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Abstract Data Type (ADT)

▪ A description of information and a  collection of operations on 
that information

▪ The information  accessed only through the operations  

▪ ADT describes what is stored and what can be done with it, 
but not how it is implemented

▪ Can have various realizations of an ADT, which specify

▪ how the information is stored (data structure)

▪ how the operations are performed (algorithms)



Stack ADT (review)
▪ ADT consisting of a collection of items removed in LIFO 

(last in first out order)

▪ Operations
▪ push insert an item

▪ pop remove and return the most recently inserted item

▪ Extra operations

▪ size, isEmpty, and top

▪ Applications
▪ addresses of recently visited sites in a Web browser,  procedure calls

▪ Realizations of Stack ADT  
▪ arrays

▪ linked lists
▪ both have constant time push/pop



Queue ADT

▪ ADT consisting of a collection of items removed in FIFO                        
(first-in first-out) order

▪ Operations
▪ enqueue insert an item

▪ dequeue remove and return the least recently inserted item

▪ Extra operations

▪ size, isEmpty, and peek

▪ Realizations of Queue ADT  
▪ (circular) arrays

▪ linked lists

▪ both have constant time enqueue /dequeue
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Priority Queue ADT
▪ Collection of items each having  a priority

▪ (priority, other info) or (priority, value)

▪ priority is also called key

▪ Operations

▪ insert: insert an item tagged with a priority

▪ deleteMax: remove and return the item of highest priority

▪ also called extractMax

▪ Definition is for a maximum-oriented priority queue

▪ to define minimum-oriented priority queue, replace deleteMax by 
deleteMin

▪ Applications 

▪ typical “todo” list

▪ sorting, etc.

▪ Question: How to simulate a stack/queue with a priority queue?



Using  Priority Queue to Sort

PQ-Sort(𝐴[0 … 𝑛 −  1])

1. initialize PQ to an empty priority queue

2. for  𝑖 ← 0 to 𝑛 − 1 do

4.

5. for 𝑖 ←  𝑛 −  1   downto 0 do

6.

PQ.insert(𝐴[𝑖])
 

𝐴[𝑖]  ← PQ.deleteMax ()

▪ 𝐴[𝑖] is item with priority 𝐴[𝑖]

▪ Run-time O(initialization+𝑛 ⋅insert+𝑛 ⋅deleteMax)

▪ depends on priority queue implementation



Realizations of Priority Queues

▪ Attempt 1: unsorted arrays

▪ assume dynamic arrays

▪ expand by doubling when needed

▪ happens rarely, so amortized time over all insertions is 𝑂(1)

▪ insert: Θ 1

▪ deleteMax: Θ 𝑛

▪ PQ sort becomes Θ 𝑛2  in the worst and in the best cases

▪ equivalent to  selection-sort

▪ Attempt 2: unsorted linked lists

▪ efficiency identical to Attempt 1

50 7 2

5 2 7

priority = 50, <other info>

show only priorities
more accurate  
picture



Realizations of Priority Queues

▪ Attempt 3:  sorted arrays

▪ store items in order of increasing priority 

▪ deleteMax: Θ 1

▪ insert: Θ 𝑛
▪ in 𝑂 1  in the best case (how?)

▪ PQ-sort equivalent to insertion-sort 
▪ Θ 𝑛2  worst case

▪ Θ 𝑛  best case

2 5 8

▪ Attempt 4: sorted linked-lists 
▪ similar to Attempt 3

2 5 8
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Binary Tree Review

▪ A binary tree  is either
▪ empty, or

▪ consists of three parts

▪  node

▪  two binary trees

▪  left subtree

▪  right subtree

▪ Terminology
▪ root, leaf, parent, child, level, sibling, ancestor, descendant

root

leaf

leafleaf

level 0

level 1

level 2

▪ level 𝑙: all nodes with distance 𝑙 from the root (root is on level 0) 

▪ height of the tree is the longest path in the tree

tree height 2



Lower Bound on Binary Tree Height
▪ Tree with 𝑛 nodes has height ℎ ≤ 𝑛 − 1

▪ Consider tree with 𝑛 nodes of smallest possible height ℎ

▪ all levels must be as full as possible, except possibly the last level ℎ

𝑛 =

20

21

22

20 +21 +22 + ⋯ +2ℎ−1

𝑆 = 20 + 21 + 22 … + 2ℎ

2𝑆 = 21+22 + ⋯ 2ℎ + 2ℎ+1

-

𝑆 = 2ℎ+1 −1

𝑛 ≤ 2ℎ+1 − 1

ℎ ≥ log 𝑛 + 1 − 1

2ℎ+1

20

≤ +2ℎ

▪ level 𝑖 has 2𝑖  nodes

▪ level ℎ has between 1 and 2ℎ nodes

▪ Binary tree height is Ω(log 𝑛) 
▪ note use of asymptotic notation for function other than running time

level 0

level 1

level 2

level ℎ 
(last level)

at least 1
at most 2ℎ 



▪ A max-oriented binary heap is a binary 
tree with the following two properties

1. Structural Property 

▪ all levels of a heap are completely 
filled,  except (possibly) the last level

▪ last level is left-justified
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Heaps: Definition
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▪ A max-oriented binary heap is a binary 
tree with the following two properties

1. Structural Property 

▪ all levels of a heap are completely 
filled,  except (possibly) the last level

▪ last level is left-justified

▪ A min-heap is the same, but with opposite order property

▪ Heaps are ideal for implementing priority queues

50

29

27

23 26

15

34

8 10

2. Heap-order Property 
▪ for any node 𝑖,  key[parent of  𝑖] ≥  key[𝑖] 

Heaps: Definition



Heap Height
Lemma:   Height of a heap with 𝑛 nodes is Θ(log 𝑛)

▪ heap is a binary tree ⇒ height ℎ ∈ Ω(log 𝑛)

▪ need to show ℎ ∈ 𝑂(log 𝑛)

▪ heap has all levels full except possibly level ℎ 

▪ 2𝑖 nodes at level 0 ≤ 𝑖 ≤ ℎ − 1

▪ Thus

+1

at least last 
node at level ℎ

𝑛 ≥ 2ℎ − 1 +1

𝑛 ≥ 2ℎ

ℎ ≤ log 𝑛

𝑛 = 20 +21 +22 + ⋯ +2ℎ−1≥ 20 +21 +22 + ⋯ +2ℎ−1

▪ Thus ℎ ∈ 𝑂(log 𝑛)



level 0 level  2 level  3

0 1 2 3 4 5 6 7 8

Storing Heaps in Arrays
▪ Using linked structure for heaps wastes space

▪ Let 𝐻 be a heap of 𝑛 items and let 𝐴 be an array of size 𝑛

▪ store root in  A[0] 

29A[1]

27A[3]

A[7] 23 26 A[8]

15 A[4]

34 A[2]

8A[5] 10 A[6]

50A[0]

▪ continue storing level-by-level from top to bottom, in each  level left-to-right

▪ Use dynamic arrays

▪ 𝐴.size() =  9 

50

50

29 34

29 34

27 15 8 10

27 15 8 1023 23 26

▪ Last heap node is in 𝐴[𝑛 − 1] 

26

level 1



Heaps in Arrays: Navigation
▪ Use node and index interchangeably 

▪ Root is at index 0

▪ Last node is 𝑛 − 1

▪ 𝑛 is the size 

▪ Left child of 𝑖,  if  exists,  is 2𝑖 + 1

▪ Right child of 𝑖, if  exists,  is 2𝑖 + 2

▪ Parent of 𝑖,  if  exists, is 
𝑖−1

2

▪ These  nodes exist if index falls into range 0, … , 𝑛 − 1

𝑖

2𝑖 + 1 2𝑖 + 2

𝑖 − 1

2

▪ Hide implementation details using helper-function

▪ functions root( ),  parent(𝑖), left(𝑖), right 𝑖 , last()

▪ some helper functions need to know 𝑛 

▪ left(𝑖), right 𝑖 , last()

▪ assume data structure stores 𝑛 explicitly
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Insertion in Heaps

▪ Place new key at the first free leaf
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23 26
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▪ Heap-order property might be violated

▪ Perform a fix-up

9 48
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fix-up example
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fix-up(𝐴, 𝑖)

𝑖: an index corresponding to  heap node

while parent(𝑖) exists and 𝐴 𝑝𝑎𝑟𝑒𝑛𝑡 𝑖 . 𝑘𝑒𝑦 < 𝐴 𝑖 . 𝑘𝑒𝑦 do

 swap 𝐴[𝑖] and 𝐴[𝑝𝑎𝑟𝑒𝑛𝑡(𝑖)]

 𝑖 ←  𝑝𝑎𝑟𝑒𝑛𝑡(𝑖 )

fix-up pseudocode

▪ Time: 𝑂(heap height)  =  𝑂(log 𝑛)

// move to one level up



𝑙 = 4

Insert Pseudocode

▪ Class for heap

▪ variable size is a class variable to  
keep track of the number of items

▪ Store items in array 𝐴

size = 4

heap::insert(𝑥)

 increase 𝑠𝑖𝑧𝑒 

 𝑙 ← 𝑙𝑎𝑠𝑡()

 𝐴[𝑙] ← 𝑥 

 fix-up (𝐴, 𝑙)

size = 5
4454 32 15 17

▪ insert is 𝑂(log 𝑛)

fix-up 54 44 15 17 32



deleteMax in Heaps
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▪ The root has the maximum item

▪ Replace root by the last leaf and remove last leaf



deleteMax in Heaps

▪ The root has the maximum item

▪ Replace root by the last leaf and remove last leaf
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deleteMax in Heaps

▪ The heap-order property might be violated
▪ perform fix-down

▪ The root has the maximum item

▪ Replace root by the last leaf and remove last leaf
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fix-down example
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fix-down example
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fix-down example
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heap

Fix-Down

fix-down(𝐴, 𝑖, 𝑛)

𝐴: array that stores a heap of size 𝑛 in locations 0 … 𝑛 − 1

𝑖: index corresponding to a heap node, 

while 𝑖 is not a leaf do

  𝑗 ← left child of 𝑖

  if 𝑖 has right child and 𝐴 right child of 𝑖 . 𝑘𝑒𝑦 > 𝐴  𝑗 . 𝑘𝑒𝑦  then

                    𝑗 ← right child of 𝑖

     if A[𝑖].key  ≥  𝐴  𝑗 . 𝑘𝑒𝑦 

     break 

         swap A[𝑖]  and  𝐴[𝑗] 

         𝑖 ← 𝑗

▪ Pass 𝑛 because for some usages of fix-down,  𝐴 stores heap only in the front part

// right child has  larger key

// order is fixed, done

// move to one level down

54 44 15 17 32 99 100

▪ Time: 𝑂(heap height)  =  𝑂(log 𝑛)

not heap



Pseudocode for deleteMax

54 32 15 17

size = 4

deleteMax  

𝑙 ← 𝑙𝑎𝑠𝑡() 

toReturn = 𝐴 𝑟𝑜𝑜𝑡()

𝐴[𝑟𝑜𝑜𝑡()] = 𝐴 𝑙

decrease 𝑠𝑖𝑧𝑒

fix-down 𝐴, 𝑟𝑜𝑜𝑡  , 𝑠𝑖𝑧𝑒

return toReturn

𝑙 = 3

toReturn = 54



Pseudocode for deleteMax

17 32 15 17

size = 4

𝑙 = 3

toReturn = 54

deleteMax  

𝑙 ← 𝑙𝑎𝑠𝑡() 

toReturn = 𝐴 𝑟𝑜𝑜𝑡()

𝐴[𝑟𝑜𝑜𝑡()] = 𝐴 𝑙

decrease 𝑠𝑖𝑧𝑒

fix-down 𝐴, 𝑟𝑜𝑜𝑡  , 𝑠𝑖𝑧𝑒

return toReturn



Pseudocode for deleteMax

▪ deleteMax is 𝑂(log 𝑛)

17 32 15

size = 3

toReturn = 54
fix 

down

32 17 15

deleteMax  

𝑙 ← 𝑙𝑎𝑠𝑡() 

toReturn = 𝐴 𝑟𝑜𝑜𝑡()

𝐴[𝑟𝑜𝑜𝑡()] = 𝐴 𝑙

decrease 𝑠𝑖𝑧𝑒

fix-down 𝐴, 𝑟𝑜𝑜𝑡  , 𝑠𝑖𝑧𝑒

return toReturn
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Sorting using Heaps
▪ Priority queue sort is 𝑂 𝑖𝑛𝑖𝑡 + 𝑛 ∙ 𝑖𝑛𝑠𝑒𝑟𝑡 + 𝑛 ∙ 𝑑𝑒𝑙𝑒𝑡𝑒𝑀𝑎𝑥  time

▪ Blue part of the algorithm

▪ simple heap building

▪ additional array of size 𝑛 for heap 𝐻

▪ insert uses fix-up which is 𝑂(log 𝑛)

▪ worst-case: 𝐴 in increasing order 

PQSortWithHeaps(𝐴)

                𝐻 ← empty heap

for 𝑖 ← 0 to  𝑛 − 1 do

       𝐻. insert(𝐴 𝑖 )

for 𝑘 ← 𝑛 − 1 downto 0 do

      𝐴 𝑖 ← 𝐻. deleteMax( )

20 +21 +⋯+2ℎ−2= 2ℎ−1 −1

2ℎ−1level ℎ − 1

level ℎ

< 𝑛/4

< 𝑛/4

< 𝑛/2

▪ Fact: heap with 𝑛 nodes and height ℎ has 
at least 𝑛/4 nodes at level ℎ − 1



Sorting using Heaps

▪ level ℎ − 1 has at least 𝑛/4 nodes

▪ fix-up is 𝑐log 𝑛 for each of them

▪ total time 𝑐𝑛/4log 𝑛

▪ Θ 𝑛 log 𝑛

level ℎ − 1……

▪ Priority queue sort is 𝑂 𝑖𝑛𝑖𝑡 + 𝑛 ∙ 𝑖𝑛𝑠𝑒𝑟𝑡 + 𝑛 ∙ 𝑑𝑒𝑙𝑒𝑡𝑒𝑀𝑎𝑥  time

▪ Blue part of the algorithm

▪ simple heap building

▪ additional array of size 𝑛 for heap 𝐻

▪ insert uses fix-up which is 𝑂(log 𝑛)

▪ worst-case: 𝐴 in increasing order 

PQSortWithHeaps(𝐴)

                𝐻 ← empty heap

for 𝑖 ← 0 to  𝑛 − 1 do

       𝐻. insert(𝐴 𝑖 )

for 𝑘 ← 𝑛 − 1 downto 0 do

      𝐴 𝑖 ← 𝐻. deleteMax( )



Sorting using Heaps

▪ Priority queue sort is 𝑂 𝑖𝑛𝑖𝑡 + 𝑛 ∙ 𝑖𝑛𝑠𝑒𝑟𝑡 + 𝑛 ∙ 𝑑𝑒𝑙𝑒𝑡𝑒𝑀𝑎𝑥  time

▪ Blue part of the algorithm
▪ simple heap building

▪ additional array of size 𝑛 for heap 𝐻

▪ worst-case time is Θ 𝑛 log 𝑛

▪ PQ-Sort with heap is Θ(𝑛log 𝑛) and not in place
▪ need Θ(𝑛) auxiliary space for heap array 𝐻

▪ Heapsort:  improvement to PQ-Sort with two added tricks
1.  use the input array 𝐴 to store the heap!

2.  heap can be built in linear time if know all items in advance

▪ heapsort is in-place and 𝑂(1) auxiliary space

PQSortWithHeaps(𝐴)

                𝐻 ← empty heap

for 𝑖 ← 0 to  𝑛 − 1 do

       𝐻. insert(𝐴 𝑖 )

for 𝑘 ← 𝑛 − 1 downto 0 do

      𝐴 𝑖 ← 𝐻. deleteMax( )



Building Heap Directly In Input Array

Problem statement: build a heap from 𝑛 items in 𝐴[0, … , 𝑛 − 1] 
without using additional space

▪ i.e.  put items in 𝐴 0, … , 𝑛 − 1  in heap-order 

17 32 15 54 2 25 3𝐴

54 25 32 17 2 15 3𝐴



Problem statement: build a heap from 𝑛 items in 𝐴[0, … , 𝑛 − 1] 
without using additional space

▪ i.e.  put items in 𝐴 0, … , 𝑛 − 1  in heap-order 

17 32 15 54 2 25 3𝐴
17

32

54 2

15

25 3

▪ Look at array 𝐴 as a binary tree

▪ Heap-order (most likely) does not hold

▪ To create heap-order, can either
1. run fix-up for each node

2. run fix-down for each node
▪ turns out to be more efficient 

Building Heap Directly In Input Array



Building Heap Directly In Input Array: Fix-Up vs. Fix-Down

▪ Level ℎ − 1 has at least 𝑛/4 nodes

▪ For each such node
▪  fix-up takes 𝑂(log 𝑛) time

▪  fix-down takes 𝑂(1) time

20

21

2ℎ−1……

fi
x 

u
p

fi
x 

d
o

w
n



Establishing Heap Order with fix-downs 

heap order heap order

▪ If both subtrees of node 𝑣 have correct 
heap-order, fix-down on 𝑣 will establish 
correct order for the whole subtree of 𝑣

fix-down

heap order

𝑣 

the rest 
of the 
tree



level 0 level  2 level  3

Establishing Heap Order with fix-downs 

level 1

10

80

30

40 70

20

50

60 10

10 80 50 30 20 60 10 40 70

▪ Every node at level ℎ is a leaf 

▪ any leaf has heap-order

▪ fix-down on a leaf does not do anything, so start with the rightmost non-leaf node

▪ this is parent of the last() node

▪ Run fix-down for level ℎ − 1 nodes (starting with the first non-leaf node)

▪ subtree of any level  ℎ − 1 node has heap order

▪ Run fix-down for level ℎ − 2 nodes
▪ subtree of any level  ℎ − 2 node has heap order

▪ …..

▪ Run fix-down for level 0 node
▪ the whole tree has heap-order 

last node



Heapify Example
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Heapify Example

no need to do anything

10 80 60 70 20 50 10 40 30𝐴



10

80

70

40 30

20

60

50 10

Heapify Example 10 80 60 70 20 50 10 40 30𝐴



80

10

70

40 30

20

60

50 10

Heapify Example 80 10 60 70 20 50 10 40 30𝐴



80

70

10

40 30

20

60

50 10

Heapify Example 80 70 60 10 20 50 10 40 30𝐴



80

70

40

10 30

20

60

50 10

Heapify Example

done!

80 70 60 40 20 50 10 10 30𝐴



Heapify Pseudocode

heapify (𝐴)  

𝐴 : an  array

    for 𝑖 ← parent (last()) downto 0 do

  fix-down (𝐴, 𝑖, 𝑛)

▪ Straightforward analysis yields complexity Ο(𝑛 log 𝑛)

▪ Careful analysis yields complexity  Θ(𝑛)

▪ A heap can be built in linear time if we know all items in advance



Heapify Analysis

ℎ ≤ log 𝑛

20

21

2𝑖

2ℎ−1

nodes

0

1

𝑖

ℎ − 1

depth

1

ℎ − 1

ℎ − 𝑖

ℎ

work per node

෍

𝑖=0

ℎ−1

2𝑖(ℎ − 𝑖) = 2ℎ ෍

𝑖=0

ℎ−1
2𝑖(ℎ − 𝑖)

2ℎ
= 2ℎ ෍

𝑖=0

ℎ−1
 (ℎ − 𝑖)

2ℎ−𝑖

= 2ℎ
 ℎ

2ℎ
+

 ℎ − 1

2ℎ−1
+ ⋯ +

 1

21

= 2ℎ ෍

𝑖=1

ℎ
 𝑖

2𝑖

lim
𝑖⇢∞

2𝑖 𝑖 + 1

𝑖2𝑖+1

≤ 2ℎ𝑐 = 𝑐𝑛

convergent series lim
𝑖⇢∞

2𝑖 𝑖 + 1

𝑖2𝑖+1 =
1

2

≤ 2log 𝑛𝑐



HeapSort

30 54 15 17 5 32 6

heapify

54 30 32 17 5 15 6𝑛 = 7

swap root and heap end

6 30 32 17 5 15 54𝑛 = 7

decrease 𝑛

6 30 32 17 5 15 54𝑛 = 6

fix-down(root)

32 30 15 17 5 6 54𝑛 = 6



HeapSort

32 30 15 17 5 6 54𝑛 = 6
swap root and heap end, decrease 𝑛 and fix-down(root)

30 17 15 6 5 32 54𝑛 = 5

swap root and heap end, decrease 𝑛 and fix-down(root)

17 6 15 5 30 32 54𝑛 = 4
swap root and heap end, decrease 𝑛 and fix-down(root)

15 6 5 17 30 32 54𝑛 = 3

swap root and heap end, decrease 𝑛 and fix-down(root)

6 5 15 17 30 32 54𝑛 = 2

swap root and heap end, decrease 𝑛 and fix-down(root)

5 6 15 17 30 32 54𝑛 = 1

Sorted!



HeapSort

▪ Total time is Θ(𝑛log 𝑛)

▪ Similar to PQ-Sort with heaps, but uses input array 𝐴 for 
storing heap

▪ In-place, i.e. only 𝑂(1) extra space

HeapSort(A)

𝑛 ← 𝐴.size()

  for 𝑖 ← parent (last()) downto  0  do

  fix-down (𝐴, 𝑖, 𝑛)

  while 𝑛 > 1   

  swap items 𝐴[𝑟𝑜𝑜𝑡()] and 𝐴[𝑙𝑎𝑠𝑡()] 
      decrease 𝑛

  fix-down(𝐴, 𝑟𝑜𝑜𝑡(), 𝑛)

heapify

Θ(𝑛)

Θ(𝑛log 𝑛)



Heap Summary

▪ Binary heap: binary tree that satisfies structural property and 
heap order property

▪ Heaps are one possible realization of ADT PriorityQueue

▪  insert takes 𝑂(log 𝑛) time

▪  deleteMax takes 𝑂(log 𝑛) time

▪  also supports findMax in 𝑂(1) time

▪ A binary heap can be built in linear time, if all elements are 
known beforehand

▪ With binary heaps have an in-place sorting algorithm 
with 𝑂(𝑛 log 𝑛) worst case time

▪ We have seen max-oriented version of heaps

▪ There exists a symmetric min-oriented version supporting 
insert and deleteMin with same run times 



Outline

▪ Priority Queues  
▪ Abstract Data Types

▪ ADT Priority Queue  

▪ Binary Heaps

▪ Operations in Binary Heaps

▪ PQ-Sort and Heapsort

▪ Intro for the Selection Problem



Selection

▪ Select(𝒌) problem  find  item that would be in 𝐴[𝑘] if 𝐴 was sorted nondecreasing 

▪ example: select(3)

▪ Solution 1 

▪ make 𝑘 + 1 passes through 𝐴,  deleting minimum each time

▪ Θ 𝑘𝑛  time

▪ 𝑘 = 𝑛/2, time complexity is Θ 𝑛2

▪ efficient solution is harder to obtain if 𝑘 is a median

▪ Solution 2 

▪ sort 𝐴 and return 𝐴[𝑘] 

▪ Θ 𝑛 log 𝑛

▪ time does not depend on 𝑘

0 1 2 3 4 5 6

3 6 10 0 5 4 9

0 3 4 5 6 9 10sorted

5

= 5



Selection

▪ Solution 3 

▪  make 𝐴 into a min-heap by calling heapify(𝐴) 
▪  Θ(𝑛) time

▪  call deleteMin 𝐴  𝑘 + 1  times

▪  Θ(𝑛 + 𝑘 log 𝑛)

▪  if 𝑘 = 𝑛/2, this solution is Θ 𝑛 log 𝑛
▪ can we do better?

0 1 2 3 4 5 6 7 8          9

3 6 10 0 5 4 9 2 1 73 6 10 0 5 4 9 2 1 7
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