CS 240 – Data Structures and Data Management Module 2: Priority Queues

O. Veksler

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2025

Outline

- Priority Queues
 - Review: Abstract Data Types
 - ADT Priority Queue
 - Binary Heaps
 - Operations in Binary Heaps
 - PQ-Sort and Heapsort
 - Intro for the Selection Problem

Outline

Priority Queues

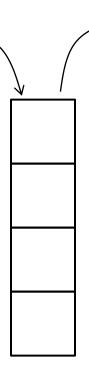
- Abstract Data Types
- ADT Priority Queue
- Binary Heaps
- Operations in Binary Heaps
- PQ-Sort and Heapsort
- Intro for the Selection Problem

Abstract Data Type (ADT)

- A description of *information* and a collection of *operations* on that information
- The information accessed *only* through the operations
- ADT describes what is stored and what can be done with it, but not how it is implemented
- Can have various *realizations* of an ADT, which specify
 - how the information is stored (*data structure*)
 - how the operations are performed (*algorithms*)

Stack ADT (review)

- ADT consisting of a collection of items removed in LIFO (last in first out order)
- Operations
 - push insert an item
 - pop remove and return the most recently inserted item
- Extra operations
 - size, isEmpty, and top
- Applications
 - addresses of recently visited sites in a Web browser, procedure calls
- Realizations of Stack ADT
 - arrays
 - linked lists
 - both have constant time *push/pop*



Queue ADT

- ADT consisting of a collection of items removed in FIFO (first-in first-out) order
- Operations
 - enqueue insert an item
 - dequeue remove and return the least recently inserted item
- Extra operations
 - size, isEmpty, and peek
- Realizations of Queue ADT
 - (circular) arrays
 - linked lists
 - both have constant time enqueue /dequeue

Outline

Priority Queues

- Review: Abstract Data Types
- ADT Priority Queue
- Binary Heaps
- Operations in Binary Heaps
- PQ-Sort and Heapsort
- Intro for the Selection Problem

Priority Queue ADT

- Collection of items each having a *priority*
 - (priority, other info) or (priority, value)
 - priority is also called key
- Operations
 - insert: insert an item tagged with a priority
 - *deleteMax*: remove and return the item of highest priority
 - also called *extractMax*
- Definition is for a maximum-oriented priority queue
 - to define minimum-oriented priority queue, replace *deleteMax* by *deleteMin*
- Applications
 - typical "todo" list
 - sorting, etc.
- Question: How to simulate a stack/queue with a priority queue?

Using Priority Queue to Sort

```
PQ-Sort(A[0 ... n - 1])
```

1. initialize *PQ* to an empty priority queue

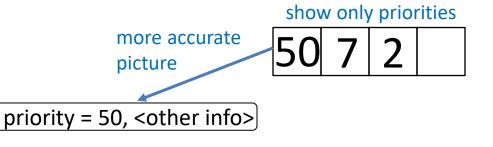
2. for
$$i \leftarrow 0$$
 to $n - 1$ do

- 4. *PQ.insert*(*A*[*i*])
- 5. for $i \leftarrow n 1$ downto 0 do
- 6. $A[i] \leftarrow PQ.deleteMax$ ()

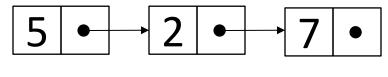
- A[i] is item with priority A[i]
- Run-time O(*initialization*+n ·*insert*+n ·*deleteMax*)
 - depends on priority queue implementation

Realizations of Priority Queues

Attempt 1: unsorted arrays

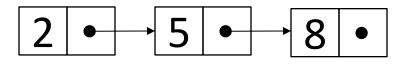


- assume dynamic arrays
 - expand by doubling when needed
 - happens rarely, so amortized time over all insertions is O(1)
- *insert*: Θ(1)
- deleteMax: $\Theta(n)$
- PQ sort becomes Θ(n²) in the worst and in the best cases
 - equivalent to selection-sort
- Attempt 2: unsorted linked lists
 - efficiency identical to Attempt 1



Realizations of Priority Queues

- Attempt 3: sorted arrays
 - store items in order of increasing priority
 - *deleteMax*: Θ(1)
 - *insert*: $\Theta(n)$
 - in O(1) in the best case (how?)
 - PQ-sort equivalent to insertion-sort
 - $\Theta(n^2)$ worst case
 - Θ(n) best case
- Attempt 4: sorted linked-lists
 - similar to Attempt 3



2 5 8

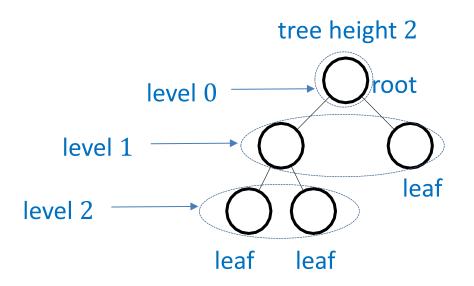
Outline

Priority Queues

- Abstract Data Types
- ADT Priority Queue
- Binary Heaps
- Operations in Binary Heaps
- PQ-Sort and Heapsort
- Intro for the Selection Problem

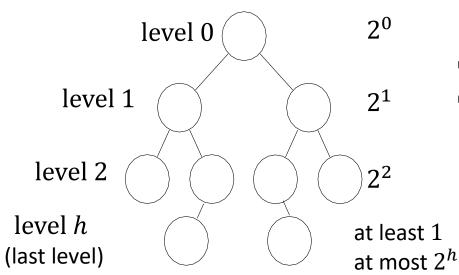
Binary Tree Review

- A *binary tree* is either
 - empty, or
 - consists of three parts
 - node
 - two binary trees
 - left subtree
 - right subtree
- Terminology
 - root, leaf, parent, child, level, sibling, ancestor, descendant
 - level l: all nodes with distance l from the root (root is on level 0)
 - height of the tree is the longest path in the tree



Lower Bound on Binary Tree Height

- Tree with n nodes has height $h \le n 1$
- Consider tree with *n* nodes of smallest possible height *h*
 - all levels must be as full as possible, except possibly the last level h



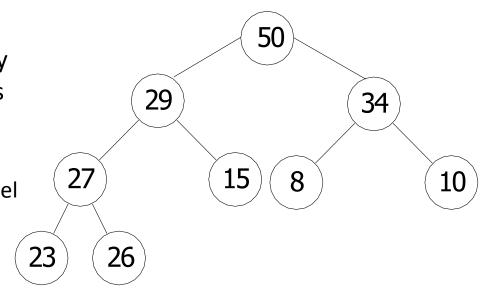
- level *i* has 2^{*i*} nodes
- level h has between 1 and 2^h nodes

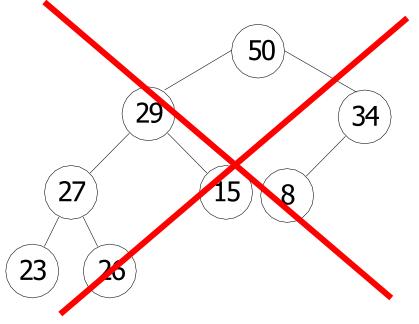
$$2S = 2^{1} + 2^{2} + \dots + 2^{h} + 2^{h+1}$$
$$S = 2^{0} + 2^{1} + 2^{2} \dots + 2^{h}$$
$$S = 2^{h+1} - 1$$

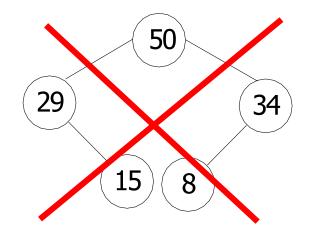
- $\begin{array}{rcl} n & \leq & 2^0 + 2^1 + 2^2 & + \cdots & + 2^{h-1} + 2^h \\ n & \leq & 2^{h+1} 1 \end{array}$
- $h \ge \log(n+1) 1$
- Binary tree height is Ω(log n)
 - note use of asymptotic notation for function other than running time

Heaps: Definition

- A max-oriented binary heap is a binary tree with the following two properties
 - 1. Structural Property
 - all levels of a heap are completely filled, except (possibly) the last level
 - last level is *left-justified*

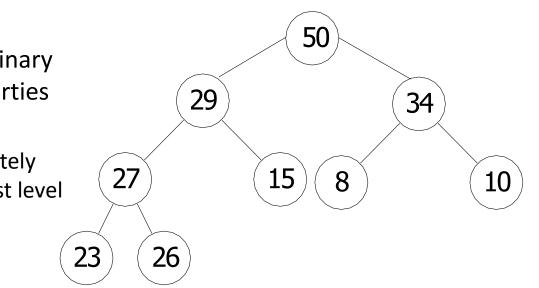






Heaps: Definition

- A max-oriented binary heap is a binary tree with the following two properties
 - 1. Structural Property
 - all levels of a heap are completely filled, except (possibly) the last level
 - last level is *left-justified*



- 2. Heap-order Property
 - for any node i, key[parent of i] \geq key[i]
- A *min-heap* is the same, but with opposite order property
- Heaps are ideal for implementing priority queues

Heap Height

Lemma: Height of a heap with n nodes is $\Theta(\log n)$

- heap is a binary tree \Rightarrow height $h \in \Omega(\log n)$
- need to show $h \in O(\log n)$
- heap has all levels full except possibly level h

•
$$2^i$$
 nodes at level $0 \le i \le h - 1$

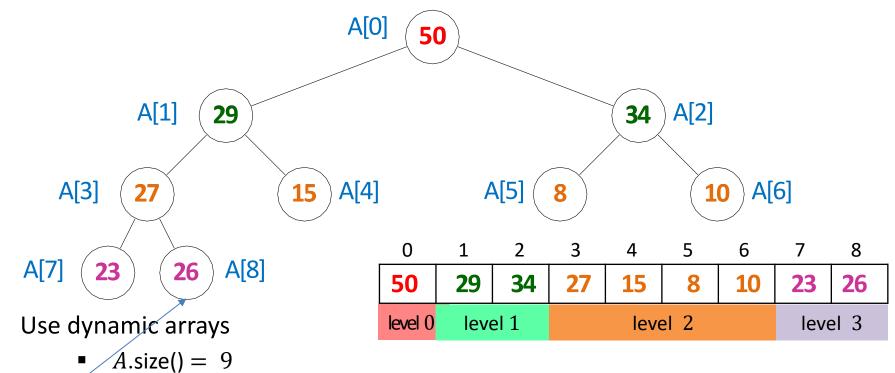
Thus

at least last node at level *h*

- $n \geq 2^{0} + 2^{1} + 2^{2} + \dots + 2^{h-1} + 1$ $n \geq 2^{h} 1 + 1$ $n \geq 2^{h}$ $h \leq \log n$
- Thus $h \in O(\log n)$

Storing Heaps in Arrays

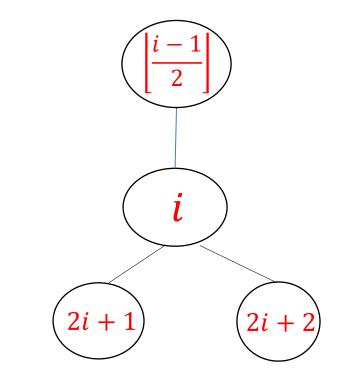
- Using linked structure for heaps wastes space
- Let *H* be a heap of *n* items and let *A* be an array of size *n*
 - store root in A[0]
 - continue storing *level-by-level* from top to bottom, in each level left-to-right



• Last heap node is in A[n-1]

Heaps in Arrays: Navigation

- Use node and index interchangeably
- Root is at index 0
- Last node is n-1
 - *n* is the size
- Left child of i, if exists, is 2i + 1
- Right child of *i*, if exists, is 2i + 2
- Parent of *i*, if exists, is $\left\lfloor \frac{i-1}{2} \right\rfloor$
- These nodes exist if index falls into range $\{0, ..., n-1\}$
- Hide implementation details using helper-function
 - functions root(), parent(i), left(i), right(i), last()
 - some helper functions need to know n
 - left(i), right(i), last()
 - assume data structure stores n explicitly



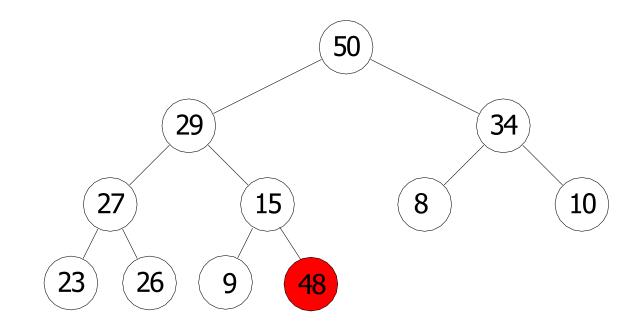
Outline

Priority Queues

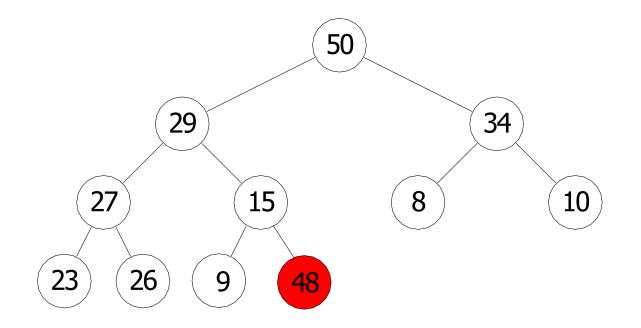
- Abstract Data Types
- ADT Priority Queue
- Binary Heaps
- Operations in Binary Heaps
- PQ-Sort and Heapsort
- Intro for the Selection Problem

Insertion in Heaps

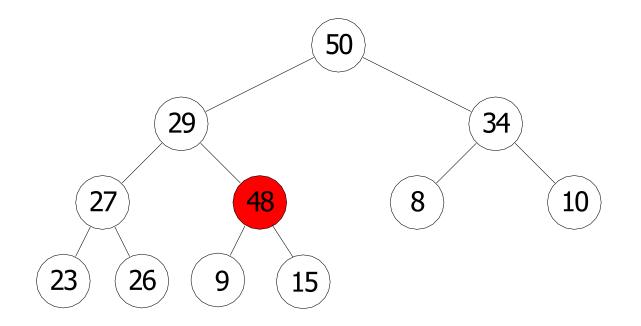
- Place new key at the first free leaf
- Heap-order property might be violated
- Perform a *fix-up*



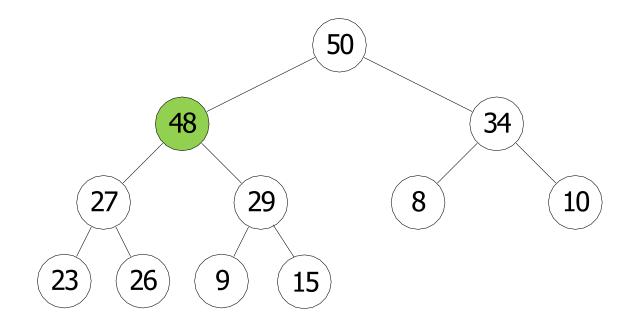
fix-up example



fix-up example



fix-up example



fix-up pseudocode

 $\begin{aligned} & \textit{fix-up}(A, i) \\ & i: \textit{an index corresponding to heap node} \\ & \textit{while parent}(i) \textit{ exists and } A[parent(i)]. key < A[i]. key \textit{do} \\ & \textit{swap } A[i] \textit{ and } A[parent(i)] \\ & i \leftarrow parent(i) \quad // \textit{ move to one level up} \end{aligned}$

• Time: $O(\text{heap height}) = O(\log n)$

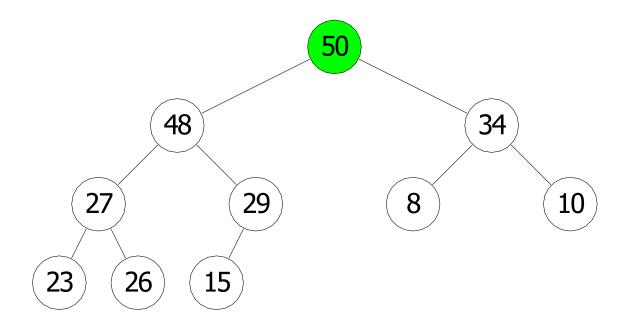
Insert Pseudocode

- Class for heap
 - variable *size* is a class variable to keep track of the number of items
- Store items in array *A*
- insert is O(log n)

 $\begin{aligned} heap::insert(x) \\ increase \ size \\ l \leftarrow last() \\ A[l] \leftarrow x \\ fix-up \ (A, l) \end{aligned}$

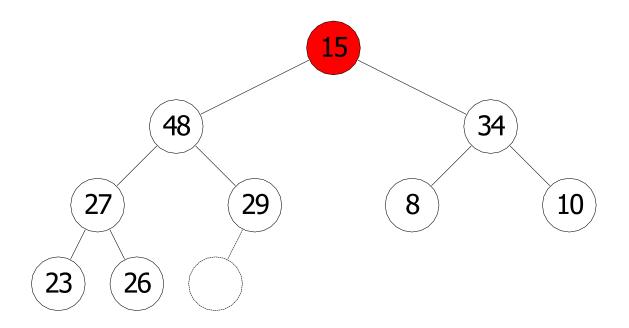
deleteMax in Heaps

- The root has the maximum item
- Replace root by the last leaf and remove last leaf



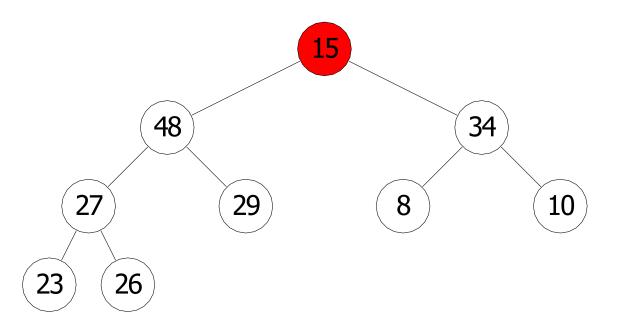
deleteMax in Heaps

- The root has the maximum item
- Replace root by the last leaf and remove last leaf



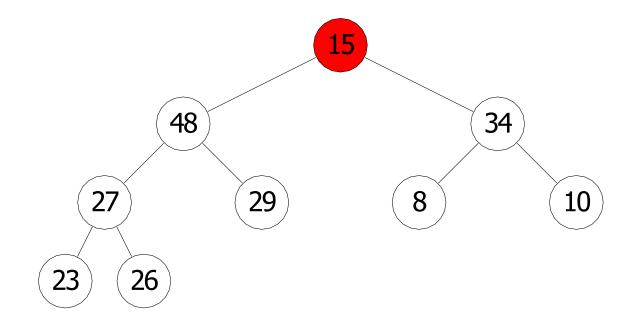
deleteMax in Heaps

- The root has the maximum item
- Replace root by the last leaf and remove last leaf

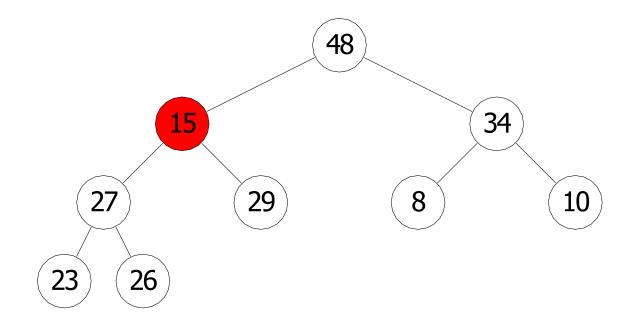


- The heap-order property might be violated
 - perform *fix-down*

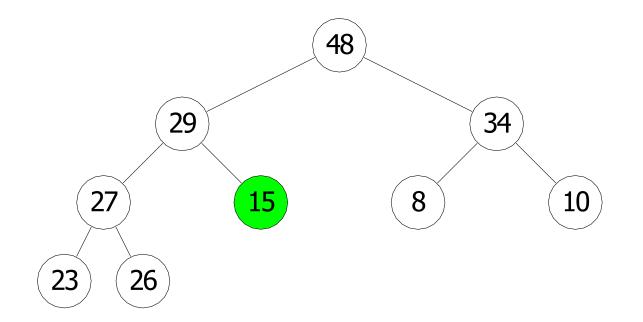
fix-down example



fix-down example



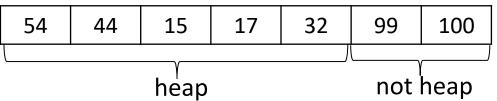
fix-down example



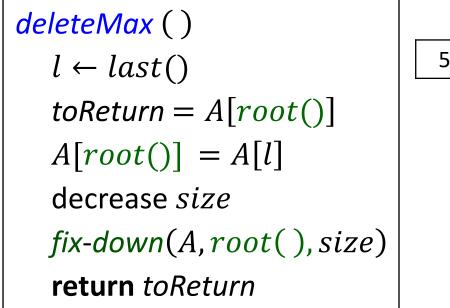
Fix-Down

```
fix-down(A, i, n)
A: array that stores a heap of size n in locations 0 \dots n-1
i: index corresponding to a heap node,
while i is not a leaf do
       j \leftarrow \text{left child of } i
       if i has right child and A [right child of i]. key > A[j]. key then
              j \leftarrow \text{right child of } i // \text{right child has larger key}
      if A[i].key \geq A[j].key
                                          // order is fixed, done
            break
       swap A[i] and A[j]
                                          // move to one level down
       i \leftarrow j
```

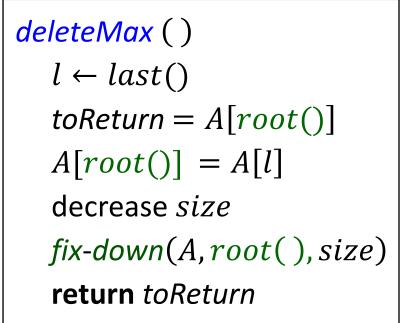
- Time: $O(\text{heap height}) = O(\log n)$
- Pass n because for some usages of *fix-down*, A stores heap only in the front part



Pseudocode for deleteMax

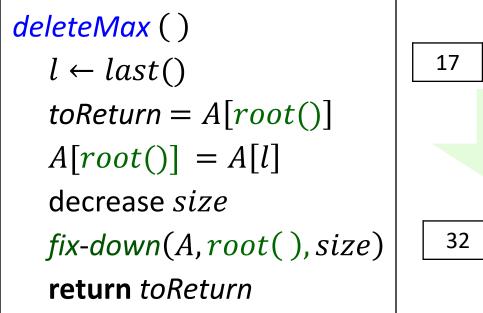


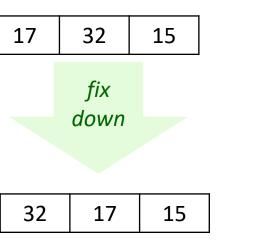
Pseudocode for deleteMax



$$\begin{array}{c|c} l = 3 \\ \hline 17 & 32 & 15 & 17 \\ \hline & size = 4 \\ & to Return = 54 \end{array}$$

Pseudocode for deleteMax





size = 3 *toReturn* = 54

• *deleteMax* is $O(\log n)$

Outline

Priority Queues

- Abstract Data Types
- ADT Priority Queue
- Binary Heaps
- Operations in Binary Heaps
- PQ-Sort and Heapsort
- Intro for the Selection Problem

Sorting using Heaps

- Priority queue sort is $O(init + n \cdot insert + n \cdot deleteMax)$ time
- **Blue** part of the algorithm

level h

- simple heap building
- additional array of size n for heap H
- insert uses *fix-up* which is $O(\log n)$
- worst-case: A in increasing order
- Fact: heap with n nodes and height h has at least n/4 nodes at level h-1

PQSortWithHeaps(A) $H \leftarrow$ empty heap for $i \leftarrow 0$ to n-1 do H.insert(A[i])for $k \leftarrow n-1$ downto 0 do $A[i] \leftarrow H.deleteMax()$

< *n*/4

CONTRADICTION!

< n/2

< *n*/4

 $2^0 + 2^1 + \dots + 2^{h-2} = 2^{h-1} - 2^{h-1}$ level h -2h-1

Sorting using Heaps

- Priority queue sort is $O(init + n \cdot insert + n \cdot deleteMax)$ time
- Blue part of the algorithm
 - simple heap building
 - additional array of size n for heap H
 - insert uses *fix-up* which is O(log n)
 - worst-case: *A* in increasing order
 - level h 1 has at least n/4 nodes
 - fix-up is clog n for each of them
 - total time cn/4log n
 - $\Theta(n \log n)$

PQSortWithHeaps(A) $H \leftarrow$ empty heapfor $i \leftarrow 0$ to n - 1 doH.insert(A[i])for $k \leftarrow n - 1$ downto 0 do $A[i] \leftarrow H.deleteMax()$

level h-1

FINUP

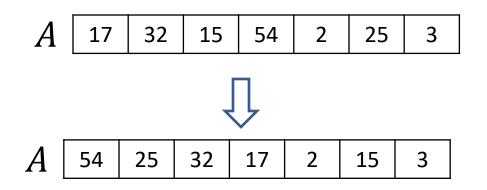
Sorting using Heaps

- Priority queue sort is $O(init + n \cdot insert + n \cdot deleteMax)$ time
- Blue part of the algorithm
 - simple heap building
 - additional array of size n for heap H
 - worst-case time is $\Theta(n \log n)$

PQSortWithHeaps(A) $H \leftarrow$ empty heapfor $i \leftarrow 0$ to n - 1 doH.insert(A[i])for $k \leftarrow n - 1$ downto 0 do $A[i] \leftarrow H.deleteMax()$

- *PQ-Sort* with heap is $\Theta(n \log n)$ and not in place
 - need $\Theta(n)$ auxiliary space for heap array H
- Heapsort: improvement to PQ-Sort with two added tricks
 - 1. use the input array *A* to store the heap!
 - 2. heap can be built in linear time if know all items in advance
 - heapsort is in-place and O(1) auxiliary space

Building Heap Directly In Input Array



Problem statement: build a heap from n items in A[0, ..., n-1] without using additional space

• i.e. put items in A[0, ..., n-1] in heap-order

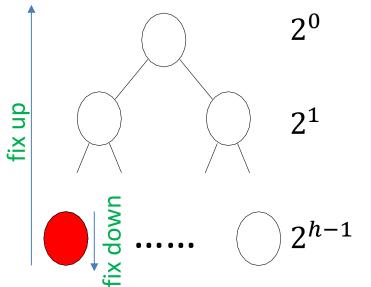
Building Heap Directly In Input Array A 17 32 15 54 2 25 3 32 15 54 2 25 3 32 25 3

Problem statement: build a heap from n items in A[0, ..., n-1] without using additional space

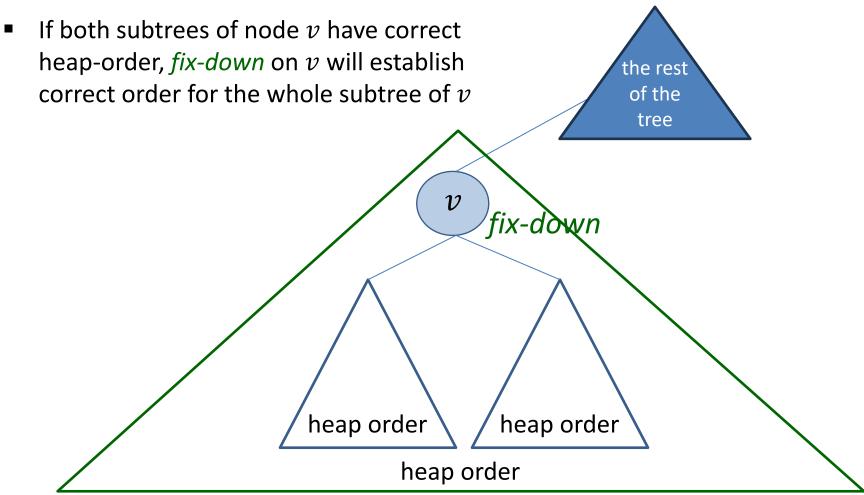
- i.e. put items in A[0, ..., n-1] in heap-order
- Look at array A as a binary tree
- Heap-order (most likely) does not hold
- To create heap-order, can either
 - 1. run *fix-up* for each node
 - 2. run *fix-down* for each node
 - turns out to be more efficient

Building Heap Directly In Input Array: Fix-Up vs. Fix-Down

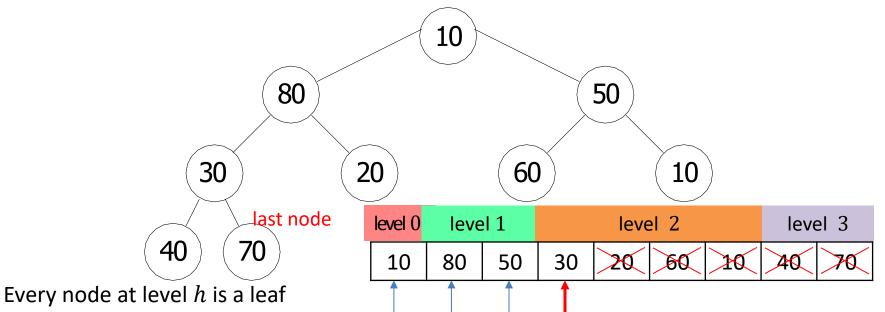
- Level h 1 has at least n/4 nodes
- For each such node
 - fix-up takes O(log n) time
 - fix-down takes O(1) time



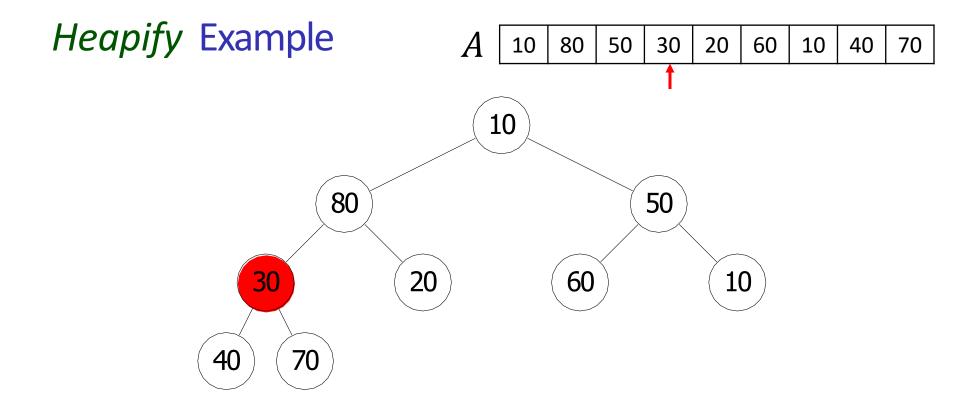
Establishing Heap Order with *fix-downs*

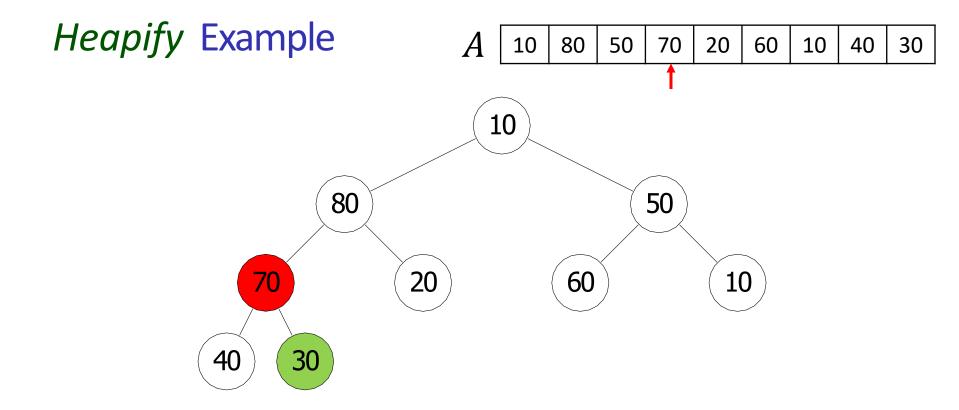


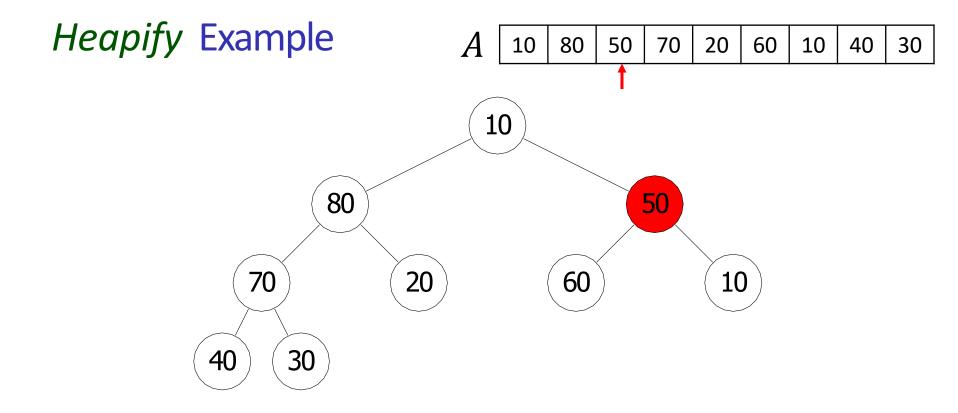
Establishing Heap Order with *fix-down*s

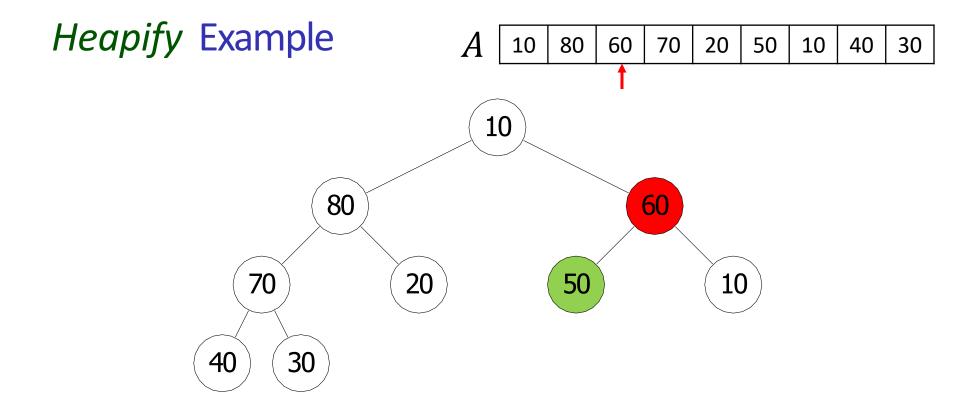


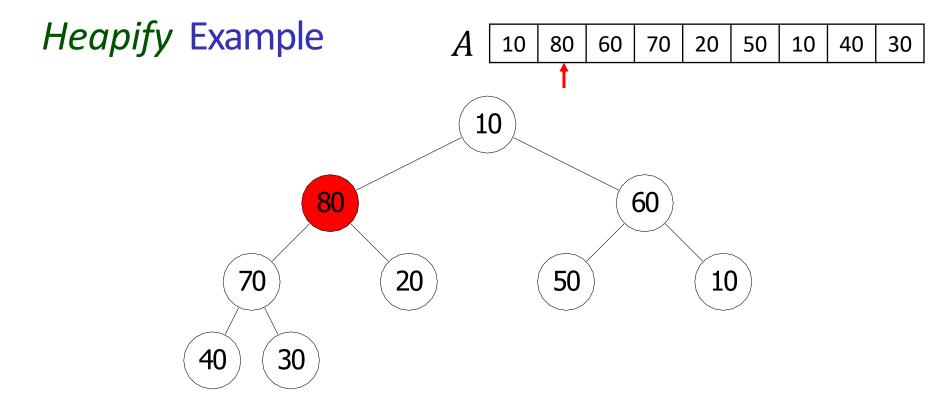
- any leaf has heap-order
- *fix-down* on a leaf does not do anything, so start with the rightmost non-leaf node
 - this is parent of the *last()* node
- Run *fix-down* for level h 1 nodes (starting with the first non-leaf node)
 - subtree of any level h-1 node has heap order
- Run *fix-down* for level h 2 nodes
 - subtree of any level h-2 node has heap order
-
- Run *fix-down* for level 0 node
 - the whole tree has heap-order



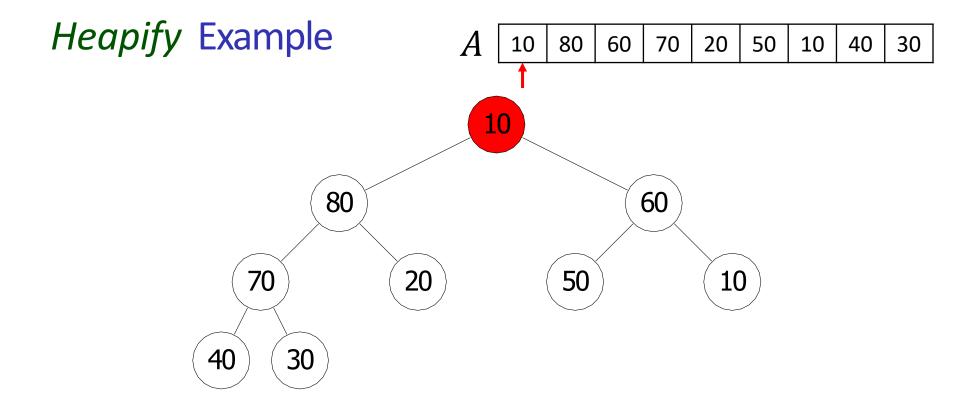


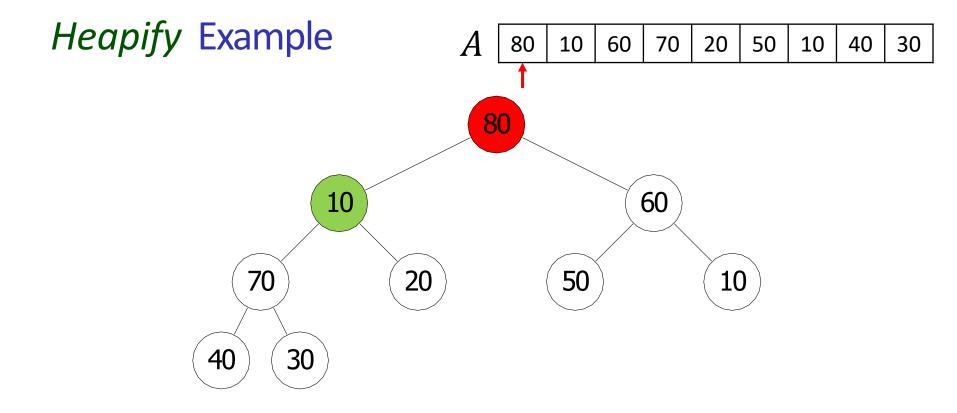


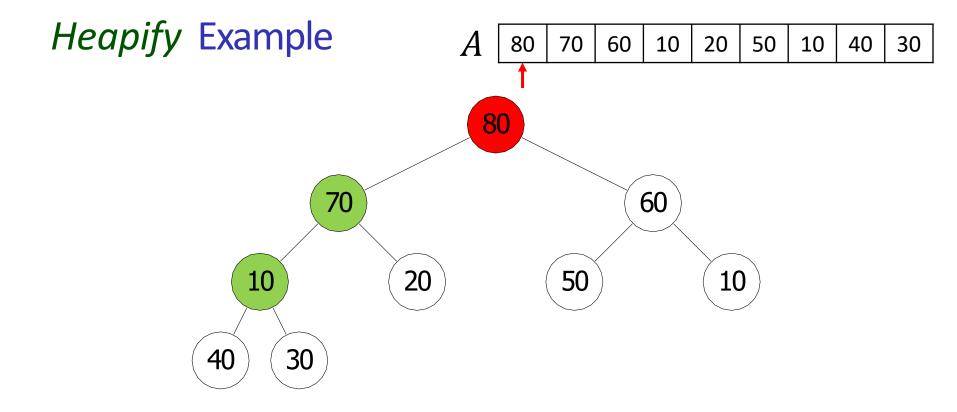


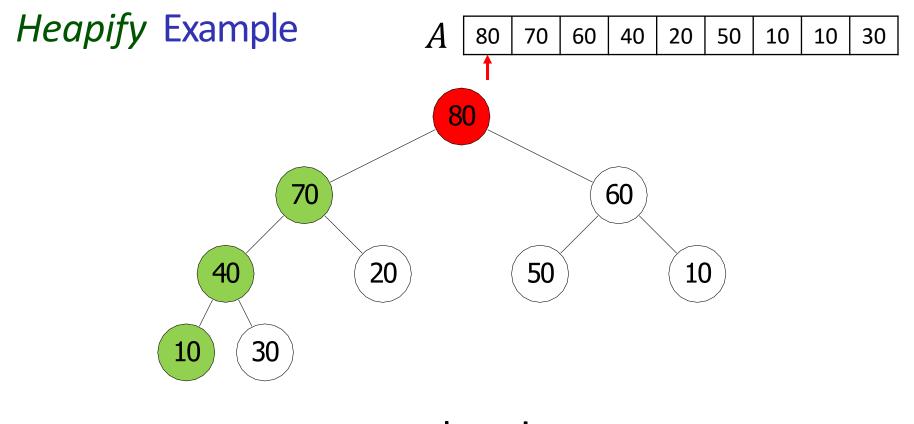


no need to do anything









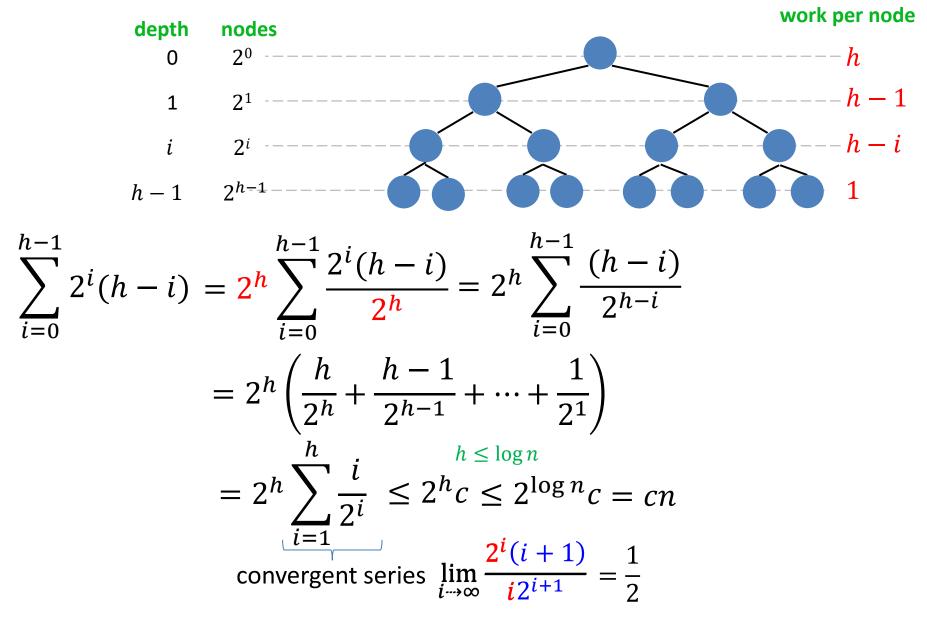
done!

Heapify Pseudocode

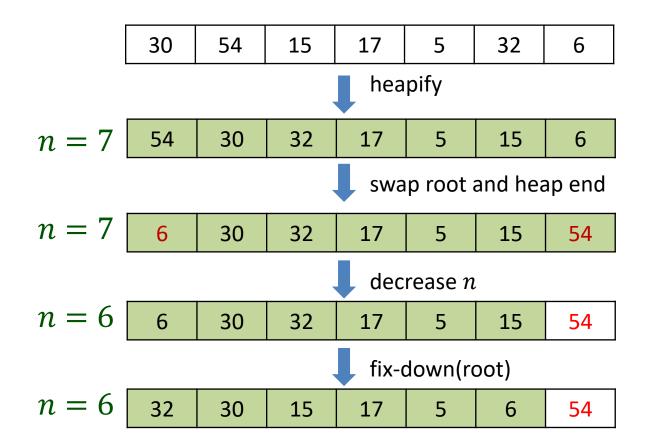
```
\begin{aligned} heapify (A) \\ A : an array \\ for i \leftarrow parent (last()) \text{ downto } 0 \text{ do} \\ fix-down (A, i, n) \end{aligned}
```

- Straightforward analysis yields complexity O(n log n)
- Careful analysis yields complexity $\Theta(n)$
- A heap can be built in linear time if we know all items in advance

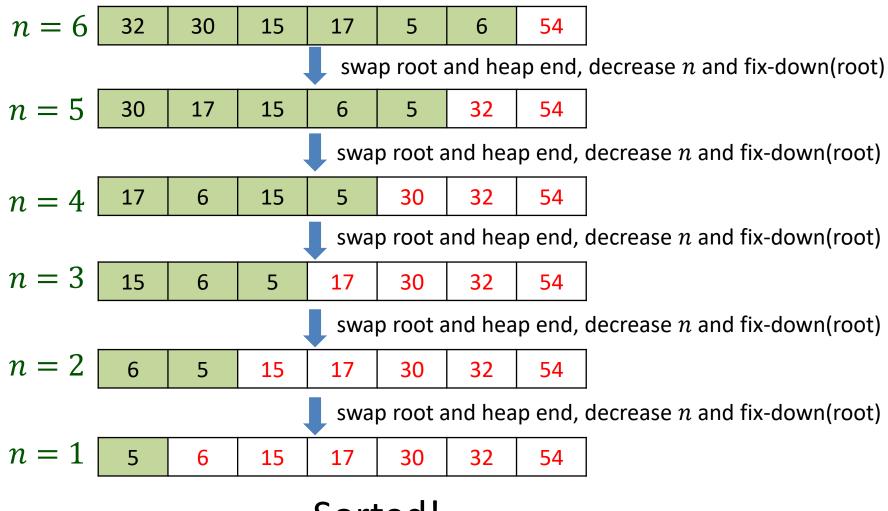
Heapify Analysis



HeapSort



HeapSort



Sorted!

HeapSort

HeapSort(A) $n \leftarrow A.size()$ for $i \leftarrow parent(last())$ downto 0 do fix-down (A, i, n)while n > 1swap items A[root()] and A[last()] decrease *n* fix-down(A, root(), n)

heapify $\Theta(n)$

 $\Theta(n \log n)$

- Total time is $\Theta(n \log n)$
- Similar to PQ-Sort with heaps, but uses input array A for storing heap
- In-place, i.e. only O(1) extra space

Heap Summary

- Binary heap: binary tree that satisfies structural property and heap order property
- Heaps are one possible realization of ADT PriorityQueue
 - insert takes O(log n) time
 - *deleteMax* takes O(log n) time
 - also supports *findMax* in O(1) time
- A binary heap can be built in linear time, if all elements are known beforehand
- With binary heaps have an in-place sorting algorithm with O(n log n) worst case time
- We have seen max-oriented version of heaps
- There exists a symmetric min-oriented version supporting insert and deleteMin with same run times

Outline

Priority Queues

- Abstract Data Types
- ADT Priority Queue
- Binary Heaps
- Operations in Binary Heaps
- PQ-Sort and Heapsort
- Intro for the Selection Problem

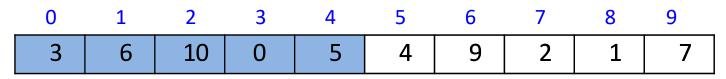
Se	ection	

0	1	2	3	4	5	6
3	6	10	0	5	4	9

SUILEU	0	5	4	5	0	5	10
sorted	0	3	Δ	5	6	9	10

- Select(k) problem find item that would be in A[k] if A was sorted nondecreasing
 - example: select(3) = 5
- Solution 1
 - make k + 1 passes through A, deleting minimum each time
 - $\Theta(kn)$ time
 - k = n/2, time complexity is $\Theta(n^2)$
 - efficient solution is harder to obtain if k is a median
- Solution 2
 - sort A and return A[k]
 - $\Theta(n \log n)$
 - time does not depend on k

Selection



- Solution 3
 - make A into a min-heap by calling heapify(A)
 - $\Theta(n)$ time
 - call $deleteMin(A) \ k + 1$ times
 - $\Theta(n + k \log n)$
 - if k = n/2, this solution is $\Theta(n \log n)$
 - can we do better?