
Module 2: Priority Queues
CS 240 – Data Structures and Data Management

O. Veksler

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2025

Outline

▪ Priority Queues
▪ Review: Abstract Data Types

▪ ADT Priority Queue

▪ Binary Heaps

▪ Operations in Binary Heaps

▪ PQ-Sort and Heapsort

▪ Intro for the Selection Problem

Outline

▪ Priority Queues
▪ Abstract Data Types

▪ ADT Priority Queue

▪ Binary Heaps

▪ Operations in Binary Heaps

▪ PQ-Sort and Heapsort

▪ Intro for the Selection Problem

Abstract Data Type (ADT)

▪ A description of information and a collection of operations on
that information

▪ The information accessed only through the operations

▪ ADT describes what is stored and what can be done with it,
but not how it is implemented

▪ Can have various realizations of an ADT, which specify

▪ how the information is stored (data structure)

▪ how the operations are performed (algorithms)

Stack ADT (review)
▪ ADT consisting of a collection of items removed in LIFO

(last in first out order)

▪ Operations
▪ push insert an item

▪ pop remove and return the most recently inserted item

▪ Extra operations

▪ size, isEmpty, and top

▪ Applications
▪ addresses of recently visited sites in a Web browser, procedure calls

▪ Realizations of Stack ADT
▪ arrays

▪ linked lists
▪ both have constant time push/pop

Queue ADT

▪ ADT consisting of a collection of items removed in FIFO
(first-in first-out) order

▪ Operations
▪ enqueue insert an item

▪ dequeue remove and return the least recently inserted item

▪ Extra operations

▪ size, isEmpty, and peek

▪ Realizations of Queue ADT
▪ (circular) arrays

▪ linked lists

▪ both have constant time enqueue /dequeue

Outline

▪ Priority Queues
▪ Review: Abstract Data Types

▪ ADT Priority Queue

▪ Binary Heaps

▪ Operations in Binary Heaps

▪ PQ-Sort and Heapsort

▪ Intro for the Selection Problem

Priority Queue ADT
▪ Collection of items each having a priority

▪ (priority, other info) or (priority, value)

▪ priority is also called key

▪ Operations

▪ insert: insert an item tagged with a priority

▪ deleteMax: remove and return the item of highest priority

▪ also called extractMax

▪ Definition is for a maximum-oriented priority queue

▪ to define minimum-oriented priority queue, replace deleteMax by
deleteMin

▪ Applications

▪ typical “todo” list

▪ sorting, etc.

▪ Question: How to simulate a stack/queue with a priority queue?

Using Priority Queue to Sort

PQ-Sort(𝐴[0 … 𝑛 − 1])

1. initialize PQ to an empty priority queue

2. for 𝑖 ← 0 to 𝑛 − 1 do

4.

5. for 𝑖 ← 𝑛 − 1 downto 0 do

6.

PQ.insert(𝐴[𝑖])

𝐴[𝑖] ← PQ.deleteMax ()

▪ 𝐴[𝑖] is item with priority 𝐴[𝑖]

▪ Run-time O(initialization+𝑛 ⋅insert+𝑛 ⋅deleteMax)

▪ depends on priority queue implementation

Realizations of Priority Queues

▪ Attempt 1: unsorted arrays

▪ assume dynamic arrays

▪ expand by doubling when needed

▪ happens rarely, so amortized time over all insertions is 𝑂(1)

▪ insert: Θ 1

▪ deleteMax: Θ 𝑛

▪ PQ sort becomes Θ 𝑛2 in the worst and in the best cases

▪ equivalent to selection-sort

▪ Attempt 2: unsorted linked lists

▪ efficiency identical to Attempt 1

50 7 2

5 2 7

priority = 50, <other info>

show only priorities
more accurate
picture

Realizations of Priority Queues

▪ Attempt 3: sorted arrays

▪ store items in order of increasing priority

▪ deleteMax: Θ 1

▪ insert: Θ 𝑛
▪ in 𝑂 1 in the best case (how?)

▪ PQ-sort equivalent to insertion-sort
▪ Θ 𝑛2 worst case

▪ Θ 𝑛 best case

2 5 8

▪ Attempt 4: sorted linked-lists
▪ similar to Attempt 3

2 5 8

Outline

▪ Priority Queues
▪ Abstract Data Types

▪ ADT Priority Queue

▪ Binary Heaps

▪ Operations in Binary Heaps

▪ PQ-Sort and Heapsort

▪ Intro for the Selection Problem

Binary Tree Review

▪ A binary tree is either
▪ empty, or

▪ consists of three parts

▪ node

▪ two binary trees

▪ left subtree

▪ right subtree

▪ Terminology
▪ root, leaf, parent, child, level, sibling, ancestor, descendant

root

leaf

leafleaf

level 0

level 1

level 2

▪ level 𝑙: all nodes with distance 𝑙 from the root (root is on level 0)

▪ height of the tree is the longest path in the tree

tree height 2

Lower Bound on Binary Tree Height
▪ Tree with 𝑛 nodes has height ℎ ≤ 𝑛 − 1

▪ Consider tree with 𝑛 nodes of smallest possible height ℎ

▪ all levels must be as full as possible, except possibly the last level ℎ

𝑛 =

20

21

22

20 +21 +22 + ⋯ +2ℎ−1

𝑆 = 20 + 21 + 22 … + 2ℎ

2𝑆 = 21+22 + ⋯ 2ℎ + 2ℎ+1

-

𝑆 = 2ℎ+1 −1

𝑛 ≤ 2ℎ+1 − 1

ℎ ≥ log 𝑛 + 1 − 1

2ℎ+1

20

≤ +2ℎ

▪ level 𝑖 has 2𝑖 nodes

▪ level ℎ has between 1 and 2ℎ nodes

▪ Binary tree height is Ω(log 𝑛)
▪ note use of asymptotic notation for function other than running time

level 0

level 1

level 2

level ℎ
(last level)

at least 1
at most 2ℎ

▪ A max-oriented binary heap is a binary
tree with the following two properties

1. Structural Property

▪ all levels of a heap are completely
filled, except (possibly) the last level

▪ last level is left-justified

50

29

27

23 26

15

34

8 10

Heaps: Definition

50

29

27

23 26

15

34

8

50

29

15

34

8

▪ A max-oriented binary heap is a binary
tree with the following two properties

1. Structural Property

▪ all levels of a heap are completely
filled, except (possibly) the last level

▪ last level is left-justified

▪ A min-heap is the same, but with opposite order property

▪ Heaps are ideal for implementing priority queues

50

29

27

23 26

15

34

8 10

2. Heap-order Property
▪ for any node 𝑖, key[parent of 𝑖] ≥ key[𝑖]

Heaps: Definition

Heap Height
Lemma: Height of a heap with 𝑛 nodes is Θ(log 𝑛)

▪ heap is a binary tree ⇒ height ℎ ∈ Ω(log 𝑛)

▪ need to show ℎ ∈ 𝑂(log 𝑛)

▪ heap has all levels full except possibly level ℎ

▪ 2𝑖 nodes at level 0 ≤ 𝑖 ≤ ℎ − 1

▪ Thus

+1

at least last
node at level ℎ

𝑛 ≥ 2ℎ − 1 +1

𝑛 ≥ 2ℎ

ℎ ≤ log 𝑛

𝑛 = 20 +21 +22 + ⋯ +2ℎ−1≥ 20 +21 +22 + ⋯ +2ℎ−1

▪ Thus ℎ ∈ 𝑂(log 𝑛)

level 0 level 2 level 3

0 1 2 3 4 5 6 7 8

Storing Heaps in Arrays
▪ Using linked structure for heaps wastes space

▪ Let 𝐻 be a heap of 𝑛 items and let 𝐴 be an array of size 𝑛

▪ store root in A[0]

29A[1]

27A[3]

A[7] 23 26 A[8]

15 A[4]

34 A[2]

8A[5] 10 A[6]

50A[0]

▪ continue storing level-by-level from top to bottom, in each level left-to-right

▪ Use dynamic arrays

▪ 𝐴.size() = 9

50

50

29 34

29 34

27 15 8 10

27 15 8 1023 23 26

▪ Last heap node is in 𝐴[𝑛 − 1]

26

level 1

Heaps in Arrays: Navigation
▪ Use node and index interchangeably

▪ Root is at index 0

▪ Last node is 𝑛 − 1

▪ 𝑛 is the size

▪ Left child of 𝑖, if exists, is 2𝑖 + 1

▪ Right child of 𝑖, if exists, is 2𝑖 + 2

▪ Parent of 𝑖, if exists, is
𝑖−1

2

▪ These nodes exist if index falls into range 0, … , 𝑛 − 1

𝑖

2𝑖 + 1 2𝑖 + 2

𝑖 − 1

2

▪ Hide implementation details using helper-function

▪ functions root(), parent(𝑖), left(𝑖), right 𝑖 , last()

▪ some helper functions need to know 𝑛

▪ left(𝑖), right 𝑖 , last()

▪ assume data structure stores 𝑛 explicitly

Outline

▪ Priority Queues
▪ Abstract Data Types

▪ ADT Priority Queue

▪ Binary Heaps

▪ Operations in Binary Heaps

▪ PQ-Sort and Heapsort

▪ Intro for the Selection Problem

Insertion in Heaps

▪ Place new key at the first free leaf

50

29

27

23 26

15

34

8 10

▪ Heap-order property might be violated

▪ Perform a fix-up

9 48

50

29

27

23 26

15

34

8 10

fix-up example

9 48

50

29

27 48

23 26

34

8 10

fix-up example

9 15

fix-up example

50

48

27 29

23 26 9

34

8 10

15

fix-up(𝐴, 𝑖)

𝑖: an index corresponding to heap node

while parent(𝑖) exists and 𝐴 𝑝𝑎𝑟𝑒𝑛𝑡 𝑖 . 𝑘𝑒𝑦 < 𝐴 𝑖 . 𝑘𝑒𝑦 do

 swap 𝐴[𝑖] and 𝐴[𝑝𝑎𝑟𝑒𝑛𝑡(𝑖)]

 𝑖 ← 𝑝𝑎𝑟𝑒𝑛𝑡(𝑖)

fix-up pseudocode

▪ Time: 𝑂(heap height) = 𝑂(log 𝑛)

// move to one level up

𝑙 = 4

Insert Pseudocode

▪ Class for heap

▪ variable size is a class variable to
keep track of the number of items

▪ Store items in array 𝐴

size = 4

heap::insert(𝑥)

 increase 𝑠𝑖𝑧𝑒

 𝑙 ← 𝑙𝑎𝑠𝑡()

 𝐴[𝑙] ← 𝑥

 fix-up (𝐴, 𝑙)

size = 5
4454 32 15 17

▪ insert is 𝑂(log 𝑛)

fix-up 54 44 15 17 32

deleteMax in Heaps

50

48

27 29

23 26 15

34

8 10

▪ The root has the maximum item

▪ Replace root by the last leaf and remove last leaf

deleteMax in Heaps

▪ The root has the maximum item

▪ Replace root by the last leaf and remove last leaf

15

48

27

23 26

29

34

8 10

deleteMax in Heaps

▪ The heap-order property might be violated
▪ perform fix-down

▪ The root has the maximum item

▪ Replace root by the last leaf and remove last leaf

15

48

27

23 26

29

34

8 10

fix-down example

15

48

27

23 26

29

34

8 10

fix-down example

48

15

27

23 26

29

34

8 10

fix-down example

48

29

27

23 26

15

34

8 10

heap

Fix-Down

fix-down(𝐴, 𝑖, 𝑛)

𝐴: array that stores a heap of size 𝑛 in locations 0 … 𝑛 − 1

𝑖: index corresponding to a heap node,

while 𝑖 is not a leaf do

 𝑗 ← left child of 𝑖

 if 𝑖 has right child and 𝐴 right child of 𝑖 . 𝑘𝑒𝑦 > 𝐴 𝑗 . 𝑘𝑒𝑦 then

 𝑗 ← right child of 𝑖

 if A[𝑖].key ≥ 𝐴 𝑗 . 𝑘𝑒𝑦

 break

 swap A[𝑖] and 𝐴[𝑗]

 𝑖 ← 𝑗

▪ Pass 𝑛 because for some usages of fix-down, 𝐴 stores heap only in the front part

// right child has larger key

// order is fixed, done

// move to one level down

54 44 15 17 32 99 100

▪ Time: 𝑂(heap height) = 𝑂(log 𝑛)

not heap

Pseudocode for deleteMax

54 32 15 17

size = 4

deleteMax

𝑙 ← 𝑙𝑎𝑠𝑡()

toReturn = 𝐴 𝑟𝑜𝑜𝑡()

𝐴[𝑟𝑜𝑜𝑡()] = 𝐴 𝑙

decrease 𝑠𝑖𝑧𝑒

fix-down 𝐴, 𝑟𝑜𝑜𝑡 , 𝑠𝑖𝑧𝑒

return toReturn

𝑙 = 3

toReturn = 54

Pseudocode for deleteMax

17 32 15 17

size = 4

𝑙 = 3

toReturn = 54

deleteMax

𝑙 ← 𝑙𝑎𝑠𝑡()

toReturn = 𝐴 𝑟𝑜𝑜𝑡()

𝐴[𝑟𝑜𝑜𝑡()] = 𝐴 𝑙

decrease 𝑠𝑖𝑧𝑒

fix-down 𝐴, 𝑟𝑜𝑜𝑡 , 𝑠𝑖𝑧𝑒

return toReturn

Pseudocode for deleteMax

▪ deleteMax is 𝑂(log 𝑛)

17 32 15

size = 3

toReturn = 54
fix

down

32 17 15

deleteMax

𝑙 ← 𝑙𝑎𝑠𝑡()

toReturn = 𝐴 𝑟𝑜𝑜𝑡()

𝐴[𝑟𝑜𝑜𝑡()] = 𝐴 𝑙

decrease 𝑠𝑖𝑧𝑒

fix-down 𝐴, 𝑟𝑜𝑜𝑡 , 𝑠𝑖𝑧𝑒

return toReturn

Outline

▪ Priority Queues
▪ Abstract Data Types

▪ ADT Priority Queue

▪ Binary Heaps

▪ Operations in Binary Heaps

▪ PQ-Sort and Heapsort

▪ Intro for the Selection Problem

Sorting using Heaps
▪ Priority queue sort is 𝑂 𝑖𝑛𝑖𝑡 + 𝑛 ∙ 𝑖𝑛𝑠𝑒𝑟𝑡 + 𝑛 ∙ 𝑑𝑒𝑙𝑒𝑡𝑒𝑀𝑎𝑥 time

▪ Blue part of the algorithm

▪ simple heap building

▪ additional array of size 𝑛 for heap 𝐻

▪ insert uses fix-up which is 𝑂(log 𝑛)

▪ worst-case: 𝐴 in increasing order

PQSortWithHeaps(𝐴)

 𝐻 ← empty heap

for 𝑖 ← 0 to 𝑛 − 1 do

 𝐻. insert(𝐴 𝑖)

for 𝑘 ← 𝑛 − 1 downto 0 do

 𝐴 𝑖 ← 𝐻. deleteMax()

20 +21 +⋯+2ℎ−2= 2ℎ−1 −1

2ℎ−1level ℎ − 1

level ℎ

< 𝑛/4

< 𝑛/4

< 𝑛/2

▪ Fact: heap with 𝑛 nodes and height ℎ has
at least 𝑛/4 nodes at level ℎ − 1

Sorting using Heaps

▪ level ℎ − 1 has at least 𝑛/4 nodes

▪ fix-up is 𝑐log 𝑛 for each of them

▪ total time 𝑐𝑛/4log 𝑛

▪ Θ 𝑛 log 𝑛

level ℎ − 1……

▪ Priority queue sort is 𝑂 𝑖𝑛𝑖𝑡 + 𝑛 ∙ 𝑖𝑛𝑠𝑒𝑟𝑡 + 𝑛 ∙ 𝑑𝑒𝑙𝑒𝑡𝑒𝑀𝑎𝑥 time

▪ Blue part of the algorithm

▪ simple heap building

▪ additional array of size 𝑛 for heap 𝐻

▪ insert uses fix-up which is 𝑂(log 𝑛)

▪ worst-case: 𝐴 in increasing order

PQSortWithHeaps(𝐴)

 𝐻 ← empty heap

for 𝑖 ← 0 to 𝑛 − 1 do

 𝐻. insert(𝐴 𝑖)

for 𝑘 ← 𝑛 − 1 downto 0 do

 𝐴 𝑖 ← 𝐻. deleteMax()

Sorting using Heaps

▪ Priority queue sort is 𝑂 𝑖𝑛𝑖𝑡 + 𝑛 ∙ 𝑖𝑛𝑠𝑒𝑟𝑡 + 𝑛 ∙ 𝑑𝑒𝑙𝑒𝑡𝑒𝑀𝑎𝑥 time

▪ Blue part of the algorithm
▪ simple heap building

▪ additional array of size 𝑛 for heap 𝐻

▪ worst-case time is Θ 𝑛 log 𝑛

▪ PQ-Sort with heap is Θ(𝑛log 𝑛) and not in place
▪ need Θ(𝑛) auxiliary space for heap array 𝐻

▪ Heapsort: improvement to PQ-Sort with two added tricks
1. use the input array 𝐴 to store the heap!

2. heap can be built in linear time if know all items in advance

▪ heapsort is in-place and 𝑂(1) auxiliary space

PQSortWithHeaps(𝐴)

 𝐻 ← empty heap

for 𝑖 ← 0 to 𝑛 − 1 do

 𝐻. insert(𝐴 𝑖)

for 𝑘 ← 𝑛 − 1 downto 0 do

 𝐴 𝑖 ← 𝐻. deleteMax()

Building Heap Directly In Input Array

Problem statement: build a heap from 𝑛 items in 𝐴[0, … , 𝑛 − 1]
without using additional space

▪ i.e. put items in 𝐴 0, … , 𝑛 − 1 in heap-order

17 32 15 54 2 25 3𝐴

54 25 32 17 2 15 3𝐴

Problem statement: build a heap from 𝑛 items in 𝐴[0, … , 𝑛 − 1]
without using additional space

▪ i.e. put items in 𝐴 0, … , 𝑛 − 1 in heap-order

17 32 15 54 2 25 3𝐴
17

32

54 2

15

25 3

▪ Look at array 𝐴 as a binary tree

▪ Heap-order (most likely) does not hold

▪ To create heap-order, can either
1. run fix-up for each node

2. run fix-down for each node
▪ turns out to be more efficient

Building Heap Directly In Input Array

Building Heap Directly In Input Array: Fix-Up vs. Fix-Down

▪ Level ℎ − 1 has at least 𝑛/4 nodes

▪ For each such node
▪ fix-up takes 𝑂(log 𝑛) time

▪ fix-down takes 𝑂(1) time

20

21

2ℎ−1……

fi
x

u
p

fi
x

d
o

w
n

Establishing Heap Order with fix-downs

heap order heap order

▪ If both subtrees of node 𝑣 have correct
heap-order, fix-down on 𝑣 will establish
correct order for the whole subtree of 𝑣

fix-down

heap order

𝑣

the rest
of the
tree

level 0 level 2 level 3

Establishing Heap Order with fix-downs

level 1

10

80

30

40 70

20

50

60 10

10 80 50 30 20 60 10 40 70

▪ Every node at level ℎ is a leaf

▪ any leaf has heap-order

▪ fix-down on a leaf does not do anything, so start with the rightmost non-leaf node

▪ this is parent of the last() node

▪ Run fix-down for level ℎ − 1 nodes (starting with the first non-leaf node)

▪ subtree of any level ℎ − 1 node has heap order

▪ Run fix-down for level ℎ − 2 nodes
▪ subtree of any level ℎ − 2 node has heap order

▪ …..

▪ Run fix-down for level 0 node
▪ the whole tree has heap-order

last node

Heapify Example

10

80

30

40 70

20

50

60 10

10 80 50 30 20 60 10 40 70𝐴

10

80

70

40 30

20

50

60 10

Heapify Example 10 80 50 70 20 60 10 40 30𝐴

10

80

70

40 30

20

50

60 10

Heapify Example 10 80 50 70 20 60 10 40 30𝐴

10

80

70

40 30

20

60

50 10

Heapify Example 10 80 60 70 20 50 10 40 30𝐴

10

80

70

40 30

20

60

50 10

Heapify Example

no need to do anything

10 80 60 70 20 50 10 40 30𝐴

10

80

70

40 30

20

60

50 10

Heapify Example 10 80 60 70 20 50 10 40 30𝐴

80

10

70

40 30

20

60

50 10

Heapify Example 80 10 60 70 20 50 10 40 30𝐴

80

70

10

40 30

20

60

50 10

Heapify Example 80 70 60 10 20 50 10 40 30𝐴

80

70

40

10 30

20

60

50 10

Heapify Example

done!

80 70 60 40 20 50 10 10 30𝐴

Heapify Pseudocode

heapify (𝐴)

𝐴 : an array

 for 𝑖 ← parent (last()) downto 0 do

 fix-down (𝐴, 𝑖, 𝑛)

▪ Straightforward analysis yields complexity Ο(𝑛 log 𝑛)

▪ Careful analysis yields complexity Θ(𝑛)

▪ A heap can be built in linear time if we know all items in advance

Heapify Analysis

ℎ ≤ log 𝑛

20

21

2𝑖

2ℎ−1

nodes

0

1

𝑖

ℎ − 1

depth

1

ℎ − 1

ℎ − 𝑖

ℎ

work per node

෍

𝑖=0

ℎ−1

2𝑖(ℎ − 𝑖) = 2ℎ ෍

𝑖=0

ℎ−1
2𝑖(ℎ − 𝑖)

2ℎ
= 2ℎ ෍

𝑖=0

ℎ−1
 (ℎ − 𝑖)

2ℎ−𝑖

= 2ℎ
 ℎ

2ℎ
+

 ℎ − 1

2ℎ−1
+ ⋯ +

 1

21

= 2ℎ ෍

𝑖=1

ℎ
 𝑖

2𝑖

lim
𝑖⇢∞

2𝑖 𝑖 + 1

𝑖2𝑖+1

≤ 2ℎ𝑐 = 𝑐𝑛

convergent series lim
𝑖⇢∞

2𝑖 𝑖 + 1

𝑖2𝑖+1 =
1

2

≤ 2log 𝑛𝑐

HeapSort

30 54 15 17 5 32 6

heapify

54 30 32 17 5 15 6𝑛 = 7

swap root and heap end

6 30 32 17 5 15 54𝑛 = 7

decrease 𝑛

6 30 32 17 5 15 54𝑛 = 6

fix-down(root)

32 30 15 17 5 6 54𝑛 = 6

HeapSort

32 30 15 17 5 6 54𝑛 = 6
swap root and heap end, decrease 𝑛 and fix-down(root)

30 17 15 6 5 32 54𝑛 = 5

swap root and heap end, decrease 𝑛 and fix-down(root)

17 6 15 5 30 32 54𝑛 = 4
swap root and heap end, decrease 𝑛 and fix-down(root)

15 6 5 17 30 32 54𝑛 = 3

swap root and heap end, decrease 𝑛 and fix-down(root)

6 5 15 17 30 32 54𝑛 = 2

swap root and heap end, decrease 𝑛 and fix-down(root)

5 6 15 17 30 32 54𝑛 = 1

Sorted!

HeapSort

▪ Total time is Θ(𝑛log 𝑛)

▪ Similar to PQ-Sort with heaps, but uses input array 𝐴 for
storing heap

▪ In-place, i.e. only 𝑂(1) extra space

HeapSort(A)

𝑛 ← 𝐴.size()

 for 𝑖 ← parent (last()) downto 0 do

 fix-down (𝐴, 𝑖, 𝑛)

 while 𝑛 > 1

 swap items 𝐴[𝑟𝑜𝑜𝑡()] and 𝐴[𝑙𝑎𝑠𝑡()]
 decrease 𝑛

 fix-down(𝐴, 𝑟𝑜𝑜𝑡(), 𝑛)

heapify

Θ(𝑛)

Θ(𝑛log 𝑛)

Heap Summary

▪ Binary heap: binary tree that satisfies structural property and
heap order property

▪ Heaps are one possible realization of ADT PriorityQueue

▪ insert takes 𝑂(log 𝑛) time

▪ deleteMax takes 𝑂(log 𝑛) time

▪ also supports findMax in 𝑂(1) time

▪ A binary heap can be built in linear time, if all elements are
known beforehand

▪ With binary heaps have an in-place sorting algorithm
with 𝑂(𝑛 log 𝑛) worst case time

▪ We have seen max-oriented version of heaps

▪ There exists a symmetric min-oriented version supporting
insert and deleteMin with same run times

Outline

▪ Priority Queues
▪ Abstract Data Types

▪ ADT Priority Queue

▪ Binary Heaps

▪ Operations in Binary Heaps

▪ PQ-Sort and Heapsort

▪ Intro for the Selection Problem

Selection

▪ Select(𝒌) problem find item that would be in 𝐴[𝑘] if 𝐴 was sorted nondecreasing

▪ example: select(3)

▪ Solution 1

▪ make 𝑘 + 1 passes through 𝐴, deleting minimum each time

▪ Θ 𝑘𝑛 time

▪ 𝑘 = 𝑛/2, time complexity is Θ 𝑛2

▪ efficient solution is harder to obtain if 𝑘 is a median

▪ Solution 2

▪ sort 𝐴 and return 𝐴[𝑘]

▪ Θ 𝑛 log 𝑛

▪ time does not depend on 𝑘

0 1 2 3 4 5 6

3 6 10 0 5 4 9

0 3 4 5 6 9 10sorted

5

= 5

Selection

▪ Solution 3

▪ make 𝐴 into a min-heap by calling heapify(𝐴)
▪ Θ(𝑛) time

▪ call deleteMin 𝐴 𝑘 + 1 times

▪ Θ(𝑛 + 𝑘 log 𝑛)

▪ if 𝑘 = 𝑛/2, this solution is Θ 𝑛 log 𝑛
▪ can we do better?

0 1 2 3 4 5 6 7 8 9

3 6 10 0 5 4 9 2 1 73 6 10 0 5 4 9 2 1 7

	Slide 1: Module 2: Priority Queues
	Slide 2: Outline
	Slide 3: Outline
	Slide 4: Abstract Data Type (ADT)
	Slide 5: Stack ADT (review)
	Slide 6: Queue ADT
	Slide 7: Outline
	Slide 8: Priority Queue ADT
	Slide 9: Using Priority Queue to Sort
	Slide 10: Realizations of Priority Queues
	Slide 11: Realizations of Priority Queues
	Slide 12: Outline
	Slide 13: Binary Tree Review
	Slide 14: Lower Bound on Binary Tree Height
	Slide 15
	Slide 16
	Slide 17: Heap Height
	Slide 18: Storing Heaps in Arrays
	Slide 19: Heaps in Arrays: Navigation
	Slide 20: Outline
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26: Insert Pseudocode
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33: Fix-Down
	Slide 34: Pseudocode for deleteMax
	Slide 35: Pseudocode for deleteMax
	Slide 36: Pseudocode for deleteMax
	Slide 37: Outline
	Slide 38: Sorting using Heaps
	Slide 39: Sorting using Heaps
	Slide 40: Sorting using Heaps
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45: Establishing Heap Order with fix-downs
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55: Heapify Pseudocode
	Slide 56: Heapify Analysis
	Slide 57: HeapSort
	Slide 58: HeapSort
	Slide 59: HeapSort
	Slide 60: Heap Summary
	Slide 61: Outline
	Slide 62: Selection
	Slide 63: Selection

