
CS 240 – Data Structures and Data Management

Module 3: Sorting, Average-case and Randomization

O. Veksler

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2025

Outline

▪ Sorting, Average-case, and Randomization

▪ Analyzing average-case run-time

▪ Randomized Algorithms

▪ QuickSelect

▪ QuickSort

▪ Lower Bound for Comparison-Based Sorting

▪ Non-Comparison-Based Sorting

Outline

▪ Sorting, Average-case, and Randomization

▪ Analyzing average-case run-time

▪ Randomized Algorithms

▪ QuickSelect

▪ QuickSort

▪ Lower Bound for Comparison-Based Sorting

▪ Non-Comparison-Based Sorting

Average Case Analysis: Motivation
▪ Worst-case run time is our default for analysis

▪ Best-case run time is also sometimes useful

▪ Sometimes, best-case and worst-case runtimes are the same

▪ But for some algorithms best-case and worst case differ
significantly

▪ worst-case runtime too pessimistic, best-case too optimistic

▪ average-case run time analysis is useful especially in such cases

Average Case Analysis
▪ Recall average case runtime definition

▪ let 𝕀𝑛 be the set of all instances of size 𝑛

𝑇𝑎𝑣𝑔 𝑛 =
σ𝐼∈𝕀𝑛

𝑇(𝐼)

𝕀𝑛

▪ Pros
▪ more accurate picture of how an algorithm performs in practice

▪ provided all instances are equally likely to occur in practice

▪ Cons
▪ usually difficult to compute

▪ average-case and worst case run times could be the same
(asymptotically)

▪ assume 𝕀𝑛 is finite

▪ can achieve ‘finiteness’ in a natural way for many problems

Average Case Analysis: Contrived Example

▪ Best-case

▪ 𝐴 0 ≠ 0

▪ runtime is O(1)

▪ Worst case

▪ 𝐴 0 = 0

▪ runtime is Θ(𝑛)

0 1 2

0 2 1

1 0 2

1 2 0

2 0 1

2 1 0

𝕀3 =

𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡𝐹𝑖𝑟𝑠𝑡(𝐴, 𝑛)

 𝐴: array storing 𝑛 distinct integers in range 0,1, … , 𝑛 − 1

 if 𝐴 0 = 0 then

 for 𝑗 = 1 to 𝑛 do

 print ‘first is smallest’

 else print ‘first is not smallest’

▪ 𝑛! inputs in total

▪ 𝑛 − 1 ! inputs have 𝐴 0 = 0

▪ runtime for each is 𝑐𝑛

▪ 𝑛! − 𝑛 − 1 ! inputs have 𝐴 0 ≠ 0

▪ runtime for each is 𝑐

𝑇𝑎𝑣𝑔 𝑛 =
1

𝕀𝑛

𝐼∈𝕀𝑛

𝑇(𝐼)

0 1 2

0 2 1

1 0 2

1 2 0

2 0 1

2 1 0

𝕀3 =

=
1

𝑛!
𝑐𝑛 + ⋯ + 𝑐𝑛

𝑛 − 1 ! 𝑛! − 𝑛 − 1 !

=
1

𝑛! 𝑐𝑛 𝑛 − 1 !

Average Case Analysis: Contrived Example
𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡𝐹𝑖𝑟𝑠𝑡(𝐴, 𝑛)

 𝐴: array storing 𝑛 distinct integers in range 0,1, … , 𝑛 − 1

 if 𝐴 0 = 0 then

 for 𝑗 = 1 to 𝑛 do

 print ‘first is smallest’

 else print ‘first is not smallest’

+𝑐 + ⋯ 𝑐

+𝑐(𝑛! − 𝑛 − 1 !) = 𝑐 +𝑐 ∈ 𝑂(1)−
𝑐

𝑛

Average Case Analysis: Example 2

all-0-test(𝑤, 𝑛)

 //test if all entries of bitstring 𝑤[0. . 𝑛 − 1] are 0

 if (𝑛 = 0) return true

 if (𝑤[𝑛 − 1] = 1) return false

 all-0-test(𝑤, 𝑛 − 1)

▪ Define 𝑇(𝑛) = # bit-comparisons on input 𝑤

▪ asymptotically the same as runtime

▪ runtime is 𝑐 times # of bit comparisons

▪ makes analysis a bit simpler, do not have to carry around constant 𝑐

▪ Best-case runtime

▪ 𝑤 =∗∗∗ ⋯ ∗∗∗ 1

▪ 𝑇 𝑛 = 1

▪ return false after the first comparison

▪ Θ(1)

Average Case Analysis: Example 2

▪ Worst-case runtime

▪ 𝑤 = 000 … 000

▪ always go into recursion until 𝑛 = 0

▪ 𝑇(𝑛) = 1 + 𝑇(𝑛 − 1)

▪ how to solve?

all-0-test(𝑤, 𝑛)

 //test if all entries of bitstring 𝑤[0. . 𝑛 − 1] are 0

 if (𝑛 = 0) return true

 if (𝑤[𝑛 − 1] = 1) return false

 all-0-test(𝑤, 𝑛 − 1)

Average Case Analysis: Example 2

𝑇 𝑛 = ቊ1 + 𝑇 𝑛 − 1 𝑛 > 0
0 𝑛 = 0

▪ Solving: repeatedly expand until see the pattern

𝑇 𝑛 = 2 + 𝑇 𝑛 − 2

1 + 𝑇 𝑛 − 3

𝑇 𝑛 = 3 + 𝑇 𝑛 − 3

𝑇 𝑛 = (𝑖 + 1) + 𝑇 𝑛 − (𝑖 + 1)

▪ Stop expanding when get to base case

 𝑇 𝑛 − (𝑖 + 1) = 𝑇 0

▪ Thus 𝑇 𝑛 = 𝑛 − 1 + 1 + 𝑇 0

∈ Θ(𝑛)

𝑇 𝑛 = 1 + 𝑇 𝑛 − 1

1 + 𝑇 𝑛 − 2

after 2 expansions:

after 1 expansion:

after 𝑖 expansions:

= 𝑛

⇒ 𝑖 = 𝑛 − 1

⇒ 𝑛 − (𝑖 + 1) = 0

Average Case Analysis: Example 2

▪ Worst-case runtime

▪ 𝑤 = 000 … 000

▪ always go into recursion until 𝑛 = 0

▪ 𝑇(𝑛) = 1 + 𝑇(𝑛 − 1)

▪ resolves to Θ(𝑛)

all-0-test(𝑤, 𝑛)

 //test if all entries of bitstring 𝑤[0. . 𝑛 − 1] are 0

 if (𝑛 = 0) return true

 if (𝑤[𝑛 − 1] = 1) return false

 all-0-test(𝑤, 𝑛 − 1)

Average Case Analysis: Example 2

▪ Let 𝐵𝑛 be the set of all bitstrings of length 𝑛

▪ note |𝐵𝑛| = 2|𝐵𝑛−1|

▪ Average runtime

all-0-test(𝑤, 𝑛)

 //test if all entries of bitstring 𝑤[0. . 𝑛 − 1] are 0

 if (𝑛 = 0) return true

 if (𝑤[𝑛 − 1] = 1) return false

 all-0-test(𝑤, 𝑛 − 1)

𝑇 𝑤 = ቊ
1

1 + 𝑇(𝑤[0. . 𝑛 − 2])

𝑇𝑎𝑣𝑔 𝑛 =
1

𝐵𝑛

𝑤∈𝐵𝑛

𝑇(𝑤)

▪ Recursive formula for one non-empty bitstring 𝑤

if 𝑤 𝑛 − 1 = 1

otherwise

▪ This formula is for one particular bitstring 𝑤, not for average case runtime

0 0 00 0 1

0 1 0

1 0 0

1 0 1

1 1 0

0 1 1

1 1 1

𝐵2

𝐵3

Average Case Analysis: Example 2

𝑇𝑎𝑣𝑔 𝑛 =
1

𝐵𝑛

𝑤∈𝐵𝑛

𝑇(𝑤)

=
1

𝐵𝑛
 𝑤∈𝐵𝑛

𝑤 𝑛−1 =1

𝑇(𝑤) +
1

𝐵𝑛
 𝑤∈𝐵𝑛

𝑤 𝑛−1 =0

𝑇(𝑤)

0 0 00 0 1

0 1 0

1 0 0

1 0 1

1 1 0

0 1 1

1 1 1

=
1

𝐵𝑛
 𝑤∈𝐵𝑛

𝑤 𝑛−1 =1

1 +
1

𝐵𝑛
 𝑤∈𝐵𝑛

𝑤 𝑛−1 =0

(1 + 𝑇(𝑤[0. . 𝑛 − 2]))

𝑇 𝑤 = ቊ
1

1 + 𝑇(𝑤[0. . 𝑛 − 2])

if 𝑤 𝑛 − 1 = 1

otherwise

=
1

2
+

1

𝐵𝑛
 𝑤∈𝐵𝑛

𝑤 𝑛−1 =0

𝑇(𝑤 0. . 𝑛 − 2)+
1

2

= 1 +
𝐵𝑛−1

𝐵𝑛

1

𝐵𝑛−1

𝑣∈𝐵𝑛−1

𝑇(𝑣)

Average Case Analysis: Example 2

𝑇𝑎𝑣𝑔 𝑛 =

𝑇 𝑤 = ቊ
1

1 + 𝑇(𝑤[0. . 𝑛 − 2])

if 𝑤 𝑛 − 1 = 1

otherwise

1 +
1

𝐵𝑛
 𝑤∈𝐵𝑛

𝑤 𝑛−1 =0

𝑇(𝑤 0. . 𝑛 − 2)

0 0 0

0 1 0

1 0 0

1 1 0

𝐵2

= 1 +
1

𝐵𝑛

𝑣∈𝐵𝑛−1

𝑇(𝑣)

= 1 +
𝐵𝑛−1

𝐵𝑛

1

𝐵𝑛−1

𝑣∈𝐵𝑛−1

𝑇(𝑣) = 1 +
1

2
𝑇𝑎𝑣𝑔 𝑛 − 1

▪ Recurrence 𝑇𝑎𝑣𝑔 𝑛 = 1 +
1

2
𝑇𝑎𝑣𝑔 𝑛 − 1 resolves to Θ(1)

Outline

▪ Sorting, average-case, and Randomization

▪ Analyzing average-case run-time

▪ Randomized Algorithms

▪ QuickSelect

▪ QuickSort

▪ Lower Bound for Comparison-Based Sorting

▪ Non-Comparison-Based Sorting

Randomized Algorithms

▪ A randomized algorithm is one which relies on random numbers for some steps

▪ Runtime depends on both input 𝐼 and random numbers 𝑅 used

▪ Side note: computers cannot generate truly random numbers

▪ assume there is pseudo-random number generator (PRNG), a deterministic
program that uses initial seed to generate sequence of seemingly random
numbers

▪ quality of randomized algorithm depends on the quality of the PRNG

𝑠𝑖𝑚𝑝𝑙𝑒(𝐴, 𝑛)

 𝐴: array storing 𝑛 numbers

 𝑠𝑢𝑚 ← 0

 if 𝑟𝑎𝑛𝑑𝑜𝑚 3 = 0 then return 𝑠𝑢𝑚

 else

 for 𝑖 ← 0 𝑡𝑜 𝑛 − 1 do

 𝑠𝑢𝑚 ← 𝑠𝑢𝑚 + 𝐴[𝑖]

 return 𝑠𝑢𝑚

𝑟𝑎𝑛𝑑𝑜𝑚(𝑚) returns integer
sampled uniformly from
{0, 1, … , 𝑚 − 1}, so
Pr(𝑟𝑎𝑛𝑑𝑜𝑚(3) = 0) = 1/3

Expected Running Time
▪ How do we measure the runtime of a randomized algorithm?

▪ depends on input 𝐼 and on 𝑅, sequence of random numbers algorithm choses

▪ Define 𝑇(𝐼, 𝑅) to be running time of randomized algorithm for instance 𝐼 and 𝑅

▪ Expected runtime for instance 𝐼 is expected value for 𝑇 𝐼, 𝑅

𝑇𝑒𝑥𝑝 𝐼 = 𝑬 𝑇(𝐼, 𝑅) =

all possible
sequences 𝑅

𝑇 𝐼, 𝑅 ∙ Pr(𝑅)

▪ Worst-case expected runtime
𝑇𝑒𝑥𝑝 𝑛 = max

𝐼∈𝕀𝑛

𝑇𝑒𝑥𝑝 𝐼

▪ Could define best-case and average-case expected running time, but usually
consider only worst-case expected runtime

▪ Sometimes also want to know running time if get really unlucky with random
numbers 𝑅, i.e. worst case (or worst instance and worst random numbers case)

max
𝑅

max
𝐼∈𝕀𝑛

 𝑇(𝐼, 𝑅)

Expected Running Time Example
𝑠𝑖𝑚𝑝𝑙𝑒(𝐴, 𝑛)

 𝐴: array storing 𝑛 numbers

 𝑠𝑢𝑚 ← 0

 if 𝑟𝑎𝑛𝑑𝑜𝑚 3 = 0 then return 𝑠𝑢𝑚

 else

 for 𝑖 ← 0 𝑡𝑜 𝑛 − 1 do

 𝑠𝑢𝑚 ← 𝑠𝑢𝑚 + 𝐴[𝑖]

 return 𝑠𝑢𝑚

▪ 𝑠𝑖𝑚𝑝𝑙𝑒 needs only one random number: Pr 0 = Pr 1 = Pr 2 =
1

3

𝑇𝑒𝑥𝑝 𝐼 =

all possible
sequences 𝑅

𝑇 𝐼, 𝑅 ∙ Pr(𝑅)

𝑇𝑒𝑥𝑝 𝐼 = 𝑇 𝐼, 0 ∙ Pr 0 +𝑇 𝐼, 1 ∙ Pr 1 +𝑇 𝐼, 2 ∙ Pr 2

= 𝑐 ∙
1

3 +𝑐 ∙ 𝑛 ∙
1

3
+𝑐 ∙ 𝑛 ∙

1

3

= 𝑇 𝐼, 0 ∙
1

3 +𝑇 𝐼, 1 ∙
1

3
+𝑇 𝐼, 2 ∙

1

3

∈ Θ(𝑛)

𝑇𝑒𝑥𝑝 𝑛 = max
𝐼∈𝕀𝑛

𝑇𝑒𝑥𝑝 𝐼

▪ All instances have the same expected runtime, so 𝑇𝑒𝑥𝑝 𝑛 ∈ Θ(𝑛)

Randomized Algorithm: Simple2
𝑠𝑖𝑚𝑝𝑙𝑒2(𝐴, 𝑛)

 𝐴: array storing 𝑛 numbers

 𝑠𝑢𝑚 ← 0

 𝑟1 ← 𝑡𝑜 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛 , 𝑟2 ← 𝑡𝑜 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛

 for 𝑖 ← 1 𝐭𝐨 𝑟1 do

 for 𝑗 ← 1 𝐭𝐨 𝑟2 do

 𝑠𝑢𝑚 ← 𝑠𝑢𝑚 + 𝐴 𝑗 𝐴[𝑖]

▪ Uses 2 random numbers 𝑅 =< 𝑟1, 𝑟2 >:

𝑇𝑒𝑥𝑝 𝐼 =

all possible
sequences 𝑅

𝑇 𝐼, 𝑅 ∙ Pr(𝑅)

𝑇𝑒𝑥𝑝 𝐼

𝑇𝑒𝑥𝑝 𝑛 = max
𝐼∈𝕀𝑛

𝑇𝑒𝑥𝑝 𝐼

▪ All instances have the same running time, so 𝑇𝑒𝑥𝑝 𝑛 ∈ Θ(𝑛2)

Pr < 0,0 >

=

<𝑟1, 𝑟2>

𝑇 𝐼, < 𝑟1, 𝑟2 > ∙
1

𝑛

2

=
1

𝑛

2

𝑟1∈{0,1,…,𝑛−1}

𝑐 ∙ 𝑟1

𝑟2∈{0,1,…,𝑛−1}

𝑟2

=
1

𝑛

2

𝑟1

𝑐 ∙ 𝑟1

𝑛(𝑛 − 1)

2
=

1

𝑛

2

𝑐
𝑛(𝑛 − 1)

2

𝑛(𝑛 − 1)

2

Pr 𝑟1 = 0 = ⋯ = Pr 𝑟1 = 𝑛 − 1 =
1

𝑛

= ⋯ = Pr < 𝑛 − 1, 𝑛 − 1 > =
1

𝑛

2

= Pr < 0,1 >

Why Use Randomized Algorithms

1) improved running time
▪ often design a randomized algorithm so that all instances of size 𝑛

have the same expected runtime

2) improved solution
▪ not studied in this course

▪ Would hope that in practice, time averaged over different runs is 𝑂 1

▪ However, average-cases analysis averages over instances, not runs

▪ cannot average over runs, do not know the instances the user will choose

▪ Suppose all instances are equally likely to occur in practice

▪ then averaging over different runs is equivalent to averaging over instances

▪ so can expect all-0-test to have 𝑂 1 runtime averaged over runs

▪ However humans often generate instances that are far from equally likely

▪ if user calls all-0-test on almost reverse sorted arrays, runtime averaged over
different runs is Θ 𝑛 in practice

▪ real-life example: humans invoke sorting algorithm most often on arrays that
are already almost sorted

▪ Average case 𝑂 1
▪ Worst-case 𝑂 𝑛

Randomized Algorithms to Improve Runtime
all-0-test(𝑤, 𝑛)

 //test if all entries of bitstring 𝑤[0. . 𝑛 − 1] are 0

 if (𝑛 = 0) return true

 if (𝑤[𝑛 − 1] = 1) return false

 all-0-test(𝑤, 𝑛 − 1)

Randomized Algorithms to Improve Runtime

▪ Randomization can improve runtime in practice if instances are not equally likely

▪ makes sense to employ when average case runtime is better than worst case runtime

▪ Randomization can shift dependence from what we cannot control (user) to what we can
control (random number generation)

▪ improved runtime in practice

▪ no more bad instances!

▪ could still have unlucky numbers

▪ if running time is long on some run, it is because we generated unlucky random
numbers, not because of the instance itself

▪ exceedingly rare, think of chances of creating a string containing all zeros by
performing random flips on 𝑤

randomized-all-0-test(𝑤, 𝑛)

 //test if all entries of bitstring 𝑤[0. . 𝑛 − 1] are 0

 if (𝑛 = 0) return true

 if (𝑟𝑎𝑛𝑑𝑜𝑚(2) = 0) then

 𝑤 𝑛 − 1 = 1 − 𝑤[𝑛 − 1]

 if (𝑤[𝑛 − 1] = 1) return false

 randomized-all-0-test(𝑤, 𝑛 − 1)

Randomized Algorithm randomized-all-0-test

▪ Running time depends both on input 𝑤 and sequence 𝑅 of generated random

▪ 𝑤 = 0110, 𝑅 = 1,0,1

▪ Step 1:
𝑤 = 0110 ⇒ make recursive call𝑅 = 1,0,1 ⇒ 𝑤 = 0110

▪ Step 2:

𝑤 = 011 𝑅 = 1,0,1 ⇒ 𝑤 = 010 ⇒ make recursive call

▪ Step 3:

𝑤 = 01 𝑅 = 1,0,1 ⇒ 𝑤 = 01 ⇒ return false

▪ Recursion if 𝑤 𝑛 − 1 ≠ 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟, return false otherwise

randomized-all-0-test(𝑤, 𝑛)

 //test if all entries of bitstring 𝑤[0. . 𝑛 − 1] are 0

 if (𝑛 = 0) return true

 if (𝑟𝑎𝑛𝑑𝑜𝑚(2) = 0) then

 𝑤 𝑛 − 1 = 1 − 𝑤[𝑛 − 1]

 if (𝑤[𝑛 − 1] = 1) return false

 randomized-all-0-test(𝑤, 𝑛 − 1)

Expected Runtime of randomized-all-0-test

▪ Let 𝑇(𝑤, 𝑅) be # of bit-comparisons on input 𝑤 if the random outcomes are 𝑅

▪ this is proportional to runtime

▪ 𝑅 = 𝑥, 𝑅’

▪ 𝑥 is the first random number

▪ 𝑅’ are the other random numbers (if any) for the recursions

▪ By random number independence, Pr(𝑅) = Pr(𝑥) Pr(𝑅’)

▪ Recursive formula for an arbitrary instance 𝑤 (any bitstring)

randomized-all-0-test(𝑤, 𝑛)

 //test if all entries of bitstring 𝑤[0. . 𝑛 − 1] are 0

 if (𝑛 = 0) return true

 if (𝑟𝑎𝑛𝑑𝑜𝑚(2) = 0) then

 𝑤 𝑛 − 1 = 1 − 𝑤[𝑛 − 1] // the only change

 if (𝑤[𝑛 − 1] = 1) return false

 randomized-all-0-test(𝑤, 𝑛 − 1)

𝑇 𝑤, 𝑅
if 𝑥 = 𝑤 𝑛 − 1

otherwise
= 𝑇 𝑤, < 𝑥, 𝑅′ > = ቊ

1
1 + 𝑇(𝑤 0. . 𝑛 − 2 , 𝑅′)

Expected Runtime of randomized-all-0-test

𝑇𝑒𝑥𝑝 𝑤 =

𝑅

Pr(𝑅) ∙ 𝑇 𝑤, 𝑅 =

<𝑥,𝑅′>

Pr 𝑅′ Pr(𝑥) ∙ 𝑇 𝑤, < 𝑥, 𝑅′ >

=
1

2

𝑅′

Pr 𝑅′ ∙ 𝑇 𝑤,< 𝑥 = 𝑤[𝑛 − 1],𝑅′ >

=
1

2

<𝑥,𝑅′>

Pr 𝑅′ ∙ 𝑇 𝑤, < 𝑥, 𝑅′ >

+
1

2

𝑅′

Pr 𝑅′ ∙ 𝑇 𝑤,< 𝑥 ≠ 𝑤[𝑛 − 1],𝑅′ >

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

if 𝑤 𝑛 − 1 = 0

Expected Runtime of randomized-all-0-test

𝑇𝑒𝑥𝑝 𝑤 =

𝑅

Pr(𝑅) ∙ 𝑇 𝑤, 𝑅 =

<𝑥,𝑅′>

Pr 𝑅′ Pr(𝑥) ∙ 𝑇 𝑤, < 𝑥, 𝑅′ >

=
1

2

𝑅′

Pr 𝑅′ ∙ 𝑇 𝑤,< 𝑥 = 𝑤[𝑛 − 1],𝑅′ >

=
1

2

<𝑥,𝑅′>

Pr 𝑅′ ∙ 𝑇 𝑤, < 𝑥, 𝑅′ >

+
1

2

𝑅′

Pr 𝑅′ ∙ 𝑇 𝑤,< 𝑥 ≠ 𝑤[𝑛 − 1],𝑅′ >

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 0

0 0 1

0 1 0

0 1 1

if 𝑤 𝑛 − 1 = 1

Expected Runtime of randomized-all-0-test

𝑇𝑒𝑥𝑝 𝑤 =
1

2

𝑅′

Pr 𝑅′ ∙ 𝑇 𝑤,< 𝑥 = 𝑤[𝑛 − 1],𝑅′ >

if 𝑥 = 𝑤 𝑛 − 1

otherwise
𝑇 𝑤, < 𝑥, 𝑅′ > = ቊ

1
1 + 𝑇(𝑤 0. . 𝑛 − 2 , 𝑅′)

+
1

2

𝑅′

Pr 𝑅′ ∙ 𝑇 𝑤, < 𝑥 ≠ 𝑤[𝑛 − 1], 𝑅′ >

=
1

2

𝑅′

Pr 𝑅′ ∙ 1 +
1

2

𝑅′

Pr 𝑅′ ∙ (1 + 𝑇(𝑤 0. . 𝑛 − 2 , 𝑅′))

=
1

2
+

1

2

𝑅′

Pr 𝑅′ ∙ 1 +
1

2

𝑅′

Pr 𝑅′ ∙ 𝑇(𝑤 0. . 𝑛 − 2 , 𝑅′)

=
1

2 +
1

2 +
1

2

𝑅′

Pr 𝑅′ ∙ 𝑇(𝑤 0. . 𝑛 − 2 , 𝑅′)

Expected Runtime of randomized-all-0-test

𝑇𝑒𝑥𝑝 𝑤 =

𝑅

Pr(𝑅) ∙ 𝑇 𝑤, 𝑅

if 𝑥 = 𝑤 𝑛 − 1

otherwise
𝑇 𝑤, < 𝑥, 𝑅′ > = ቊ

1
1 + 𝑇(𝑤 0. . 𝑛 − 2 , 𝑅′)

= 1 +
1

2

𝑅′

Pr 𝑅′ ∙ 𝑇(𝑤 0. . 𝑛 − 2 , 𝑅′)

𝐶 ≤ max{𝐴, 𝐵, 𝐶, … , 𝑍}

= 1 +
1

2
𝑇𝑒𝑥𝑝(some instance of size 𝑛 − 1)

Expected Runtime of randomized-all-0-test
if 𝑥 = 𝑤 𝑛 − 1

otherwise
𝑇 𝑤, < 𝑥, 𝑅′ > = ቊ

1
1 + 𝑇(𝑤 0. . 𝑛 − 2 , 𝑅′)

≤ 1 +
1

2
max

𝑣∈𝐵𝑛−1

𝑇𝑒𝑥𝑝(𝑣)

▪ 𝑇𝑒𝑥𝑝 𝑤 ≤ 1 +
1

2
𝑇𝑒𝑥𝑝(𝑛 − 1) is true for all 𝑤

▪ Therefore max
𝑤∈𝐵𝑛

𝑇𝑒𝑥𝑝 𝑛 = 𝑇𝑒𝑥𝑝 𝑤

= 1 +
1

2
 𝑇𝑒𝑥𝑝(𝑛 − 1)

≤ 1 +
1

2
𝑇𝑒𝑥𝑝(𝑛 − 1)

𝑇𝑒𝑥𝑝 𝑤 =

𝑅

Pr(𝑅) ∙ 𝑇 𝑤, 𝑅 = 1 +
1

2

𝑅′

Pr 𝑅′ ∙ 𝑇(𝑤 0. . 𝑛 − 2 , 𝑅′)

= 1 +
1

2
𝑇𝑒𝑥𝑝(some instance of size 𝑛 − 1)

Expected Running Time of randomized-all-0-test

▪ Recurrence 𝑇𝑒𝑥𝑝 𝑛 ≤
1

2
𝑇𝑒𝑥𝑝(𝑛 − 1)

▪ recurrence inequality solved just as equality by expansion

▪ resolves to Θ(1)

▪ Expected running time is 𝑂(1)

▪ Same recurrence as for average case all-0-test

▪ 𝑇𝑎𝑣𝑔 𝑛 = 1 +
1

2
𝑇𝑎𝑣𝑔 𝑛 − 1

▪ Recall randomized-all-0-test is very similar to all-0-test

▪ the only difference is a random bit flip

▪ Is expected time of randomized version always the same as average case
time of non-randomized version?

▪ no in general (depends on randomization)

▪ yes if randomization is a shuffle

▪ choose instance randomly with equal probability

Average-case vs. Expected runtime

▪ Ignoring time needed for the first two lines

AlgoritmShuffled(𝑛)

 among all instances 𝐼 of size 𝒏 for Algorithm

 choose 𝐼 randomly and uniformly

 Algorithm(𝐼, 𝑛)

= 𝑇𝑎𝑣𝑔 𝑛=
𝐼∈𝕀𝑛

1

𝕀𝑛
𝑇(𝐼)𝑇𝑒𝑥𝑝 𝑛 =

𝐼∈𝕀𝑛

Pr 𝐼 is chosen 𝑇(𝐼)

▪ Expected runtime of AlgorithmShuffled is equal to the average case time of
Algorithm

▪ Computing expected runtime of AlgorithmShuffled is usually easier than
computing average case time of Algorithm

▪ this gives a different way to compute average case runtime

Average-case vs. Expected runtime

▪ Example: randomized all-0-test, rephrased with for-loops

▪ These algorithms are not quite the same, but this does not matter for the
expected number of bit comparisons

▪ either way, at the time of comparison, the bit is 1 with probability ½

▪ Therefore, the average time of all-0-test can be deduced without analyzing

𝑇𝑎𝑙𝑙−0−𝑡𝑒𝑠𝑡
𝑎𝑣𝑔

𝑛 directly

 𝑇𝑎𝑙𝑙−0−𝑡𝑒𝑠𝑡
𝑎𝑣𝑔

𝑛

randomized-all-0-test(𝑤, 𝑛)

 for (𝑖 = 𝑛 − 1; 𝑖 ≥ 0, 𝑖 −−) do

 if (𝑟𝑎𝑛𝑑𝑜𝑚 2 = 0) then

 𝑤 𝑖 = 1 − 𝑤[𝑖]

 if (𝑤[𝑛 − 1] = 1) then return false

 return true

shuffle-all-0-test(𝑛)

 for (𝑖 = 𝑛 − 1; 𝑖 ≥ 0, 𝑖 −−) do

 𝑤 𝑖 = 𝑟𝑎𝑛𝑑𝑜𝑚(2)

 for (𝑖 = 𝑛 − 1; 𝑖 ≥ 0, 𝑖 −−) do

 if (𝑤[𝑛 − 1] = 1) then return false

 return true

= 𝑇𝑠ℎ𝑢𝑓𝑓𝑙𝑒−𝑎𝑙𝑙−0−𝑡𝑒𝑠𝑡
𝑒𝑥𝑝

𝑛 ∈ Θ(1)= 𝑇𝑟𝑎𝑛𝑑−𝑎𝑙𝑙−0−𝑡𝑒𝑠𝑡
𝑒𝑥𝑝

𝑛

Average-case vs. Expected runtime
▪ Average case runtime and expected runtime are different concepts!

average case expected

𝑇𝑒𝑥𝑝 𝐼 =

outcomes 𝑅

𝑇 𝐼, 𝑅 ∙ Pr(𝑅)
𝑇𝑎𝑣𝑔 𝑛 =

σ𝐼∈𝕀𝑛
𝑇(𝐼)

𝕀𝑛

sum is over instances sum is over random outcomes

applied only to a randomized algorithm

▪ There is a relationship only if the randomization of a deterministic algorithm
effectively achieves ‘choose the input instance randomly’

Outline

▪ Sorting, average-case, and Randomization

▪ Analyzing average-case run-time

▪ Randomized Algorithms

▪ QuickSelect

▪ QuickSort

▪ Lower Bound for Comparison-Based Sorting

▪ Non-Comparison-Based Sorting

Selection Problem

0 1 2 3 4 5 6 7 8 9

30 60 10 0 50 80 90 20 40 70

▪ Special case: MedianFinding = select(𝑘 =
𝑛

2
)

▪ Selection can be done with heaps in Θ(𝑛 + 𝑘 log 𝑛) time

▪ this is Θ 𝑛 log 𝑛 for median finding, not better than sorting

▪ Question: can we do selection in linear time?

▪ yes, with quick-select (average case analysis)

▪ subroutines for quick-select also useful for sorting algorithms

select 2 = 20

▪ Given array 𝐴 of 𝑛 numbers, and 0 ≤ 𝑘 < 𝑛, find the element that
would be at position 𝑘 if 𝐴 was sorted

▪ 𝑘 elements are smaller or equal, 𝑛 − 1 − 𝑘 elements are larger or equal

▪ select(𝑘) returns 𝑘 + 1 smallest element

0 10 20 30 40 50 60 70 80 90sorted 𝟐𝟎

▪ 𝑘 is also called rank

Two Crucial Subroutines for Quick-Select
▪ choose-pivot(𝐴)

▪ return an index 𝑝 in A

▪ 𝑣 = 𝐴[𝑝] is called pivot value

0 1 2 3 4 5 6 7 8 9

30 60 10 0 50 80 90 20 40 70

𝑝 = 4
𝒗 =50

0 1 2 3 4 5 6 7 8 9𝑖 = 5

30 10 0 20 40 𝒗 =50 60 80 90 70

▪ items in 𝐴 [𝑖 + 1, … , 𝑛 − 1] are ≥ 𝑣

▪ partition (𝐴, 𝑝) uses 𝑣 = 𝐴[𝑝] to rearranges 𝐴 so that

▪ items in 𝐴 [0, … , 𝑖 − 1] are ≤ 𝑣

▪ 𝐴 𝑖 = 𝑣

▪ 𝑖 is a correct location of 𝑣 in sorted 𝐴

▪ index 𝑖 is called pivot-index 𝑖

▪ we have no control over value of 𝑖

▪ partition 𝐴, 𝑝 returns pivot-index 𝑖

▪ 𝑣 would be the answer if 𝑖 = 𝑘

Choosing Pivot

choose-pivot(𝐴)
 return A.size() – 1

▪ Will consider more sophisticated ideas later

▪ Simplest idea for choose-pivot

▪ always select rightmost element in array

0 1 2 3 4 5 6 7 8 9

30 60 10 0 50 80 90 20 40 70
𝑝 = 9
𝒗 =70

Partition Algorithm

▪ More challenging: partition in-place, i.e. O(1) auxiliary space

▪ Easy linear-time implementation using extra (auxiliary) Θ(𝑛) space

partition(𝐴, 𝑝)

A: array of size 𝑛, 𝑝: integer s.t. 0 ≤ 𝑝 < 𝑛

create empty lists 𝑠𝑚𝑎𝑙𝑙, 𝑒𝑞𝑢𝑎𝑙 and 𝑙𝑎𝑟𝑔𝑒

 𝑣 ← 𝐴[𝑝]

for each element 𝑥 in 𝐴

 if 𝑥 < 𝑣 then 𝑠𝑚𝑎𝑙𝑙. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑥)

 else if 𝑥 > 𝑣 then 𝑙𝑎𝑟𝑔𝑒. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑥)

 else 𝑒𝑞𝑢𝑎𝑙. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑥)

 𝑖 ← 𝑠𝑚𝑎𝑙𝑙. 𝑠𝑖𝑧𝑒

 𝑗 ← 𝑒𝑞𝑢𝑎𝑙. 𝑠𝑖𝑧𝑒

overwrite 𝐴[0 . . . 𝑖 − 1] by elements in 𝑠𝑚𝑎𝑙𝑙

overwrite 𝐴[𝑖 … 𝑖 + 𝑗 − 1] by elements in 𝑒𝑞𝑢𝑎𝑙

overwrite 𝐴[𝑖 + 𝑗 . . . 𝑛 − 1] by elements in 𝑙𝑎𝑟𝑔𝑒

return i

i = -1 j = 9

Efficient In-Place partition (Hoare)

30 60 10 0 50 80 90 20 40 𝑣=70

30 60 10 0 50 80 90 20 40 𝑣=70

i = 0 j = 9

30 60 10 0 50 80 90 20 40 𝑣=70

i = 1 j = 9

30 60 10 0 50 80 90 20 40 𝑣=70

i = 2 j = 9

30 60 10 0 50 80 90 20 40 𝑣=70

i = 3 j = 9

30 60 10 0 50 80 90 20 40 𝑣=70

i = 4 j = 9

30 60 10 0 50 80 90 20 40 𝑣=70

i = 5 j = 9i = 5 j = 8

30 60 10 0 50 80 90 20 40 𝑣=70

i = 5 j = 8

30 60 10 0 50 40 90 20 80 𝑣=70

i = 5 j = 8

30 60 10 0 50 40 90 20 80 𝑣=70

i = 6 j = 7

30 60 10 0 50 40 90 20 80 𝑣=70

i = 6 j = 7

30 60 10 0 50 40 20 90 80 𝑣=70

j = 6 i = 7

j = 6 i = 7
30 60 10 0 50 40 20 𝑣=70 80 90

almost done,
just swap with
pivot 𝑣

30 60 10 0 50 40 20 90 80 𝑣=70

Efficient In-Place partition (Hoare)

partition (𝐴, 𝑝)

 𝐴: array of size 𝑛

 𝑝: integer s.t. 0 ≤ 𝑝 < 𝑛

swap 𝐴 𝑛 − 1 , 𝐴 𝑝
𝑖 ← −1, 𝑗 ← 𝑛 − 1, 𝑣 ← 𝐴 𝑛 − 1

loop

do 𝑖 ← 𝑖 + 1 while 𝐴 𝑖 < 𝑣

do 𝑗 ← 𝑗 − 1 while 𝑗 ≥ 𝑖 and 𝐴 𝑗 > 𝑣

if 𝑖 ≥ 𝑗 then break

else swap(𝐴 𝑖 , 𝐴[𝑗])

end loop

swap(𝐴 𝑛 − 1 , 𝐴[𝑖])

return 𝑖

▪ Running time is Θ(𝑛)

// put pivot in correct position

// put pivot at the end

Quick Select Algorithm

30 60 10 0 50 80 90 20 40 70

▪ Find item that would be in 𝐴[𝑘] if 𝐴 was sorted

▪ Similar to quick-sort, but recurse only on one side (“quick-sort with pruning”)

▪ Example: select(𝑘 = 4)

𝑣=70

𝑖=7

30 60 10 0 50 40 20 70 80 90

≤ 70 ≥ 70
▪ 𝑖 > 𝑘, search recursively in the left side to select 𝑘

7 smallest items

partition
𝑣=70

Quick Select Algorithm

▪ Example continued: select(𝑘 = 4)

𝑖=2

≤ 20 ≥ 20

▪ 𝑖 < 𝑘, search recursively on the right, select 𝒌 − (𝒊 + 𝟏)
▪ 𝑘 = 1 in our example

𝑖 + 1 = 3 smallest items

30 60 10 0 50 40 20𝑣=20

partition
 𝑣=20

0 10 20 30 50 40 60

Quick Select Algorithm

▪ Example continued: select(𝑘 = 1)

𝑖=3

≤ 60
▪ 𝑖 > 𝑘, search on the left to select 𝑘

partition
 𝑣=60

30 50 40 60𝑣=60

30 50 40 60

3 smallest items

Quick Select Algorithm

▪ Example continued: select(𝑘 = 1)

𝑖=1

partition
𝑣=40

30 50 40𝑣=40

30 40 50

▪ 𝑖 = 𝑘, found our item, done!

▪ In our example, we got to subarray of size 3

▪ Often stop much sooner than that

QuickSelect Algorithm
QuickSelect(𝐴, 𝑘)

 𝐴: array of size 𝑛, 𝑘: integer s.t. 0 ≤ 𝑘 < 𝑛

𝑝 ← choose-pivot(𝐴)

𝑖 ← partition(𝐴, 𝑝)

if 𝑖 = 𝑘 then return 𝐴[𝑖]

else if 𝑖 > 𝑘 then return QuickSelect(𝐴 0, 1, … , 𝑖 − 1 , 𝑘)

else if 𝑖 < 𝑘 then return QuickSelect(𝐴 𝑖 + 1, … , 𝑛 − 1 , 𝑘 − (𝑖 + 1))

𝑇 𝑛, 0 = ቊ
𝑛 + 𝑇 𝑛 − 1, 0 𝑛 > 1

1 𝑛 = 1

▪ Worst case
▪ pivot-value is always the largest and 𝑘 = 0

▪ Let 𝑇 𝑛, 𝑘 be # of comparisons in array of size 𝑛 with parameter 𝑘
▪ this is asymptotically the same as run-time

▪ Best case
▪ first chosen pivot could have pivot-index 𝑘

▪ no recursive calls, total cost Θ(𝑛)

//running time Θ(𝑛)

▪ recurrence equation resolves to Θ(𝑛2)

Average Case Analysis

▪ Observe: 𝑄𝑢𝑖𝑐𝑘𝑆𝑒𝑙𝑒𝑐𝑡 acts the same on two inputs below

14 22 43 6 1 11 7 15 23 44 5 1 12 8

▪ Only the relative order matters, not the actual numbers

▪ true for many (but not all) algorithms

▪ if true, can use this to simplify average case analysis

𝑇𝑎𝑣𝑔 𝑛 =
σ𝐼∈𝕀𝑛

𝑇(𝐼)

𝕀𝑛

14 22 43 6 1 11 7 15 23 44 5 1 12 8

QuickSelect(𝐴, 𝑘)

 𝐴: array of size 𝑛, 𝑘: integer s.t. 0 ≤ 𝑘 < 𝑛

𝑝 ← choose-pivot(𝐴)

𝑖 ← partition(𝐴, 𝑝)

if 𝑖 = 𝑘 then return 𝐴[𝑖]

else if 𝑖 > 𝑘 then return QuickSelect(𝐴 0, 1, … , 𝑖 − 1 , 𝑘)

else if 𝑖 < 𝑘 then return QuickSelect(𝐴 𝑖 + 1, … , 𝑛 − 1 , 𝑘 − (𝑖 + 1))

0 1 2 3 4 5 6

Sorting Permutations
▪ For simplicity, will assume array 𝐴 stores unique numbers

▪ Characterize input by its sorting permutation 𝝅

▪ sorting permutation tells us how to sort the array

▪ stores array indexes in the order corresponding to the sorted array

14 2 3 5 1 11 7

𝜋 = (4, 1, 2, 3, 6, 5,0)

A

𝜋(0)
𝜋(1)

𝜋(2)

𝐴 𝜋 0 ≤ 𝐴 𝜋 1 ≤ 𝐴 𝜋 2 ≤ 𝐴 𝜋 3

1

≤ 𝐴 𝜋 4 ≤ 𝐴 𝜋 5 ≤ 𝐴 𝜋 6

≤ 2 ≤ 3 ≤ 5 ≤ 7 ≤ 11 ≤ 14 sorted!

𝜋(6)

𝜋 = (4, 1, 2, 3, 6, 5,0)𝜋 = (4, 1, 2, 3, 6, 5,0)𝜋 = (4, 1, 2, 3, 6, 5,0)𝜋 = (4, 1, 2, 3, 6, 5,0)𝜋 = (4, 1, 2, 3, 6, 5,0)𝜋 = (4, 1, 2, 3, 6, 5,0)

0 1 2 3 4 5 6
▪ Arrays with the same relative order have the same sorting permutations

15 3 4 6 1 12 8 𝜋 = (4, 1, 2, 3, 6, 5,0)

Average Time with Sorting Permutations

𝑇𝑎𝑣𝑔 𝑛 =
1

𝑛!

𝜋∈Π𝑛

𝑇(𝜋)

▪ There are 𝑛! sorting permutations for arrays with distinct numbers of size 𝑛

▪ let Π𝑛 be the set of all sorting permutations of size 𝑛

▪ Π3 = { 0,1,2 , 0,2,1 , 1,0,2 , 2,0,1 , 1,2,0 , (2,1,0)}

▪ Define average cost through permutations

▪ Intuitively, since all instances with sorting permutation 𝜋 have exactly the same
running time, we group them together

all instances of size 3

instances with sorting permutation 𝜋 = (0, 1, 2)

instances with sorting permutation 𝜋 = (0, 2, 1)

instances with sorting permutation 𝜋 = (1, 0, 2)

𝑇(0, 2, 1)

instances with sorting permutation 𝜋 = (2, 0, 1)

instances with sorting permutation 𝜋 = (1, 2, 0)

instances with sorting permutation 𝜋 = (2, 1, 0)

7, 20, 10

−3, 6.6, 1.8

10, 21, 13
…

…

infinite set

infinite set

20,7, 10

6.6, −3, 1.8

21,10, 13

av
er

ag
e

Average-Case Analysis of QuickSelect
▪ For analyzing average case run-time, we assume all input items are distinct

▪ this can be forced by tie-breakers

▪ Can show (complicated) that average-case runtime is Θ 𝑛

▪ Instead, we will randomize QuickSelect

▪ when randomization is done with shuffling, the expected time of
randomized QuickSelect is the same as average case runtime of non-
randomized QuickSelect

▪ expected runtime of randomized QuickSelect is easier to derive

▪ In addition, randomized QuickSelect is the fastest algorithm for the
selection problem in practice

Randomized QuickSelect: Shuffling
▪ First idea for randomization

▪ Shuffle the input then run quickSelect

quickSelectShuffled(𝐴, 𝑘)

𝐴 : array of size 𝑛

 for 𝑖 ⟵ 1 to 𝑛 − 1 do

 swap(𝐴 𝑖 , 𝐴[𝑟𝑎𝑛𝑑𝑜𝑚 𝑖 + 1])

 QuickSelect(𝐴, 𝑘)

▪ Can show that every permutation of 𝐴 is equally likely after shuffle

▪ As shown before, expected time of quickSelectShuffled is the same as average
…. case time of quickSelect

// shuffle

Randomized QuickSelect Algorithm

RandomizedQuickSelect(𝐴, 𝑘)
 𝐴: array of size 𝑛, 𝑘: integer s.t. 0 ≤ 𝑘 < 𝑛

𝑝 ← random(𝐴. 𝑠𝑖𝑧𝑒)

𝑖 ← partition(𝐴, 𝑝)

if 𝑖 = 𝑘 then return 𝐴[𝑖]

else if 𝑖 > 𝑘 then

 return RandomizedQuickSelect(𝐴 0, 1, … , 𝑖 − 1 , 𝑘)

else if 𝑖 < 𝑘 then

 return RandomizedQickSelect(𝐴 𝑖 + 1, … , 𝑛 − 1 , 𝑘 − (𝑖 + 1))

▪ Second idea: change pivot selection

▪ Just one line change from QuickSelect

▪ It is possible to prove that RandomizedQuickSelect has the same expected
runtime as quickSelectShuffled (no details)

▪ Therefore expected time for RandomizedQuickSelect is the same as the average
case runtime of QuickSelect

▪ easier to compute

Randomized QuickSelect: Analysis

▪ Let 𝑇(𝐴, 𝑘, 𝑅) be number of key-comparisons on array 𝐴 of
size 𝑛, selecting 𝑘th element, using random numbers 𝑅

▪ asymptotically the same as running time

RandomizedQuickSelect(𝐴, 𝑘)

𝑝 ← random(𝐴. 𝑠𝑖𝑧𝑒)

𝑖 ← partition(𝐴, 𝑝)
⋯

𝑇 𝐴, 𝑘, 𝑖, 𝑅′ = 𝑛 + ቐ
𝑇(𝐵, 𝑘, 𝑅′) if 𝑖 > 𝑘

𝑇(𝐶, 𝑘 − 𝑖 − 1, 𝑅′) if 𝑖 < 𝑘
0 otherwise

𝑣

𝒊

𝐶𝐵

select(𝑘) select(𝑘 − 𝑖 − 1)

size 𝑖 size 𝑛 − 𝑖 − 1

▪ Identify numbers 𝑝 generated by random with pivot indexes 𝑖

▪ one-one correspondence between generated numbers and pivot indexes

▪ So 𝑅 is a sequence of randomly generated pivot indexes, 𝑅 =⟨first, the rest of 𝑅⟩= 𝑖, 𝑅′

▪ Assume array elements are distinct

▪ probability of any pivot-index 𝑖 equal to 1/𝑛

▪ Structure of array 𝐴 after partition

▪ Recurse in array 𝐵 or 𝐶 or algorithms stops

Randomized QuickSelect: Analysis

𝑇𝑒𝑥𝑝 𝑛 = max
𝐴∈𝕀𝑛

max
𝑘∈{0,…𝑛−1}

𝑅

𝑇 𝐴, 𝑘, 𝑅 Pr(𝑅)

▪ Runtime of RandomizedQuickSelect(𝐴, 𝑘) also depends on 𝑘

Randomized QuickSelect: Analysis

𝑅

𝑇 𝐴, 𝑘, 𝑅 Pr 𝑅 =

=

𝑅= 𝑖,𝑅′

𝑇 𝐴, 𝑘, 𝑖, 𝑅′ Pr 𝑖 Pr(𝑅′)

=
1

𝑛

𝑖=0

𝑘−1

𝑅′

𝑇 𝐴, 𝑘, 𝑖, 𝑅′ Pr(𝑅′) +
1

𝑛
∙ 𝑛 +

1

𝑛

𝑖=𝑘+1

𝑛−1

𝑅′

𝑇 𝐴, 𝑘, 𝑖, 𝑅′ Pr(𝑅′)

𝑇 𝐴, 𝑘, 𝑖, 𝑅′ = 𝑛 + ቐ
𝑇(𝐵, 𝑘, 𝑅′) if 𝑖 > 𝑘

𝑇(𝐶, 𝑘 − 𝑖 − 1, 𝑅′) if 𝑖 < 𝑘
0 otherwise

𝑖 < 𝑘: recurse on 𝐶 𝑖 > 𝑘: recurse on 𝐵base case

=
1

𝑛

𝑖=0

𝑘−1

𝑅′

𝑛 + 𝑇(𝐶, 𝑘 − 𝑖 − 1, 𝑅′) Pr(𝑅′) +1 +
1

𝑛

𝑖=𝑘+1

𝑛−1

𝑅′

𝑛 + 𝑇(𝐵, 𝑘, 𝑅′) Pr(𝑅′)

≤ 𝑛 +
1

𝑛

𝑖=0

𝑘−1

max
𝐷∈𝕀𝑛−𝑖−1, 𝑤∈{0,…𝑘−1}

𝑅′

𝑇(𝐷, 𝑤, 𝑅′)Pr(𝑅′) +
1

𝑛

𝑖=𝑘+1

𝑛−1

max
𝐷∈𝕀𝑖, 𝑤∈{𝑘+1,…,𝑛−1}

𝑅′

𝑇(𝐷, 𝑤, 𝑅′)Pr(𝑅′)

= 𝑛 +
1

𝑛

𝑖=0

𝑘−1

𝑇𝑒𝑥𝑝 𝑛 − 𝑖 − 1 +
1

𝑛

𝑖=𝑘+1

𝑛−1

𝑇𝑒𝑥𝑝 𝑖

max
𝐴∈𝕀𝑛

max
𝑘∈{0,…𝑛−1}

𝑅

𝑇 𝐴, 𝑘, 𝑅 Pr(𝑅)𝑇𝑒𝑥𝑝 𝑛 =

▪ Since above bound works for any 𝐴 and 𝑘, it will work for the worst 𝐴 and 𝑘

≤ 𝑛 +
1

𝑛

𝑖=0

𝑛−1

max{𝑇𝑒𝑥𝑝 𝑖 , 𝑇𝑒𝑥𝑝 𝑛 − 𝑖 − 1 }

Randomized QuickSelect: Analysis

▪ In summary, expected runtime for RandomizedQuickSelect

𝑇𝑒𝑥𝑝 𝑛 ≤ 𝑛 +
1

𝑛

𝑖=0

𝑛−1

max{𝑇𝑒𝑥𝑝 𝑖 , 𝑇𝑒𝑥𝑝 𝑛 − 𝑖 − 1 }

Theorem: 𝑇 𝑛 ϵ Ο(𝑛)

Proof:

▪ will prove 𝑇 𝑛 ≤ 4𝑛 by induction on 𝑛

▪ base case, 𝑛 = 1: 𝑇 1 = 1

𝑇 1 = 1 and 𝑇(𝑛) ≤ 𝑛 +
1

𝑛

𝑖=0

𝑛−1

𝑚𝑎𝑥 𝑇 𝑖 , 𝑇(𝑛 − 𝑖 − 1)

≤ 𝑛 +
1

𝑛

𝑖=0

𝑛−1

𝑚𝑎𝑥 4𝑖, 4(𝑛 − 𝑖 − 1)

𝑇(𝑛) ≤ 𝑛 +
1

𝑛

𝑖=0

𝑛−1

𝑚𝑎𝑥 𝑇 𝑖 , 𝑇(𝑛 − 𝑖 − 1)

induction hypothesis applies
to each one of these

≤ 𝑛 +
4

𝑛

𝑖=0

𝑛−1

𝑚𝑎𝑥 𝑖, 𝑛 − 𝑖 − 1

Randomized QuickSelect: Solving Recurrence

≤ 4 ⋅ 1

▪ induction hypothesis: assume 𝑇 𝑚 ≤ 4𝑚 for all 𝑚 < 𝑛

▪ need to show 𝑇 𝑛 ≤ 4𝑛

Proof: (cont.) 𝑇(𝑛) ≤ 𝑛 +
4

𝑛

𝑖=0

𝑛−1

𝑚𝑎𝑥 𝑖, 𝑛 − 𝑖 − 1

𝑖=0

𝑛−1

𝑚𝑎𝑥 𝑖, 𝑛 − 𝑖 − 1 = +

𝑖=
𝑛
2

𝑛−1

𝑚𝑎𝑥 𝑖, 𝑛 − 𝑖 − 1

𝑖=0

𝑛
2−1

𝑚𝑎𝑥 𝑖, 𝑛 − 𝑖 − 1

+𝑚𝑎𝑥 1, 𝑛 − 2= 𝑚𝑎𝑥 0, 𝑛 − 1 +𝑚𝑎𝑥 2, 𝑛 − 3 + ⋯ + 𝑚𝑎𝑥
𝑛

2
− 1,

𝑛

2

+𝑚𝑎𝑥
𝑛

2
+ 1,

𝑛

2
− 2+𝑚𝑎𝑥

𝑛

2
,
𝑛

2
− 1 + ⋯ + 𝑚𝑎𝑥 𝑛 − 1,0

= 𝑛 − 1 + (𝑛 − 2) + ⋯ +
𝑛

2
+

𝑛

2
+

𝑛

2
+ 1 + ⋯ 𝑛 − 1

3𝑛

2
− 1

𝑛

4

3𝑛

2
− 1

𝑛

4

=

≤
3

4
𝑛2

3𝑛

2
− 1

𝑛

2

≤ 𝑛 +
4

𝑛
∙

3

4
𝑛2 = 4𝑛

exactly what we
need for the proof

Randomized QuickSelect: Solving Recurrence

Expected runtime of RandomizedQuickSelect is Θ(𝑛)
▪ the bound is tight since partition takes Ω(𝑛)

▪ if unlucky with random numbers, then runtime is Ω(𝑛2)

▪ worst case: worst instance, worst luck

▪ Therefore quickSelectShuffled has expected runtimeΘ(𝑛)

▪ Therefore quickSelect has average case runtime Θ(𝑛)

▪ RandomizedQuickSelect is generally the fastest implementation of
selection algorithm

▪ There is a selection algorithm with worst-case running time Ο(𝑛)
▪ CS341

▪ but it uses double recursion and is slower in practice

Summary of Selection

Outline

▪ Sorting, average-case, and Randomization

▪ Analyzing average-case run-time

▪ Randomized Algorithms

▪ QuickSelect

▪ QuickSort

▪ Lower Bound for Comparison-Based Sorting

▪ Non-Comparison-Based Sorting

QuickSort
▪ Hoare developed partition and

quick-select in 1960

▪ Also used them to sort based on
partitioning

QuickSort(𝐴)

 Input: array A of size 𝑛

if 𝑛 ≤ 1 then return

𝑝 ← choose-pivot(𝐴)

𝑖 ← partition (𝐴 ,𝑝)

QuickSort(𝐴 0, 1, … , 𝑖 − 1)

QuickSort(𝐴 𝑖 + 1, … , 𝑛 − 1)

𝑣≤ 𝑣 ≥ 𝑣
correct place

sort recursively sort recursively

Sorted!𝑣

QuickSort

▪ Let 𝑇 𝑛 to be the number of comparisons on size 𝑛 array

▪ running time is Θ(number of comparisons)

▪ Recurrence for pivot-index 𝑖: 𝑇 𝑛 = 𝑛 + 𝑇 𝑖 + 𝑇(𝑛 − 𝑖 − 1)

▪ Worst case 𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑛

▪ recurrence solved in the same way as quickSelect, 𝑂 𝑛2

▪ Best case 𝑇 𝑛 = 𝑇 𝑛/2 + 𝑇 𝑛/2 + 𝑛

▪ solved in the same way as mergeSort, Θ 𝑛 log 𝑛

▪ Average case?

▪ through randomized version of QuickSort

QuickSort(𝐴)

 Input: array A of size 𝑛

if 𝑛 ≤ 1 then return

𝑝 ← choose-pivot(𝐴)

𝑖 ← partition (𝐴 ,𝑝)

QuickSort(𝐴 0, 1, … , 𝑖 − 1)

QuickSort(𝐴 𝑖 + 1, … , 𝑛 − 1)

Randomized QuickSort: Random Pivot

▪ Let 𝑇𝑒𝑥𝑝 𝑛 = number of comparisons

▪ Analysis is similar to that of RandomizedQuickSelect

▪ but recurse both in array of size 𝑖 and array of size 𝑛 − 𝑖 − 1

▪ Expected running time for RandomizedQuickSort

▪ derived similarly to RandomizedQuickSelect

𝑇𝑒𝑥𝑝 𝑛 ≤
1

𝑛

𝑖=0

𝑛−1

𝑛 + 𝑇𝑒𝑥𝑝 𝑖 + 𝑇𝑒𝑥𝑝 𝑛 − 𝑖 − 1

RandomizedQuickSort(𝐴)

 Input: array A of size 𝑛

if 𝑛 ≤ 1 then return

𝑝 ← random(𝐴. 𝑠𝑖𝑧𝑒)

𝑖 ← partition (𝐴 ,𝑝)

RandomizedQuickSort(𝐴 0, 1, … , 𝑖 − 1)

RandomizedQuickSort(𝐴 𝑖 + 1, … , 𝑛 − 1)

Randomized QuickSort: Expected Runtime

𝑇𝑒𝑥𝑝 𝑛 ≤
1

𝑛

𝑖=0

𝑛−1

𝑛 + 𝑇𝑒𝑥𝑝 𝑖 + 𝑇𝑒𝑥𝑝 𝑛 − 𝑖 − 1

𝑇 0 + 𝑇 1 + ⋯ + 𝑇 𝑛 − 1

= 𝑛 +
2

𝑛

𝑖=0

𝑛−1

𝑇𝑒𝑥𝑝 𝑖

▪ Simpler recursive expression for 𝑇𝑒𝑥𝑝 𝑛

▪ Thus 𝑇𝑒𝑥𝑝 𝑛 ≤ 𝑛 +
2

𝑛

𝑖=0

𝑛−1

𝑇𝑒𝑥𝑝 𝑖

= 𝑛 +
1

𝑛

𝑖=0

𝑛−1

𝑇𝑒𝑥𝑝 𝑖 +
1

𝑛

𝑖=0

𝑛−1

𝑇𝑒𝑥𝑝 𝑛 − 𝑖 − 1

𝑇 𝑛 − 1 + 𝑇 𝑛 − 2 + ⋯ + 𝑇 0

Randomized QuickSort: Solve Recurrence Relation

▪ Claim 𝑇 𝑛 ≤ 2𝑛 ln 𝑛 for all 𝑛 > 0

▪ Proof (by induction on 𝑛):

▪ 𝑇 1 = 0 (no comparisons)

▪ Suppose true for 2 ≤ 𝑚 < 𝑛

▪ Let 𝑛 ≥ 2

𝑇 1 = 0 and 𝑇 𝑛 ≤ 𝑛 +
2

𝑛

𝑖=2

𝑛−1

𝑇 𝑖

𝑇 𝑛 ≤ 𝑛 +
2

𝑛

𝑖=2

𝑛−1

𝑇 𝑖 ≤ 𝑛 +
2

𝑛

𝑖=2

𝑛−1

2𝑖 ln 𝑖

induction
hypothesis

▪ Upper bound by integral, since is 𝑥 ln 𝑥 is monotonically increasing for 𝑥 > 1

= 𝑛 +
4

𝑛

𝑖=2

𝑛−1

𝑖 ln 𝑖

𝟐
𝒍𝒏

𝟐

3
𝒍𝒏

𝟑

4
𝒍𝒏

𝟒

1 2 3 4

𝑥 ln 𝑥

𝑥

𝑖=2

𝑛−1

𝑖 ln 𝑖 ≤ න
2

𝑛

𝑥 ln 𝑥 𝑑𝑥 =
1

2
𝑛2 ln 𝑛 −

1

4
𝑛2 − 2 ln 2 + 1

≤
1

2
𝑛2 ln 𝑛 −

1

4
𝑛2

≤ 0

Randomized QuickSort: Solve Recurrence Relation

▪ Claim 𝑇 𝑛 ≤ 2𝑛 ln 𝑛 for all 𝑛 > 0

▪ Proof (by induction on 𝑛):

▪ 𝑇 1 = 0 (no comparisons)

▪ Suppose true for 2 ≤ 𝑚 < 𝑛

▪ Let 𝑛 ≥ 2

𝑇 𝑛 ≤ 𝑛 +
4

𝑛

1

2
𝑛2 ln 𝑛 −

1

4
𝑛2

≤
1

2
𝑛2 ln 𝑛 −

1

4
𝑛2

= 2𝑛 ln 𝑛

▪ Expected running time of RandomizedQuickSort is 𝑂 𝑛 log 𝑛

▪ This is tight since best-case run-time is Ω 𝑛 log 𝑛

▪ Average case runtime of QuickSort is 𝑂 𝑛 log 𝑛

𝑇 1 = 0 and 𝑇 𝑛 ≤ 𝑛 +
2

𝑛

𝑖=2

𝑛−1

𝑇 𝑖

𝑇 𝑛 ≤ 𝑛 +
2

𝑛

𝑖=2

𝑛−1

𝑇 𝑖 ≤ 𝑛 +
2

𝑛

𝑖=2

𝑛−1

2𝑖 ln 𝑖

induction
hypothesis

= 𝑛 +
4

𝑛

𝑖=2

𝑛−1

𝑖 ln 𝑖

Improvement ideas for QuickSort
▪ The auxiliary space is Ω(recursion depth)

▪ Θ 𝑛 in the worst case, Θ log 𝑛 average case

▪ can be reduce to Θ log 𝑛 worst-case by

▪ recurse in smaller sub-array first

▪ replacing the other recursion by a while-loop (tail call elimination)

▪ Stop recursion when, say 𝑛 ≤ 10

▪ array is not completely sorted, but almost sorted

▪ at the end, run insertionSort, it sorts in just 𝑂 𝑛 time since all items
are within 10 units of the required position

▪ Arrays with many duplicates sorted faster by
changing partition to produce three subsets

▪ Programming tricks

▪ instead of passing full arrays, pass only the range of indices

▪ avoid recursion altogether by keeping an explicit stack

< 𝒗 = 𝒗 > 𝒗

QuickSort with Tricks

QuickSortImproves(𝐴, 𝑛)
initialize a stack 𝑆 of index-pairs with { 0, 𝑛 − 1 }

while 𝑆 is not empty

𝑙, 𝑟 ← 𝑆. 𝑝𝑜𝑝()

while 𝑟 − 𝑙 + 1 > 10

 𝑝 ← choose-pivot(𝐴, 𝑙, 𝑟)

 𝑖 ← partition (𝐴, 𝑙, 𝑟, 𝑝)
 if 𝑖 − 𝑙 > 𝑟 − 𝑖 do

 𝑆. 𝑝𝑢𝑠ℎ 𝑙, 𝑖 − 1

𝑙 ← 𝑖 + 1
 else

 𝑆. 𝑝𝑢𝑠ℎ 𝑖 + 1, 𝑟

𝑟 ← 𝑖 − 1
InsertionSort(𝐴)

▪ This is often the most efficient sorting algorithm in practice

▪ although worst-case is Θ 𝑛2

// store larger problem in 𝑆 for later

// store larger problem in 𝑆 for later

// next work on the right side

// next work on the left side

// is left side larger than right?

// work on it if it’s larger than 10

// get the next subproblem

Outline

▪ Sorting, average-case, and Randomization

▪ Analyzing average-case run-time

▪ Randomized Algorithms

▪ QuickSelect

▪ QuickSort

▪ Lower Bound for Comparison-Based Sorting

▪ Non-Comparison-Based Sorting

Lower bounds for sorting

▪ Question: Can one do better than Θ 𝑛 log 𝑛 running time?

▪ Answer: It depends on what we allow

▪ No: comparison-based sorting lower bound is Ω 𝑛 log 𝑛
▪ no restriction on input, just must be able to compare

▪ Yes: non-comparison-based sorting can achieve O(𝑛)
▪ restrictions on input

▪ We have seen many sorting algorithms

Sort Running Time Analysis

Selection Sort Θ(𝑛2) worst-case

Insertion Sort Θ(𝑛2) worst-case

Merge Sort Θ(𝑛 log 𝑛) worst-case

Heap Sort Θ(𝑛 log 𝑛) worst-case

quickSort
RandomizedQuickSort

Θ 𝑛 log 𝑛
Θ(𝑛 log 𝑛)

average-case
expected

The Comparison Model

▪ All sorting algorithms seen so far are in the comparison model

▪ In the comparison model data can only be accessed in two ways

▪ comparing two elements
▪ 𝐴[𝑖] ≤ 𝐴[𝑗]

▪ moving elements around (e.g. copying, swapping)

▪ This makes very few assumptions on the things we are sorting

▪ Under comparison model, will show that any sorting algorithm
requires Ω(𝑛log 𝑛) comparisons

▪ This lower bound is not for an algorithm, it is for the sorting
problem

▪ How can we talk about problem without algorithm?
▪ count number of comparisons any sorting algorithm has to perform

Decision Tree

▪ Decision tree succinctly describes all decisions that are taken during
the execution of an algorithm and the resulting outcome

▪ For each comparison-based sorting algorithm we can construct a
corresponding decision tree

▪ Given decision tree, we can deduce the algorithm

▪ Can create decision trees for any comparison-based algorithm, not
just sorting

Decision Tree for Concrete Algorithm Sorting 3 items

if 𝑥0 < 𝑥1 then
 if 𝑥1 < 𝑥2 then print(𝑥0, 𝑥1, 𝑥2)
 else if 𝑥0 < 𝑥2 then print(𝑥0, 𝑥2, 𝑥1)
 else print(𝑥2, 𝑥0, 𝑥1)
else
 if 𝑥1 < 𝑥2 then
 if 𝑥0 < 𝑥2 then print(𝑥1, 𝑥0, 𝑥2)
 else print(𝑥1, 𝑥2, 𝑥0)
 else print(𝑥2, 𝑥1, 𝑥0)

0, 1, 2 2, 1, 0

0, 2, 1 2,0,1 1, 0, 2 1,2,0

< 𝑥0: 𝑥1

𝑥1: 𝑥2

𝑥0: 𝑥2 𝑥0: 𝑥2

𝑥1: 𝑥2

<

<

<

<

≥

≥
≥

≥≥

Decision Tree: Sorting Example
𝑥0 = 4, 𝑥1 =2, 𝑥2 = 7

0, 1, 2 2, 1, 0

0, 2, 1 2,0,1 1, 0, 2 1,2,0

< 𝑥0: 𝑥1

𝑥1: 𝑥2

𝑥0: 𝑥2 𝑥0: 𝑥2

𝑥1: 𝑥2

<

<

<

<

≥

≥
≥

≥≥

𝑥1 =2 ≤ 𝑥0 = 4 ≤ 𝑥2 = 7

3 comparisons

Decision Tree: Sorting Example
𝑥0 = 8, 𝑥1 =7, 𝑥2 = 7

0, 1, 2 2, 1, 0

0, 2, 1 2,0,1 1, 0, 2 1,2,0

< 𝑥0: 𝑥1

𝑥1: 𝑥2

𝑥0: 𝑥2 𝑥0: 𝑥2

𝑥1: 𝑥2

<

<

<

<

≥

≥
≥

≥≥

𝑥2 =7 ≤ 𝑥1 = 7 ≤ 𝑥0 = 8

2 comparisons

Decision Tree

0, 1, 2 2, 1, 0

0, 2, 1 2,0,1 1, 0, 2 1,2,0

< 𝑥0: 𝑥1

𝑥1: 𝑥2

𝑥0: 𝑥2 𝑥0: 𝑥2

𝑥1: 𝑥2

<

<

<

<

≥

≥
≥

≥≥

▪ Interior nodes are comparisons
▪ root corresponds is the first comparison

▪ Each comparison has two outcomes: < and ≥

▪ Each interior node has two children, links to the children are labeled with outcomes

▪ When algorithm makes no more comparisons, that node becomes a leaf

▪ sorting permutation has been determined once we reach a leaf

▪ label the leaf with the corresponding sorting permutation, if reachable

Decision Tree

0, 1, 2

2, 1, 0

0, 2, 1 2,0,1 1, 0, 2 1,2,0

< 𝑥0: 𝑥1

𝑥1: 𝑥2

𝑥0: 𝑥2 𝑥0: 𝑥2

𝑥1: 𝑥2

<

<

<

<

≥

≥
≥

≥≥

▪ Can make more comparisons than necessary

▪ Can have leaves which are never reached

▪ Can have unreachable branches

▪ Unreachable branches/leaves make no difference for the runtime
▪ algorithm never goes into unreachable structure

▪ So assume everything is reachable (i.e. prune unreachable branches from decision tree)

𝑥0: 𝑥2

< ≥

not reachable

𝒙𝟎: 𝒙𝟐

Decision Tree

0, 1, 2

2, 1, 0

0, 2, 1 2,0,1 1, 0, 2 1,2,0

< 𝑥0: 𝑥1

𝑥1: 𝑥2

𝑥0: 𝑥2 𝑥0: 𝑥2

𝑥1: 𝑥2

<

<

<

<

≥

≥
≥

≥≥

▪ Can make more comparisons than necessary

▪ Can have leaves which are never reached

▪ Can have unreachable branches

▪ Unreachable branches/leaves make no difference for the runtime
▪ algorithm never goes into unreachable structure

▪ So assume everything is reachable (i.e. prune unreachable branches from decision tree)

▪ Tree height ℎ is the worst case number of comparisons

𝑥0: 𝑥2

≥

𝒙𝟎: 𝒙𝟐

Decision Tree
▪ General case: comparison-based sort for 𝑛 elements

▪ Many sorting algorithms, for each one we have its own decision tree

....

▪ Can prove that the height of any decision tree is at least 𝑐𝑛log𝑛

▪ which is Ω(𝑛log 𝑛)

▪ Let SortAlg be any comparison based sorting algorithm

▪ Since SortAlg is comparison based, it has a decision tree

▪ SortAlg must sort correctly any array of 𝑛 elements

▪ Let 𝑆𝑛 = set of arrays storing not-repeating integers 1, … , 𝑛

▪ 𝑆𝑛 = 𝑛!

▪ Let 𝜋𝑥 denote the sorting permutation of 𝑥 ϵ 𝑆𝑛

▪ When we run 𝑥 through 𝑇, we must end up at a leaf labeled with 𝜋𝑥

▪ 𝑥, 𝑦 ϵ 𝑆𝑛 with 𝑥 ≠ 𝑦 have sorting permutations 𝜋𝑥 ≠ 𝜋𝑦

▪ 𝑛! instances in 𝑆𝑛 must go to distinct leaves

𝑇

Lower bound for sorting in the comparison model
Theorem: Comparison-based sorting algorithm requires Ω(𝑛log 𝑛) comparisons

Proof:

0, 1, 22, 1, 0 0, 2, 12,0,1 1, 0, 2 1,2,0

𝑆3 = { 1,2,3 , 1,3,2 , 2,1,3 , 2,3,1 , 3,1,2 , [3,2,1]}

⇒ tree must have at least 𝒏! leaves

▪ Therefore, the tree must have at least 𝑛! leaves

▪ Binary tree with height ℎ has at most 2ℎ leaves

▪ Height ℎ must be at least such that 2ℎ ≥ 𝑛!

Lower bound for sorting in the comparison model
Proof: (cont.)

▪ Taking logs of both sides

log(𝑛!) = log(𝑛 𝑛 − 1 … ⋅ 1) = log𝑛 + ⋯ + log(
𝑛

2
+ 1) + log

𝑛

2
+ ⋯ + log 1

≥ log
𝑛

2
+ ⋯ + log

𝑛

2
=

𝑛

2
log

𝑛

2
=

𝑛

2
log𝑛 −

𝑛

2
∈ Ω(𝑛log 𝑛)

ℎ ≥

> log
𝑛

2

𝑛

2
 terms

▪ Notes about the proof

▪ proof does not assume the algorithm sorts only distinct elements

▪ proof does not assume the algorithms sorts only integers in range 1, … , 𝑛

▪ poof is based on finding 𝑛! input instances that must go to distinct leaves

▪ total number of inputs is infinite

□

Outline

▪ Sorting, average-case, and Randomization

▪ Analyzing average-case run-time

▪ Randomized Algorithms

▪ QuickSelect

▪ QuickSort

▪ Lower Bound for Comparison-Based Sorting

▪ Non-Comparison-Based Sorting

Non-Comparison-Based Sorting

▪ Sort without comparing items to each other

▪ Non-comparison based sorting is less general than comparison
based sorting

▪ In particular, need to make assumptions about items we sort
▪ unlike in comparison based sorting, which sorts any data, as long as it

can be compared

▪ Will assume we are sorting non-negative integers
▪ can adapt to negative integers

▪ also to some other data types, such as strings

▪ but cannot sort arbitrary data

Non-Comparison-Based Sorting

▪ Suppose all keys in 𝐴 of size 𝑛 are integers in range [0, … , 𝐿 − 1]

▪ How would you sort if 𝐿 is not too large?

▪ say 𝐿 < 𝑛

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Bucket Sort
▪ Suppose all keys in 𝐴 of size 𝑛 are integers in range [0, … , 𝐿 − 1]

▪ How would you sort if 𝐿 is not too large?

▪ Use an axillary bucket array 𝐵[0, … , 𝐿 − 1] to sort

▪ i.e. array of initially empty linked lists, initialization is Θ(𝐿)

▪ Example with 𝐿 = 15

A

12

14

7

6

7

0

10

B

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Bucket Sort
▪ Suppose all keys in 𝐴 of size 𝑛 are integers in range [0, … , 𝐿 − 1]

▪ Use an axillary bucket array 𝐵[0, … , 𝐿 − 1] to sort

▪ i.e. array of linked lists, initialization is Θ(𝐿)

▪ Example with 𝐿 = 15

A
12

14

7

6

7

0

10

12

𝑘 = 0 B

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Bucket Sort
▪ Suppose all keys in 𝐴 of size 𝑛 are integers in range [0, … , 𝐿 − 1]

▪ Use an axillary bucket array 𝐵[0, … , 𝐿 − 1] to sort

▪ i.e. array of linked lists, initialization is Θ(𝐿)

▪ Example with 𝐿 = 15

A
12

14

7

6

7

0

10

12 14𝑘 = 1

B

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Bucket Sort
▪ Suppose all keys in 𝐴 of size 𝑛 are integers in range [0, … , 𝐿 − 1]

▪ Use an axillary bucket array 𝐵[0, … , 𝐿 − 1] to sort

▪ i.e. array of linked lists, initialization is Θ(𝐿)

▪ Example with 𝐿 = 15

A
12

14

7

6

7

0

10

12 14

𝑘 = 2

7

B

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Bucket Sort
▪ Suppose all keys in 𝐴 of size 𝑛 are integers in range [0, … , 𝐿 − 1]

▪ Use an axillary bucket array 𝐵[0, … , 𝐿 − 1] to sort

▪ i.e. array of linked lists, initialization is Θ(𝐿)

▪ Example with 𝐿 = 15

A
12

14

7

6

7

0

10

12 14

𝑘 = 3

76

B

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Bucket Sort
▪ Suppose all keys in 𝐴 of size 𝑛 are integers in range [0, … , 𝐿 − 1]

▪ Use an axillary bucket array 𝐵[0, … , 𝐿 − 1] to sort

▪ i.e. array of linked lists, initialization is Θ(𝐿)

▪ Example with 𝐿 = 15

A
12

14

7

6

7

0

10

12 14

𝑘 = 4

76

7

B

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Bucket Sort
▪ Suppose all keys in 𝐴 of size 𝑛 are integers in range [0, … , 𝐿 − 1]

▪ Use an axillary bucket array 𝐵[0, … , 𝐿 − 1] to sort

▪ i.e. array of linked lists, initialization is Θ(𝐿)

▪ Example with 𝐿 = 15

A
12

14

7

6

7

0

10

12 14

𝑘 = 5

760

7

B

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Bucket Sort
▪ Suppose all keys in 𝐴 of size 𝑛 are integers in range [0, … , 𝐿 − 1]

▪ Use an axillary bucket array 𝐵[0, … , 𝐿 − 1] to sort

▪ i.e. array of linked lists, initialization is Θ(𝐿)

▪ Example with 𝐿 = 15

A
12

14

7

6

7

0

10

12 14

𝑘 = 6

760 10

7

B

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Bucket Sort

▪ Running time is Θ(𝐿 + 𝑛)

▪ runtime depends on both 𝑛 and 𝐿

▪ Auxiliary space is Θ(𝐿 + 𝑛)

A
12

14

7

6

7

0

10

12 14760 10

7

0

6

7

7

10

12

14

▪ Suppose all keys in 𝐴 of size 𝑛 are integers in range [0, … , 𝐿 − 1]

▪ Use an axillary bucket array 𝐵[0, … , 𝐿 − 1] to sort

▪ i.e. array of linked lists, initialization is Θ(𝐿)

▪ Example with 𝐿 = 15

▪ Now iterate through 𝐵 and copy non-empty buckets to 𝐴

B

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Bucket Sort

▪ Running time is Θ(𝐿 + 𝑛)

▪ 𝑛 is size of 𝐴, runtime depends on both 𝑛 and 𝐿

▪ Auxiliary space is Θ(𝑳 + 𝑛)

A
12

14

7

6

7

0

10

12 14760 10

7

0

6

7

7

10

12

14

▪ Suppose all keys in 𝐴 are integers in range [0, … , 𝐿 − 1]

▪ Use an axillary bucket array 𝐵[0, … , 𝐿 − 1] to sort

▪ i.e. array of linked lists, initialization is Θ(𝐿)

▪ Example with 𝐿 = 15

▪ Now iterate through 𝐵 and copy non-empty buckets to 𝐴

B

𝑛

12 14760 10

7

Digit Based Non-Comparison-Based Sorting

123 230 21 320 210 232 101

▪ Running time of bucket sort is Θ(𝐿 + 𝑛)

▪ 𝑛 is size of 𝐴

▪ 𝐿 is range [0, 𝐿) of integers in 𝐴

▪ What if 𝐿 is much larger than 𝑛?

▪ i.e. 𝐴 has size 100, range of integers in 𝐴 is [0, … , 99999]

▪ Can sort ‘digit by digit’

021

▪ pad with leading 0s to get keys of equal length 𝑚
▪ Assume keys have length of 𝑚 digits

123
230
021
320

MSD-Radix-Sort: forward

123
230
021
320

LSD-Radix-Sort: backward

1 → 𝑚 1 ⟵ 𝑚

▪ Bucketsort is perfect for sorting ‘by digit’

Base 𝑅 number representation
▪ Can represent numbers in any base 𝑅 representation

▪ digits go from 0 to 𝑅 − 1

▪ 𝑅 buckets

▪ numbers are in the range {0, 1, … , 𝑅𝑚 − 1}

▪ Number of distinct digits gives the number of buckets 𝑅

▪ Useful to control number of buckets

▪ larger 𝑅 ⇒ smaller 𝑚

▪ less iterations but more work per iteration (larger bucket array)

▪ (100010)2 = (34)10

▪ From now on, assume keys are numbers in base 𝑅 (𝑅: radix)

▪ 𝑅 = 2, 10, 128, 256 are common

123 230 21 320 210 232 101

▪ Example (𝑅 = 4)

Bucket Sort on Last Digit
▪ Equivalent to normal bucket sort if we redefine comparison

▪ 𝑎 ≤ 𝑏 if the last digit of 𝑎 is smaller than (or equal) to the last digit of 𝑏

▪ example: 21𝟏 < 12𝟑

A

123

230

121

320

210

232

101

B

123

230

121

320 210

232

101

A

230

320

210

121

101

232

123

0

1

2

3

123

230

121

320

210

232

101

Bucket Sort on Last Digit
▪ Equivalent to normal bucket sort if we redefine comparison

▪ 𝑎 ≤ 𝑏 if the last digit of 𝑎 is smaller than (or equal) to the last digit of 𝑏

▪ example: 211 < 123

▪ Bucket sort is stable: equal items stay in original order

▪ crucial for developing LSD radix sort later

A

123

230

121

320

210

232

101

B

123

230

121

320 210

232

101

A

230

320

210

121

101

232

123

0

1

2

3

123

230

121

320

210

232

101

230

320

210

230

320

210

Single Digit Bucket Sort
Bucket-sort(𝐴, 𝑑)
𝐴 : array of size 𝑛, contains numbers with digits in {0, … , 𝑅 − 1}

𝑑: index of digit by which we wish to sort

 initialize array 𝐵 0, … , 𝑅 − 1 of empty lists (buckets)

 for 𝑖 ⟵ 0 to 𝑛 − 1 do

 𝑛𝑒𝑥𝑡 ⟵ 𝐴[𝑖]

 append 𝑛𝑒𝑥𝑡 at end of 𝐵[𝑑th digit of 𝑛𝑒𝑥𝑡]

 𝑖 ⟵ 0

 for 𝑗 ⟵ 0 to 𝑅 − 1 do

 while 𝐵[𝑗] is non-empty do

 move first element of 𝐵[𝑗] to 𝐴[𝑖++]

▪ Sorting is stable: equal items stay in original order

▪ Run-time Θ(𝑛 + 𝑅)

▪ Auxiliary space Θ(𝑛 + 𝑅)
▪ Θ(𝑅) for array 𝐵, and linked lists are Θ 𝑛

MSD-Radix-Sort
▪ Sorts multi-digit numbers from the most significant to the least significant

▪ Start by sorting the whole array by the first digit

123

232

021

320

210

230

101

MSD-Radix-Sort

123

232

021

320

210

230

101

▪ Sorts multi-digit numbers from the most significant to the least significant

▪ Start by sorting the whole array by the first digit

MSD-Radix-Sort

021

123

101

232

210

230

320

▪ Cannot sort the whole array by the second digit, will mess up the order

▪ Have to break down in groups by the first digit

▪ each group can be safely sorted by the second digit

▪ call sort recursively on each group, with appropriate array bounds

sort the whole array
by the second digit

group 1

group 2

group 3

group 4

▪ Sorts multi-digit numbers from the most significant to the least significant

▪ Start by sorting the whole array by the first digit

101

210

021

123

320

232

230

MSD-Radix-Sort

021

123

101

232

210

230

320

021
0

0

recursion
depth 1

recursion
depth 0

▪ Recursively sorts multi-digit numbers

▪ sort by leading digit, group by next digit, then call sort recursively on each group

group 1

group 2

group 3

group 4

MSD-Radix-Sort

021

123

101

232

210

230

320

021
0

0

recursion
depth 1

recursion
depth 0

group 1

group 2

group 3

group 4

▪ Recursively sorts multi-digit numbers

▪ sort by leading digit, group by next digit, then call sort recursively on each group

MSD-Radix-Sort

021

123

101

232

210

230

320

021

123

101

0

0

1

2

recursion
depth 1

recursion
depth 0

group 1

group 2

group 3

group 4

▪ Recursively sorts multi-digit numbers

▪ sort by leading digit, group by next digit, then call sort recursively on each group

MSD-Radix-Sort

021

123

101

232

210

230

320

021

101

123

0

0

1

2

101
1
1

recursion
depth 1

recursion
depth 0

recursion
depth 2

group 1

group 2

group 3

group 4

▪ Recursively sorts multi-digit numbers

▪ sort by leading digit, group by next digit, then call sort recursively on each group

MSD-Radix-Sort

021

123

101

232

210

230

320

021

101

123

0

0

1

2

101
1
1

recursion
depth 1

recursion
depth 0

recursion
depth 2

group 1

group 2

group 3

group 4

▪ Recursively sorts multi-digit numbers

▪ sort by leading digit, group by next digit, then call sort recursively on each group

MSD-Radix-Sort

021

123

101

232

210

230

320

021

101

123

0

0

1

2

101

123

1
1

2
2

recursion
depth 1

recursion
depth 0

recursion
depth 2

group 1

group 2

group 3

group 4

▪ Recursively sorts multi-digit numbers

▪ sort by leading digit, group by next digit, then call sort recursively on each group

MSD-Radix-Sort

021

123

101

232

210

230

320

021

101

123

0

0

1

2

101

123

1
1

2
2

232

210

230

3

5

recursion
depth 1

recursion
depth 0

recursion
depth 2

group 1

group 2

group 3

group 4

▪ Recursively sorts multi-digit numbers

▪ sort by leading digit, group by next digit, then call sort recursively on each group

MSD-Radix-Sort

021

123

101

232

210

230

320

021

101

123

0

0

1

2

101

123

1
1

2
2

3

5

210

232

230

recursion
depth 1

recursion
depth 0

recursion
depth 2

group 1

group 2

group 3

group 4

▪ Recursively sorts multi-digit numbers

▪ sort by leading digit, group by next digit, then call sort recursively on each group

MSD-Radix-Sort

021

123

101

232

210

230

320

021

101

123

0

0

1

2

101

123

1
1

2
2

3

5

210

232

230

210
3

3

recursion
depth 1

recursion
depth 0

recursion
depth 2

group 1

group 2

group 3

group 4

▪ Recursively sorts multi-digit numbers

▪ sort by leading digit, group by next digit, then call sort recursively on each group

MSD-Radix-Sort

021

123

101

232

210

230

320

021

101

123

0

0

1

2

101

123

1
1

2
2

3

5

210

232

230

210
3

3

recursion
depth 1

recursion
depth 0

recursion
depth 2

group 1

group 2

group 3

group 4

▪ Recursively sorts multi-digit numbers

▪ sort by leading digit, group by next digit, then call sort recursively on each group

MSD-Radix-Sort

021

123

101

232

210

230

320

021

101

123

0

0

1

2

101

123

1
1

2
2

3

5

210

232

230

210
3

3

232

230

4

5

recursion
depth 1

recursion
depth 0

recursion
depth 2

group 1

group 2

group 3

group 4

▪ Recursively sorts multi-digit numbers

▪ sort by leading digit, group by next digit, then call sort recursively on each group

MSD-Radix-Sort

021

123

101

232

210

230

320

021

101

123

0

0

1

2

101

123

1
1

2
2

3

5

210

232

230

210
3

3

230

232

4

5

recursion
depth 1

recursion
depth 0

recursion
depth 2

group 1

group 2

group 3

group 4

▪ Recursively sorts multi-digit numbers

▪ sort by leading digit, group by next digit, then call sort recursively on each group

done, no more digits to sort

MSD-Radix-Sort

021

123

101

232

210

230

320

021

101

123

0

0

1

2

101

123

1
1

2
2

3

5

210

232

230

210
3

3

230

232

4

5

320
6

6
recursion
depth 1

recursion
depth 0

recursion
depth 2

group 1

group 2

group 3

group 4

▪ Recursively sorts multi-digit numbers

▪ sort by leading digit, group by next digit, then call sort recursively on each group

MSD-Radix-Sort

021

123

101

232

210

230

320

021

101

123

320

210

232

230

0

0

1

2

3

5

6

6

101

123

210

230

232

1
1

2
2

3

3

4

5

recursion
depth 1

recursion
depth 0

recursion
depth 2

group 1

group 2

group 3

group 4

▪ Recursively sorts multi-digit numbers

▪ sort by leading digit, group by next digit, then call sort recursively on each group

many digits are
never examined

21

20

MSD-Radix-Sort Space Analysis

021

123

101

232

210

230

320

021

101

123

320

210

232

230

101

123

210

230

232

recursion
depth 1

recursion
depth 0

recursion
depth 2

▪ Bucket-sort

▪ auxiliary space Θ 𝑛 + 𝑅

▪ Recursion depth is 𝑚 − 1

▪ auxiliary space Θ 𝑚

▪ Total auxiliary space Θ 𝑛 + 𝑅 + 𝑚

MSD-Radix-Sort Time Analysis
▪ Time spent for each recursion depth

▪ Depth 𝑑 = 0

▪ one bucket sort on 𝑛 items

▪ Θ 𝑛 + 𝑅

▪ At depth 𝑑 > 0

▪ let 𝑘 be number of bucket sorts

▪ 𝑘 ≤ 𝑛

▪ index bucketsorts as 1, … , 𝑖 … , 𝑘

▪ bucketsort 𝑖 involves 𝑛𝑖 keys

▪ bucket sort 𝑖 takes 𝑛𝑖 + 𝑅 time

recursion
depth 1

recursion
depth 0

recursion
depth 2

𝐴

1 bucket
sort

up to 𝑅
bucket sorts

up to 𝑅2
bucket sorts

at any depth, number of bucketsorts ≤ 𝑛

each bucket
sort needs at
least 𝟏 number
from array 𝐴

▪ total time at depth 𝑑 is 𝑂 𝑛𝑅

▪ Number of depths is at most 𝑚 − 1

▪ Total time 𝑂 𝑚𝑛𝑅

𝑖=1

𝑘

(𝑛𝑖+𝑅) +𝑘𝑅=

𝑖=1

𝑘

𝑛𝑖 +

𝑖=1

𝑘

𝑅 ≤ 𝑛 ≤ 𝑛 + 𝑛𝑅

MSD-Radix-Sort Pseudocode
▪ Sorts array of 𝑚-digit radix-𝑅 numbers recursively

▪ Sort by leading digit, then each group by next digit, etc.

MSD-Radix-sort 𝐴, 𝑙 ← 0, 𝑟 ← 𝑛 − 1, 𝑑 ← 𝑙𝑒𝑎𝑑𝑖𝑛𝑔 𝑑𝑖𝑔𝑖𝑡 𝑖𝑛𝑑𝑒𝑥

𝑙, 𝑟 : indexes between which to sort, 0 ≤ 𝑙, 𝑟 ≤ 𝑛 − 1

 if 𝑙 < 𝑟

 bucket-sort(𝐴 𝑙 … 𝑟 , 𝑑)

 if there are digits left

 𝑙′ ← 𝑙

 while 𝑙′ < 𝑟 do

 let 𝑟′ ≥ 𝑙′ be the maximal s.t 𝐴 𝑙′ … 𝑟′ have the same 𝑑th digit

 MSD-Radix-sort 𝐴, 𝑙′, 𝑟′, 𝑑 + 1

 𝑙′ ← 𝑟′ + 1

▪ Run-time 𝑂(𝑚𝑛𝑅), auxiliary space is Θ 𝑚 + 𝑛 + 𝑅

▪ Advantage: many digits may remain unexamined

▪ Drawback: many recursions

MSD-Radix-Sort Time Analysis
▪ Total time 𝑂 𝑚𝑛𝑅

▪ This is 𝑂 𝑛 if sort items in limited range
▪ suppose 𝑅 = 2, and we sort are 𝑛 integers in the range [0, 210)

▪ then 𝑚 = 10, 𝑅 = 2, and sorting is 𝑂 𝑛

▪ note that 𝑛, the number of items to sort, can be arbitrarily large

▪ This does not contradict Ω(𝑛log 𝑛) bound on the sorting problem,
since the bound applies to comparison-based sorting

▪ Comparing different 𝑅
▪ sort 𝑛 integers in the range [0, 210)

▪ if 𝑅 = 2, then 𝑚 = 10, and sorting is 𝑂 20𝑛

▪ if 𝑅 = 10, then 𝑚 = 4 (210 =1024) and sorting is 𝑂 40𝑛

LSD-Radix-Sort

▪ Idea: apply single digit bucket sort from least significant digit
to the most significant digit

▪ Observe that digit bucket sort is stable

▪ equal elements stay in the original order

▪ therefore, we can apply single digit bucket sort to the
whole array, and the output will be sorted after
iterations over all digits

LSD-Radix-Sort

230

320

210

121

101

232

123

101

210

320

121

123

230

232

123

230

121

320

210

232

101

123

230

121

320

210

232

101

230

320

210

121

101

232

123

101

210

320

121

123

230

232

101

121

123

210

230

232

320

sorted by
last digit

sorted by
last two

digits

sorted by
all three

digits

prepare
to sort by
last digit

prepare to
sort by

middle digit

prepare
to sort by
first digit

▪ 𝑚 bucket sorts, on 𝑛 items each, one bucket sort is Θ(𝑛 + 𝑅)

▪ Total time cost Θ(𝑚 𝑛 + 𝑅)

LSD-Radix-Sort

LSD-radix-sort(𝐴)

𝐴: array of size n, contains m-digit radix-R numbers

 for 𝑑 ← least significant down to most significant digit do

 bucket-sort(𝐴, 𝑑)

▪ Loop invariant: after iteration 𝑖, 𝐴 is sorted w.r.t. the last 𝑖 digits of each entry

▪ Time cost Θ(𝑚 𝑛 + 𝑅)

▪ Auxiliary space Θ(𝑛 + 𝑅)

Summary
▪ Sorting is an important and very well-studied problem

▪ Can be done in Θ 𝑛log 𝑛 time

▪ faster is not possible for general input

▪ HeapSort is the only Θ 𝑛log 𝑛 time algorithm we have seen with Ο 1
auxiliary space

▪ MergeSort is also Θ 𝑛log 𝑛 time

▪ Selection and insertion sorts are Θ 𝑛2

▪ QuickSort is worst-case Θ 𝑛2 , but often the fastest in practice

▪ BucketSort and RadixSort can achieve o 𝑛log 𝑛 if the input is special

▪ Randomized algorithms can eliminate “bad instances”

▪ Best-case, worst-case, average-case can all differ

▪ Often easier to analyze the run-time on randomly chosen input rather than the
average-case runtime

	Slide 1
	Slide 2: Outline
	Slide 3: Outline
	Slide 4: Average Case Analysis: Motivation
	Slide 5: Average Case Analysis
	Slide 6: Average Case Analysis: Contrived Example
	Slide 7: Average Case Analysis: Contrived Example
	Slide 8: Average Case Analysis: Example 2
	Slide 9: Average Case Analysis: Example 2
	Slide 10: Average Case Analysis: Example 2
	Slide 11: Average Case Analysis: Example 2
	Slide 12: Average Case Analysis: Example 2
	Slide 13: Average Case Analysis: Example 2
	Slide 14: Average Case Analysis: Example 2
	Slide 15: Outline
	Slide 16: Randomized Algorithms
	Slide 17: Expected Running Time
	Slide 18: Expected Running Time Example
	Slide 19: Randomized Algorithm: Simple2
	Slide 20: Why Use Randomized Algorithms
	Slide 21: Randomized Algorithms to Improve Runtime
	Slide 22: Randomized Algorithms to Improve Runtime
	Slide 23: Randomized Algorithm randomized-all-0-test
	Slide 24: Expected Runtime of randomized-all-0-test
	Slide 25: Expected Runtime of randomized-all-0-test
	Slide 26: Expected Runtime of randomized-all-0-test
	Slide 27: Expected Runtime of randomized-all-0-test
	Slide 28: Expected Runtime of randomized-all-0-test
	Slide 29: Expected Runtime of randomized-all-0-test
	Slide 30: Expected Running Time of randomized-all-0-test
	Slide 31: Average-case vs. Expected runtime
	Slide 32: Average-case vs. Expected runtime
	Slide 33: Average-case vs. Expected runtime
	Slide 34: Outline
	Slide 35: Selection Problem
	Slide 36: Two Crucial Subroutines for Quick-Select
	Slide 37: Choosing Pivot
	Slide 38: Partition Algorithm
	Slide 39
	Slide 40: Efficient In-Place partition (Hoare)
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45: QuickSelect Algorithm
	Slide 46: Average Case Analysis
	Slide 47: Sorting Permutations
	Slide 48: Average Time with Sorting Permutations
	Slide 49: Average-Case Analysis of QuickSelect
	Slide 50: Randomized QuickSelect: Shuffling
	Slide 51: Randomized QuickSelect Algorithm
	Slide 52: Randomized QuickSelect: Analysis
	Slide 53: Randomized QuickSelect: Analysis
	Slide 54: Randomized QuickSelect: Analysis
	Slide 55: Randomized QuickSelect: Analysis
	Slide 56: Randomized QuickSelect: Solving Recurrence
	Slide 57: Randomized QuickSelect: Solving Recurrence
	Slide 58: Summary of Selection
	Slide 59: Outline
	Slide 60: QuickSort
	Slide 61: QuickSort
	Slide 62: Randomized QuickSort: Random Pivot
	Slide 63: Randomized QuickSort: Expected Runtime
	Slide 64: Randomized QuickSort: Solve Recurrence Relation
	Slide 65: Randomized QuickSort: Solve Recurrence Relation
	Slide 66: Improvement ideas for QuickSort
	Slide 67: QuickSort with Tricks
	Slide 68: Outline
	Slide 69: Lower bounds for sorting
	Slide 70: The Comparison Model
	Slide 71: Decision Tree
	Slide 72: Decision Tree for Concrete Algorithm Sorting 3 items
	Slide 73: Decision Tree: Sorting Example
	Slide 74: Decision Tree: Sorting Example
	Slide 75: Decision Tree
	Slide 76: Decision Tree
	Slide 77: Decision Tree
	Slide 78: Decision Tree
	Slide 79
	Slide 80
	Slide 81: Outline
	Slide 82: Non-Comparison-Based Sorting
	Slide 83: Non-Comparison-Based Sorting
	Slide 84: Bucket Sort
	Slide 85: Bucket Sort
	Slide 86: Bucket Sort
	Slide 87: Bucket Sort
	Slide 88: Bucket Sort
	Slide 89: Bucket Sort
	Slide 90: Bucket Sort
	Slide 91: Bucket Sort
	Slide 92: Bucket Sort
	Slide 93: Bucket Sort
	Slide 94: Digit Based Non-Comparison-Based Sorting
	Slide 95: Base cap R number representation
	Slide 96
	Slide 97
	Slide 98: Single Digit Bucket Sort
	Slide 99: MSD-Radix-Sort
	Slide 100: MSD-Radix-Sort
	Slide 101: MSD-Radix-Sort
	Slide 102: MSD-Radix-Sort
	Slide 103: MSD-Radix-Sort
	Slide 104: MSD-Radix-Sort
	Slide 105: MSD-Radix-Sort
	Slide 106: MSD-Radix-Sort
	Slide 107: MSD-Radix-Sort
	Slide 108: MSD-Radix-Sort
	Slide 109: MSD-Radix-Sort
	Slide 110: MSD-Radix-Sort
	Slide 111: MSD-Radix-Sort
	Slide 112: MSD-Radix-Sort
	Slide 113: MSD-Radix-Sort
	Slide 114: MSD-Radix-Sort
	Slide 115: MSD-Radix-Sort
	Slide 116: MSD-Radix-Sort Space Analysis
	Slide 117: MSD-Radix-Sort Time Analysis
	Slide 118: MSD-Radix-Sort Pseudocode
	Slide 119: MSD-Radix-Sort Time Analysis
	Slide 120: LSD-Radix-Sort
	Slide 121: LSD-Radix-Sort
	Slide 122: LSD-Radix-Sort
	Slide 123: Summary

