐1, 𝑐2 > 0, 𝑛0 ≥ 0 s.t.

 𝑐1 𝑔 𝑛 ≤ 𝑓 𝑛 ≤ 𝑐2 𝑔 𝑛 for all 𝑛 ≥ 𝑛0

▪ 𝑓 𝑛 ∈ Θ 𝑔 𝑛 means 𝑓 𝑛 , 𝑔(𝑛) have equal growth rates

▪ typically 𝑓 𝑛 is complicated, and 𝑔(𝑛) is chosen to be simple

▪ Easy to prove that

 𝑓(𝑛) ∈ Θ 𝑔(𝑛) ⇔ 𝑓(𝑛) ∈ Ο 𝑔(𝑛) and 𝑓(𝑛) ∈ Ω 𝑔(𝑛)

▪ Therefore, to show that 𝑓(𝑛) ∈ Θ 𝑔(𝑛) , it is enough to show

1. 𝑓(𝑛) ∈ Ο 𝑔(𝑛)

2. 𝑓(𝑛) ∈ Ω 𝑔(𝑛)

Tight Asymptotic Bound

▪ Proved previously that

▪ 2𝑛2 + 3𝑛 + 11 ∈ 𝑂 𝑛2

▪ 2𝑛2 + 3𝑛 + 11 ∈ Ω 𝑛2

▪ Thus 2𝑛2+3𝑛 + 11 ∈ Θ 𝑛2

▪ Ideally, should use Θ to determine growth rate of algorithm

▪ 𝑓 𝑛 for running time

▪ 𝑔 𝑛 for growth rate

▪ Sometimes determining tight bound is hard, so big-O is used

Tight Asymptotic Bound

Prove that log𝑏 𝑛 ∈ Θ log 𝑛 for 𝑏 > 1

▪ Find 𝑐1, 𝑐2 > 0, 𝑛0 ≥ 0 s.t. 𝑐1log 𝑛 ≤ log𝑏 𝑛 ≤ 𝑐2log 𝑛 for all 𝑛 ≥ 𝑛0

▪ log𝑏 𝑛 =
log 𝑛
log 𝑏

=
 1

log 𝑏
log 𝑛

▪
1

log 𝑏
log 𝑛 ≤ log𝑏 𝑛 ≤

1

log 𝑏
 log 𝑛

▪ Since 𝑏 > 1, log 𝑏 > 0

▪ Take 𝑐1 = 𝑐2 =
1

log 𝑏
 and 𝑛0

= 1

▪ rarely 𝑐1 = 𝑐2, normally 𝑐1 < 𝑐2

Common Growth Rates

▪ Θ 1 constant

▪ 1 stands for function 𝑓 𝑛 = 1

▪ Θ log 𝑛 logarithmic

▪ Θ 𝑛 linear

▪ Θ 𝑛log 𝑛 linearithmic

▪ Θ 𝑛log𝑘 𝑛 quasi-linear

▪ 𝑘 is constant, i.e. independent of the problem size

▪ Θ 𝑛2 quadratic

▪ Θ 𝑛3 cubic

▪ Θ 2𝑛 exponential

▪ These are listed in increasing order of growth

▪ how to determine which function has a larger order of growth?

How Growth Rates Affect Running Time

▪ How running time affected when problem size doubles (𝑛 → 2𝑛)

▪ 𝑇 𝑛 = 𝑐

▪ 𝑇 𝑛 = 𝑐 log 𝑛

▪ 𝑇 𝑛 = 𝑐𝑛

▪ 𝑇 𝑛 = 𝑐𝑛 log 𝑛

▪ 𝑇 𝑛 = 𝑐𝑛2

▪ 𝑇 𝑛 = 𝑐𝑛3

▪ 𝑇 𝑛 = 𝑐2𝑛

𝑇 2𝑛 = 𝑐

𝑇 2𝑛 = 𝑇 𝑛 + 𝑐

𝑇 2𝑛 = 2𝑇 𝑛

𝑇 2𝑛 = 2𝑇 𝑛 + 2𝑐n

𝑇 2𝑛 = 4𝑇 𝑛

𝑇 2𝑛 = 8𝑇 𝑛

𝑇 2𝑛 =
1

𝑐
𝑇2 𝑛

Strictly Smaller Asymptotic Bound
▪ 𝑓 𝑛 = 2𝑛2+3𝑛 + 11 ∈ Θ 𝑛2

▪ How to say 𝑓 𝑛 is grows slower than 𝑔 𝑛 = 𝑛3?

▪ o-notation [asymptotically strictly smaller]

 𝑓 𝑛 ∈ 𝑜(𝑔 𝑛) if for any constant 𝑐 > 0, there exists a
constant 𝑛0 ≥ 0 s.t. 𝑓 𝑛 ≤ 𝑐|𝑔(𝑛)| for all 𝑛 ≥ 𝑛0

▪ Think of 𝑐 as being arbitrarily small

▪ No matter how small 𝑐 is, 𝑐 ⋅ 𝑔(𝑛) is eventually larger than 𝑓 𝑛

▪ Meaning: 𝑓 grows slower than 𝑔, or growth rate of 𝑓 is less than growth rage of 𝑔

𝑓 𝑛

𝑔 𝑛 0.1𝑔 𝑛 0.01𝑔 𝑛 0.00000001𝑔 𝑛

▪ Useful for certain statements

▪ there is no general-purpose sorting algorithm with run-time 𝑜(𝑛 log 𝑛)

Big-Oh vs. Little-o

▪ Little-o, means 𝑓 grows slower than 𝑔

 𝑓 𝑛 ∈ 𝑜(𝑔 𝑛) if for any constant 𝑐 > 0, there exists a

constant 𝑛0 ≥ 0 s.t. 𝑓 𝑛 ≤ 𝑐|𝑔(𝑛)| for all 𝑛 ≥ 𝑛0

▪ Big-Oh, means 𝑓 grows at the same rate or slower than 𝑔

 𝑓 𝑛 ∈ Ο 𝑔 𝑛 if there exist constants 𝑐 > 0 and 𝑛0 ≥ 0

s. t. 𝑓 𝑛 ≤ 𝑐 𝑔 𝑛 for all 𝑛 ≥ 𝑛0

▪ Main difference is the quantifier for 𝑐: exists vs. any
▪ for big-Oh, you can choose any 𝑐 you want

▪ for little-o, you are given 𝑐, it can be arbitrarily small

▪ in proofs for little-o, 𝑛0 will normally depend on 𝑐, so it is really a
function 𝑛0(𝑐)

▪ 𝑛0(𝑐) must be a constant with respect to 𝑛

Big-Oh vs. Little-o

▪ Little-o, means 𝑓 grows slower than 𝑔

 𝑓 𝑛 ∈ 𝑜(𝑔 𝑛) if for any constant 𝑐 > 0, there exists a

constant 𝑛0 ≥ 0 s.t. 𝑓 𝑛 ≤ 𝑐|𝑔(𝑛)| for all 𝑛 ≥ 𝑛0

▪ Big-Oh, means 𝑓 grows at the same rate or slower than 𝑔

 𝑓 𝑛 ∈ Ο 𝑔 𝑛 if there exist constants 𝑐 > 0 and 𝑛0 ≥ 0 s. t. 𝑓 𝑛

≤ 𝑐 𝑔 𝑛 for all 𝑛 ≥ 𝑛0

▪ Main difference is the quantifier for 𝑐: exists vs. any
▪ for big-Oh, you can choose any 𝑐 you want

▪ for little-o, you are given 𝑐, it can be arbitrarily small

▪ in proofs for little-o, 𝑛0 will normally depend on 𝑐, so it is really a
function 𝑛0(𝑐)

▪ 𝑛0(𝑐) must be a constant with respect to 𝑛

𝑓 𝑛

𝑔 𝑛 0.1𝑔 𝑛 0.01𝑔 𝑛 0.00000001𝑔 𝑛

Strictly Smaller Proof Example
𝑓 𝑛 ∈ 𝑜(𝑔 𝑛) if for any 𝑐 > 0, there exists 𝑛0 ≥ 0 s.t. 𝑓 𝑛 ≤ 𝑐|𝑔(𝑛)| for all 𝑛 ≥ 𝑛0

Prove that 5𝑛 ∈ 𝑜 𝑛2

▪ Given 𝑐 > 0 need to find 𝑛0 s.t.

5𝑛 ≤ 𝑐𝑛2 for all 𝑛 ≥ 𝑛0 ⇔
divide both sides by 𝑛

5 ≤ 𝑐𝑛 for all 𝑛 ≥ 𝑛0

𝑛 ≥
5

𝑐

⇔
solve for 𝑛

▪ Therefore, 5𝑛 ≤ 𝑐𝑛2 for 𝑛 ≥
5

𝑐

▪ Take 𝑛0 =
5

𝑐

▪ 𝑛0
is a function of 𝑐

▪ if you ever in your proof get something like 𝑛0 =
5𝑛

𝑐
, it does not work,

𝑛0
cannot depend on 𝑛

[solve for 𝑛 in terms of 𝑐]

Strictly Smaller Proof Example
𝑓 𝑛 ∈ 𝑜(𝑔 𝑛) if for any 𝑐 > 0, there exists 𝑛0 ≥ 0 s.t. 𝑓 𝑛 ≤ 𝑐|𝑔(𝑛)| for all 𝑛 ≥ 𝑛0

Prove that 5𝑛 + 10𝑛4 ∈ 𝑜 𝑛5

▪ Given 𝑐 > 0 need to find 𝑛0 s.t.

5𝑛 + 10𝑛4 ≤ 𝑐𝑛5 for all 𝑛 ≥ 𝑛0

[difficult to solve for 𝑛 in terms of 𝑐]

▪ First derive simple upper bound

5𝑛 + 10𝑛4 ≤ 15𝑛4 for all 𝑛 ≥ 1

▪ Solve for 𝑛 in terms of 𝑐 for the simple upper bound

15𝑛4 ≤ 𝑐𝑛5 for all 𝑛 ≥ 𝑛0

𝑛 ≥ 15/𝑐

▪ Combine: 5𝑛 + 10𝑛4 ≤ 15𝑛4

▪ Take 𝑛0 =max 15/𝑐, 1

≤ 𝑐𝑛5 for all 𝑛 ≥
15

𝑐
for all 𝑛 ≥ 1

Strictly Larger Asymptotic Bound

▪ ω-notation

𝑓 𝑛 ∈ ω(𝑔 𝑛) if for any constant 𝑐 > 0, there exists a
constant 𝑛0 ≥ 0 s.t. 𝑓 𝑛 ≥ 𝑐|𝑔(𝑛)| for all 𝑛 ≥ 𝑛0

▪ think of 𝑐 as being arbitrarily large

▪ Meaning: 𝑓 grows much faster than 𝑔

Strictly Larger Asymptotic Bound

▪ 𝑓 𝑛 ∈ ω(𝑔 𝑛) if for any constant 𝑐 > 0, there is constant 𝑛0 ≥ 0
s.t. 𝑓 𝑛 ≥ 𝑐|𝑔(𝑛)| for all 𝑛 ≥ 𝑛0

▪ Given 𝑐 > 0 need to find 𝑛0 s.t.

𝑔(𝑛) ≤ 𝑐𝑓(𝑛) for all 𝑛 ≥ 𝑛0

1

𝑐
𝑔 𝑛 ≤ 𝑓 𝑛 for all 𝑛 ≥ 𝑛0

▪ Claim: 𝑓 𝑛 ∈ 𝜔 𝑔 𝑛 ⇒ 𝑔 𝑛 ∈ 𝑜 𝑓 𝑛

Proof:

⇔
divide both sides by 𝑐

▪ Since 𝑓 𝑛 ∈ 𝜔 𝑔 𝑛 , for any constant, in particular for

constant
1

𝑐
 there is 𝑚0 s.t.

𝑓 𝑛 ≥
1

𝑐
𝑔(𝑛) for all 𝑛 ≥ 𝑚0𝑓 𝑛 ≥

1

𝑐
𝑔(𝑛)

1

𝑐
𝑔 𝑛 ≤ 𝑓(𝑛)

▪ 𝑛0 = 𝑚0 and we are done!

Limit Theorem for Order Notation
▪ So far had proofs for order notation from the first principles

▪ i.e. from the definition

Limit theorem for order notation

▪ Suppose for all 𝑛 ≥ 𝑛0, 𝑓(𝑛) > 0, 𝑔(𝑛) > 0 and L = lim
𝑛→∞

𝑓 𝑛

𝑔 𝑛

▪ Then 𝑓 𝑛 ∈

𝑜 𝑔 𝑛 𝑖𝑓 𝐿 = 0

Θ 𝑔 𝑛 𝑖𝑓 0 < 𝐿 < ∞

𝜔 𝑔 𝑛 𝑖𝑓 𝐿 = ∞

▪ Limit can often be computed using l’Hopital’s rule

▪ Theorem gives sufficient but not necessary conditions

▪ Can use theorem unless asked to prove from the first principles

Example 1

Let 𝑓 𝑛 be a polynomial of degree 𝑑 ≥ 0 with 𝑐𝑑 > 0

𝑓 𝑛 = 𝑐𝑑𝑛𝑑 +𝑐𝑑−1 𝑛𝑑−1 + ⋯ + 𝑐1 𝑛 + 𝑐0

Then 𝑓 𝑛 ∈ Θ 𝑛𝑑

Proof:

lim
𝑛→∞

𝑓(𝑛)

𝑛𝑑
= lim
𝑛→∞

𝑐𝑑𝑛𝑑

𝑛𝑑
+

𝑐𝑑−1𝑛𝑑−1

𝑛𝑑
+ ⋯ +

𝑐0

𝑛𝑑

= lim
𝑛→∞

𝑐𝑑𝑛𝑑

𝑛𝑑 + lim
𝑛→∞

𝑐𝑑−1𝑛𝑑−1

𝑛𝑑
lim

𝑛→∞

𝑐0

𝑛𝑑+ ⋯ +

= 0 = 0

= 𝑐𝑑 > 0

= 𝑐d

Example 2

▪ Compare growth rates of log 𝑛 and 𝑛

lim
𝑛→∞

log 𝑛

𝑛
= lim

 𝑛→∞

ln 𝑛
ln 2

𝑛
= lim

 𝑛→∞

1
ln 2 ⋅ 𝑛

1

L’Hopital rule

= 0 = lim
 𝑛→∞

1

𝑛 ⋅ ln 2

▪ log 𝑛 ∈ 𝑜(𝑛)

Example 3
▪ Prove log 𝑛 𝑎 ∈ o(𝑛𝑑), for any (big) 𝑎 > 0, (small) 𝑑 > 0

▪ log 𝑛 1000000 ∈ o(𝑛0.0000001)

1) Prove (by induction):

lim
𝑛→∞

lnk 𝑛

𝑛
= 0 for any integer 𝑘

▪ Base case 𝑘 = 1 is proven on previous slide

▪ Inductive step: suppose true for 𝑘 − 1

▪ lim
𝑛→∞

lnk 𝑛

𝑛
= = 𝑘 lim

𝑛→∞

 𝑙𝑛𝑘−1𝑛

𝑛
= 0

L’Hopital rule

lim
𝑛→∞

1
𝑛

𝑘 𝑙𝑛𝑘−1𝑛

1

2) Prove lim
𝑛→∞

lna 𝑛

𝑛𝑑 = 0

▪ lim
𝑛→∞

lna 𝑛

𝑛𝑑 = lim
𝑛→∞

ln𝑎/𝑑 𝑛

𝑛

𝑑

≤ lim
𝑛→∞

ln 𝑎/𝑑 𝑛

𝑛

𝑑

= 0

3) Finally lim
𝑛→∞

log 𝑛 𝑎

𝑛𝑑 = lim
𝑛→∞

ln 𝑛
𝑙𝑛2

𝑎

𝑛𝑑 =
1

𝑙𝑛2

𝑎

lim
𝑛→∞

ln 𝑛 𝑎

𝑛𝑑
= 0

Example 4
▪ Sometimes limit does not exist, but can prove from first principles

▪ Let 𝑓(𝑛) = 𝑛(2 + sin 𝑛𝜋/2)

▪ Prove that 𝑓(𝑛) is Θ(𝑛)

𝑓(𝑛)

𝑛

3𝑛

Example 4

▪ Let 𝑓(𝑛) = 𝑛(2 + sin 𝑛𝜋/2), prove that 𝑓(𝑛) is Θ(𝑛)

▪ Proof

−1 ≤ 𝑠𝑖𝑛(any number) ≤ 1

𝑛(2−1) ≤ 𝑓 𝑛

sin 𝑛𝜋/2

𝑓(𝑛) ≤ 𝑛(2 + 1) = 3𝑛

sin 𝑛𝜋/2

𝑛 = for all 𝑛 ≥ 0

for all 𝑛 ≥ 0

▪ Use 𝑐1 = 1, 𝑐2 = 3, 𝑛0 = 0

Example 5

▪ Let 𝑓(𝑛) = 𝑛(1 + sin 𝑛𝜋/2), prove that 𝑓(𝑛) is not Ω(𝑛)

𝑓(𝑛) ∈ Ω 𝑔(𝑛) if ∃ constants 𝑐 > 0, 𝑛0 ≥ 0 s.t. 𝑓 𝑛 ≥ 𝑐 𝑔 𝑛 for 𝑛 ≥ 𝑛0

𝑐𝑛

𝑛0

𝑓(𝑛)

𝑚

▪ Many points do not satisfy 𝑓 𝑛 ≥ 𝑐𝑛 for 𝑛 ≥ 𝑛0, but easiest to use

zero-valued one for the formal proof

Example 5

▪ Let 𝑓(𝑛) = 𝑛(1 + sin 𝑛𝜋/2)

▪ Prove that 𝑓(𝑛) is not Ω(𝑛)

▪ Proof: (by contradiction)

▪ suppose 𝑓 𝑛 is Ω 𝑛

▪ then ∃ 𝑛0 ≥ 0 and 𝑐 > 0 s.t. 𝑓 𝑛 ≥ 𝑐𝑛 for 𝑛 ≥ 𝑛0

▪ [for contradiction, will find 𝑚 ≥ 𝑛0 s.t. 0 = 𝑓 𝑚]

 𝑛(1 + sin 𝑛𝜋/2)≥ 𝑐𝑛 for all 𝑛 ≥ 𝑛0

 (1 + sin 𝑛𝜋/2)≥ 𝑐 for all 𝑛 ≥ 𝑛0sin 𝑛𝜋/2

𝑚𝑛0

need to make this -1 for contradiction for some 𝑚 ≥ 𝑛0

▪ need
𝑚𝜋

2
=

3𝜋

2
+ 2𝜋𝑖 for some integer 𝑖 and 𝑚 ≥ 𝑛0

▪ need 𝑚 = 3 + 4𝑖 for some integer 𝑖 and 𝑚 ≥ 𝑛0

▪ take 𝑚 = 3 + 4 𝑛0 > 𝑛0

⇔

⇔

Order notation Summary

▪ 𝑓(𝑛) ∈ Θ 𝑔(𝑛) : growth rates of 𝑓 and 𝑔 are the same

▪ 𝑓(𝑛) ∈ o(𝑔 𝑛): growth rate of 𝑓 is less than growth rate of 𝑔

▪ 𝑓(𝑛) ∈ ω 𝑔 𝑛 : growth rate of 𝑓 is greater than growth rate of 𝑔

▪ 𝑓(𝑛) ∈ O 𝑔 𝑛 : growth rate of 𝑓 is the same or less than growth rate of 𝑔

▪ 𝑓(𝑛) ∈ Ω(𝑔 𝑛): growth rate of 𝑓 is the same or greater than growth rate of 𝑔

Relationship between OrderNotations

One can prove the following relationships

▪ 𝑓 𝑛 ∈ Θ 𝑔 𝑛 ⇔ 𝑔 𝑛 ∈ Θ 𝑓 𝑛

▪ 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 ⇔ 𝑔 𝑛 ∈ Ω 𝑓 𝑛

▪ 𝑓 𝑛 ∈ 𝑜 𝑔 𝑛 ⇔ 𝑔 𝑛 ∈ 𝜔 𝑓 𝑛

▪ 𝑓 𝑛 ∈ 𝑜 𝑔 𝑛 ⇒ 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛

▪ 𝑓 𝑛 ∈ 𝑜 𝑔 𝑛 ⇒ 𝑓 𝑛 ∉ Ω 𝑔 𝑛

▪ 𝑓 𝑛 ∈ 𝜔 𝑔 𝑛 ⇒ 𝑓 𝑛 ∈ Ω 𝑔 𝑛

▪ 𝑓 𝑛 ∈ 𝜔 𝑔 𝑛 ⇒ 𝑓 𝑛 ∉ 𝑂 𝑔 𝑛

Algebra of Order Notations (1)

▪ The following rules are easy to prove [exercise]

1. Identity rule: 𝑓 𝑛 ∈ Θ 𝑓 𝑛

2. Transitivity

▪ if 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 and 𝑔 𝑛 ∈ 𝑂 ℎ 𝑛 then 𝑓 𝑛 ∈ 𝑂 ℎ 𝑛

▪ if 𝑓 𝑛 ∈ Ω 𝑔 𝑛 and 𝑔 𝑛 ∈ Ω ℎ 𝑛 then 𝑓 𝑛 ∈ Ω ℎ 𝑛

▪ if 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 and 𝑔 𝑛 ∈ 𝑜 ℎ 𝑛 then 𝑓 𝑛 ∈ 𝑜 ℎ 𝑛

Algebra of Order Notations (2)

3. Maximum rules

 Suppose that 𝑓 𝑛 > 0 and 𝑔 𝑛 > 0 for all 𝑛 ≥ 𝑛0, then

a) 𝑓 𝑛 + 𝑔 𝑛 ∈ Ω 𝑚𝑎𝑥 𝑓 𝑛 , 𝑔 𝑛

b) 𝑓 𝑛 + 𝑔 𝑛 ∈ 𝑂 𝑚𝑎𝑥 𝑓 𝑛 , 𝑔 𝑛

𝑚𝑎𝑥 𝑓 𝑛 , 𝑔 𝑛

𝑓 𝑛 + 𝑔 𝑛 =

𝑓 𝑛 + 𝑔 𝑛 ≥a)

𝑚𝑎𝑥 𝑓 𝑛 , 𝑔 𝑛 + 𝑚𝑖𝑛 𝑓 𝑛 , 𝑔 𝑛

≤ 𝑚𝑎𝑥 𝑓 𝑛 , 𝑔 𝑛 + 𝑚𝑎𝑥 𝑓 𝑛 , 𝑔 𝑛

= 2𝑚𝑎𝑥 𝑓 𝑛 , 𝑔 𝑛

b)

Proof:

𝑚𝑎𝑥 𝑓, 𝑔 (𝑛) = ቊ
𝑓(𝑛) if 𝑓 𝑛 > 𝑔(𝑛)
𝑔(𝑛) otherwise

𝑓 𝑛

𝑔 𝑛
max{𝑓,g} 𝑛

either 𝑓 𝑛 or 𝑔 𝑛 =
function positivity

▪ Usage: 𝑛2 + log 𝑛 ∈ Θ 𝑛2

Abuse of Order Notation
▪ Normally, say 𝑓 𝑛 ∈ Θ 𝑔 𝑛 because Θ 𝑔 𝑛 is a set

▪ Sometimes it is convenient to abuse notation
▪ 𝑓 𝑛 = 200𝑛2 + Θ 𝑛

▪ 𝑓 𝑛 is 200𝑛2 plus a term with linear growth rate

▪ nicer to read than 200𝑛2 + 30𝑛 + log 𝑛

▪ does not hide the constant term 200, unlike if we said 𝑂(𝑛2)

▪ 𝑓 𝑛 = 𝑛2 + 𝑜 1

▪ 𝑓 𝑛 is 𝑛2 plus a vanishing term (term goes to 0)

▪ example: 𝑓 𝑛 = 𝑛2 + 1/𝑛

▪ Use these sparingly, typically only for stating final result

▪ But avoid arithmetic with asymptotic notation, can go very wrong

▪ Instead, replace Θ 𝑔(𝑛) by 𝑐 ∙ 𝑔(𝑛)
▪ still sloppy, but less dangerous

▪ if 𝑓 𝑛 ∈ Θ 𝑔 𝑛 , more accurate statement is 𝑐 ∙ 𝑔 𝑛 ≤ 𝑓(𝑛) ≤ 𝑐′ ∙ 𝑔 𝑛 for

large enough 𝑛

Outline

▪ CS240 overview
▪ Course objectives
▪ Course topics

▪ Introduction and Asymptotic Analysis
▪ algorithm design
▪ pseudocode
▪ measuring efficiency

▪ analysis of algorithms

▪ analysis of recursive algorithms
▪ helpful formulas

Techniques for Runtime Analysis

▪ Goal: Use asymptotic notation to simplify run-time analysis

▪ Running time of an algorithm depends on the input size 𝑛

▪ Identify primitive operations: these require constant time

▪ Loop complexity expressed as sum of complexities of each iteration

▪ Nested loops: start with the innermost loop and proceed outwards

▪ This gives nested summations

Techniques for Runtime Analysis

▪ Goal: Use asymptotic notation to simplify run-time analysis

▪ Running time of an algorithm depends on the input size 𝑛

▪ Identify primitive operations: these require constant time

▪ Loop complexity expressed as sum of complexities of each iteration

▪ Nested loops: start with the innermost loop and proceed outwards

▪ This gives nested summations

𝑐

Techniques for Algorithm Analysis

▪ Goal: Use asymptotic notation to simplify run-time analysis

▪ Running time of an algorithm depends on the input size 𝑛

▪ Identify primitive operations: these require constant time

▪ Loop complexity expressed as sum of complexities of each iteration

▪ Nested loops: start with the innermost loop and proceed outwards

▪ This gives nested summations

𝑗=𝑖

𝑛

𝑐

Techniques for Algorithm Analysis

▪ Goal: Use asymptotic notation to simplify run-time analysis

▪ Running time of an algorithm depends on the input size 𝑛

▪ Identify primitive operations: these require constant time

▪ Loop complexity expressed as sum of complexities of each iteration

▪ Nested loops: start with the innermost loop and proceed outwards

▪ This gives nested summations

𝑗=𝑖

𝑛

𝑐
𝑖=1

𝑛

Techniques for Algorithm Analysis

▪ Goal: Use asymptotic notation to simplify run-time analysis

▪ Running time of an algorithm depends on the input size 𝑛

▪ Identify primitive operations: these require constant time

▪ Loop complexity expressed as sum of complexities of each iteration

▪ Nested loops: start with the innermost loop and proceed outwards

▪ This gives nested summations

𝑗=𝑖

𝑛

𝑐 + 𝑐
𝑖=1

𝑛

Techniques for Algorithm Analysis

▪ Derived complexity as

𝑐1 +
𝑖=1

𝑛

𝑗=𝑖

𝑛

𝑐2▪ Some textbooks will write this as

𝑐 +
𝑖=1

𝑛

𝑗=𝑖

𝑛

𝑐

▪ Or even as 1 +
𝑖=1

𝑛

𝑗=𝑖

𝑛

1

▪ Now need to work out the sum

Sums: Review

𝑗=1

𝑛

1 = 1

𝑗 = 1 𝑗 = 2

+1

𝑗 = 3

+1

… 𝑗 = 𝑛

+1… = 𝑛

summand

index of
summation

Sums: Review

𝑗=𝑖

𝑛

1 = 1

𝑗 = 𝑖 𝑗 = 𝑖 + 1

+1

… 𝑗 = 𝑛

+1… = 𝑛 − (𝑖 − 1)

terms from 1 to 𝑖 − 1
are missing

= 𝑛 − 𝑖 + 1

Sums: Review

𝑗=𝑖

𝑛

(𝑛 − 𝑒𝑥) =𝑛 − 𝑒𝑥

𝑗 = 𝑖 𝑗 = 𝑖 + 1

+𝑛 − 𝑒𝑥

… 𝑗 = 𝑛

+𝑛 − 𝑒𝑥… = (𝑛 − 𝑒𝑥)(𝑛 − 𝑖 + 1)

Sums: Review

1 + 2 + 3 + 𝑛…𝑆 =
𝑖=1

𝑛

𝑖 =

𝑛 +(𝑛 − 1) +(𝑛 − 2) + 1𝑆 =
…

𝑛 + 1 𝑛 + 1 𝑛 + 1 𝑛 + 1

2𝑆 = 𝑛 + 1 𝑛

𝑆 =
1

2
𝑛 + 1 𝑛

+

Sums: Review

𝑎 + (𝑎 + 1) + 𝑏…𝑆 =
𝑖=𝑎

𝑏

𝑖 =

𝑏 +(𝑏 − 1) + 𝑎
𝑆 =

…

𝑎 + 𝑏 𝑎 + 𝑏 𝑎 + 𝑏

2𝑆 = 𝑎 + 𝑏 (𝑏 − 𝑎 + 1)

𝑆 =
1

2
𝑎 + 𝑏 (𝑏 − 𝑎 + 1)

+

Techniques for Algorithm Analysis

𝑐 +
𝑖=1

𝑛

𝑗=𝑖

𝑛

𝑐

▪ Complexity of algorithm Test1 is Θ 𝑛2

+𝑐
𝑖=1

𝑛

𝑛= 𝑐 −𝑐
𝑖=1

𝑛

𝑖 +𝑐
𝑖=1

𝑛

1

= 𝑐 +𝑐𝑛2−𝑐
𝑛 + 1 𝑛

2
+𝑐𝑛 = 𝑐

𝑛2

2
+ 𝑐

𝑛

2
+ 𝑐

= 𝑐 +
𝑖=1

𝑛

𝑐(𝑛 − 𝑖 + 1) = 𝑐 + 𝑐
𝑖=1

𝑛

(𝑛 − 𝑖 + 1)

Techniques for Algorithm Analysis

𝑐 +
𝑖=1

𝑛

𝑗=𝑖

𝑛

𝑐

▪ Using Θ-bounds earlier makes final expressions simpler

▪ Complexity of algorithm Test1 is Θ 𝑛2

▪ Can use Θ-bounds earlier, before working out the sum

𝑖=1

𝑛

𝑗=𝑖

𝑛

𝑐

is Θ
𝑖=1

𝑛

𝑗=𝑖

𝑛

𝑐

▪ Therefore, can drop the lower order term and work on

Techniques for Algorithm Analysis

▪ Two general strategies

1. Use Θ-bounds throughout the analysis and obtain Θ-
bound for the complexity of the algorithm

▪ used this strategy on previous slides for Test1 Θ-bound

2. Prove a O-bound and a matching Ω-bound separately
▪ use upper bounds (for O-bounds) and lower bounds (for Ω-bound)

early and frequently

▪ easier because upper/lower bounds are easier to sum

Techniques for Algorithm Analysis

▪ Second strategy: upper bound for Test1

𝑖=1

𝑛

𝑗=𝑖

𝑛

𝑐

▪ Add more iterations to make sum easier to work out

𝑖=1

𝑛

𝑗=𝑖

𝑛

𝑐 ≤
𝑖=1

𝑛

𝑗=1

𝑛

𝑐 =
𝑖=1

𝑛

𝑐𝑛 = 𝑐𝑛2= 𝑐
𝑖=1

𝑛

𝑛

𝒊

𝒋

1 2 𝑛

1

𝑛

Techniques for Algorithm Analysis

▪ Second strategy: upper bound for Test1

𝑖=1

𝑛

𝑗=𝑖

𝑛

𝑐

▪ Add more iterations to make sum easier to work out

𝑖=1

𝑛

𝑗=𝑖

𝑛

𝑐 ≤
𝑖=1

𝑛

𝑗=1

𝑛

𝑐 =
𝑖=1

𝑛

𝑐𝑛 = 𝑐𝑛2= 𝑐
𝑖=1

𝑛

𝑛

upper bound

𝒊

𝒋

1 2 𝑛

1

𝑛

▪ Test1 is 𝑂(𝑛2)

Techniques for Algorithm Analysis
▪ Second strategy: lower bound for Test1

𝑖=1

𝑛

𝑗=𝑖

𝑛

𝑐

▪ Remove iterations to make sum easier to work out

𝑖=1

𝑛

𝑗=𝑖

𝑛

𝑐 ≥

▪ Test1 is Ω(𝑛2)
𝒊

𝒋

1 2 𝑛

1

𝑛

𝑖=1

𝑛/2

𝑗=1+𝑛/2

𝑛

𝑐 =
𝑖=1

𝑛/2

𝑐
𝑛

2
= 𝑐

𝑛

2

2

𝑛

2

𝑛

2
+ 1

= 𝑐
𝑖=1

𝑛/2 𝑛

2

Techniques for Algorithm Analysis
▪ Second strategy: lower bound for Test1

𝑖=1

𝑛

𝑗=𝑖

𝑛

𝑐

▪ Remove iterations to make sum easier to work out

▪ Can get the same result without visualization

𝑖=1

𝑛

𝑗=𝑖

𝑛

𝑐 ≥
𝑖=1

𝑛/2

𝑗=𝑖

𝑛

𝑐

▪ Test1 is Ω(𝑛2), previously concluded that Test1 is 𝑂(𝑛2)

▪ Therefore Test1 is Θ 𝑛2

≥
𝑖=1

𝑛/2

𝑗=1+𝑛/2

𝑛

𝑐 = 𝑐
𝑛

2

2

▪ To remove iterations, increase lower or increase upper range bounds, or both

▪ Examples: ≥
𝑘=𝟐𝟎

𝟖𝟎

𝑐
𝑘=10

100

𝑐
𝑘=𝑖

𝑗

1
𝑘=𝒊 + 𝟏

𝒋−𝟏

1≥

▪ In our case:

now 𝑖 ≤ 𝑛/2

Techniques for Algorithm Analysis

▪ And then say running time is 𝑐 times the number of iterations

▪ Annoying to carry constants around
𝑖=1

𝑛

𝑗=𝑖

𝑛

𝑐

▪ Running time is proportional to the number of iterations

▪ Can first compute the number of iterations

𝑖=1

𝑛

𝑗=𝑖

𝑛

1 =
𝑛2

2
+

𝑛

2
+ 1

Techniques for Algorithm Analysis
▪ Inner while loop

▪ iteration 1: 𝑗 = 0

▪ iteration 2: 𝑗 = 1 ∙ 𝑖

▪ iteration 𝑘: 𝑗 = (𝑘 − 1) ∙ 𝑖

▪ terminate when 𝑘 − 1 ∙ 𝑖 ≥ 𝑖2

▪ 𝑘 ≥ 1 + 𝑖

▪ inner while loop takes (1 + 𝑖)𝑐 time

▪ Outer while loop

▪ iteration 1: 𝑖 = 𝑛

▪ iteration 2: 𝑖 = 𝑛/22−1

▪ iteration 𝑡: 𝑖 = 𝑛/2𝑡−1

▪ terminates when
𝑛

2𝑡−1 < 2

▪ 𝑡 > log 𝑛

▪ Total time, ignoring multiplicative 𝑐

Algorithm Test2(𝑛)

 sum 0

 𝑖 = 𝑛

 while 𝑖 ≥ 2 do

 𝑗 = 0

 while 𝑗 < 𝑖2 do

 sum sum + 1

 𝑗 = 𝑗 + 𝑖

 𝑖 = 𝑖/2

 return sum

𝑂(1)

𝑡=1

log 𝑛

(1 + 𝑛/2𝑡−1) +𝑛

𝑡=1

log 𝑛

1/2𝑡=

𝑡=1

log 𝑛

1 = log 𝑛 +𝑛

𝑡=1

∞

1/2𝑡<

some constant

∈ 𝑂(𝑛)

(more precisely, last iteration is at 𝑡 = log 𝑛 − 1)

Worst Case Time Complexity
▪ Can have different running times on two instances of equal size

▪ Let 𝑇(𝐼) be running time of an algorithm on instance 𝐼

▪ Let 𝐼𝑛 = 𝐼: 𝑆𝑖𝑧𝑒 𝐼 = 𝑛

▪ Worst-case complexity of an algorithm: take the worst 𝐼

▪ Formal definition: the worst-case running time of algorithm A is a
function f : Z+ → R mapping 𝑛 (the input size) to the longest running
time for any input instance of size 𝑛

𝑇𝑤𝑜𝑟𝑠𝑡 𝑛 = max
𝐼𝜖𝐼𝑛

𝑇 𝐼

Worst Case Time Complexity

▪ Worst-case complexity of an algorithm: take worst instance 𝐼

𝑗=1

𝑖

𝑐
𝑖=1

𝑛−1

 =
𝑖=0

𝑛−1

𝑐𝑖

= 𝑐 𝑛 − 1 𝑛/2

▪ 𝑇𝑤𝑜𝑟𝑠𝑡 𝑛 = 𝑐 𝑛 − 1 𝑛/2

▪ this is primitive operation count as a function of input size 𝑛

▪ after primitive operation count, apply asymptotic analysis
▪ Θ 𝑛2 or 𝑂 𝑛2 or Ω 𝑛2 are all valid statements about the

worst case running time of insertion-sort

worst 𝐼 is reverse sorted array

Best Case Time Complexity

▪ Best-case complexity of an algorithm: take the best instance I
▪ Formal definition: the best-case running time of an algorithm A is a

function f : Z+ → R mapping 𝑛 (the input size) to the smallest running
time for any input instance of size 𝑛

𝑖=1

𝑛−1

𝑐 = 𝑐(𝑛 − 1)

𝑇𝑏𝑒𝑠𝑡 𝑛 = min
𝐼𝜖𝐼𝑛

𝑇 𝐼

▪ 𝑇𝑏𝑒𝑠𝑡 𝑛 = 𝑐 𝑛 − 1

▪ this is primitive operation count as a function of input size 𝑛

▪ after primitive operation count, apply asymptotic analysis

▪ Θ 𝑛 or 𝑂 𝑛 or Ω 𝑛 are all valid about best case running time

best instance is sorted array

Best Case Time Complexity

▪ For insertion-sort, best instance is sorted
(non-increasing) array 𝐴 of size 𝑛

▪ Best instance is not an array of size 1

▪ Best-case complexity is Θ(𝑛)

▪ Note that best-case complexity is a function of input size 𝑛

▪ Think of the best instance of size 𝑛

▪ For hasNegative, best instance is array 𝐴
of size 𝑛 where 𝐴[0] < 0

▪ Best instance is not an array of size 1

▪ Best-case complexity is Θ(1)
\\\\\\\\\\\

hasNegative(A, n)

 Input: array A of n integers

 for i 0 to n − 1 do

 if A[i] < 0

 return True

 return False

Best Case Running Time Exercise
Algorithm Mystery(A, n)

 Input: array A of n integers

 if 𝑛= 5

 return 𝐴[0]

 else

 for i 1 to n − 1 do

 print(𝐴[𝑖])

 return

▪ Best case running time?

a) Θ 1

b) Θ(𝑛)

𝑛 = 5

𝑐

𝑐𝑛

▪ 𝑇 𝑛 = ቊ
𝑐 if 𝑛 = 5

𝑐𝑛 otherwise

√

Average Case Time Complexity

Average-case complexity of an algorithm: The average-case running
time of an algorithm A is function f : Z+ → R mapping 𝑛 (input size) to
the average running time of A over all instances of size 𝑛

𝑇𝑎𝑣𝑔 𝑛 =
1

𝐼𝑛

𝐼𝜖𝐼𝑛

𝑇 𝐼

▪ Will assume 𝐼𝑛 is finite

▪ If all instances are used equally often, 𝑇𝑎𝑣𝑔 𝑛 gives a good

estimate of a running time of an algorithm on average in
practice

Average vs. Worst vs. Best Case Time Complexity

▪ Sometimes, best, worst, average time complexities are the same

▪ If there is a difference, then best time complexity could be overly
optimistic, worst time complexity could be overly pessimistic, and
average time complexity is most useful

▪ However, average case time complexity is usually hard to compute

▪ Therefore, most often, we use worst time complexity
▪ worst time complexity is useful as it gives bound on the maximum

amount of time one will have to wait for the algorithm to complete

▪ default in this course

▪ unless stated otherwise, whenever we mention time complexity,
assume we mean worst case time complexity

▪ Goal in CS240: for a problem, find an algorithm that solves it and
whose tight bound on the worst case running time has the smallest
growth rate

O-notation and Running Time of Algorithms

▪ It is important not to try make comparisons between algorithms
using 𝑂-notation

▪ Suppose algorithm A and B both solve the same problem

▪ A has worst-case runtime 𝑂(𝑛3)

▪ B has worst-case runtime 𝑂(𝑛2)

▪ Cannot conclude that B is more efficient that A

▪ 𝑂-notation is only an upper bound

▪ A could have worst case runtime 𝑂(𝑛)

▪ while for B the bound of 𝑂(𝑛2) could be tight

▪ To compare algorithms, it is better to use Θ notation

Θ-notation and Running Time of Algorithms

▪ Have to be careful with Θ-notation

▪ Suppose algorithm A and B both solve the same problem

▪ A has worst-case runtime Θ(𝑛3)

▪ B has worst-case runtime Θ(𝑛2)

▪ Cannot conclude that B is more efficient that A for all inputs
▪ the worst case runtime may be achieved only on some instances

Running Time: Theory and Practice, Multiplicative Constants

▪ Algorithm A has runtime 𝑇 𝑛 = 10000𝑛2

▪ Algorithm B has runtime 𝑇 𝑛 = 10𝑛2

▪ Theoretical efficiency of A and B is the same, Θ 𝑛2

▪ In practice, algorithm B will run faster (for most implementations)
▪ multiplicative constants matter in practice, given two algorithms with

the same growth rate

▪ but we are concerned with theory (mostly), and multiplicative
constants do not matter in asymptotic analysis

Running Time: Theory and Practice, Small Inputs

▪ Algorithm A running time 𝑇 𝑛 = 75𝑛 + 500

▪ Algorithm B running time 𝑇 𝑛 = 5𝑛2

▪ Then B is faster for 𝑛 ≤ 20
▪ use this fact for practical implementation of recursive sorting algorithms

15 205 100

3,000

2,500

2,000

1,500

1,000

500

0
25

Theoretical Analysis of Space

Algorithm arrayMax(A, n)

 currentMax A[0]

 for i 1 to n − 1 do

 if A[i] currentMax then

 currentMax A[i]

 return currentMax

▪ Interested in auxiliary space

▪ space used in addition to the space used by the input data

▪ To find space used by an algorithm, count total number of auxiliary memory cells
ever accessed (for reading or writing or both) by algorithm

▪ as a function of input size 𝒏

▪ space used must always be initialized, although it may not be stated explicitly in
pseudocode

Algorithm arrayMax(A, n)

 currentMax A[0]

 for i 1 to n − 1 do

 if A[i] currentMax then

 currentMax A[i]

 return currentMax

▪ arrayMax uses 2 memory cells

▪ 𝑇 𝑛 = 2

▪ space efficiency is 𝑂(1)

Theoretical Analysis of Space

Algorithm arrayCumSum(A, n)

 Input: array A of n integers

 initialize array B of size n to 0

 B[0] A[0]

 for i 1 to n − 1 do

 B[i] B[i - 1] + A[i]

 return B

▪ arrayCumSum uses 1 + 𝑛 memory cells

▪ 𝑇 𝑛 = 1 + 𝑛

▪ space efficiency is 𝑂(𝑛)

Algorithm arrayCumSum(A, n)

 Input: array A of n integers

 initialize array B of size n to 0

 B[0] A[0]

 for i 1 to n − 1 do

 B[i] B[i - 1] + A[i]

 return B

Outline

▪ CS240 overview
▪ Course objectives
▪ Course topics

▪ Introduction and Asymptotic Analysis
▪ algorithm design
▪ pseudocode
▪ measuring efficiency
▪ asymptotic analysis

▪ analysis of algorithms

▪ analysis of recursive algorithms
▪ helpful formulas

MergeSort: Overall Idea

Input: Array A of 𝑛 integers

1: split A into two subarrays

▪ AL consists of the first
𝑛

2 elements

▪ AR consists of the last
𝑛

2
 elements

2: Recursively run MergeSort on AL and AR

3: After AL and AR are sorted, use function Merge to merge

them into a single sorted array

AL AR

A=

MergeSort: Pseudo-code

▪ Two tricks to avoid copying/initializing too many arrays
▪ recursion uses parameters that indicate the range of the array that needs

to be sorted

▪ array 𝑆 used for merging is passed along as parameter

Merging Two Sorted Subarrays: Initialization

3 4 5 7 1 1 2 8 9A
l m r

l

3 4 5 7 1 1 2 8 9S
m r

iL iR

Merging Two Sorted Subarrays: Merging Starts

3 4 5 7 1 1 2 8 9A 3 4 5 7 1 1 2 8 9S
iL iRk

1 4 5 7 1 1 2 8 9A 3 4 5 7 1 1 2 8 9S
iL iRk

m r

1 1 5 7 1 1 2 8 9A 3 4 5 7 1 1 2 8 9S
iL iRk

1 1 2 7 1 1 2 8 9A 3 4 5 7 1 1 2 8 9S
iL iRk

1 1 2 3 1 1 2 8 9A 3 4 5 7 1 1 2 8 9S
iL iRk

1 1 2 3 4 1 2 8 9A 3 4 5 7 1 1 2 8 9S
iL iRk

Merging Two Sorted Subarrays: Merging Cont.
m r

1 1 2 3 4 1 2 8 9A 3 4 5 7 1 1 2 8 9S
iL iRk

1 1 2 3 4 5 2 8 9A 3 4 5 7 1 1 2 8 9S
iL iRk

1 1 2 3 4 5 7 8 9A 3 4 5 7 1 1 2 8 9S
iL iRk

1 1 2 3 4 5 7 8 9A 3 4 5 7 1 1 2 8 9S
iL iRk

1 1 2 3 4 5 7 8 9A 3 4 5 7 1 1 2 8 9S
iL iRk

iL > m, done with the first subarray

Merge: Pseudocode

▪ Merge takes Θ(𝑟 – 𝑙 + 1) time

▪ this is Θ(𝑛) time for merging 𝑛 elements

Analysis of MergeSort

▪ Recurrence relation for MergeSort

𝑇 𝑛 = ቐ
𝑇

𝑛

2
+ 𝑇

𝑛

2
+ 𝑐 𝑛 if 𝑛 > 1

𝑐 if 𝑛 = 1

▪ Let 𝑇 𝑛 be time to run MergeSort on an array of length 𝑛

𝑇
𝑛

2

𝑐𝑛

𝑐

𝑐

𝑇
𝑛

2
𝑐𝑛

\\ base case

𝑇 𝑛 = ቐ
𝑇

𝑛

2
+ 𝑇

𝑛

2
+ 𝑐 𝑛 if 𝑛 > 1

𝑐 if 𝑛 = 1

merge-sort(𝐴, 𝑛, 𝑙 ← 0, 𝑟 ← 𝑛 − 1, 𝑆 ← 𝑁𝑈𝐿𝐿)

𝐴: array of size 𝑛, 0 ≤ 𝑙 ≤ 𝑟 ≤ 𝑛 − 1

 if 𝑟 ≤ 𝑙 then

 return

 if 𝑆 is 𝑁𝑈𝐿𝐿 initialize it as array 𝑆[0 … 𝑛 − 1]

 𝑚 = (𝑙 + 𝑟)/2

 merge-sort(𝐴, 𝑛, 𝑙, 𝑚, 𝑆)

 merge-sort 𝐴, 𝑛, 𝑚 + 1, 𝑟, 𝑆

 merge(𝐴, 𝑙, 𝑚, 𝑟, 𝑆)

Analysis of MergeSort

▪ Sloppy recurrence with floors and ceilings removed

▪ Exact and sloppy recurrences are identical when 𝑛 is a power of 2

▪ Recurrence easily solved when 𝑛 = 2𝑗

𝑇 𝑛 = ቐ
2𝑇

𝑛

2
+ 𝑐𝑛 if 𝑛 > 1

𝑐 if 𝑛 = 1

▪ Recurrence relation for MergeSort

𝑇 𝑛 = ቐ
𝑇

𝑛

2
+ 𝑇

𝑛

2
+ 𝑐 𝑛 if 𝑛 > 1

𝑐 if 𝑛 = 1

Visual proof via Recursion Tree 𝑻 𝒏 = ቐ
𝟐𝑻

𝒏

𝟐
+ 𝒄 𝒏 if 𝒏 > 𝟏

𝒄 if 𝒏 = 𝟏

𝑛𝑛

𝑛
𝑛

2
𝑛
𝑛

2

𝑐 𝑛

𝑛
𝑛

22
𝑛
𝑛

22

𝑐
𝑛

2
𝑐

𝑛

2

𝑛
𝑛

22
𝑛
𝑛

22

𝑐
𝑛

22
𝑐

𝑛

22
𝑐

𝑛

22 𝑐
𝑛

22

tree levels

0

1

2

work per level
𝑐 𝑛

𝑐 𝑛

𝑐 𝑛

…
…

…

#nodes

20

21

22

𝑖 2𝑖

▪ Stop recursion when node size is 1 ⇒ 𝑛 = 2𝑖 ⇒ 𝑖 = log 𝑛⇒
𝑛

2𝑖
= 1

𝑛
𝑛

2𝑖 𝑛
𝑛

2𝑖 𝑛
𝑛

2𝑖
………………

𝑐
𝑛

2𝑖 𝑐
𝑛

2𝑖
𝑐

𝑛

2𝑖
𝑐 𝑛

▪ 𝑐𝑛 operations on each tree level, log 𝑛 levels, total time is 𝑐𝑛 log 𝑛 ∈ Θ 𝑛 log 𝑛

Analysis of MergeSort

▪ Can show 𝑇 𝑛 ∈ Θ 𝑛 log 𝑛 for all 𝑛 by analyzing exact (not
sloppy) recurrence

▪ sloppy recurrence is good enough for this course

Explaining Solution of a Problem

▪ For Merge-sort design, we had four steps

1. describe the overall idea

2. give pseudocode or detailed description

3. argue correctness
▪ key ingredients, no need for a formal proof

▪ sometimes obvious enough from idea-description

4. analyze runtime

▪ Follow these 4 steps when asked to ‘solve a problem’

Some Recurrence Relations

▪ Once you know the result, it is (usually) easy to prove by induction

▪ You can use these facts without a proof, unless asked otherwise

▪ Many more recursions, and some methods to solve, in cs341

Outline

▪ CS240 overview
▪ Course objectives

▪ Course topics

▪ Introduction and Asymptotic Analysis
▪ algorithm design

▪ pseudocode

▪ measuring efficiency

▪ asymptotic analysis

▪ analysis of algorithms

▪ analysis of recursive algorithms

▪ helpful formulas

Useful Sums
▪ Arithmetic

𝑖=1

∞ 1

𝑖2 =
𝜋2

6
∈ Θ 1

𝑖=1

𝑛

𝑖𝑘 ∈ Θ 𝑛𝑘+1 for 𝑘 ≥ 0

𝑖=0

∞

𝑖𝑝(1 − 𝑝)𝑖−1 =
1

𝑝
 for 0 < 𝑝 < 1

▪ You can use these without a proof, unless asked otherwise

𝑖=0

𝑛−1

𝑖 =
𝑛(𝑛 − 1)

2

𝑖=0

𝑛−1

2𝑖 = 2𝑛 − 1

▪ A few more

▪ Harmonic σ𝑖=1
𝑛 1

𝑖
= ln 𝑛 + γ + 𝑜(1) ∈ Θ log 𝑛

▪ Geometric

𝑖=1

∞ 𝑖

2𝑖
=∈ Θ 1

𝑖=0

𝑛−1

𝑎𝑟𝑖 =

𝑎
𝑟𝑛 − 1

𝑟 − 1
∈ Θ 𝑟𝑛−1 if 𝑟 > 1

𝑛𝑎 ∈ Θ 𝑛 if 𝑟 = 1

𝑎
1 − 𝑟𝑛

1 − 𝑟
∈ Θ 1 if 0 < 𝑟 < 1

𝑖=0

𝑛−1

𝑎 + 𝑑𝑖 = 𝑛𝑎 +
𝑑𝑛(𝑛 − 1)

2
∈ Θ 𝑛2 if 𝑑 ≠ 0

Useful Math Facts

	Intro
	Slide 1: Module 1: Introduction and Asymptotic Analysis
	Slide 2: Outline
	Slide 3: Outline
	Slide 4: Course Objectives: What is this course about?
	Slide 5: Course Objectives: What is this course about?
	Slide 6: Course Topics
	Slide 7: CS Background

	Terminology & Pseudocode
	Slide 8: Outline
	Slide 9: Algorithm Design Terminology
	Slide 10: Algorithm Design Terminology
	Slide 11: Algorithms and Programs
	Slide 12: Outline
	Slide 13: Pseudocode
	Slide 14: Pseudocode Details

	Measuring Efficincy
	Slide 15: Outline
	Slide 16: Efficiency of Algorithms/Programs
	Slide 17: Efficiency is a Function of Input
	Slide 18: Running Time, Option 1: Experimental Studies
	Slide 19: Running Time, Option 2: Theoretical Analysis
	Slide 20: Random Access Machine (RAM) Idealized Computer Model
	Slide 21: Theoretical Framework For Algorithm Analysis
	Slide 22: Theoretical Analysis of Running time
	Slide 23: Primitive Operation Exercise
	Slide 24: Primitive Operation Exercise
	Slide 25: Theoretical Analysis of Running time
	Slide 26: Theoretical Analysis of Running time
	Slide 27: Theoretical Analysis of Running time
	Slide 28
	Slide 29: Theoretical Analysis of Running time: Lower Order Terms
	Slide 30: Theoretical Analysis of Running time

	big-O
	Slide 31: Outline
	Slide 32: Order Notation: big-Oh
	Slide 33: big-Oh Example
	Slide 34: Order Notation: big-Oh
	Slide 35: Order Notation: big-Oh
	Slide 36: Order Notation: big-Oh
	Slide 37: Order Notation: big-Oh
	Slide 38: More big-O Examples
	Slide 39: More big-O Examples
	Slide 40: More big-O Examples

	Untitled Section
	Slide 41: Theoretical Analysis of Running time
	Slide 42: Theoretical Analysis of Running time
	Slide 43: Need for Asymptotic Tight bound
	Slide 44: Aymptotic Lower Bound
	Slide 45: Asymptotic Lower Bound
	Slide 46: Asymptotic Lower Bound
	Slide 47: Tight Asymptotic Bound
	Slide 48: Tight Asymptotic Bound
	Slide 49: Tight Asymptotic Bound
	Slide 50: Common Growth Rates
	Slide 51: How Growth Rates Affect Running Time
	Slide 52: Strictly Smaller Asymptotic Bound
	Slide 53: Big-Oh vs. Little-o
	Slide 54: Big-Oh vs. Little-o
	Slide 55: Strictly Smaller Proof Example
	Slide 56: Strictly Smaller Proof Example
	Slide 57: Strictly Larger Asymptotic Bound
	Slide 58: Strictly Larger Asymptotic Bound
	Slide 59: Limit Theorem for Order Notation
	Slide 60: Example 1
	Slide 61: Example 2
	Slide 62: Example 3
	Slide 63: Example 4
	Slide 64: Example 4
	Slide 65: Example 5
	Slide 66: Example 5
	Slide 67: Order notation Summary
	Slide 68: Relationship between Order Notations
	Slide 69: Algebra of Order Notations (1)
	Slide 70: Algebra of Order Notations (2)
	Slide 71: Abuse of Order Notation
	Slide 72: Outline
	Slide 73: Techniques for Runtime Analysis
	Slide 74: Techniques for Runtime Analysis
	Slide 75: Techniques for Algorithm Analysis
	Slide 76: Techniques for Algorithm Analysis
	Slide 77: Techniques for Algorithm Analysis
	Slide 78: Techniques for Algorithm Analysis
	Slide 79: Sums: Review
	Slide 80: Sums: Review
	Slide 81: Sums: Review
	Slide 82: Sums: Review
	Slide 83: Sums: Review
	Slide 84: Techniques for Algorithm Analysis
	Slide 85: Techniques for Algorithm Analysis
	Slide 86: Techniques for Algorithm Analysis
	Slide 87: Techniques for Algorithm Analysis
	Slide 88: Techniques for Algorithm Analysis
	Slide 89: Techniques for Algorithm Analysis
	Slide 90: Techniques for Algorithm Analysis
	Slide 91: Techniques for Algorithm Analysis
	Slide 92: Techniques for Algorithm Analysis
	Slide 93: Worst Case Time Complexity
	Slide 94: Worst Case Time Complexity
	Slide 95: Best Case Time Complexity
	Slide 96: Best Case Time Complexity
	Slide 97: Best Case Running Time Exercise
	Slide 98: Average Case Time Complexity
	Slide 99: Average vs. Worst vs. Best Case Time Complexity
	Slide 100: O-notation and Running Time of Algorithms
	Slide 101: cap theta-notation and Running Time of Algorithms
	Slide 102: Running Time: Theory and Practice, Multiplicative Constants
	Slide 103: Running Time: Theory and Practice, Small Inputs
	Slide 104: Theoretical Analysis of Space
	Slide 105: Theoretical Analysis of Space
	Slide 106: Outline
	Slide 107: MergeSort: Overall Idea
	Slide 108: MergeSort: Pseudo-code
	Slide 109: Merging Two Sorted Subarrays: Initialization
	Slide 110: Merging Two Sorted Subarrays: Merging Starts
	Slide 111: Merging Two Sorted Subarrays: Merging Cont.
	Slide 112: Merge: Pseudocode
	Slide 113: Analysis of MergeSort
	Slide 114: Analysis of MergeSort
	Slide 115: Visual proof via Recursion Tree
	Slide 116: Analysis of MergeSort
	Slide 117: Explaining Solution of a Problem
	Slide 118: Some Recurrence Relations
	Slide 119: Outline
	Slide 120: Useful Sums
	Slide 121: Useful Math Facts

