Module 1: Introduction and Asymptotic Analysis

CS 240 – Data Structures and Data Management

O. Veksler

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2025

Outline

- CS240 overview
 - course objectives
 - course topics
- Introduction and Asymptotic Analysis
 - algorithm design
 - pseudocode
 - measuring efficiency
 - asymptotic analysis
 - analysis of algorithms
 - analysis of recursive algorithms
 - helpful formulas

Outline

- CS240 overview
 - course objectives
 - course topics
- Introduction and Asymptotic Analysis
 - algorithm design
 - pseudocode
 - measuring efficiency
 - asymptotic analysis
 - analysis of algorithms
 - analysis of recursive algorithms
 - helpful formulas

Course Objectives: What is this course about?

- Computer Science is mostly about problem solving
 - write program that converts given input to expected output
- When first learn to program, emphasize correctness
 - does program output the expected results?
- This course is also concerned with *efficiency*
 - does program use computer resources efficiently?
 - processor time, memory space
 - strong emphasis on mathematical analysis of efficiency
- Study efficient methods of *storing*, *accessing*, and *organizing* large collections of data
 - typical operations: *inserting* new data items, *deleting* data items, *searching* for specific data items, *sorting*

Course Objectives: What is this course about?

- New abstract data types (ADTs)
 - how to implement ADT efficiently using appropriate data structures
- New algorithms solving problems in data management
 - sorting, pattern matching, compression
- Algorithms
 - presented in pseudocode
 - analyzed using order notation (big-Oh, etc.)

Course Topics

- asymptotic (big-Oh) analysis
- priority queues and heaps
- sorting, selection
- binary search trees, AVL trees
- skip lists
- tries
- hashing
- quadtrees, kd-trees, range search
- string matching
- data compression
- external memory

mathematical tool for efficiency

Data Structures and Algorithms

CS Background

- Topics covered in previous courses with relevant sections [Sedgewick]
 - arrays, linked lists (Sec. 3.2–3.4)
 - strings (Sec. 3.6)
 - stacks, queues (Sec. 4.2–4.6)
 - abstract data types (Sec. 4-intro, 4.1, 4.8–4.9)
 - recursive algorithms (5.1)
 - binary trees (5.4–5.7)
 - basic sorting (6.1–6.4)
 - binary search (12.4)
 - binary search trees (12.5)
 - probability and expectation (Goodrich & Tamassia, Section 1.3.4)

Outline

- CS240 overview
 - Course objectives
 - Course topics

Introduction and Asymptotic Analysis

- algorithm design
- pseudocode
- measuring efficiency
- asymptotic analysis
- analysis of algorithms
- analysis of recursive algorithms
- helpful formulas

Algorithm Design Terminology

- Problem: description of input and required output
 - for example, given an input array, rearrange elements in nondecreasing order
- Problem Instance: one possible input for specified problem
 - I = [5, 2, 1, 8, 2]
- Size of a problem instance size(I)
 - non-negative integer measuring size of instance I
 - size([5, 2, 1, 8, 2]) = 5
 - size([]) = 0
- Often input is array, and instance size is usually array size

Algorithm Design Terminology

- Algorithm: step-by-step process (can be described in finite length) for carrying out a series of computations, given an arbitrary instance I
- Solving a problem: algorithm A solves problem Π if for every instance I of Π, A computes a valid output for instance I in finite time
- Program: *implementation* of an algorithm using a specified computer language
- In this course, the emphasis is on algorithms
 - as opposed to programs or programming

Algorithms and Programs

- From problem Π to program that solves it
 - **1.** Algorithm Design: design algorithm(s) that solves Π
 - 2. Algorithm Analysis: assess *correctness* and *efficiency* of algorithm(s)
 - **3. Implementation**: if acceptable (correct and efficient), implement algorithms(s)
 - for each algorithm, multiple implementations are possible
 - 4. If multiple acceptable algorithms/implementations, run experiments to determine a better solution
- CS240 focuses on the first two steps
 - the main point is to avoid implementing obviously bad algorithms

Outline

- CS240 overview
 - Course objectives
 - Course topics

Introduction and Asymptotic Analysis

- algorithm design
- pseudocode
- measuring efficiency
- asymptotic analysis
- analysis of algorithms
- analysis of recursive algorithms
- helpful formulas

Pseudocode

- Pseudocode is a method of communicating algorithm to a human
 - whereas program is a method of communicating algorithm to a computer

- preferred language for describing algorithms
- omits obvious details, e.g. variable declarations
- sometimes uses English descriptions (swap)
- has limited if any error detection, e.g. assumes A is initialized
- sometimes uses mathematical notation
- should use good variable names

Pseudocode Details

Control flow

if ... then ... [else ...]
while ... do ...
repeat ... until ...
for ... do ...
indentation replaces braces

- Expressions
 - ← assignment
 - == equality testing
 - **n**² superscripts and other mathematical formatting allowed
- Method declaration

```
Algorithm method (arg, arg...)
Input ...
Output ...
```

Algorithm array/Max(A, n) Input: array A of n integers Output: maximum element of A currentMax $\leftarrow A[0]$ for $i \leftarrow 1$ to n - 1 do if A[i] > currentMax then currentMax $\leftarrow A[i]$ return currentMax

Outline

- CS240 overview
 - Course objectives
 - Course topics

Introduction and Asymptotic Analysis

- algorithm design
- pseudocode
- measuring efficiency
- asymptotic analysis
- analysis of algorithms
- analysis of recursive algorithms
- helpful formulas

Efficiency of Algorithms/Programs

- Efficiency
 - Running Time: amount of time program takes to run
 - Auxiliary Space: amount of additional memory program requires
 - additional to the memory needed for the input instance
- Primarily concerned with time efficiency in this course
 - but also look at space efficiency sometimes
 - same techniques as for time apply to space efficiency
- When we say efficiency, assume time efficiency
 - unless we explicitly say space efficiency
- Running time is sometimes called time complexity
- Auxiliary space sometimes is called space complexity

Efficiency is a Function of Input

 The amount of time and/or memory required by a program usually depends on given instance (instance size and sometimes elements instance stores)

Algorithm <i>hasNegative</i> (<i>A</i> , <i>n</i>)	
Input: array A of n integers	7
for <i>i</i> ← 0 to <i>n</i> − 1 do	ן ר
if <i>A</i> [<i>i</i>] < 0	1
return <i>True</i>	
return False	

$$T([3, 4]) < T([3, 1, 4, 7, 0])$$

$$T([3, -1, 4, 7, 10]) < T([3, 1, 4])$$

- So we express time or memory efficiency as a function of instances, i.e. T(I)
- Deriving T(I) for each specific instance I is impractical
- Usually running time is longer for larger instances
- Group all instances of size n into set $I_n = \{ I | size(I) = n \}$
 - *I*₄ is all arrays of size 4
- Measure efficiency over the set I_n : T(n) = "time for instances in I_n "
 - average over I_n ?
 - smallest time instance in I_n ?
 - largest time instance in I_n ?

Running Time, Option 1: Experimental Studies

- Write program implementing the algorithm
- Run program with inputs of varying size and composition

Algorithm hasNegative(A, n) Input: array A of n integers for $i \leftarrow 0$ to n - 1 do if A[i] < 0return True return False

9000 8000 7000 ໌ ເມື່⁶⁰⁰⁰ 5000 4000 <u>H</u> 3000 2000 1000 0 50 100 Π

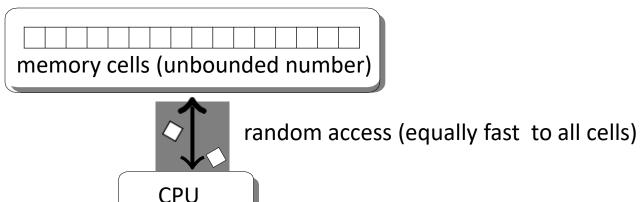
Input Size

- Shortcomings
 - implementation may be complicated/costly
 - timings are affected by many factors
 - hardware (processor, memory)
 - software environment (OS, compiler, programming language)
 - human factors (programmer)
 - cannot test all inputs, hard to select good sample inputs

Running Time, Option 2: Theoretical Analysis

- Does not require implementing the algorithm
- Independent of hardware/software environment
- Takes into account all possible input instances
- [Side note: experimental studies are still useful]
 - especially when theoretical analysis yields no useful results for deciding between multiple algorithms
- For theoretical analysis, need an idealized computer model
 - "run" algorithms on idealized computer model
 - allows to understand how to compute running time and space theoretically
 - i.e. states explicitly all the assumptions we make when computing efficiency

Random Access Machine (RAM) Idealized Computer Model



- Has a set of memory cells, each of which stores one data item
 - number, character, reference
 - memory cells are big enough to hold stored items
- Any access to a memory location takes the same constant time
 - constant time means that time is *independent of the input size n*
- Memory access is an example of a *primitive operations*
- Can run other primitive operations on this machine (arithmetic, etc., more on this later)
 - primitive operations take the same constant time
- These assumptions may be invalid for a real computer

Theoretical Framework For Algorithm Analysis

- Write algorithms in pseudo-code
- Run algorithms on idealized computer model
- Time efficiency: count # primitive operations
 - as a function of problem size n
 - running time is proportional to number of primitive operations
 - since all primitive operations take the same constant time
 - can get complicated functions like $99n^3 + 8n^2 + 43421$
 - measure time efficiency in terms of growth rate
 - behaviour of the algorithm as the input gets larger
 - avoids complicated functions and isolates the factor that effects the efficiency the most for large inputs
- Space efficiency: count maximum # of memory cells ever in use
- This framework makes many simplifying assumptions
 - makes analysis of algorithms easier

- Pseudocode is a sequence of *primitive operations*
- A primitive operation is
 - independent of input size
- Examples of Primitive Operations
 - arithmetic: -, +, %, *, mod, round
 - assigning a value to a variable
 - indexing into an array
 - returning from a method
 - comparisons, calling subroutine, entering a loop, breaking, etc.

Algorithm arrayMax(A, n) Input: array A of n integers Output: maximum element of A currentMax $\leftarrow A[0]$ for $i \leftarrow 1$ to n - 1 do if A[i] > currentMax then currentMax $\leftarrow A[i]$ return currentMax

- To find running time, count the number of primitive operations
 - as a function of input size n

Primitive Operation Exercise

- *n* is the input size
- x^n is a primitive operation
 - a) True
 - b) False

Primitive Operation Exercise

- *n* is the input size
- $x^{10000000000}$ is a primitive operation
 - a) True
 - b) False

- To find running time, count the number of primitive operations $T(\mathbf{n})$
 - function of input size n

```
Algorithm arraySum(A, n)# operationssum \leftarrow A[0]2for i \leftarrow 1 to n - 1 do2sum \leftarrow sum + A[i]4{ increment counter i }return sum
```


- To find running time, count the number of primitive operations $T(\mathbf{n})$
 - function of input size n

Algorithm <i>arraySum</i> (<i>A</i> , <i>n</i>)	# operations
$sum \leftarrow A[0]$ for $i \leftarrow 1$ to $n - 1$ do	2
<i>sum ← sum</i> + A[<i>i</i>] { increment counter <i>i</i> } return <i>sum</i>	$i \leftarrow 1$ n - 1 $i = 1, \text{ check } i \le n - 1 \text{ (go inside loop)}$ $i = 2, \text{ check } i \le n - 1 \text{ (go inside loop)}$
	$i = n - 1, \text{check } i \leq n - 1 \text{(go inside loop)}$ $i = n, \text{check } i \leq n - 1 \text{ (do not go inside loop)}$ Total: 2+n

- To find running time, count the number of primitive operations $T(\mathbf{n})$
 - function of input size n

Algorithm <i>arraySum</i> (<i>A</i> , <i>n</i>)	# operations
$sum \leftarrow A[0]$	2
for $i \leftarrow 1$ to $n - 1$ do	2 + <i>n</i>
$sum \leftarrow sum + A[i]$	3(n – 1)
{ increment counter i }	2(n – 1)
return sum	1

Theoretical Analysis of Running time: Multiplicative factors

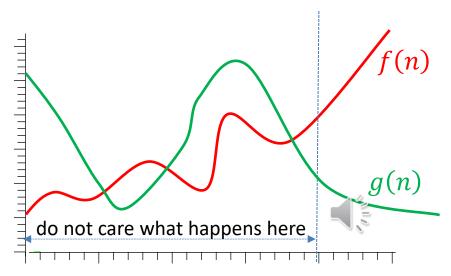
- Algorithm *arraySum* executes T(n) = 6n primitive operations
- On a real computer, primitive operations will have different runtimes
- Let a = time taken by fastest primitive operation
 - b = time taken by slowest primitive operation
- Actual runtime is bounded by two linear functions $a (6n) \le actual runtime(n) \le b(6n)$
- Changing hardware/software affects runtime by a multiplicative factor
 - a and will b change, but the runtime is always bounded by const n
 - therefore, multiplicative constants are not essential
- Want to **ignore constant multiplicative** factors and say T(n) = 6n is essentially n
 - in a theoretically justified way

Theoretical Analysis of Running time: Lower Order Terms

- Interested in runtime for large inputs (large n)
 - datasets keep increasing in size
- Consider $T(n) = n^2 + n$
- For large n, fastest growing factor contributes the most

 $T(100,000) = 10,000,000,000 + 100,000 \approx 10,000,000,000$

- Want to ignore lower order terms in a theoretically justified way
- Perform analysis for large n (or 'eventual' behaviour)
 - this further simplifies analysis and comparing algorithms



- We want
 - 1) ignore multiplicative constant factors
 - 2) focus on behaviour for large *n* (i.e. ignore lower order terms)
- This means focusing on the growth rate of the function
- Want to say

 $f(n) = 10n^2 + 100n$ has growth rate of $g(n) = n^2$ f(n) = 10n + 10 has growth rate of g(n) = n

- Asymptotic analysis gives tools to formally focus on growth rate
- To say that function f(n) has growth rate expressed by g(n)
 - 1) upper bound: asymptotically bound f(n) from above by g(n)
 - 2) lower bound: asymptotically bound f(n) from below by g(n)
 - asymptotically means: for large enough n, ignoring constant multiplicative factors

Outline

CS240 overview

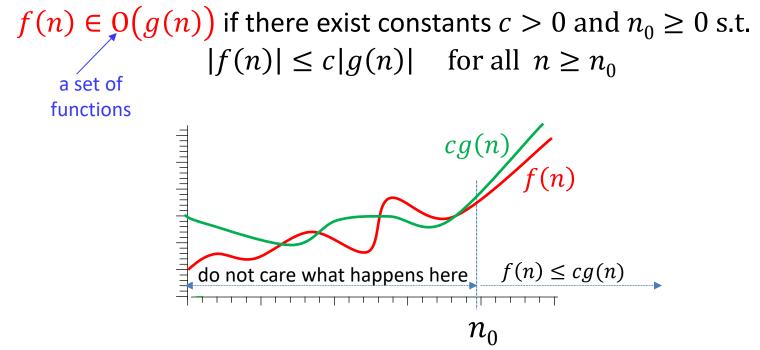
- Course objectives
- Course topics

Introduction and Asymptotic Analysis

- algorithm design
- pseudocode
- measuring efficiency
- asymptotic analysis
- analysis of algorithms
- analysis of recursive algorithms
- helpful formulas

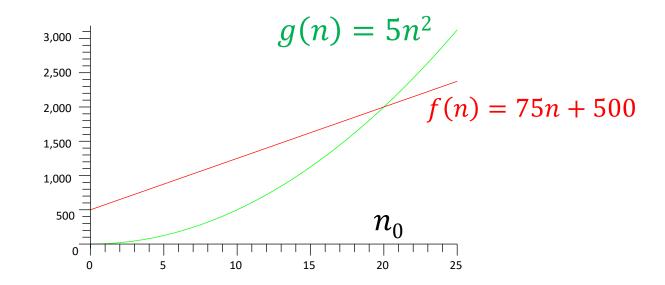
Order Notation: big-Oh

- Upper bound: asymptotically bound f(n) from above by $oldsymbol{g}(n)$
 - f(n) is running time, is function expressing growth rate g(n)



- Need c to get rid of multiplicative constant in growth rate
 - cannot say $5n^2 \le n^2$, but can say $5n^2 \le cn^2$ for some constant c
- Absolute value not relevant for run-time, but useful in other applications
- Unless say otherwise, assume n (and n_0) are real numbers

big-Oh Example $f(n) \in O(g(n))$ if there exist constants c > 0 and $n_0 \ge 0$ s.t. $|f(n)| \le c|g(n)|$ for all $n \ge n_0$

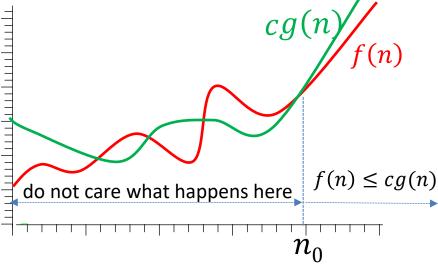


• Take $c = 1, n_0 = 20$

• many other choices work, such as $c = 10, n_0 = 30$

• Conclusion: f(n) has same or slower growth rate as g(n)

Order Notation: big-Oh



- Big-O gives asymptotic upper bound
 - $f(n) \in O(g(n))$ means function f(n) is "bounded" above by function g(n)
 - 1. eventually, for large enough n
 - 2. ignoring multiplicative constant
 - Growth rate of f(n) is slower or the same as growth rate of g(n)
- Use big-O to upper bound the growth rate of algorithm
 - f(n) for running time
 - g(n) for growth rate
 - should choose g(n) as simple as possible
- Saying f(n) is O(g(n)) is equivalent to saying $f(n) \in O(g(n))$
 - O(g(n)) is a set of functions with the same or larger growth rate as g(n)

Order Notation: big-Oh $f(n) \in O(g(n))$ if there exist constants c > 0 and $n_0 \ge 0$ s.t. $|f(n)| \le c|g(n)|$ for all $n \ge n_0$

- Previous example: f(n) = 75n + 500, $g(n) = 5n^2$
- Simpler function for growth rate: $g(n) = n^2$
- Can show $f(n) \in O(g(n))$ as follows
 - set f(n) = g(n) and solve quadratic equation

3,000

2,500

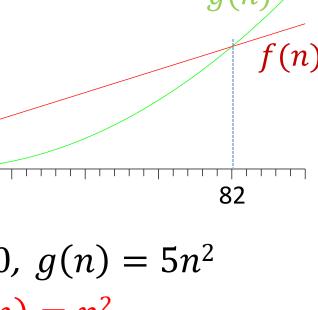
2,000

1,500

1,000

500

- intersection point is n = 82
- take $c = 1, n_0 = 82$



Order Notation: big-Oh $f(n) \in O(g(n))$ if there exist constants c > 0 and $n_0 \ge 0$ s.t. $|f(n)| \le c|g(n)|$ for all $n \ge n_0$

- Do not have to solve equations
- $f(n) = 75n + 500, g(n) = n^2$
- For all $n \ge 1$

Side note: for 0 < n < 1 $75n > 75n \cdot n = 75n^2$

 $500 \le 500 \cdot n \cdot n = 500n^2$

 $75n < 75n \cdot n = 75n^2$

• Therefore, for all $n \ge 1$

 $75n + 500 \le 75n^2 + 500n^2 = 575n^2$

• So take $c = 575, n_0 = 1$

Order Notation: big-Oh

 $f(n) \in O(g(n))$ if there exist constants c > 0 and $n_0 \ge 0$ s.t. $|f(n)| \le c|g(n)|$ for all $n \ge n_0$

- Better (i.e. "tighter") bound on growth
 - can bound f(n) = 75n + 500 by slower growth than n^2

•
$$f(n) = 75n + 500, g(n) = n$$

• Show $f(n) \in O(g(n))$

$75n + 500 \le 75n + 500n = 575n$ for all $n \ge 1$

• So take $c = 575, n_0 = 1$

More big-O Examples

Prove that

$$2n^2 + 3n + 11 \in O(n^2)$$

- Need to find c > 0 and $n_0 \ge 0$ s.t. $2n^2 + 3n + 11 \le cn^2$ for all $n \ge n_0$
 - $2n^2 + 3n + 11 \le 2n^2 + 3n^2 + 11n^2 = 16n^2$ for all $n \ge 1$
- Take c = 16, $n_0 = 1$

More big-O Examples

Prove that

$$2n^2 - 3n + 11 \in O(n^2)$$

• Need to find c > 0 and $n_0 \ge 0$ s.t. $2n^2 - 3n + 11 \le cn^2 \text{ for all } n \ge n_0$

$$2n^2 - 3n + 11 \le 2n^2 + 0 + 11n^2 = 13n^2$$

for all $n \ge 1$

• Take c = 13, $n_0 = 1$

More big-O Examples

- Be careful with logs
- Prove that

$$2n^2\log n + 3n \in O(n^2\log n)$$

- Need to find c > 0 and $n_0 \ge 0$ s.t. $2n^2 \log n + 3n \le cn^2 \log n$ for all $n \ge n_0$
- $2n^{2} \log n + 3n \leq 2n^{2} \log n + 3n^{2} \log n \leq 5n^{2} \log n$ for all $n \geq 1$ for all $n \geq 2$
 - Take $c = 5, n_0 = 2$

Theoretical Analysis of Running time

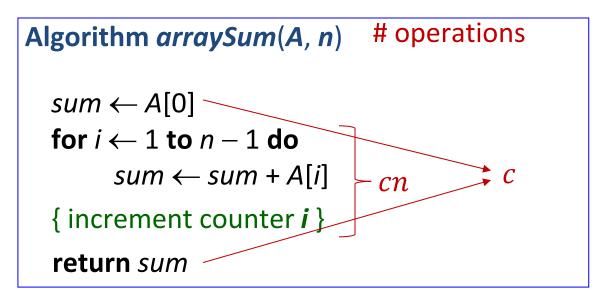
- To find running time, count the number of primitive operations $T(\mathbf{n})$
 - function of input size n
 - Last step: express the running time using asymptotic notation

```
Algorithm arraySum(A, n)# operationssum \leftarrow A[0]C_1for i \leftarrow 1 to n - 1 do<br/>sum \leftarrow sum + A[i]C_2n{ increment counter i }C_3
```

Total: $c_1 + c_3 + c_2 n$ which is O(n)

Theoretical Analysis of Running time

- Distinguishing between c₁ c₂ c₃ has no influence on asymptotic running time
 - can just use on constant *c* throughout

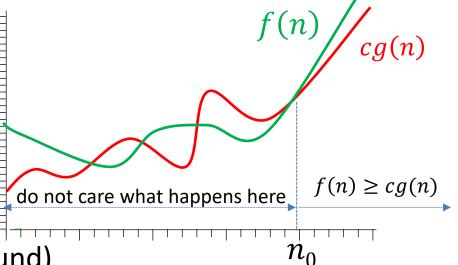


Total: c + cn which is O(n)

Need for Asymptotic Tight bound

- $2n^2 + 3n + 11 \in O(n^2)$
- But also $2n^2 + 3n + 11 \in O(n^{10})$
 - this is a true but hardly a useful statement
 - if I say I have less than a million \$ in my pocket, it is a true, but useless statement
 - i.e. this statement does not give a tight upper bound
 - upper bound is *tight* if it uses the slowest growing function possible
- Want an asymptotic notation that guarantees a *tight* upper bound
- For tight bound, also need asymptotic *lower bound*

Aymptotic Lower Bound



Ω-notation (asymptotic lower bound)

 $f(n) \in \Omega(g(n))$ if there exist constants c > 0 and $n_0 \ge 0$

s.t. $|f(n)| \ge c|g(n)|$ for all $n \ge n_0$

- $f(n) \in \Omega(g(n))$ means function f(n) is asymptotically bounded below by function g(n)
 - 1. eventually, for large enough *n*
 - 2. ignoring multiplicative constant
- Growth rate of f(n) is larger or the same as growth rate of g(n)
- $f(n) \in O(g(n)), f(n) \in \Omega(g(n)) \Rightarrow f(n)$ has same growth as g(n)

Asymptotic Lower Bound

 $f(n) \in \Omega(g(n))$ if \exists constants c > 0, $n_0 \ge 0$ s.t. $|f(n)| \ge c|g(n)|$ for $n \ge n_0$

• Prove that $2n^2 + 3n + 11 \in \Omega(n^2)$

• Find c > 0 and $n_0 \ge 0$ s.t. $2n^2 + 3n + 11 \ge cn^2$ for all $n \ge n_0$ $2n^2 + 3n + 11 \ge 2n^2$ for all $n \ge 0$

• Take
$$c = 2$$
, $n_0 = 0$

Asymptotic Lower Bound

 $f(n) \in \Omega(g(n))$ if \exists constants c > 0, $n_0 \ge 0$ s.t. $|f(n)| \ge c|g(n)|$ for $n \ge n_0$

- Prove that $\frac{1}{2}n^2 5n \in \Omega(n^2)$
 - to handle absolute value correctly, need to insure $f(n) \ge 0$ for $n \ge n_0$
- Need to find c and n_0 s.t. $\frac{1}{2}n^2 5n \ge cn^2$ for all $n \ge n_0$
- Unlike before, cannot just drop lower growing term, as $\frac{1}{2}n^2 5n \le \frac{1}{2}n^2$

$$\frac{1}{2}n^2 - 5n = \frac{1}{4}n^2 + \frac{1}{4}n^2 - 5n = \frac{1}{4}n^2 + \left(\frac{1}{4}n^2 - 5n\right) \ge \frac{1}{4}n^2 \quad \text{if } n \ge 20$$

$$\ge 0, \text{ if } n \ge 20$$

- Take $c = \frac{1}{4}$, $n_0 = 20$
 - $f(n) \ge \frac{1}{4}n^2$ for $n \ge 20 \Rightarrow f(n) \ge 0$ for $n \ge 20$

as needed to handle absolute value correctly

Tight Asymptotic Bound

Ø-notation

 $f(n) \in \Theta(g(n))$ if there exist constants $c_1, c_2 > 0, n_0 \ge 0$ s.t. $c_1|g(n)| \le |f(n)| \le c_2|g(n)|$ for all $n \ge n_0$

- $f(n) \in \Theta(g(n))$ means f(n), g(n) have equal growth rates
 - typically f(n) is complicated, and g(n) is chosen to be simple
- Easy to prove that

 $f(n) \in \Theta(g(n)) \Leftrightarrow f(n) \in O(g(n)) \text{ and } f(n) \in \Omega(g(n))$

- Therefore, to show that $f(n) \in \Theta(g(n))$, it is enough to show
 - 1. $f(n) \in O(g(n))$
 - 2. $f(n) \in \Omega(g(n))$

Tight Asymptotic Bound

- Proved previously that
 - $2n^2 + 3n + 11 \in O(n^2)$
 - $2n^2 + 3n + 11 \in \Omega(n^2)$
- Thus $2n^2 + 3n + 11 \in \Theta(n^2)$
- Ideally, should use Θ to determine growth rate of algorithm
 - *f*(*n*) for running time
 - *g*(*n*) for growth rate
- Sometimes determining tight bound is hard, so big-O is used

Tight Asymptotic Bound

Prove that $\log_b n \in \Theta(\log n)$ for b > 1

- Find $c_1, c_2 > 0, n_0 \ge 0$ s.t. $c_1 \log n \le \log_b n \le c_2 \log n$ for all $n \ge n_0$
- $\log_b n = \frac{\log n}{\log b} = \frac{1}{\log b} \log n$
- $\frac{1}{\log b} \log n \le \log_b n \le \frac{1}{\log b} \log n$
- Since *b* > 1, log *b* > 0
- Take $c_1 = c_2 = \frac{1}{\log b}$ and $n_0 = 1$
 - rarely $c_1 = c_2$, normally $c_1 < c_2$

Common Growth Rates

- $\Theta(1)$ constant
 - 1 stands for function f(n) = 1
- $\Theta(\log n)$ logarithmic
- $\Theta(n)$ linear
- $\Theta(n \log n)$ linearithmic
- $\Theta(n\log^k n)$ quasi-linear
 - *k* is constant, i.e. independent of the problem size
- $\Theta(n^2)$ quadratic
- $\Theta(n^3)$ cubic
- $\Theta(2^n)$ exponential
- These are listed in increasing order of growth
 - how to determine which function has a larger order of growth?

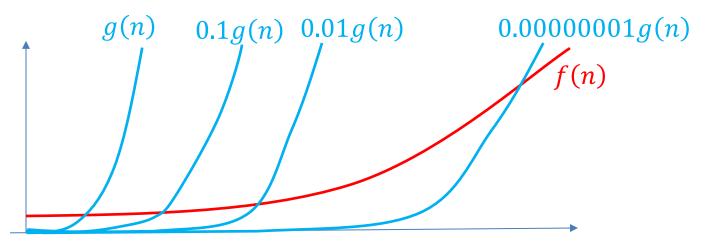
How Growth Rates Affect Running Time

- How running time affected when problem size doubles ($n \rightarrow 2n$)
 - T(n) = c T(2n) = c
 - $T(n) = c \log n$ T(2n) = T(n) + c
 - T(n) = cn T(2n) = 2T(n)
 - $T(n) = cn \log n$
 - $T(n) = cn^2$
 - $T(n) = cn^3$
 - $T(n) = c2^n$

T(2n) = cT(2n) = 2T(n) + 2cnT(2n) = 4T(n)T(2n) = 8T(n) $T(2n) = \frac{1}{c}T^2(n)$

Strictly Smaller Asymptotic Bound

- $f(n) = 2n^2 + 3n + 11 \in \Theta(n^2)$
- How to say f(n) is grows slower than $g(n) = n^3$?



o-notation [asymptotically strictly smaller]

 $f(n) \in o(g(n))$ if for any constant c > 0, there exists a constant $n_0 \ge 0$ s.t. $|f(n)| \le c|g(n)|$ for all $n \ge n_0$

- Think of c as being arbitrarily small
- No matter how small c is, $c \cdot g(n)$ is eventually larger than f(n)
- Meaning: f grows slower than g, or growth rate of f is less than growth rage of g
- Useful for certain statements
 - there is no general-purpose sorting algorithm with run-time $o(n \log n)$

Big-Oh vs. Little-o

- Big-Oh, means f grows at the same rate or slower than g $f(n) \in O(g(n))$ if there exist constants c > 0 and $n_0 \ge 0$ s.t. $|f(n)| \le c|g(n)|$ for all $n \ge n_0$
- Little-o, means f grows slower than g

 $f(n) \in o(g(n))$ if for any constant c > 0, there exists a constant $n_0 \ge 0$ s.t. $|f(n)| \le c|g(n)|$ for all $n \ge n_0$

- Main difference is the quantifier for c: exists vs. any
 - for big-Oh, you can choose any c you want
 - for little-o, you are given *c*, it can be arbitrarily small
 - in proofs for little-o, n₀ will normally depend on c, so it is really a function n₀(c)
 - $n_0(c)$ **must** be a constant with respect to n

Big-Oh vs. Little-o

- Big-Oh, means f grows at the same rate or slower than a $f(n) \in$ 0.0000001(0.01)g(n)g(n)(n)(n)f(n)Little-o, m f(ncon Main diffe for be arbitrarily small for little or
 - in proofs for little-o, n₀ will normally depend on c, so it is really a function n₀(c)
 - $n_0(c)$ **must** be a constant with respect to n

Strictly Smaller Proof Example

 $f(n) \in o(g(n))$ if for any c > 0, there exists $n_0 \ge 0$ s.t. $|f(n)| \le c|g(n)|$ for all $n \ge n_0$

Prove that $5n \in o(n^2)$

• Given c > 0 need to find n_0 s.t. [so $5n \le cn^2$ for all $n \ge n_0$

[solve for
$$n$$
 in terms of c]
divide both sides by n
solve for n

- $5 \le cn$ for all $n \ge n_0$ $n \ge \frac{5}{c}$
- Therefore, $5n \le cn^2$ for $n \ge \frac{5}{c}$
- Take $n_0 = \frac{5}{c}$
 - n_0 is a function of c
 - if you ever in your proof get something like $n_0 = \frac{5n}{c}$, it does not work, n_0 cannot depend on n

Strictly Smaller Proof Example

 $f(n) \in o(g(n))$ if for any c > 0, there exists $n_0 \ge 0$ s.t. $|f(n)| \le c|g(n)|$ for all $n \ge n_0$ Prove that $5n + 10n^4 \in o(n^5)$

• Given c > 0 need to find n_0 s.t.

 $5n + 10n^4 \le cn^5$ for all $n \ge n_0$ [difficult to solve for n in terms of c]

First derive simple upper bound

 $5n + 10n^4 \le 15n^4$ for all $n \ge 1$

for all $n \ge 1$ for all $n \ge \frac{15}{2}$

Solve for n in terms of c for the simple upper bound

 $15n^4 \le cn^5$ for all $n \ge n_0$ $n \ge 15/c$

• Combine: $5n + 10n^4 \le 15n^4 \le cn^5$

• Take $n_0 = \max\{15/c, 1\}$

Strictly Larger Asymptotic Bound

ω-notation

f(n) ∈ ω(g(n)) if for any constant c > 0, there exists a constant $n_0 ≥ 0$ s.t. |f(n)| ≥ c|g(n)| for all $n ≥ n_0$

- think of c as being arbitrarily large
- Meaning: f grows much faster than g

Strictly Larger Asymptotic Bound

- $f(n) \in \omega(g(n))$ if for any constant c > 0, there is constant $n_0 \ge 0$ s.t. $|f(n)| \ge c|g(n)|$ for all $n \ge n_0$
- Claim: $f(n) \in \omega(g(n)) \Rightarrow g(n) \in o(f(n))$ Proof:
 - Given c > 0 need to find n_0 s.t.

 $g(n) \le cf(n) \text{ for all } n \ge n_0 \quad \stackrel{\text{divide both sides by } c}{\bigoplus}$ $\frac{1}{c}g(n) \le f(n) \quad \text{for all } n \ge n_0$

- Since $f(n) \in \omega(g(n))$, for any constant, in particular for constant $\frac{1}{c}$ there is m_0 s.t. $f(n) \ge \frac{1}{c}g(n)$ for all $n \ge m_0$
- $n_0 = m_0$ and we are done!

Limit Theorem for Order Notation

- So far had proofs for order notation from the *first principles*
 - i.e. from the definition
- Limit theorem for order notation
 - Suppose for all $n \ge n_{0}$, f(n) > 0, g(n) > 0 and $L = \lim_{n \to \infty} \frac{f(n)}{g(n)}$

• Then
$$f(n) \in \begin{cases} o(g(n)) & \text{if } L = 0\\ \Theta(g(n)) & \text{if } 0 < L < \infty\\ \omega(g(n)) & \text{if } L = \infty \end{cases}$$

- Limit can often be computed using l'Hopital's rule
- Theorem gives sufficient but not necessary conditions
- Can use theorem *unless* asked to prove from the first principles

Let f(n) be a polynomial of degree $d \ge 0$ with $c_d > 0$

$$f(n) = c_d n^d + c_{d-1} n^{d-1} + \dots + c_1 n + c_0$$

Then $f(n) \in \Theta(n^d)$

Proof:

$$\lim_{n \to \infty} \frac{f(n)}{n^d} = \lim_{n \to \infty} \left(\frac{c_d n^d}{n^d} + \frac{c_{d-1} n^{d-1}}{n^d} + \dots + \frac{c_0}{n^d} \right)$$
$$= \lim_{n \to \infty} \left(\frac{c_d n^d}{n^d} \right) + \lim_{n \to \infty} \left(\frac{c_{d-1} n^{d-1}}{n^d} \right) + \dots + \lim_{n \to \infty} \left(\frac{c_0}{n^d} \right)$$
$$= c_d = 0$$

 $= c_d > 0$

• Compare growth rates of log *n* and *n*

$$\lim_{n \to \infty} \frac{\log n}{n} = \lim_{n \to \infty} \frac{\frac{\ln n}{\ln 2}}{n} = \lim_{n \to \infty} \frac{\frac{1}{\ln 2 \cdot n}}{1} = \lim_{n \to \infty} \frac{1}{n \cdot \ln 2} = 0$$

$$\downarrow$$
L'Hopital rule

• $\log n \in o(n)$

- Prove $(\log n)^a \in o(n^d)$, for any (big) a > 0, (small) d > 0
 - $(\log n)^{1000000} \in o(n^{0.0000001})$
- 1) Prove (by induction):

$$\lim_{n \to \infty} \frac{\ln^k n}{n} = 0 \text{ for any integer } k$$

• Base case k = 1 is proven on previous slide

1

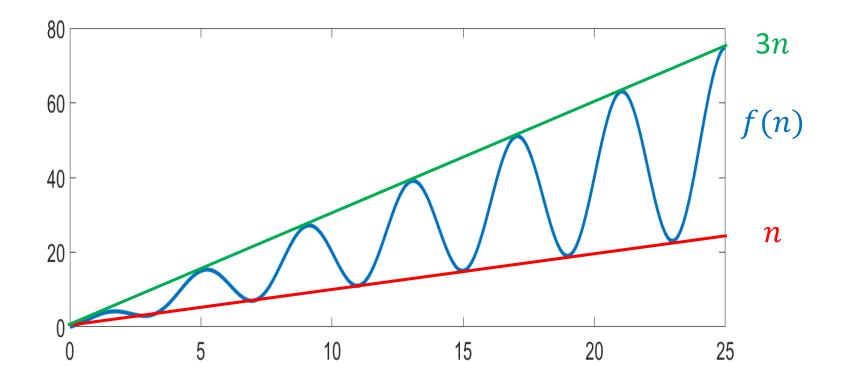
• Inductive step: suppose true for k - 1

•
$$\lim_{n \to \infty} \frac{\ln^{k} n}{n} = \lim_{n \to \infty} \frac{\frac{1}{n} k \ln^{k-1} n}{1} = k \lim_{n \to \infty} \frac{\ln^{k-1} n}{n} = 0$$

L'Hopital rule

2) Prove
$$\lim_{n \to \infty} \frac{\ln^a n}{n^d} = 0$$
$$\lim_{n \to \infty} \frac{\ln^a n}{n^d} = \left(\lim_{n \to \infty} \frac{\ln^{a/d} n}{n}\right)^d \le \left(\lim_{n \to \infty} \frac{\ln^{[a/d]} n}{n}\right)^d = 0$$
3) Finally
$$\lim_{n \to \infty} \frac{(\log n)^a}{n^d} = \lim_{n \to \infty} \frac{\left(\frac{\ln n}{\ln 2}\right)^a}{n^d} = \left(\frac{1}{\ln 2}\right)^a \lim_{n \to \infty} \frac{(\ln n)^a}{n^d} = 0$$

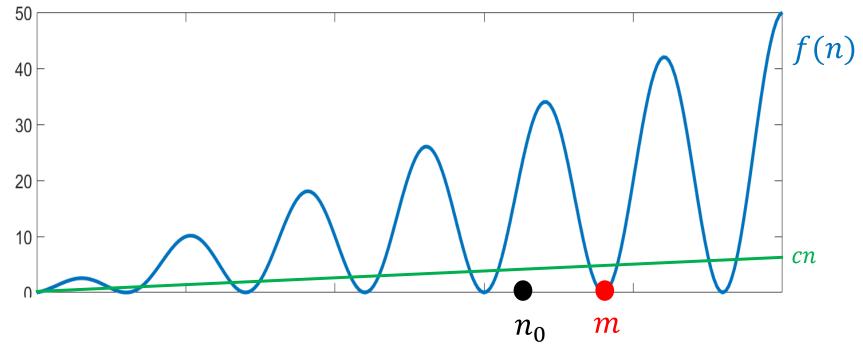
- Sometimes limit does not exist, but can prove from first principles
- Let $f(n) = n(2 + \sin n\pi/2)$
- Prove that f(n) is $\Theta(n)$



- Let f(n) = n(2 + sin nπ/2), prove that f(n) is Θ(n)
 Proof
- $-1 \le sin(any number) \le 1$ $f(n) \le n(2+1) = 3n \quad \text{for all } n \ge 0$ $n = n(2-1) \le f(n) \qquad \qquad \text{for all } n \ge 0$
 - Use $c_1 = 1, c_2 = 3, n_0 = 0$

 $f(n) \in \Omega(g(n))$ if \exists constants c > 0, $n_0 \ge 0$ s.t. $|f(n)| \ge c|g(n)|$ for $n \ge n_0$

• Let $f(n) = n(1 + \sin n\pi/2)$, prove that f(n) is not $\Omega(n)$

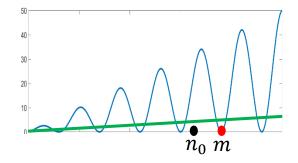


Many points do not satisfy $f(n) \ge cn$ for $n \ge n_0$, but easiest to use zero-valued one for the formal proof

- Let $f(n) = n(1 + \sin n\pi/2)$
- Prove that f(n) is not $\Omega(n)$
- Proof: (by contradiction)
 - suppose f(n) is $\Omega(n)$
 - then $\exists n_0 \ge 0$ and c > 0 s.t. $f(n) \ge cn$ for $n \ge n_0$
 - [for contradiction, will find $m \ge n_0$ s.t. 0 = f(m)] $n(1 + \sin n\pi/2) \ge cn$ for all $n \ge n_0$ $(1 + \sin n\pi/2) \ge c$ for all $n \ge n_0$ \iff

need to make this -1 for contradiction for some $m \ge n_0$

- need $\frac{m\pi}{2} = \frac{3\pi}{2} + 2\pi i$ for some integer *i* and $m \ge n_0$
- need m = 3 + 4i for some integer i and $m \ge n_0$
- take $m = 3 + 4 [n_0] > n_0$



Order notation Summary

- $f(n) \in \Theta(g(n))$: growth rates of f and g are the same
- $f(n) \in o(g(n))$: growth rate of f is less than growth rate of g
- $f(n) \in \omega(g(n))$: growth rate of f is greater than growth rate of g
- $f(n) \in O(g(n))$: growth rate of f is the same or less than growth rate of g
- $f(n) \in \Omega(g(n))$: growth rate of f is the same or greater than growth rate of g

Relationship between Order Notations

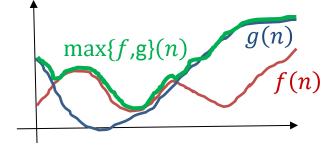
One can prove the following relationships

$f(n) \in$	$\Theta(g(n))$	$\Leftrightarrow g$	$(n) \in$	$\Theta(f(n))$
$f(n) \in$	O(g(n))	$\Leftrightarrow g$	$(n) \in$	$\Omega\left(f(n)\right)$
$f(n) \in$	o(g(n))	$\Leftrightarrow g$	$(n) \in$	$\omega(f(n))$
$f(n) \in$	o(g(n))	$\Rightarrow f(n)$	$n) \in C$	O(g(n))
$f(n) \in$	o(g(n))	$\Rightarrow f(n)$	ı)∉Ω	l(g(n))
$f(n) \in$	$\omega(g(n))$	$\Rightarrow f(n)$	$i) \in \Omega$	(g(n))
$f(n) \in$	$\omega(g(n))$	$\Rightarrow f(n)$	ı) ∉ 0	(g(n))

Algebra of Order Notations (1)

- The following rules are easy to prove [exercise]
- **1.** Identity rule: $f(n) \in \Theta(f(n))$
- 2. Transitivity
 - if $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$ then $f(n) \in O(h(n))$
 - if $f(n) \in \Omega(g(n))$ and $g(n) \in \Omega(h(n))$ then $f(n) \in \Omega(h(n))$
 - if $f(n) \in O(g(n))$ and $g(n) \in o(h(n))$ then $f(n) \in o(h(n))$

Algebra of Order Notations (2)



$$max\{f,g\}(n) = \begin{cases} f(n) & \text{if } f(n) > g(n) \\ g(n) & \text{otherwise} \end{cases}$$

3. Maximum rules

Suppose that f(n) > 0 and g(n) > 0 for all $n \ge n_0$, then

a)
$$f(n) + g(n) \in \Omega(max\{f(n), g(n)\})$$

b)
$$f(n) + g(n) \in O(max\{f(n), g(n)\})$$

Proof:

function positivity

a) $f(n) + g(n) \ge$ either f(n) or $g(n) = max\{f(n), g(n)\}$

b) $f(n) + g(n) = max\{f(n), g(n)\} + min\{f(n), g(n)\}$ $\leq max\{f(n), g(n)\} + max\{f(n), g(n)\}$ $= 2max\{f(n), g(n)\}$

• Usage: $n^2 + \log n \in \Theta(n^2)$

Abuse of Order Notation

- Normally, say $f(n) \in \Theta(g(n))$ because $\Theta(g(n))$ is a set
- Sometimes it is convenient to abuse notation
 - $f(n) = 200n^2 + \Theta(n)$
 - f(n) is $200n^2$ plus a term with linear growth rate
 - nicer to read than $200n^2 + 30n + \log n$
 - does not hide the constant term 200, unlike if we said $O(n^2)$

•
$$f(n) = n^2 + o(1)$$

- f(n) is n² plus a vanishing term (term goes to 0)
 - example: $f(n) = n^2 + 1/n$
- Use these sparingly, typically only for stating final result
- But avoid arithmetic with asymptotic notation, can go very wrong
- Instead, replace $\Theta(g(n))$ by $c \cdot g(n)$
 - still sloppy, but less dangerous
 - if $f(n) \in \Theta(g(n))$, more accurate statement is $c \cdot g(n) \le f(n) \le c' \cdot g(n)$ for large enough n

Outline

CS240 overview

- Course objectives
- Course topics

Introduction and Asymptotic Analysis

- algorithm design
- pseudocode
- measuring efficiency
- analysis of algorithms
- analysis of recursive algorithms
- helpful formulas

Techniques for Runtime Analysis

- Goal: Use asymptotic notation to simplify run-time analysis
- Running time of an algorithm depends on the *input size* n

```
Test1(n)1.sum \leftarrow 02.for i \leftarrow 1 to n do3.for j \leftarrow i to n do4.sum \leftarrow sum + (i - j)^25.return sum
```

- Identify *primitive operations*: these require constant time
- Loop complexity expressed as sum of complexities of each iteration
- Nested loops: start with the innermost loop and proceed outwards
- This gives nested summations

Techniques for Runtime Analysis

- Goal: Use asymptotic notation to simplify run-time analysis
- Running time of an algorithm depends on the *input size* n

```
Test1(n)

1. sum \leftarrow 0

2. for i \leftarrow 1 to n do

3. for j \leftarrow i to n do

4. sum \leftarrow sum + (i - j)^2 C

5. return sum
```

- Identify *primitive operations*: these require constant time
- Loop complexity expressed as sum of complexities of each iteration
- Nested loops: start with the innermost loop and proceed outwards
- This gives nested summations

- Goal: Use asymptotic notation to simplify run-time analysis
- Running time of an algorithm depends on the *input size* n

Test1(n)
1.
$$sum \leftarrow 0$$

2. for $i \leftarrow 1$ to n do
3. for $j \leftarrow i$ to n do
4. $sum \leftarrow sum + (i - j)^2$ $\sum_{j=i}^{n} C_{j=i}^{n}$
5. return sum

- Identify *primitive operations*: these require constant time
- Loop complexity expressed as sum of complexities of each iteration
- Nested loops: start with the innermost loop and proceed outwards
- This gives nested summations

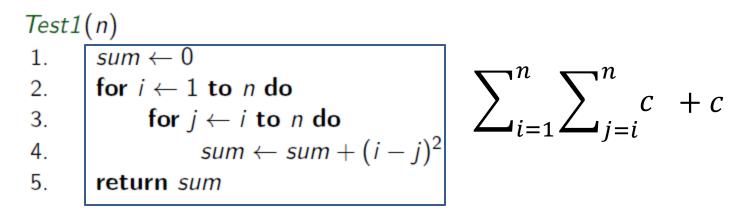
- Goal: Use asymptotic notation to simplify run-time analysis
- Running time of an algorithm depends on the *input size* n

Test1(n)
1.
$$sum \leftarrow 0$$

2. for $i \leftarrow 1$ to n do
3. for $j \leftarrow i$ to n do
4. $sum \leftarrow sum + (i - j)^2$ $\sum_{i=1}^{n} \sum_{j=i}^{n} c_{i}$
5. return sum

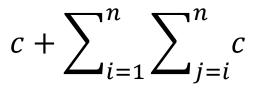
- Identify *primitive operations*: these require constant time
- Loop complexity expressed as sum of complexities of each iteration
- Nested loops: start with the innermost loop and proceed outwards
- This gives nested summations

- Goal: Use asymptotic notation to simplify run-time analysis
- Running time of an algorithm depends on the *input size* n

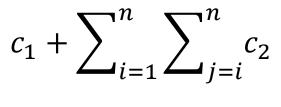


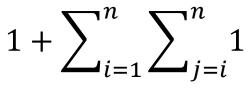
- Identify *primitive operations*: these require constant time
- Loop complexity expressed as sum of complexities of each iteration
- Nested loops: start with the innermost loop and proceed outwards
- This gives nested summations

- Test1(n) 1. $sum \leftarrow 0$ 2. for $i \leftarrow 1$ to n do 3. for $j \leftarrow i$ to n do 4. $sum \leftarrow sum + (i - j)^2$ 5. return sum
- Derived complexity as

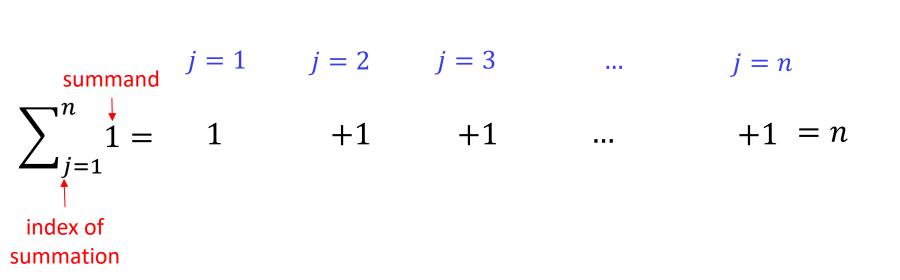


Some textbooks will write this as

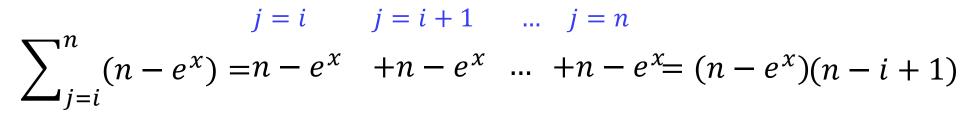


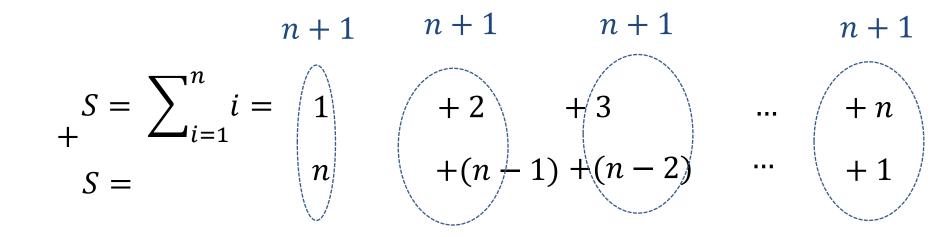


- Or even as
- Now need to work out the sum



terms from 1 to i - 1are missing $j = i \qquad j = i + 1 \qquad \dots \qquad j = n$ $\sum_{j=i}^{n} 1 = 1 \qquad +1 \qquad \dots \qquad +1 = n - i + 1$





$$2S = (n+1)n$$

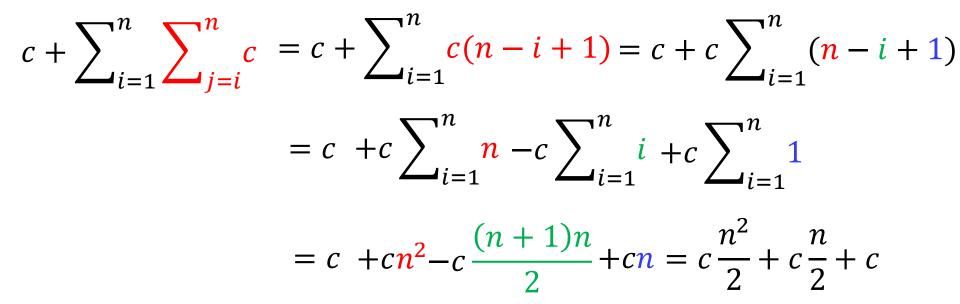
$$S = \frac{1}{2}(n+1)n$$



$$2S = (a+b)(b-a+1)$$

$$S = \frac{1}{2}(a+b)(b-a+1)$$

Test1(n) 1. $sum \leftarrow 0$ 2. for $i \leftarrow 1$ to n do 3. for $j \leftarrow i$ to n do 4. $sum \leftarrow sum + (i - j)^2$ 5. return sum



• Complexity of algorithm Test1 is $\Theta(n^2)$

Test1(n)
1.
$$sum \leftarrow 0$$

2. for $i \leftarrow 1$ to n do
3. for $j \leftarrow i$ to n do
4. $sum \leftarrow sum + (i - j)^2$
5. return sum

Can use Θ-bounds earlier, before working out the sum

$$c + \sum_{i=1}^{n} \sum_{j=i}^{n} c$$
 is $\Theta\left(\sum_{i=1}^{n} \sum_{j=i}^{n} c\right)$

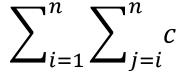
Therefore, can drop the lower order term and work on

$$\sum_{i=1}^{n} \sum_{j=i}^{n} c$$

- Using Θ-bounds earlier makes final expressions simpler
- Complexity of algorithm Test1 is $\Theta(n^2)$

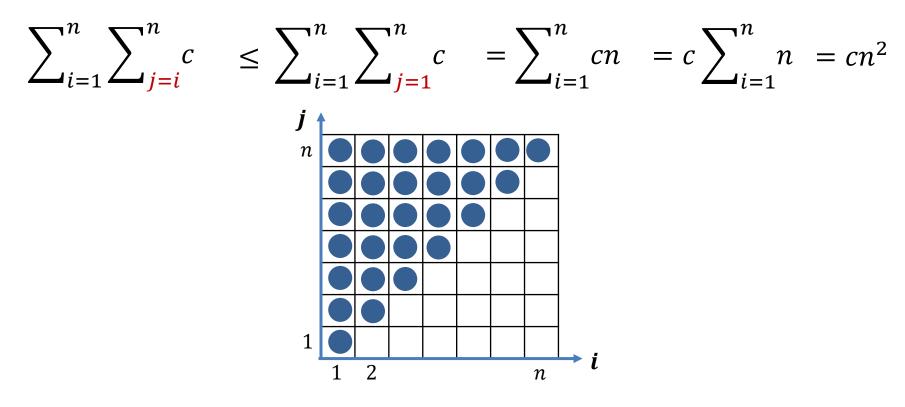
- Two general strategies
 - Use Θ-bounds throughout the analysis and obtain Θbound for the complexity of the algorithm
 - used this strategy on previous slides for Test1 Θ-bound
 - 2. Prove a *O*-bound and a *matching* Ω -bound *separately*
 - use upper bounds (for O-bounds) and lower bounds (for Ω-bound) early and frequently
 - easier because upper/lower bounds are easier to sum

Second strategy: upper bound for Test1



Test1(n) 1. $sum \leftarrow 0$ 2. for $i \leftarrow 1$ to n do 3. for $j \leftarrow i$ to n do 4. $sum \leftarrow sum + (i - j)^2$ 5. return sum

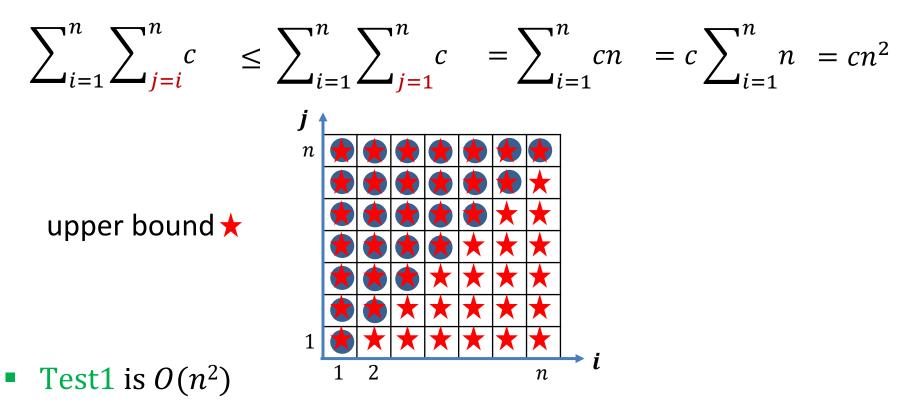
• Add more iterations to make sum easier to work out



Second strategy: upper bound for Test1

$$\sum_{i=1}^{n}\sum_{j=i}^{n}c$$

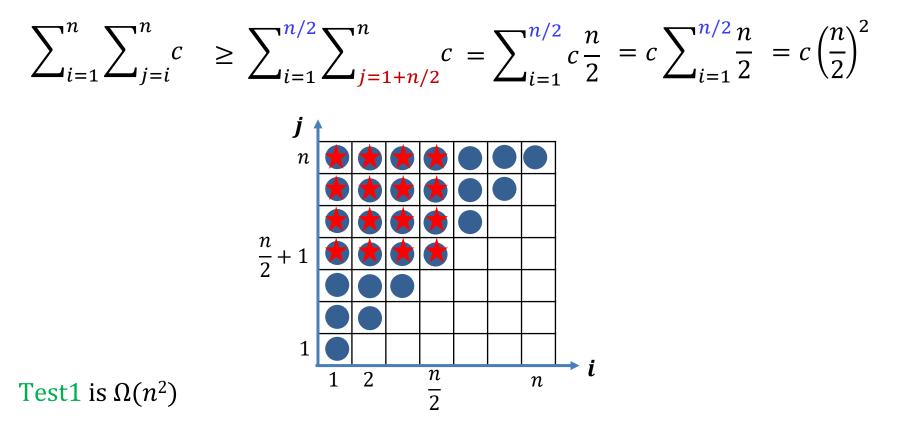
Add more iterations to make sum easier to work out



Second strategy: lower bound for Test1

$$\sum_{i=1}^{n}\sum_{j=i}^{n}c$$

Remove iterations to make sum easier to work out



Second strategy: lower bound for Test1

$$\sum_{i=1}^{n}\sum_{j=i}^{n}c$$

- **Remove** iterations to make sum easier to work out
- Can get the same result without visualization
- To remove iterations, increase lower or increase upper range bounds, or both

• Examples:
$$\sum_{k=10}^{100} c \ge \sum_{k=20}^{80} c$$
 $\sum_{k=i}^{j} 1 \ge \sum_{k=i+1}^{j-1} 1$

In our case:

$$\sum_{i=1}^{n} \sum_{j=i}^{n} c \ge \sum_{i=1}^{n/2} \sum_{j=i}^{n} c \ge \sum_{i=1}^{n/2} \sum_{j=1+n/2}^{n} c = c \left(\frac{n}{2}\right)^{2}$$
now $i \le n/2$

- Test1 is $\Omega(n^2)$, previously concluded that Test1 is $O(n^2)$
- Therefore Test1 is $\Theta(n^2)$

Test1(n) 1. $sum \leftarrow 0$ 2. for $i \leftarrow 1$ to n do 3. for $j \leftarrow i$ to n do 4. $sum \leftarrow sum + (i - j)^2$ 5. return sum

Annoying to carry constants around

$$\sum_{i=1}^{n} \sum_{j=i}^{n} c$$

- Running time is proportional to the number of iterations
- Can first compute the number of iterations

$$\sum_{i=1}^{n} \sum_{j=i}^{n} 1 = \frac{n^2}{2} + \frac{n}{2} + 1$$

And then say running time is c times the number of iterations

- Inner while loop
 - iteration 1: j = 0
 - iteration 2: $j = 1 \cdot i$
 - iteration $k: j = (k 1) \cdot i$
 - terminate when $(k-1) \cdot i \ge i^2$
 - $k \ge 1 + i$
 - inner while loop takes (1 + i)c time
- Outer while loop
 - iteration 1: i = n
 - iteration 2: $i = n/2^{2-1}$
 - iteration $t: i = n/2^{t-1}$
 - terminates when $\frac{n}{2^{t-1}} < 2$

• $t > \log n$ (more precisely, last iteration is at $t = \lceil \log n \rceil - 1$)

• Total time, ignoring multiplicative *c*

 $\sum_{t=1}^{\log n} (1+n/2^{t-1}) = \sum_{t=1}^{\log n} 1+n \sum_{t=1}^{\log n} 1/2^t < \log n + n \sum_{t=1}^{\infty} 1/2^t \in O(n)$

Algorithm *Test2*(*n*) $sum \leftarrow 0$ i = nwhile $i \ge 2$ do i = 0while $j < i^2$ do $sum \leftarrow sum + 1 \quad 0(1)$ j = j + ii = i/2return sum

Worst Case Time Complexity

Can have different running times on two instances of equal size

- Let T(I) be running time of an algorithm on instance I
- Let $I_n = \{I: Size(I) = n\}$
- Worst-case complexity of an algorithm: take the worst *I*
- Formal definition: the worst-case running time of algorithm A is a function f : Z⁺ → R mapping n (the input size) to the *longest* running time for any input instance of size n

$$T_{worst}(n) = \max_{I \in I_n} \{T(I)\}$$

Worst Case Time Complexity

Worst-case complexity of an algorithm: take worst instance I

worst *I* is reverse sorted array

$$\sum_{i=1}^{n-1} \sum_{j=1}^{i} c = \sum_{i=0}^{n-1} ci$$
$$= c(n-1)n/2$$

•
$$T_{worst}(n) = c(n-1)n/2$$

- this is primitive operation count as a function of input size n
- after primitive operation count, apply asymptotic analysis
 - $\Theta(n^2)$ or $O(n^2)$ or $\Omega(n^2)$ are all valid statements about the worst case running time of *insertion-sort*

Best Case Time Complexity

insertion-sort(A, n)	
A: array of size <i>n</i>	
1. for $i \leftarrow 1$ to $n-1$ do	
2. $j \leftarrow i$	
3. while $j > 0$ and $A[j] < A[j-1]$ do	
4. swap $A[j]$ and $A[j-1]$	
5. $j \leftarrow j-1$	

best instance is sorted array

$$\sum_{i=1}^{n-1} c = c(n-1)$$

- Best-case complexity of an algorithm: take the best instance /
- Formal definition: the best-case running time of an algorithm A is a function f : Z⁺ → R mapping n (the input size) to the *smallest* running time for any input instance of size n

$$T_{best}(n) = \min_{I \in I_n} \{T(I)\}$$

• $T_{best}(n) = c(n-1)$

- this is primitive operation count as a function of input size n
- after primitive operation count, apply asymptotic analysis
 - $\Theta(n)$ or O(n) or $\Omega(n)$ are all valid about best case running time

Best Case Time Complexity

- Note that best-case complexity is a function of input size n
- Think of the best instance of size n
- For *insertion-sort*, best instance is sorted (non-increasing) array A of size n
- Best instance is not an array of size 1
- Best-case complexity is $\Theta(n)$

- For *hasNegative*, best instance is array A of size n where A[0] < 0
- Best instance is not an array of size 1
- Best-case complexity is Θ(1)

```
\begin{array}{l} hasNegative(\textbf{A}, \textbf{n}) \\ \text{Input: array } A \text{ of } n \text{ integers} \\ \textbf{for } i \leftarrow 0 \textbf{ to } \textbf{n} - 1 \textbf{ do} \\ \textbf{if } A[i] < 0 \\ \textbf{return } True \\ \textbf{return } False \end{array}
```

Best Case Running Time Exercise

•
$$T(n) = \begin{cases} c & \text{if } n = 5 \\ cn & \text{otherwise} \end{cases}$$

Algorithm Mystery(A, n) Input: array A of n integers if n=5return A[0] else for $i \leftarrow 1$ to n - 1 do print(A[i]) return

Best case running time?

a) Θ(1)b) Θ(n)

Average Case Time Complexity

Average-case complexity of an algorithm: The average-case running time of an algorithm A is function $f : Z^+ \rightarrow R$ mapping n (input size) to the *average* running time of A over all instances of size n

$$T_{avg}(n) = \frac{1}{|I_n|} \sum_{I \in I_n} T(I)$$

- Will assume $|I_n|$ is finite
- If all instances are used equally often, T_{avg}(n) gives a good estimate of a running time of an algorithm on average in practice

Average vs. Worst vs. Best Case Time Complexity

- Sometimes, best, worst, average time complexities are the same
- If there is a difference, then best time complexity could be overly optimistic, worst time complexity could be overly pessimistic, and average time complexity is most useful
- However, average case time complexity is usually hard to compute
- Therefore, most often, we use worst time complexity
 - worst time complexity is useful as it gives bound on the maximum amount of time one will have to wait for the algorithm to complete
 - default in this course
 - unless stated otherwise, whenever we mention time complexity, assume we mean worst case time complexity
- Goal in CS240: for a problem, find an algorithm that solves it and whose tight bound on the worst case running time has the smallest growth rate

O-notation and Running Time of Algorithms

- It is important not to try make *comparisons* between algorithms using *O*-notation
- Suppose algorithm A and B both solve the same problem
 - **A** has worst-case runtime $O(n^3)$
 - **B** has worst-case runtime $O(n^2)$
- Cannot conclude that **B** is more efficient that **A**
- *O*-notation is only an upper bound
 - A could have worst case runtime O(n)
 - while for **B** the bound of $O(n^2)$ could be tight
- To compare algorithms, it is better to use Θ notation

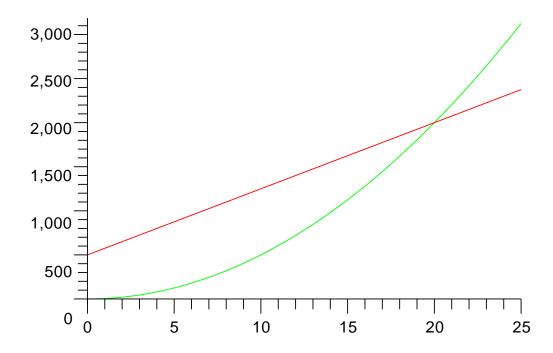
Θ-notation and Running Time of Algorithms

- Have to be careful with Θ-notation
- Suppose algorithm **A** and **B** both solve the same problem
 - **A** has worst-case runtime $\Theta(n^3)$
 - **B** has worst-case runtime $\Theta(n^2)$
- Cannot conclude that **B** is more efficient that **A** for **all inputs**
 - the worst case runtime may be achieved only on some instances

Running Time: Theory and Practice, Multiplicative Constants

- Algorithm **A** has runtime $T(n) = 10000n^2$
- Algorithm **B** has runtime $T(n) = 10n^2$
- Theoretical efficiency of **A** and **B** is the same, $\Theta(n^2)$
- In practice, algorithm B will run faster (for most implementations)
 - multiplicative constants matter in practice, given two algorithms with the same growth rate
 - but we are concerned with theory (mostly), and multiplicative constants do not matter in asymptotic analysis

Running Time: Theory and Practice, Small Inputs



- Algorithm **A** running time T(n) = 75n + 500
- Algorithm *B* running time $T(n) = 5n^2$
- Then *B* is faster for $n \leq 20$
 - use this fact for practical implementation of recursive sorting algorithms

Theoretical Analysis of Space

- Interested in *auxiliary* space
 - space used in addition to the space used by the input data
- To find *space* used by an algorithm, count total number of auxiliary memory cells ever accessed (for reading or writing or both) by algorithm
 - as a function of input size n
 - space used must always be initialized, although it may not be stated explicitly in pseudocode
- arrayMax uses 2 memory cells
 - T(n) = 2
 - space efficiency is O(1)

Algorithm arrayMax(A, n) $currentMax \leftarrow A[0]$ for $i \leftarrow 1$ to n - 1 do if A[i] > currentMax then $currentMax \leftarrow A[i]$ return currentMax

Theoretical Analysis of Space

- arrayCumSum uses 1 + n memory cells
 - T(n) = 1 + n
 - space efficiency is O(n)

Algorithm *arrayCumSum*(*A*, *n*)

Input: array A of n integers

initialize array *B* of size *n* to 0 $B[0] \leftarrow A[0]$ for $i \leftarrow 1$ to n - 1 do $B[i] \leftarrow B[i - 1] + A[i]$ return *B*

Outline

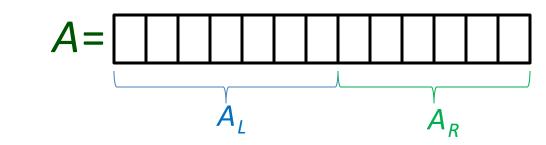
CS240 overview

- Course objectives
- Course topics

Introduction and Asymptotic Analysis

- algorithm design
- pseudocode
- measuring efficiency
- asymptotic analysis
- analysis of algorithms
- analysis of recursive algorithms
- helpful formulas

MergeSort: Overall Idea



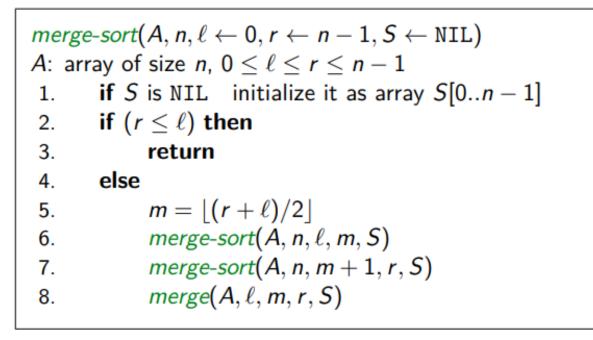
Input: Array *A* of *n* integers

1: split A into two subarrays

- A_L consists of the first $\left[\frac{n}{2}\right]$ elements
- A_R consists of the last $\left\lfloor \frac{n}{2} \right\rfloor$ elements
- 2: Recursively run MergeSort on A_L and A_R
- 3: After A_L and A_R are sorted, use function Merge to merge them into a single sorted array

them into a single sorted array

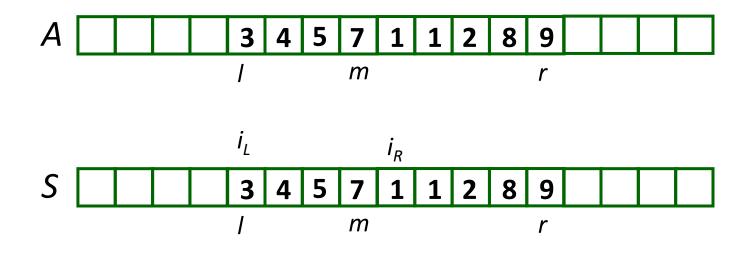
MergeSort: Pseudo-code



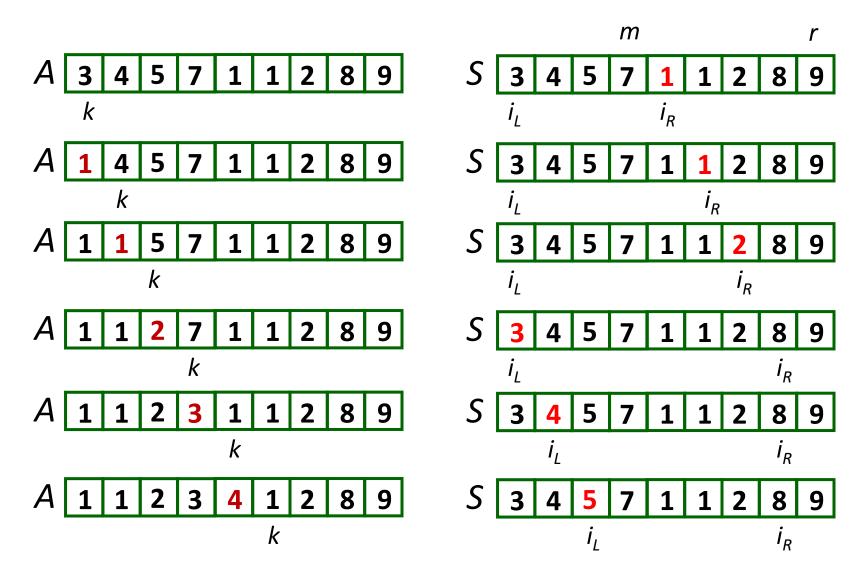
Two tricks to avoid copying/initializing too many arrays

- recursion uses parameters that indicate the range of the array that needs to be sorted
- array S used for merging is passed along as parameter

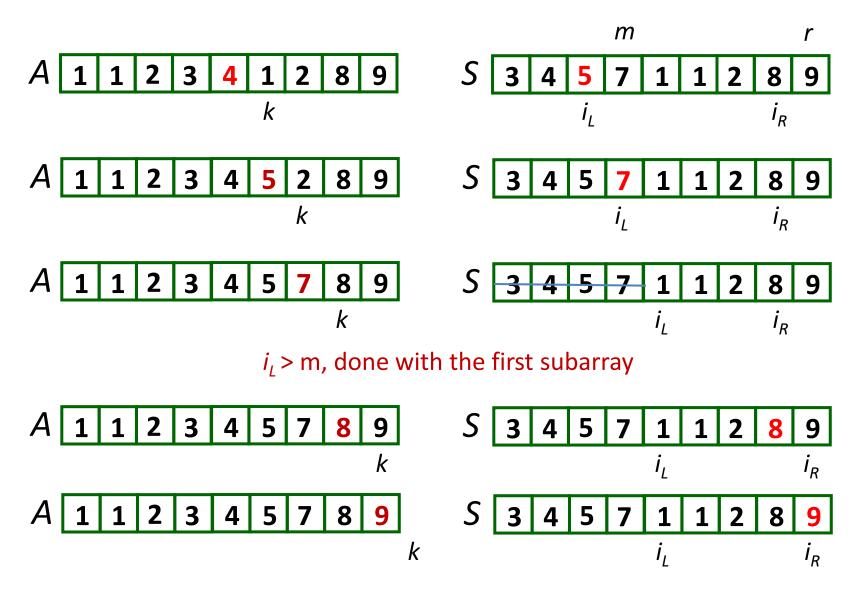
Merging Two Sorted Subarrays: Initialization



Merging Two Sorted Subarrays: Merging Starts



Merging Two Sorted Subarrays: Merging Cont.



Merge: Pseudocode

$$\begin{array}{ll} \textit{Merge}(A, \ell, m, r, S) \\ \textit{A}[0..n-1] \text{ is an array, } \textit{A}[\ell..m] \text{ is sorted, } \textit{A}[m+1..r] \text{ is sorted} \\ \textit{S}[0..n-1] \text{ is an array} \\ 1. & \text{copy } \textit{A}[\ell..r] \text{ into } \textit{S}[\ell..r] \\ 2. & (i_L, i_R) \leftarrow (\ell, m+1); \\ 3. & \text{for } (k \leftarrow \ell; k \leq r; k++) \text{ do} \\ 4. & \text{if } (i_L > m) \textit{A}[k] \leftarrow \textit{S}[i_R++] \\ 5. & \text{else if } (i_R > r) \textit{A}[k] \leftarrow \textit{S}[i_L++] \\ 6. & \text{else if } (S[i_L] \leq S[i_R]) \textit{A}[k] \leftarrow S[i_L++] \\ 7. & \text{else } \textit{A}[k] \leftarrow \textit{S}[i_R++] \end{array}$$

- Merge takes $\Theta(r-l+1)$ time
 - this is $\Theta(n)$ time for merging n elements

Analysis of MergeSort

Let T(n) be time to run MergeSort on an array of length n

```
merge-sort(A, n, l \leftarrow 0, r \leftarrow n - 1, S \leftarrow NULL)
A: array of size n, 0 \le l \le r \le n-1
     if r \leq l then
                       \\ base case
                                                              С
           return
     if S is NULL initialize it as array S[0 \dots n-1]
                                                              сп
                                                              С
     m = \lfloor (l+r)/2 \rfloor
     merge-sort(A, n, l, m, S)
     merge-sort(A, n, m + 1, r, S)
      merge(A, l, m, r, S)
                                                              cn
```

Recurrence relation for MergeSort

$$T(n) = \begin{cases} T\left(\left[\frac{n}{2}\right]\right) + T\left(\left[\frac{n}{2}\right]\right) + cn & \text{if } n > 1\\ c & \text{if } n = 1 \end{cases}$$

Analysis of MergeSort

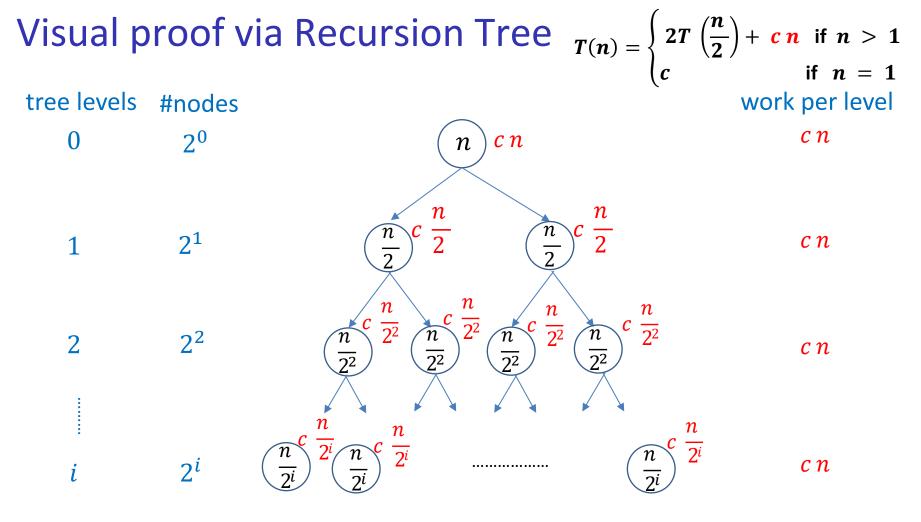
Recurrence relation for *MergeSort*

$$T(n) = \begin{cases} T\left(\left[\frac{n}{2}\right]\right) + T\left(\left[\frac{n}{2}\right]\right) + cn & \text{if } n > 1\\ c & \text{if } n = 1 \end{cases}$$

Sloppy recurrence with floors and ceilings removed

$$T(n) = \begin{cases} 2T\left(\frac{n}{2}\right) + cn & \text{if } n > 1\\ c & \text{if } n = 1 \end{cases}$$

- Exact and sloppy recurrences are *identical* when n is a power of 2
- Recurrence easily solved when $n = 2^{j}$



- Stop recursion when node size is $1 \Rightarrow \frac{n}{2^i} = 1 \Rightarrow n = 2^i \Rightarrow i = \log n$
- *cn* operations on each tree level, $\log n$ levels, total time is $cn \log n \in \Theta(n \log n)$

Analysis of MergeSort

- Can show $T(n) \in \Theta(n \log n)$ for all n by analyzing exact (not sloppy) recurrence
 - sloppy recurrence is good enough for this course

Explaining Solution of a Problem

- For Merge-sort design, we had four steps
 - 1. describe the overall idea
 - 2. give pseudocode or detailed description
 - 3. argue correctness
 - key ingredients, no need for a formal proof
 - sometimes obvious enough from idea-description
 - 4. analyze runtime
- Follow these 4 steps when asked to 'solve a problem'

Some Recurrence Relations

Recursion	resolves to	example
$T(n) \leq T(n/2) + O(1)$	$T(n) \in O(\log n)$	binary-search
$T(n) \leq 2T(n/2) + O(n)$	$T(n) \in O(n \log n)$	merge-sort
$T(n) \leq 2T(n/2) + O(\log n)$	$T(n) \in O(n)$	heapify (*)
$T(n) \leq cT(n-1) + O(1)$	$T(n)\in O(1)$	avg-case analysis (*)
for some $c < 1$		
$T(n) \leq 2T(n/4) + O(1)$	$T(n) \in O(\sqrt{n})$	range-search (*)
$T(n) \leq T(\sqrt{n}) + O(\sqrt{n})$	$T(n) \in O(\sqrt{n})$	interpol. search (*)
$T(n) \leq T(\sqrt{n}) + O(1)$	$T(n) \in O(\log \log n)$	interpol. search (*)

- Once you know the result, it is (usually) easy to prove by induction
- You can use these facts without a proof, unless asked otherwise
- Many more recursions, and some methods to solve, in cs341

Outline

CS240 overview

- Course objectives
- Course topics

Introduction and Asymptotic Analysis

- algorithm design
- pseudocode
- measuring efficiency
- asymptotic analysis
- analysis of algorithms
- analysis of recursive algorithms
- helpful formulas

Useful Sums

• Arithmetic

$$\sum_{i=0}^{n-1} i = \frac{n(n-1)}{2} \qquad \sum_{i=0}^{n-1} (a+di) = na + \frac{dn(n-1)}{2} \in \Theta(n^2) \text{ if } d \neq 0$$

• Geometric $\sum_{i=0}^{n-1} 2^{i} = 2^{n} - 1$ $\sum_{i=0}^{n-1} ar^{i} = \begin{cases} a \frac{r^{n} - 1}{r - 1} \in \Theta(r^{n-1}) & \text{if } r > 1\\ na \in \Theta(n) & \text{if } r = 1\\ a \frac{1 - r^{n}}{1 - r} \in \Theta(1) & \text{if } 0 < r < 1 \end{cases}$

• Harmonic
$$\sum_{i=1}^{n} \frac{1}{i} = \ln n + \gamma + o(1) \in \Theta(\log n)$$

A few more

$$\sum_{i=1}^{\infty} \frac{1}{i^2} = \frac{\pi^2}{6} \in \Theta(1)$$
$$\sum_{i=1}^{n} i^k \in \Theta(n^{k+1}) \text{ for } k \ge 0$$
$$\sum_{i=1}^{\infty} \frac{i}{2^i} = \Theta(1)$$
$$\sum_{i=0}^{\infty} ip(1-p)^{i-1} = \frac{1}{p} \text{ for } 0$$

You can use these without a proof, unless asked otherwise

Useful Math Facts

Logarithms:

- $y = \log_b(x)$ means $b^y = x$. e.g. $n = 2^{\log n}$.
- $\log(x)$ (in this course) means $\log_2(x)$
- $\log(x \cdot y) = \log(x) + \log(y)$, $\log(x^y) = y \log(x)$, $\log(x) \le x$
- $\log_b(a) = \frac{\log_c a}{\log_c b} = \frac{1}{\log_a(b)}$, $a^{\log_b c} = c^{\log_b a}$

•
$$\ln(x) = \text{natural } \log = \log_e(x), \ \frac{\mathrm{d}}{\mathrm{d}x} \ln x = \frac{1}{x}$$

Factorial:

- $n! := n(n-1)(n-2) \cdots 2 \cdot 1 = \#$ ways to permute n elements
- $\log(n!) = \log n + \log(n-1) + \cdots + \log 2 + \log 1 \in \Theta(n \log n)$

Probability:

- E[X] is the expected value of X.
- E[aX] = aE[X], E[X + Y] = E[X] + E[Y] (linearity of expectation)