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Abstract Data Type (ADT)

▪ A description of information and a  collection of operations on 
that information

▪ The information  accessed only through the operations  

▪ ADT describes what is stored and what can be done with it, 
but not how it is implemented

▪ Can have various realizations of an ADT, which specify

▪ how the information is stored (data structure)

▪ how the operations are performed (algorithms)



Stack ADT (review)
▪ ADT consisting of a collection of items removed in LIFO 

(last in first out order)

▪ Operations
▪ push insert an item

▪ pop remove and return the most recently inserted item

▪ Extra operations

▪ size, isEmpty, and top

▪ Applications
▪ addresses of recently visited sites in a Web browser,  procedure calls

▪ Realizations of Stack ADT  
▪ arrays

▪ linked lists
▪ both have constant time push/pop



Queue ADT

▪ ADT consisting of a collection of items removed in FIFO                        
(first-in first-out) order

▪ Operations
▪ enqueue insert an item

▪ dequeue remove and return the least recently inserted item

▪ Extra operations

▪ size, isEmpty, and peek

▪ Realizations of Queue ADT  
▪ (circular) arrays

▪ linked lists

▪ both have constant time enqueue /dequeue
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Priority Queue ADT
▪ Collection of items each having  a priority

▪ (priority, other info) or (priority, value)

▪ priority is also called key

▪ Operations

▪ insert: insert an item tagged with a priority

▪ deleteMax: remove and return the item of highest priority

▪ also called extractMax

▪ Definition is for a maximum-oriented priority queue

▪ to define minimum-oriented priority queue, replace deleteMax by 
deleteMin

▪ Applications 

▪ typical “todo” list

▪ sorting, etc.

▪ Question: How to simulate a stack/queue with a priority queue?



Using  Priority Queue to Sort

PQ-Sort(𝐴[0 … 𝑛 −  1])

1. initialize PQ to an empty priority queue

2. for  𝑖 ← 0 to 𝑛 − 1 do

4.

5. for 𝑖 ←  𝑛 −  1   downto 0 do

6.

PQ.insert(𝐴[𝑖])
 

𝐴[𝑖]  ← PQ.deleteMax ()

▪ 𝐴[𝑖] is item with priority 𝐴[𝑖]

▪ Run-time O(initialization+𝑛 ⋅insert+𝑛 ⋅deleteMax)

▪ depends on priority queue implementation



Realizations of Priority Queues

▪ Attempt 1: unsorted arrays

▪ assume dynamic arrays

▪ expand by doubling when needed

▪ happens rarely, so amortized time over all insertions is 𝑂(1)

▪ insert: Θ 1

▪ deleteMax: Θ 𝑛

▪ PQ sort becomes Θ 𝑛2  in the worst and in the best cases

▪ equivalent to  selection-sort

▪ Attempt 2: unsorted linked lists

▪ efficiency identical to Attempt 1

50 7 2

5 2 7

priority = 50, <other info>

show only priorities
more accurate  
picture



Realizations of Priority Queues

▪ Attempt 3:  sorted arrays

▪ store items in order of increasing priority 

▪ deleteMax: Θ 1

▪ insert: Θ 𝑛
▪ in 𝑂 1  in the best case (how?)

▪ PQ-sort equivalent to insertion-sort 
▪ Θ 𝑛2  worst case

▪ Θ 𝑛  best case

2 5 8

▪ Attempt 4: sorted linked-lists 
▪ similar to Attempt 3

2 5 8
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Binary Tree Review

▪ A binary tree  is either
▪ empty, or

▪ consists of three parts

▪  node

▪  two binary trees

▪  left subtree

▪  right subtree

▪ Terminology
▪ root, leaf, parent, child, level, sibling, ancestor, descendant

root

leaf

leafleaf

level 0

level 1

level 2

▪ level 𝑙: all nodes with distance 𝑙 from the root (root is on level 0) 

▪ height of the tree is the longest path in the tree

tree height 2



Lower Bound on Binary Tree Height
▪ Tree with 𝑛 nodes has height ℎ ≤ 𝑛 − 1

▪ Consider tree with 𝑛 nodes of smallest possible height ℎ

▪ all levels must be as full as possible, except possibly the last level ℎ

𝑛 =

20

21

22

20 +21 +22 + ⋯ +2ℎ−1

𝑆 = 20 + 21 + 22 … + 2ℎ

2𝑆 = 21+22 + ⋯ 2ℎ + 2ℎ+1

-

𝑆 = 2ℎ+1 −1

𝑛 ≤ 2ℎ+1 − 1

ℎ ≥ log 𝑛 + 1 − 1

2ℎ+1

20

≤ +2ℎ

▪ level 𝑖 has 2𝑖  nodes

▪ level ℎ has between 1 and 2ℎ nodes

▪ Binary tree height is Ω(log 𝑛) 
▪ note use of asymptotic notation for function other than running time

level 0

level 1

level 2

level ℎ 
(last level)

at least 1
at most 2ℎ 



▪ A max-oriented binary heap is a binary 
tree with the following two properties

1. Structural Property 

▪ all levels of a heap are completely 
filled,  except (possibly) the last level

▪ last level is left-justified

50

29

27

23 26

15

34

8 10

Heaps: Definition
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▪ A max-oriented binary heap is a binary 
tree with the following two properties

1. Structural Property 

▪ all levels of a heap are completely 
filled,  except (possibly) the last level

▪ last level is left-justified

▪ A min-heap is the same, but with opposite order property

▪ Heaps are ideal for implementing priority queues

50

29

27

23 26

15

34

8 10

2. Heap-order Property 
▪ for any node 𝑖,  key[parent of  𝑖] ≥  key[𝑖] 

Heaps: Definition



Heap Height
Lemma:   Height of a heap with 𝑛 nodes is Θ(log 𝑛)

▪ heap is a binary tree ⇒ height ℎ ∈ Ω(log 𝑛)

▪ need to show ℎ ∈ 𝑂(log 𝑛)

▪ heap has all levels full except possibly level ℎ 

▪ 2𝑖 nodes at level 0 ≤ 𝑖 ≤ ℎ − 1

▪ Thus

+1

at least last 
node at level ℎ

𝑛 ≥ 2ℎ − 1 +1

𝑛 ≥ 2ℎ

ℎ ≤ log 𝑛

𝑛 = 20 +21 +22 + ⋯ +2ℎ−1≥ 20 +21 +22 + ⋯ +2ℎ−1

▪ Thus ℎ ∈ 𝑂(log 𝑛)



level 0 level  2 level  3

0 1 2 3 4 5 6 7 8

Storing Heaps in Arrays
▪ Using linked structure for heaps wastes space

▪ Let 𝐻 be a heap of 𝑛 items and let 𝐴 be an array of size 𝑛

▪ store root in  A[0] 

29A[1]

27A[3]

A[7] 23 26 A[8]

15 A[4]

34 A[2]

8A[5] 10 A[6]

50A[0]

▪ continue storing level-by-level from top to bottom, in each  level left-to-right

▪ Use dynamic arrays

▪ 𝐴.size() =  9 

50

50

29 34

29 34

27 15 8 10

27 15 8 1023 23 26

▪ Last heap node is in 𝐴[𝑛 − 1] 

26

level 1



Heaps in Arrays: Navigation
▪ Use node and index interchangeably 

▪ Root is at index 0

▪ Last node is 𝑛 − 1

▪ 𝑛 is the size 

▪ Left child of 𝑖,  if  exists,  is 2𝑖 + 1

▪ Right child of 𝑖, if  exists,  is 2𝑖 + 2

▪ Parent of 𝑖,  if  exists, is 
𝑖−1

2

▪ These  nodes exist if index falls into range 0, … , 𝑛 − 1

𝑖

2𝑖 + 1 2𝑖 + 2

𝑖 − 1

2

▪ Hide implementation details using helper-function

▪ functions root( ),  parent(𝑖), left(𝑖), right 𝑖 , last()

▪ some helper functions need to know 𝑛 

▪ left(𝑖), right 𝑖 , last()

▪ assume data structure stores 𝑛 explicitly
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Insertion in Heaps

▪ Place new key at the first free leaf
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23 26
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▪ Heap-order property might be violated

▪ Perform a fix-up

9 48
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fix-up example
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fix-up(𝐴, 𝑖)

𝑖: an index corresponding to  heap node

while parent(𝑖) exists and 𝐴 𝑝𝑎𝑟𝑒𝑛𝑡 𝑖 . 𝑘𝑒𝑦 < 𝐴 𝑖 . 𝑘𝑒𝑦 do

 swap 𝐴[𝑖] and 𝐴[𝑝𝑎𝑟𝑒𝑛𝑡(𝑖)]

 𝑖 ←  𝑝𝑎𝑟𝑒𝑛𝑡(𝑖 )

fix-up pseudocode

▪ Time: 𝑂(heap height)  =  𝑂(log 𝑛)

// move to one level up



𝑙 = 4

Insert Pseudocode

▪ Class for heap

▪ variable size is a class variable to  
keep track of the number of items

▪ Store items in array 𝐴

size = 4

heap::insert(𝑥)

 increase 𝑠𝑖𝑧𝑒 

 𝑙 ← 𝑙𝑎𝑠𝑡()

 𝐴[𝑙] ← 𝑥 

 fix-up (𝐴, 𝑙)

size = 5
4454 32 15 17

▪ insert is 𝑂(log 𝑛)

fix-up 54 44 15 17 32



deleteMax in Heaps
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▪ The root has the maximum item

▪ Replace root by the last leaf and remove last leaf



deleteMax in Heaps

▪ The root has the maximum item

▪ Replace root by the last leaf and remove last leaf
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deleteMax in Heaps

▪ The heap-order property might be violated
▪ perform fix-down

▪ The root has the maximum item

▪ Replace root by the last leaf and remove last leaf
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fix-down example
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fix-down example
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fix-down example
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heap

Fix-Down

fix-down(𝐴, 𝑖, 𝑛)

𝐴: array that stores a heap of size 𝑛 in locations 0 … 𝑛 − 1

𝑖: index corresponding to a heap node, 

while 𝑖 is not a leaf do

  𝑗 ← left child of 𝑖

  if 𝑖 has right child and 𝐴 right child of 𝑖 . 𝑘𝑒𝑦 > 𝐴  𝑗 . 𝑘𝑒𝑦  then

                    𝑗 ← right child of 𝑖

     if A[𝑖].key  ≥  𝐴  𝑗 . 𝑘𝑒𝑦 

     break 

         swap A[𝑖]  and  𝐴[𝑗] 

         𝑖 ← 𝑗

▪ Pass 𝑛 because for some usages of fix-down,  𝐴 stores heap only in the front part

// right child has  larger key

// order is fixed, done

// move to one level down

54 44 15 17 32 99 100

▪ Time: 𝑂(heap height)  =  𝑂(log 𝑛)

not heap



Pseudocode for deleteMax

54 32 15 17

size = 4

deleteMax  

𝑙 ← 𝑙𝑎𝑠𝑡() 

toReturn = 𝐴 𝑟𝑜𝑜𝑡()

𝐴[𝑟𝑜𝑜𝑡()] = 𝐴 𝑙

decrease 𝑠𝑖𝑧𝑒

fix-down 𝐴, 𝑟𝑜𝑜𝑡  , 𝑠𝑖𝑧𝑒

return toReturn

𝑙 = 3

toReturn = 54



Pseudocode for deleteMax

17 32 15 17

size = 4

𝑙 = 3

toReturn = 54

deleteMax  

𝑙 ← 𝑙𝑎𝑠𝑡() 

toReturn = 𝐴 𝑟𝑜𝑜𝑡()

𝐴[𝑟𝑜𝑜𝑡()] = 𝐴 𝑙

decrease 𝑠𝑖𝑧𝑒

fix-down 𝐴, 𝑟𝑜𝑜𝑡  , 𝑠𝑖𝑧𝑒

return toReturn



Pseudocode for deleteMax

▪ deleteMax is 𝑂(log 𝑛)

17 32 15

size = 3

toReturn = 54
fix 

down

32 17 15

deleteMax  

𝑙 ← 𝑙𝑎𝑠𝑡() 

toReturn = 𝐴 𝑟𝑜𝑜𝑡()

𝐴[𝑟𝑜𝑜𝑡()] = 𝐴 𝑙

decrease 𝑠𝑖𝑧𝑒

fix-down 𝐴, 𝑟𝑜𝑜𝑡  , 𝑠𝑖𝑧𝑒

return toReturn
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Sorting using Heaps
▪ Priority queue sort is 𝑂 𝑖𝑛𝑖𝑡 + 𝑛 ∙ 𝑖𝑛𝑠𝑒𝑟𝑡 + 𝑛 ∙ 𝑑𝑒𝑙𝑒𝑡𝑒𝑀𝑎𝑥  time

▪ Blue part of the algorithm

▪ simple heap building

▪ additional array of size 𝑛 for heap 𝐻

▪ insert uses fix-up which is 𝑂(log 𝑛)

▪ worst-case: 𝐴 in increasing order 

PQSortWithHeaps(𝐴)

                𝐻 ← empty heap

for 𝑖 ← 0 to  𝑛 − 1 do

       𝐻. insert(𝐴 𝑖 )

for 𝑘 ← 𝑛 − 1 downto 0 do

      𝐴 𝑖 ← 𝐻. deleteMax( )

20 +21 +⋯+2ℎ−2= 2ℎ−1 −1

2ℎ−1level ℎ − 1

level ℎ

< 𝑛/4

< 𝑛/4

< 𝑛/2

▪ Fact: heap with 𝑛 nodes and height ℎ has 
at least 𝑛/4 nodes at level ℎ − 1



Sorting using Heaps

▪ level ℎ − 1 has at least 𝑛/4 nodes

▪ fix-up is 𝑐log 𝑛 for each of them

▪ total time 𝑐𝑛/4log 𝑛

▪ Θ 𝑛 log 𝑛

level ℎ − 1……

▪ Priority queue sort is 𝑂 𝑖𝑛𝑖𝑡 + 𝑛 ∙ 𝑖𝑛𝑠𝑒𝑟𝑡 + 𝑛 ∙ 𝑑𝑒𝑙𝑒𝑡𝑒𝑀𝑎𝑥  time

▪ Blue part of the algorithm

▪ simple heap building

▪ additional array of size 𝑛 for heap 𝐻

▪ insert uses fix-up which is 𝑂(log 𝑛)

▪ worst-case: 𝐴 in increasing order 

PQSortWithHeaps(𝐴)

                𝐻 ← empty heap

for 𝑖 ← 0 to  𝑛 − 1 do

       𝐻. insert(𝐴 𝑖 )

for 𝑘 ← 𝑛 − 1 downto 0 do

      𝐴 𝑖 ← 𝐻. deleteMax( )



Sorting using Heaps

▪ Priority queue sort is 𝑂 𝑖𝑛𝑖𝑡 + 𝑛 ∙ 𝑖𝑛𝑠𝑒𝑟𝑡 + 𝑛 ∙ 𝑑𝑒𝑙𝑒𝑡𝑒𝑀𝑎𝑥  time

▪ Blue part of the algorithm
▪ simple heap building

▪ additional array of size 𝑛 for heap 𝐻

▪ worst-case time is Θ 𝑛 log 𝑛

▪ PQ-Sort with heap is Θ(𝑛log 𝑛) and not in place
▪ need Θ(𝑛) auxiliary space for heap array 𝐻

▪ Heapsort:  improvement to PQ-Sort with two added tricks
1.  use the input array 𝐴 to store the heap!

2.  heap can be built in linear time if know all items in advance

▪ heapsort is in-place and 𝑂(1) auxiliary space

PQSortWithHeaps(𝐴)

                𝐻 ← empty heap

for 𝑖 ← 0 to  𝑛 − 1 do

       𝐻. insert(𝐴 𝑖 )

for 𝑘 ← 𝑛 − 1 downto 0 do

      𝐴 𝑖 ← 𝐻. deleteMax( )



Building Heap Directly In Input Array

Problem statement: build a heap from 𝑛 items in 𝐴[0, … , 𝑛 − 1] 
without using additional space

▪ i.e.  put items in 𝐴 0, … , 𝑛 − 1  in heap-order 

17 32 15 54 2 25 3𝐴

54 25 32 17 2 15 3𝐴



Problem statement: build a heap from 𝑛 items in 𝐴[0, … , 𝑛 − 1] 
without using additional space

▪ i.e.  put items in 𝐴 0, … , 𝑛 − 1  in heap-order 

17 32 15 54 2 25 3𝐴
17

32

54 2

15

25 3

▪ Look at array 𝐴 as a binary tree

▪ Heap-order (most likely) does not hold

▪ To create heap-order, can either
1. run fix-up for each node

2. run fix-down for each node
▪ turns out to be more efficient 

Building Heap Directly In Input Array



Building Heap Directly In Input Array: Fix-Up vs. Fix-Down

▪ Level ℎ − 1 has at least 𝑛/4 nodes

▪ For each such node
▪  fix-up takes 𝑂(log 𝑛) time

▪  fix-down takes 𝑂(1) time

20

21

2ℎ−1……

fi
x 

u
p

fi
x 

d
o

w
n



Establishing Heap Order with fix-downs 

heap order heap order

▪ If both subtrees of node 𝑣 have correct 
heap-order, fix-down on 𝑣 will establish 
correct order for the whole subtree of 𝑣

fix-down

heap order

𝑣 

the rest 
of the 
tree



level 0 level  2 level  3

Establishing Heap Order with fix-downs 

level 1

10

80

30

40 70

20

50

60 10

10 80 50 30 20 60 10 40 70

▪ Every node at level ℎ is a leaf 

▪ any leaf has heap-order

▪ fix-down on a leaf does not do anything, so start with the rightmost non-leaf node

▪ this is parent of the last() node

▪ Run fix-down for level ℎ − 1 nodes (starting with the first non-leaf node)

▪ subtree of any level  ℎ − 1 node has heap order

▪ Run fix-down for level ℎ − 2 nodes
▪ subtree of any level  ℎ − 2 node has heap order

▪ …..

▪ Run fix-down for level 0 node
▪ the whole tree has heap-order 

last node



Heapify Example
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10

80

70

40 30

20

60

50 10

Heapify Example

no need to do anything

10 80 60 70 20 50 10 40 30𝐴
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Heapify Example

done!

80 70 60 40 20 50 10 10 30𝐴



Heapify Pseudocode

heapify (𝐴)  

𝐴 : an  array

    for 𝑖 ← parent (last()) downto 0 do

  fix-down (𝐴, 𝑖, 𝑛)

▪ Straightforward analysis yields complexity Ο(𝑛 log 𝑛)

▪ Careful analysis yields complexity  Θ(𝑛)

▪ A heap can be built in linear time if we know all items in advance



Heapify Analysis

ℎ ≤ log 𝑛

20

21

2𝑖

2ℎ−1

nodes

0

1

𝑖

ℎ − 1

depth

1

ℎ − 1

ℎ − 𝑖

ℎ

work per node



𝑖=0

ℎ−1

2𝑖(ℎ − 𝑖) = 2ℎ 

𝑖=0

ℎ−1
2𝑖(ℎ − 𝑖)

2ℎ
= 2ℎ 

𝑖=0

ℎ−1
 (ℎ − 𝑖)

2ℎ−𝑖

= 2ℎ
 ℎ

2ℎ
+

 ℎ − 1

2ℎ−1
+ ⋯ +

 1

21

= 2ℎ 

𝑖=1

ℎ
 𝑖

2𝑖

lim
𝑖⇢∞

2𝑖 𝑖 + 1

𝑖2𝑖+1

≤ 2ℎ𝑐 = 𝑐𝑛

convergent series lim
𝑖⇢∞

2𝑖 𝑖 + 1

𝑖2𝑖+1 =
1

2

≤ 2log 𝑛𝑐



HeapSort

30 54 15 17 5 32 6

heapify

54 30 32 17 5 15 6𝑛 = 7

swap root and heap end

6 30 32 17 5 15 54𝑛 = 7

decrease 𝑛

6 30 32 17 5 15 54𝑛 = 6

fix-down(root)

32 30 15 17 5 6 54𝑛 = 6



HeapSort

32 30 15 17 5 6 54𝑛 = 6
swap root and heap end, decrease 𝑛 and fix-down(root)

30 17 15 6 5 32 54𝑛 = 5

swap root and heap end, decrease 𝑛 and fix-down(root)

17 6 15 5 30 32 54𝑛 = 4
swap root and heap end, decrease 𝑛 and fix-down(root)

15 6 5 17 30 32 54𝑛 = 3

swap root and heap end, decrease 𝑛 and fix-down(root)

6 5 15 17 30 32 54𝑛 = 2

swap root and heap end, decrease 𝑛 and fix-down(root)

5 6 15 17 30 32 54𝑛 = 1

Sorted!



HeapSort

▪ Total time is Θ(𝑛log 𝑛)

▪ Similar to PQ-Sort with heaps, but uses input array 𝐴 for 
storing heap

▪ In-place, i.e. only 𝑂(1) extra space

HeapSort(A)

𝑛 ← 𝐴.size()

  for 𝑖 ← parent (last()) downto  0  do

  fix-down (𝐴, 𝑖, 𝑛)

  while 𝑛 > 1   

  swap items 𝐴[𝑟𝑜𝑜𝑡()] and 𝐴[𝑙𝑎𝑠𝑡()] 
      decrease 𝑛

  fix-down(𝐴, 𝑟𝑜𝑜𝑡(), 𝑛)

heapify

Θ(𝑛)

Θ(𝑛log 𝑛)



Heap Summary

▪ Binary heap: binary tree that satisfies structural property and 
heap order property

▪ Heaps are one possible realization of ADT PriorityQueue

▪  insert takes 𝑂(log 𝑛) time

▪  deleteMax takes 𝑂(log 𝑛) time

▪  also supports findMax in 𝑂(1) time

▪ A binary heap can be built in linear time, if all elements are 
known beforehand

▪ With binary heaps have an in-place sorting algorithm 
with 𝑂(𝑛 log 𝑛) worst case time

▪ We have seen max-oriented version of heaps

▪ There exists a symmetric min-oriented version supporting 
insert and deleteMin with same run times 



Outline

▪ Priority Queues  
▪ Abstract Data Types

▪ ADT Priority Queue  

▪ Binary Heaps

▪ Operations in Binary Heaps

▪ PQ-Sort and Heapsort

▪ Intro for the Selection Problem



Selection

▪ Select(𝒌) problem  find  item that would be in 𝐴[𝑘] if 𝐴 was sorted nondecreasing 

▪ example: select(3)

▪ Solution 1 

▪ make 𝑘 + 1 passes through 𝐴,  deleting minimum each time

▪ Θ 𝑘𝑛  time

▪ 𝑘 = 𝑛/2, time complexity is Θ 𝑛2

▪ efficient solution is harder to obtain if 𝑘 is a median

▪ Solution 2 

▪ sort 𝐴 and return 𝐴[𝑘] 

▪ Θ 𝑛 log 𝑛

▪ time does not depend on 𝑘

0 1 2 3 4 5 6

3 6 10 0 5 4 9

0 3 4 5 6 9 10sorted
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Selection

▪ Solution 3 

▪  make 𝐴 into a min-heap by calling heapify(𝐴) 
▪  Θ(𝑛) time

▪  call deleteMin 𝐴  𝑘 + 1  times

▪  Θ(𝑛 + 𝑘 log 𝑛)

▪  if 𝑘 = 𝑛/2, this solution is Θ 𝑛 log 𝑛
▪ can we do better?

0 1 2 3 4 5 6 7 8          9

3 6 10 0 5 4 9 2 1 73 6 10 0 5 4 9 2 1 7
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