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Average Case Analysis: Motivation
▪ Worst-case run time is our default for analysis

▪ Best-case run time is also sometimes useful 

▪ Sometimes, best-case and worst-case runtimes are the same

▪ But for some algorithms best-case and worst case differ 
significantly

▪ worst-case runtime  too pessimistic,  best-case too optimistic

▪ average-case run time analysis is useful especially in such cases



Average Case Analysis
▪ Recall average case runtime definition

▪ let 𝕀𝑛 be the set of all instances of size 𝑛

𝑇𝑎𝑣𝑔 𝑛 =
σ𝐼∈𝕀𝑛

𝑇(𝐼)

𝕀𝑛

▪ Pros  
▪ more accurate picture of how an algorithm performs in practice

▪ provided all instances are equally likely to occur in practice

▪ Cons
▪ usually difficult to compute

▪ average-case and worst case run times could be the same 
(asymptotically)

▪ assume 𝕀𝑛  is finite

▪ can achieve ‘finiteness’  in a natural way for many problems



Average Case Analysis: Contrived Example

▪ Best-case

▪ 𝐴 0 ≠ 0

▪ runtime is O(1)

▪ Worst case 

▪ 𝐴 0 = 0 

▪ runtime is Θ(𝑛) 

0 1 2

0 2 1

1 0 2

1 2 0

2 0 1

2 1 0

𝕀3 =

𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡𝐹𝑖𝑟𝑠𝑡(𝐴, 𝑛)

     𝐴: array storing 𝑛 distinct integers in range 0,1, … , 𝑛 − 1

       if 𝐴 0 = 0 then

              for 𝑗 = 1 to 𝑛 do

                    print ‘first is smallest’

       else print ‘first is not smallest’



▪ 𝑛! inputs in total

▪ 𝑛 − 1 ! inputs have 𝐴 0 = 0

▪ runtime for each is 𝑐𝑛 

▪ 𝑛! − 𝑛 − 1 !  inputs have 𝐴 0 ≠ 0

▪ runtime for each is 𝑐

𝑇𝑎𝑣𝑔 𝑛 =
1

𝕀𝑛


𝐼∈𝕀𝑛

𝑇(𝐼)

0 1 2

0 2 1

1 0 2

1 2 0

2 0 1

2 1 0

𝕀3 =

=
1

𝑛!
𝑐𝑛 + ⋯ + 𝑐𝑛 

𝑛 − 1 ! 𝑛! − 𝑛 − 1 !

=
1

𝑛! 𝑐𝑛 𝑛 − 1 ! 

Average Case Analysis: Contrived Example
𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡𝐹𝑖𝑟𝑠𝑡(𝐴, 𝑛)

     𝐴: array storing 𝑛 distinct integers in range 0,1, … , 𝑛 − 1

       if 𝐴 0 = 0 then

              for 𝑗 = 1 to 𝑛 do

                    print ‘first is smallest’

       else print ‘first is not smallest’

+𝑐 + ⋯ 𝑐

+𝑐(𝑛! − 𝑛 − 1 !) = 𝑐 +𝑐 ∈ 𝑂(1)−
𝑐

𝑛



Average Case Analysis: Example 2

all-0-test(𝑤, 𝑛)

 //test if all entries of bitstring 𝑤[0. . 𝑛 − 1] are 0

         if (𝑛 = 0) return true

         if (𝑤[𝑛 − 1] = 1) return false

           all-0-test(𝑤, 𝑛 − 1)

▪ Define 𝑇(𝑛) = # bit-comparisons on input 𝑤

▪ asymptotically the same as runtime 

▪ runtime is 𝑐 times # of bit comparisons

▪ makes analysis a bit simpler, do not have to carry around constant 𝑐

▪ Best-case runtime

▪ 𝑤 =∗∗∗ ⋯ ∗∗∗ 1

▪ 𝑇 𝑛 = 1 

▪ return false after the first comparison

▪ Θ(1) 



Average Case Analysis: Example 2

▪ Worst-case runtime

▪ 𝑤 = 000 … 000

▪ always go into recursion until 𝑛 =  0

▪ 𝑇(𝑛)  =  1 +  𝑇(𝑛 − 1)

▪ how to solve?

all-0-test(𝑤, 𝑛)

 //test if all entries of bitstring 𝑤[0. . 𝑛 − 1] are 0

         if (𝑛 = 0) return true

         if (𝑤[𝑛 − 1] = 1) return false

           all-0-test(𝑤, 𝑛 − 1)



Average Case Analysis: Example 2

𝑇 𝑛 = ቊ1 + 𝑇 𝑛 − 1 𝑛 > 0
0 𝑛 = 0

▪ Solving: repeatedly expand until see the pattern

𝑇 𝑛 = 2 + 𝑇 𝑛 − 2

1 + 𝑇 𝑛 − 3

𝑇 𝑛 = 3 + 𝑇 𝑛 − 3

𝑇 𝑛 = (𝑖 + 1) + 𝑇 𝑛 − (𝑖 + 1)

▪ Stop expanding when get to base case   

                                                         𝑇 𝑛 − (𝑖 + 1) = 𝑇 0

▪ Thus  𝑇 𝑛  = 𝑛 − 1 + 1 + 𝑇 0

                         

∈ Θ(𝑛)

𝑇 𝑛 = 1 + 𝑇 𝑛 − 1

1 + 𝑇 𝑛 − 2

after 2 expansions:

after 1 expansion:

after 𝑖 expansions:                                                       

= 𝑛

⇒ 𝑖 = 𝑛 − 1

⇒ 𝑛 − (𝑖 + 1) = 0



Average Case Analysis: Example 2

▪ Worst-case runtime

▪ 𝑤 = 000 … 000

▪ always go into recursion until 𝑛 =  0

▪ 𝑇(𝑛)  =  1 +  𝑇(𝑛 − 1)

▪ resolves to Θ(𝑛) 

all-0-test(𝑤, 𝑛)

 //test if all entries of bitstring 𝑤[0. . 𝑛 − 1] are 0

         if (𝑛 = 0) return true

         if (𝑤[𝑛 − 1] = 1) return false

           all-0-test(𝑤, 𝑛 − 1)



Average Case Analysis: Example 2

▪ Let 𝐵𝑛 be the set of all bitstrings of length 𝑛 

▪ note |𝐵𝑛| = 2|𝐵𝑛−1|

▪ Average runtime

all-0-test(𝑤, 𝑛)

 //test if all entries of bitstring 𝑤[0. . 𝑛 − 1] are 0

         if (𝑛 = 0) return true

         if (𝑤[𝑛 − 1] = 1) return false

           all-0-test(𝑤, 𝑛 − 1)

𝑇 𝑤 = ቊ 
1

1 + 𝑇(𝑤[0. . 𝑛 − 2]) 

𝑇𝑎𝑣𝑔 𝑛 =
1

𝐵𝑛


𝑤∈𝐵𝑛

𝑇(𝑤)

▪ Recursive formula for one non-empty bitstring 𝑤

if 𝑤 𝑛 − 1 = 1

otherwise

▪ This formula is for one particular bitstring 𝑤, not for average case runtime

0 0 00 0 1

0 1 0

1 0 0

1 0 1

1 1 0

0 1 1

1 1 1

𝐵2

𝐵3



Average Case Analysis: Example 2

𝑇𝑎𝑣𝑔 𝑛 =
1

𝐵𝑛


𝑤∈𝐵𝑛

𝑇(𝑤)

=
1

𝐵𝑛
 𝑤∈𝐵𝑛

𝑤 𝑛−1 =1

𝑇(𝑤) +
1

𝐵𝑛
 𝑤∈𝐵𝑛

𝑤 𝑛−1 =0

𝑇(𝑤)

0 0 00 0 1

0 1 0

1 0 0

1 0 1

1 1 0

0 1 1

1 1 1

=
1

𝐵𝑛
 𝑤∈𝐵𝑛

𝑤 𝑛−1 =1

1 +
1

𝐵𝑛
 𝑤∈𝐵𝑛

𝑤 𝑛−1 =0

(1 + 𝑇(𝑤[0. . 𝑛 − 2])) 

𝑇 𝑤 = ቊ 
1

1 + 𝑇(𝑤[0. . 𝑛 − 2]) 

if 𝑤 𝑛 − 1 = 1

otherwise

=
1

2
+

1

𝐵𝑛
 𝑤∈𝐵𝑛

𝑤 𝑛−1 =0

𝑇(𝑤 0. . 𝑛 − 2 )+
1

2



= 1 +
𝐵𝑛−1

𝐵𝑛

1

𝐵𝑛−1


𝑣∈𝐵𝑛−1

𝑇(𝑣)

Average Case Analysis: Example 2

𝑇𝑎𝑣𝑔 𝑛 =

𝑇 𝑤 = ቊ 
1

1 + 𝑇(𝑤[0. . 𝑛 − 2]) 

if 𝑤 𝑛 − 1 = 1

otherwise

1 +
1

𝐵𝑛
 𝑤∈𝐵𝑛

𝑤 𝑛−1 =0

𝑇(𝑤 0. . 𝑛 − 2 )

0 0 0

0 1 0

1 0 0

1 1 0

𝐵2

= 1 +
1

𝐵𝑛


𝑣∈𝐵𝑛−1

𝑇(𝑣)

= 1 +
𝐵𝑛−1

𝐵𝑛

1

𝐵𝑛−1


𝑣∈𝐵𝑛−1

𝑇(𝑣) = 1 +
1

2
𝑇𝑎𝑣𝑔 𝑛 − 1

▪ Recurrence 𝑇𝑎𝑣𝑔 𝑛 = 1 +
1

2
𝑇𝑎𝑣𝑔 𝑛 − 1      resolves to Θ(1) 
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Randomized Algorithms

▪ A randomized algorithm is one which relies on random numbers for some steps

▪ Runtime depends on both input 𝐼 and random numbers 𝑅 used

▪ Side note: computers cannot generate truly random numbers

▪ assume there is pseudo-random number generator (PRNG),  a deterministic 
program that uses initial seed to generate sequence of seemingly random 
numbers

▪ quality of randomized algorithm depends on the quality of the PRNG

𝑠𝑖𝑚𝑝𝑙𝑒(𝐴, 𝑛)

 𝐴: array storing 𝑛 numbers   

        𝑠𝑢𝑚 ← 0

        if 𝑟𝑎𝑛𝑑𝑜𝑚 3 = 0  then return 𝑠𝑢𝑚

        else   

               for 𝑖 ← 0 𝑡𝑜 𝑛 − 1 do

                     𝑠𝑢𝑚 ← 𝑠𝑢𝑚 + 𝐴[𝑖] 

               return 𝑠𝑢𝑚

𝑟𝑎𝑛𝑑𝑜𝑚(𝑚) returns integer 
sampled uniformly from 
{0, 1, … , 𝑚 − 1}, so 
Pr(𝑟𝑎𝑛𝑑𝑜𝑚(3) = 0) = 1/3 



Expected Running Time
▪ How do we measure the runtime of a randomized algorithm?

▪ depends on input 𝐼 and on 𝑅, sequence of random numbers algorithm choses 

▪ Define 𝑇(𝐼, 𝑅) to be running time of randomized algorithm for instance 𝐼 and 𝑅 

▪ Expected runtime for instance 𝐼  is expected value for 𝑇 𝐼, 𝑅  

𝑇𝑒𝑥𝑝 𝐼 = 𝑬 𝑇(𝐼, 𝑅) = 

all possible 
sequences 𝑅

𝑇 𝐼, 𝑅 ∙ Pr(𝑅)

▪ Worst-case expected runtime   
𝑇𝑒𝑥𝑝 𝑛 = max

𝐼∈𝕀𝑛

𝑇𝑒𝑥𝑝 𝐼

▪ Could define best-case and average-case expected running time, but usually 
consider only worst-case expected runtime

▪ Sometimes also want to know running time if get really unlucky with random 
numbers 𝑅, i.e. worst case  (or worst instance and worst random numbers case)

max
𝑅

max
𝐼∈𝕀𝑛

 𝑇(𝐼, 𝑅)



Expected Running Time Example
𝑠𝑖𝑚𝑝𝑙𝑒(𝐴, 𝑛)

 𝐴: array storing 𝑛 numbers   

        𝑠𝑢𝑚 ← 0

        if 𝑟𝑎𝑛𝑑𝑜𝑚 3 = 0  then return 𝑠𝑢𝑚

        else   

               for 𝑖 ← 0 𝑡𝑜 𝑛 − 1 do

                     𝑠𝑢𝑚 ← 𝑠𝑢𝑚 + 𝐴[𝑖] 

               return 𝑠𝑢𝑚

▪ 𝑠𝑖𝑚𝑝𝑙𝑒 needs only one random number:  Pr 0 = Pr 1 = Pr 2 =
1

3

𝑇𝑒𝑥𝑝 𝐼 = 

all possible 
sequences 𝑅

𝑇 𝐼, 𝑅 ∙ Pr(𝑅)

𝑇𝑒𝑥𝑝 𝐼 = 𝑇 𝐼, 0 ∙ Pr 0 +𝑇 𝐼, 1 ∙ Pr 1 +𝑇 𝐼, 2 ∙ Pr 2

= 𝑐 ∙
1

3 +𝑐 ∙ 𝑛 ∙
1

3
+𝑐 ∙ 𝑛 ∙

1

3

= 𝑇 𝐼, 0 ∙
1

3 +𝑇 𝐼, 1 ∙
1

3
+𝑇 𝐼, 2 ∙

1

3

∈ Θ(𝑛)

𝑇𝑒𝑥𝑝 𝑛 = max
𝐼∈𝕀𝑛

𝑇𝑒𝑥𝑝 𝐼

▪ All instances have the same expected runtime, so 𝑇𝑒𝑥𝑝 𝑛 ∈ Θ(𝑛)



Randomized Algorithm: Simple2
𝑠𝑖𝑚𝑝𝑙𝑒2(𝐴, 𝑛)

 𝐴: array storing 𝑛 numbers   

        𝑠𝑢𝑚 ← 0

        𝑟1 ← 𝑡𝑜 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛 , 𝑟2 ← 𝑡𝑜 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛  

         for 𝑖 ← 1 𝐭𝐨 𝑟1  do

                for 𝑗 ← 1 𝐭𝐨 𝑟2  do

                     𝑠𝑢𝑚 ← 𝑠𝑢𝑚 + 𝐴 𝑗 𝐴[𝑖] 

          
▪ Uses 2 random numbers 𝑅 =< 𝑟1, 𝑟2 >:

𝑇𝑒𝑥𝑝 𝐼 = 

all possible 
sequences 𝑅

𝑇 𝐼, 𝑅 ∙ Pr(𝑅)

𝑇𝑒𝑥𝑝 𝐼

𝑇𝑒𝑥𝑝 𝑛 = max
𝐼∈𝕀𝑛

𝑇𝑒𝑥𝑝 𝐼

▪ All instances have the same running time, so 𝑇𝑒𝑥𝑝 𝑛 ∈ Θ(𝑛2)

Pr < 0,0 >

= 

<𝑟1, 𝑟2>

𝑇 𝐼, < 𝑟1,  𝑟2 > ∙
1

𝑛

2

=
1

𝑛

2



𝑟1∈{0,1,…,𝑛−1}

𝑐 ∙ 𝑟1 

𝑟2∈{0,1,…,𝑛−1}

𝑟2

=
1

𝑛

2



𝑟1

𝑐 ∙ 𝑟1

𝑛(𝑛 − 1)

2
=

1

𝑛

2

𝑐
𝑛(𝑛 − 1)

2

𝑛(𝑛 − 1)

2

Pr 𝑟1 = 0 = ⋯ = Pr 𝑟1 = 𝑛 − 1 =
1

𝑛

= ⋯ = Pr < 𝑛 − 1, 𝑛 − 1 > =
1

𝑛

2

= Pr < 0,1 >



Why Use Randomized Algorithms

1) improved running time
▪ often design a randomized algorithm so that all instances of size 𝑛 

have the same expected runtime

2) improved solution 
▪ not studied in this course



▪ Would hope that in practice, time averaged over different runs is 𝑂 1

▪ However, average-cases analysis averages over instances, not runs

▪ cannot average over runs, do not know the instances the user will choose

▪ Suppose all instances are equally likely to occur in practice

▪ then averaging over different runs is equivalent to averaging over instances

▪ so can expect all-0-test to have 𝑂 1  runtime averaged over runs

▪ However humans often generate instances that are far from equally likely

▪ if user calls all-0-test on almost reverse sorted arrays, runtime averaged over 
different runs is Θ 𝑛  in practice

▪ real-life example: humans invoke sorting algorithm most often on arrays that 
are already almost sorted

▪ Average case 𝑂 1  
▪ Worst-case  𝑂 𝑛

Randomized Algorithms to Improve Runtime
all-0-test(𝑤, 𝑛)

 //test if all entries of bitstring 𝑤[0. . 𝑛 − 1] are 0

         if (𝑛 = 0) return true

         if (𝑤[𝑛 − 1] = 1) return false

           all-0-test(𝑤, 𝑛 − 1)



Randomized Algorithms to Improve Runtime

▪ Randomization can improve runtime in practice if instances are not equally likely

▪ makes sense to employ when average case runtime is better than worst case runtime 

▪ Randomization can shift dependence from what we cannot control (user) to what we can 
control (random number generation)

▪ improved runtime in practice

▪ no more bad instances!

▪ could still have unlucky numbers

▪ if running time is long on some run, it is because we generated unlucky random 
numbers, not because of the instance itself

▪ exceedingly rare, think of chances of creating a string containing all zeros by 
performing random flips on 𝑤

randomized-all-0-test(𝑤, 𝑛)

 //test if all entries of bitstring 𝑤[0. . 𝑛 − 1] are 0

         if (𝑛 = 0) return true

         if (𝑟𝑎𝑛𝑑𝑜𝑚(2) = 0) then

                     𝑤 𝑛 − 1 = 1 − 𝑤[𝑛 − 1]

         if (𝑤[𝑛 − 1] = 1) return false

          randomized-all-0-test(𝑤, 𝑛 − 1)



Randomized Algorithm randomized-all-0-test

▪ Running time depends both on input 𝑤 and sequence 𝑅 of generated random

▪ 𝑤 = 0110, 𝑅 = 1,0,1

▪ Step 1: 
𝑤 = 0110 ⇒ make recursive call𝑅 = 1,0,1 ⇒ 𝑤 = 0110

▪ Step 2: 

𝑤 = 011 𝑅 = 1,0,1 ⇒ 𝑤 = 010 ⇒ make recursive call

▪ Step 3: 

𝑤 = 01 𝑅 = 1,0,1 ⇒ 𝑤 = 01 ⇒ return false

▪ Recursion if 𝑤 𝑛 − 1 ≠ 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟, return false otherwise

randomized-all-0-test(𝑤, 𝑛)

 //test if all entries of bitstring 𝑤[0. . 𝑛 − 1] are 0

         if (𝑛 = 0) return true

         if (𝑟𝑎𝑛𝑑𝑜𝑚(2) = 0) then

                     𝑤 𝑛 − 1 = 1 − 𝑤[𝑛 − 1]

         if (𝑤[𝑛 − 1] = 1) return false

          randomized-all-0-test(𝑤, 𝑛 − 1)



Expected Runtime of randomized-all-0-test

▪ Let 𝑇(𝑤, 𝑅) be # of bit-comparisons on input 𝑤 if the random outcomes are 𝑅

▪ this is proportional to runtime

▪ 𝑅 = 𝑥, 𝑅’

▪ 𝑥 is the first random number

▪ 𝑅’ are the other random numbers (if any) for the recursions

▪ By random number independence, Pr(𝑅)  =  Pr(𝑥) Pr(𝑅’) 

▪ Recursive formula for an arbitrary instance 𝑤  (any bitstring)

randomized-all-0-test(𝑤, 𝑛)

 //test if all entries of bitstring 𝑤[0. . 𝑛 − 1] are 0

         if (𝑛 = 0) return true

         if (𝑟𝑎𝑛𝑑𝑜𝑚(2) = 0) then

                     𝑤 𝑛 − 1 = 1 − 𝑤[𝑛 − 1] // the only change

         if (𝑤[𝑛 − 1] = 1) return false

          randomized-all-0-test(𝑤, 𝑛 − 1)

𝑇 𝑤, 𝑅
if 𝑥 = 𝑤 𝑛 − 1

otherwise
= 𝑇 𝑤, < 𝑥, 𝑅′ > = ቊ 

1
1 + 𝑇(𝑤 0. . 𝑛 − 2 , 𝑅′) 



Expected Runtime of randomized-all-0-test

𝑇𝑒𝑥𝑝 𝑤 = 

𝑅

Pr(𝑅) ∙ 𝑇 𝑤, 𝑅 = 

<𝑥,𝑅′>

Pr 𝑅′ Pr(𝑥) ∙ 𝑇 𝑤, < 𝑥, 𝑅′ >

=
1

2


𝑅′

Pr 𝑅′ ∙ 𝑇 𝑤,< 𝑥 = 𝑤[𝑛 − 1],𝑅′ >

=
1

2


<𝑥,𝑅′>

Pr 𝑅′ ∙ 𝑇 𝑤, < 𝑥, 𝑅′ >

+
1

2


𝑅′

Pr 𝑅′ ∙ 𝑇 𝑤,< 𝑥 ≠ 𝑤[𝑛 − 1],𝑅′ >

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

if  𝑤 𝑛 − 1 = 0



Expected Runtime of randomized-all-0-test

𝑇𝑒𝑥𝑝 𝑤 = 

𝑅

Pr(𝑅) ∙ 𝑇 𝑤, 𝑅 = 

<𝑥,𝑅′>

Pr 𝑅′ Pr(𝑥) ∙ 𝑇 𝑤, < 𝑥, 𝑅′ >

=
1

2


𝑅′

Pr 𝑅′ ∙ 𝑇 𝑤,< 𝑥 = 𝑤[𝑛 − 1],𝑅′ >

=
1

2


<𝑥,𝑅′>

Pr 𝑅′ ∙ 𝑇 𝑤, < 𝑥, 𝑅′ >

+
1

2


𝑅′

Pr 𝑅′ ∙ 𝑇 𝑤,< 𝑥 ≠ 𝑤[𝑛 − 1],𝑅′ >

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 0

0 0 1

0 1 0

0 1 1

if  𝑤 𝑛 − 1 = 1



Expected Runtime of randomized-all-0-test

𝑇𝑒𝑥𝑝 𝑤 =
1

2


𝑅′

Pr 𝑅′ ∙ 𝑇 𝑤,< 𝑥 = 𝑤[𝑛 − 1],𝑅′ >

if 𝑥 = 𝑤 𝑛 − 1

otherwise
𝑇 𝑤, < 𝑥, 𝑅′ > = ቊ 

1
1 + 𝑇(𝑤 0. . 𝑛 − 2 , 𝑅′) 

+
1

2


𝑅′

Pr 𝑅′ ∙ 𝑇 𝑤, < 𝑥 ≠ 𝑤[𝑛 − 1], 𝑅′ >

=
1

2


𝑅′

Pr 𝑅′ ∙ 1 +
1

2


𝑅′

Pr 𝑅′ ∙ (1 + 𝑇(𝑤 0. . 𝑛 − 2 , 𝑅′)) 

=
1

2
+

1

2


𝑅′

Pr 𝑅′ ∙ 1 +
1

2


𝑅′

Pr 𝑅′ ∙ 𝑇(𝑤 0. . 𝑛 − 2 , 𝑅′)

=
1

2 +
1

2 +
1

2


𝑅′

Pr 𝑅′ ∙ 𝑇(𝑤 0. . 𝑛 − 2 , 𝑅′)



Expected Runtime of randomized-all-0-test

𝑇𝑒𝑥𝑝 𝑤 = 

𝑅

Pr(𝑅) ∙ 𝑇 𝑤, 𝑅

if 𝑥 = 𝑤 𝑛 − 1

otherwise
𝑇 𝑤, < 𝑥, 𝑅′ > = ቊ 

1
1 + 𝑇(𝑤 0. . 𝑛 − 2 , 𝑅′) 

= 1 +
1

2


𝑅′

Pr 𝑅′ ∙ 𝑇(𝑤 0. . 𝑛 − 2 , 𝑅′)

𝐶 ≤ max{𝐴, 𝐵, 𝐶, … , 𝑍}

= 1 +
1

2
𝑇𝑒𝑥𝑝(some instance of size 𝑛 − 1) 



Expected Runtime of randomized-all-0-test
if 𝑥 = 𝑤 𝑛 − 1

otherwise
𝑇 𝑤, < 𝑥, 𝑅′ > = ቊ 

1
1 + 𝑇(𝑤 0. . 𝑛 − 2 , 𝑅′) 

≤ 1 +
1

2
max

𝑣∈𝐵𝑛−1

𝑇𝑒𝑥𝑝(𝑣)

▪ 𝑇𝑒𝑥𝑝 𝑤 ≤ 1 +
1

2
𝑇𝑒𝑥𝑝(𝑛 − 1)  is true for all 𝑤

▪ Therefore max 
𝑤∈𝐵𝑛

𝑇𝑒𝑥𝑝 𝑛 = 𝑇𝑒𝑥𝑝 𝑤

= 1 +
1

2
 𝑇𝑒𝑥𝑝(𝑛 − 1)

≤ 1 +
1

2
𝑇𝑒𝑥𝑝(𝑛 − 1)

𝑇𝑒𝑥𝑝 𝑤 = 

𝑅

Pr(𝑅) ∙ 𝑇 𝑤, 𝑅 = 1 +
1

2


𝑅′

Pr 𝑅′ ∙ 𝑇(𝑤 0. . 𝑛 − 2 , 𝑅′)

= 1 +
1

2
𝑇𝑒𝑥𝑝(some instance of size 𝑛 − 1) 



Expected Running Time of randomized-all-0-test

▪ Recurrence 𝑇𝑒𝑥𝑝 𝑛 ≤
1

2
𝑇𝑒𝑥𝑝(𝑛 − 1)

▪ recurrence inequality solved just as equality by expansion

▪ resolves to Θ(1) 

▪ Expected running time is 𝑂(1) 

▪ Same recurrence as for average case all-0-test

▪ 𝑇𝑎𝑣𝑔 𝑛 = 1 +
1

2
𝑇𝑎𝑣𝑔 𝑛 − 1

▪ Recall randomized-all-0-test is very similar to all-0-test

▪ the only difference is a random bit flip

▪ Is expected time of randomized version always the same as average case 
time of non-randomized version?

▪ no in general (depends on randomization)

▪ yes if randomization is a shuffle 

▪ choose instance randomly with equal probability



Average-case vs. Expected runtime

▪ Ignoring time needed for the first two lines

AlgoritmShuffled(𝑛)

      among all instances 𝐼 of size 𝒏 for Algorithm

               choose 𝐼 randomly and uniformly

      Algorithm(𝐼, 𝑛)

= 𝑇𝑎𝑣𝑔 𝑛= 
𝐼∈𝕀𝑛

1

𝕀𝑛
𝑇(𝐼)𝑇𝑒𝑥𝑝 𝑛 = 

𝐼∈𝕀𝑛

Pr 𝐼 is chosen 𝑇(𝐼)

▪ Expected runtime of AlgorithmShuffled is equal to the average case time of 
Algorithm

▪ Computing expected runtime of AlgorithmShuffled is usually easier than 
computing average case time of Algorithm

▪ this gives a different way to compute average case runtime



Average-case vs. Expected runtime

▪ Example: randomized all-0-test, rephrased with for-loops

▪ These algorithms are not quite the same, but this does not matter for the 
expected number of bit comparisons

▪ either way, at the time of comparison, the bit is 1 with probability ½

▪ Therefore, the average time of all-0-test can be deduced without analyzing 

𝑇𝑎𝑙𝑙−0−𝑡𝑒𝑠𝑡
𝑎𝑣𝑔

𝑛  directly

          𝑇𝑎𝑙𝑙−0−𝑡𝑒𝑠𝑡
𝑎𝑣𝑔

𝑛

randomized-all-0-test(𝑤, 𝑛)

  for (𝑖 = 𝑛 − 1; 𝑖 ≥ 0, 𝑖 −−) do

         if (𝑟𝑎𝑛𝑑𝑜𝑚 2 = 0) then

                  𝑤 𝑖 = 1 − 𝑤[𝑖]

          if (𝑤[𝑛 − 1] = 1) then return false         

  return true

shuffle-all-0-test(𝑛)

  for (𝑖 = 𝑛 − 1; 𝑖 ≥ 0, 𝑖 −−) do

         𝑤 𝑖 = 𝑟𝑎𝑛𝑑𝑜𝑚(2)

  for (𝑖 = 𝑛 − 1; 𝑖 ≥ 0, 𝑖 −−) do

       if (𝑤[𝑛 − 1] = 1) then return false         

  return true

= 𝑇𝑠ℎ𝑢𝑓𝑓𝑙𝑒−𝑎𝑙𝑙−0−𝑡𝑒𝑠𝑡
𝑒𝑥𝑝

𝑛 ∈ Θ(1)= 𝑇𝑟𝑎𝑛𝑑−𝑎𝑙𝑙−0−𝑡𝑒𝑠𝑡
𝑒𝑥𝑝

𝑛



Average-case vs. Expected runtime
▪ Average case runtime and expected runtime are different concepts!

average case expected

𝑇𝑒𝑥𝑝 𝐼 = 
 

outcomes 𝑅

𝑇 𝐼, 𝑅 ∙ Pr(𝑅)
𝑇𝑎𝑣𝑔 𝑛 =

σ𝐼∈𝕀𝑛
𝑇(𝐼)

𝕀𝑛

sum is over instances sum is over random outcomes

applied only to a randomized algorithm

▪ There is a relationship only if the randomization of a deterministic algorithm 
effectively achieves ‘choose the input instance randomly’



Outline

▪ Sorting, average-case, and Randomization

▪ Analyzing average-case run-time

▪ Randomized Algorithms

▪ QuickSelect

▪ QuickSort

▪ Lower Bound for Comparison-Based Sorting  

▪ Non-Comparison-Based Sorting



Selection Problem

0 1 2 3 4 5 6 7 8          9

30 60 10 0 50 80 90 20 40 70

▪ Special case: MedianFinding  = select(𝑘 =
𝑛

2
)

▪ Selection can be done with heaps in Θ(𝑛 + 𝑘 log 𝑛) time

▪ this is Θ 𝑛 log 𝑛  for median finding, not better than sorting

▪ Question: can we do selection in linear time?

▪ yes, with quick-select (average case analysis)

▪ subroutines for quick-select also useful for sorting algorithms

select 2 = 20

▪ Given array 𝐴 of 𝑛 numbers, and  0 ≤ 𝑘 < 𝑛, find the element that 
would be at position 𝑘 if 𝐴 was sorted

▪  𝑘  elements are smaller or equal, 𝑛 − 1 − 𝑘 elements are larger or equal

▪  select(𝑘) returns 𝑘 + 1 smallest element

0 10 20 30 40 50 60 70 80 90sorted 𝟐𝟎

▪  𝑘  is also called rank



Two Crucial Subroutines for Quick-Select
▪ choose-pivot(𝐴) 

▪ return an index 𝑝 in A 

▪ 𝑣 = 𝐴[𝑝] is called pivot value 

0 1 2 3 4 5 6 7 8          9

30 60 10 0 50 80 90 20 40 70

𝑝 = 4
𝒗 =50

0 1 2 3 4 5 6 7 8          9𝑖 = 5

30 10 0 20 40 𝒗 =50 60 80 90 70

▪ items in 𝐴 [𝑖 + 1, … , 𝑛 − 1]  are ≥ 𝑣

▪ partition (𝐴, 𝑝) uses 𝑣 = 𝐴[𝑝] to rearranges 𝐴 so that

▪ items in 𝐴 [0, … , 𝑖 − 1]  are  ≤ 𝑣 

▪ 𝐴 𝑖 = 𝑣

▪ 𝑖  is a correct location of 𝑣 in sorted  𝐴 

▪ index 𝑖 is called  pivot-index 𝑖

▪ we have no control over value of 𝑖

▪ partition 𝐴, 𝑝  returns  pivot-index 𝑖

▪ 𝑣 would be the answer if 𝑖 = 𝑘



Choosing Pivot

choose-pivot(𝐴)
         return A.size() –  1

▪ Will consider more sophisticated ideas later

▪ Simplest idea for choose-pivot 

▪ always select rightmost element in array

0 1 2 3 4 5 6 7 8          9

30 60 10 0 50 80 90 20 40 70
𝑝 = 9
𝒗 =70



Partition Algorithm

▪ More challenging: partition in-place, i.e. O(1) auxiliary space

▪ Easy linear-time implementation using extra (auxiliary) Θ(𝑛) space 

partition(𝐴, 𝑝)

A: array of size 𝑛,  𝑝: integer s.t. 0 ≤  𝑝 <  𝑛

create empty lists 𝑠𝑚𝑎𝑙𝑙, 𝑒𝑞𝑢𝑎𝑙 and 𝑙𝑎𝑟𝑔𝑒

 𝑣 ←  𝐴[𝑝]

for each element 𝑥 in 𝐴

 if 𝑥 < 𝑣 then 𝑠𝑚𝑎𝑙𝑙. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑥)

 else if 𝑥 > 𝑣 then 𝑙𝑎𝑟𝑔𝑒. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑥)  

 else 𝑒𝑞𝑢𝑎𝑙. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑥)

 𝑖 ← 𝑠𝑚𝑎𝑙𝑙. 𝑠𝑖𝑧𝑒

 𝑗 ← 𝑒𝑞𝑢𝑎𝑙. 𝑠𝑖𝑧𝑒

overwrite 𝐴[0 . . . 𝑖 − 1] by   elements in 𝑠𝑚𝑎𝑙𝑙

overwrite  𝐴[𝑖 …  𝑖 + 𝑗 − 1]  by elements in  𝑒𝑞𝑢𝑎𝑙

overwrite 𝐴[𝑖 + 𝑗 . . . 𝑛 − 1]  by elements in 𝑙𝑎𝑟𝑔𝑒

return i



i = -1 j = 9

Efficient In-Place partition (Hoare)

30 60 10 0 50 80 90 20 40 𝑣=70

30 60 10 0 50 80 90 20 40 𝑣=70

i = 0 j = 9

30 60 10 0 50 80 90 20 40 𝑣=70

i = 1 j = 9

30 60 10 0 50 80 90 20 40 𝑣=70

i = 2 j = 9

30 60 10 0 50 80 90 20 40 𝑣=70

i = 3 j = 9

30 60 10 0 50 80 90 20 40 𝑣=70

i = 4 j = 9

30 60 10 0 50 80 90 20 40 𝑣=70

i = 5 j = 9i = 5 j = 8

30 60 10 0 50 80 90 20 40 𝑣=70

i = 5 j = 8

30 60 10 0 50 40 90 20 80 𝑣=70

i = 5 j = 8

30 60 10 0 50 40 90 20 80 𝑣=70

i = 6 j = 7

30 60 10 0 50 40 90 20 80 𝑣=70

i = 6 j = 7

30 60 10 0 50 40 20 90 80 𝑣=70

j = 6 i = 7

j = 6 i = 7
30 60 10 0 50 40 20 𝑣=70 80 90

almost done, 
just swap with  
pivot 𝑣

30 60 10 0 50 40 20 90 80 𝑣=70



Efficient In-Place partition (Hoare)

partition (𝐴, 𝑝)

  𝐴: array of size 𝑛

  𝑝: integer s.t. 0 ≤ 𝑝 < 𝑛

swap 𝐴 𝑛 − 1 , 𝐴 𝑝
𝑖 ← −1, 𝑗 ← 𝑛 − 1, 𝑣 ← 𝐴 𝑛 − 1

loop

do 𝑖 ← 𝑖 + 1  while 𝐴 𝑖 < 𝑣

do 𝑗 ← 𝑗 − 1  while 𝑗 ≥ 𝑖  and  𝐴 𝑗 > 𝑣

if  𝑖 ≥ 𝑗   then break

else  swap(𝐴 𝑖 , 𝐴[𝑗])    

end loop

swap(𝐴 𝑛 − 1 , 𝐴[𝑖])    

return   𝑖

▪ Running time is Θ(𝑛)

// put pivot in correct position

// put pivot at the end



Quick Select Algorithm

30 60 10 0 50 80 90 20 40 70

▪ Find item that would be in 𝐴[𝑘] if 𝐴 was sorted

▪ Similar to quick-sort, but recurse only on one side (“quick-sort with pruning”)

▪ Example: select(𝑘 = 4)

𝑣=70

𝑖=7

30 60 10 0 50 40 20 70 80 90

≤ 70 ≥ 70
▪  𝑖 > 𝑘, search recursively in the left side to select 𝑘

7 smallest items 

partition 
𝑣=70



Quick Select Algorithm

▪ Example continued: select(𝑘 = 4)

𝑖=2

≤ 20 ≥ 20

▪ 𝑖 < 𝑘, search recursively on the right, select 𝒌 − (𝒊 + 𝟏)
▪ 𝑘 = 1 in our example

𝑖 + 1 = 3 smallest items 

30 60 10 0 50 40 20𝑣=20

partition
 𝑣=20

0 10 20 30 50 40 60



Quick Select Algorithm

▪ Example continued: select(𝑘 = 1)

𝑖=3

≤ 60
▪  𝑖 > 𝑘,  search on the left to select 𝑘

partition
 𝑣=60

30 50 40 60𝑣=60

30 50 40 60

3 smallest items 



Quick Select Algorithm

▪ Example continued: select(𝑘 = 1)

𝑖=1

partition
𝑣=40

30 50 40𝑣=40

30 40 50

▪  𝑖 = 𝑘, found our item, done!

▪ In our example, we got to subarray of size 3

▪ Often stop much sooner than that



QuickSelect Algorithm
QuickSelect(𝐴, 𝑘)

        𝐴: array of size 𝑛,  𝑘: integer s.t. 0 ≤ 𝑘 < 𝑛

𝑝 ← choose-pivot(𝐴)

𝑖 ← partition(𝐴, 𝑝)

if 𝑖 = 𝑘  then return 𝐴[𝑖]

else if 𝑖 > 𝑘 then return QuickSelect(𝐴 0, 1, … , 𝑖 − 1 , 𝑘)

else if 𝑖 < 𝑘 then return QuickSelect(𝐴 𝑖 + 1, … , 𝑛 − 1 , 𝑘 − (𝑖 + 1))

𝑇 𝑛, 0 = ቊ
𝑛 + 𝑇 𝑛 − 1, 0 𝑛 > 1

1 𝑛 = 1

▪ Worst case
▪ pivot-value is always the largest and 𝑘 = 0

▪ Let 𝑇 𝑛, 𝑘  be # of comparisons in array of size 𝑛 with parameter 𝑘
▪ this is asymptotically the same as run-time

▪ Best case
▪ first chosen pivot could have pivot-index 𝑘

▪ no recursive calls, total cost Θ(𝑛)

//running time Θ(𝑛)

▪ recurrence equation resolves to Θ(𝑛2)



Average Case Analysis

▪ Observe: 𝑄𝑢𝑖𝑐𝑘𝑆𝑒𝑙𝑒𝑐𝑡 acts the same on two inputs below

14 22 43 6 1 11 7 15 23 44 5 1 12 8

▪ Only the relative order matters, not the actual numbers

▪ true for many (but not all) algorithms 

▪ if true, can use this to simplify average case analysis

𝑇𝑎𝑣𝑔 𝑛 =
σ𝐼∈𝕀𝑛

𝑇(𝐼)

𝕀𝑛

14 22 43 6 1 11 7 15 23 44 5 1 12 8

QuickSelect(𝐴, 𝑘)

        𝐴: array of size 𝑛,  𝑘: integer s.t. 0 ≤ 𝑘 < 𝑛

𝑝 ← choose-pivot(𝐴)

𝑖 ← partition(𝐴, 𝑝)

if 𝑖 = 𝑘  then return 𝐴[𝑖]

else if 𝑖 > 𝑘 then return QuickSelect(𝐴 0, 1, … , 𝑖 − 1 , 𝑘)

else if 𝑖 < 𝑘 then return QuickSelect(𝐴 𝑖 + 1, … , 𝑛 − 1 , 𝑘 − (𝑖 + 1))



0 1 2 3 4 5 6

Sorting Permutations
▪ For simplicity, will assume array 𝐴 stores unique numbers

▪ Characterize input by its sorting permutation 𝝅

▪ sorting permutation tells us how to sort the array

▪ stores array indexes in the order corresponding to the sorted array

14 2 3 5 1 11 7

𝜋 = (4, 1, 2, 3, 6, 5,0)

A

𝜋(0)
𝜋(1)

𝜋(2)

𝐴 𝜋 0 ≤ 𝐴 𝜋 1 ≤ 𝐴 𝜋 2  ≤ 𝐴 𝜋 3  

1

≤ 𝐴 𝜋 4  ≤ 𝐴 𝜋 5  ≤ 𝐴 𝜋 6  

≤  2 ≤  3 ≤  5 ≤  7 ≤  11 ≤  14 sorted!

𝜋(6)

𝜋 = (4, 1, 2, 3, 6, 5,0)𝜋 = (4, 1, 2, 3, 6, 5,0)𝜋 = (4, 1, 2, 3, 6, 5,0)𝜋 = (4, 1, 2, 3, 6, 5,0)𝜋 = (4, 1, 2, 3, 6, 5,0)𝜋 = (4, 1, 2, 3, 6, 5,0)

0 1 2 3 4 5 6
▪ Arrays with the same relative order have the same sorting permutations

15 3 4 6 1 12 8 𝜋 = (4, 1, 2, 3, 6, 5,0)



Average Time with Sorting Permutations

𝑇𝑎𝑣𝑔 𝑛 =
1

𝑛!


𝜋∈Π𝑛

𝑇(𝜋)

▪ There are 𝑛! sorting permutations for arrays with distinct numbers of size 𝑛

▪ let Π𝑛 be the set of all sorting permutations of size 𝑛

▪ Π3 = { 0,1,2 , 0,2,1 , 1,0,2 , 2,0,1 , 1,2,0 , (2,1,0)}

▪ Define average cost through permutations

▪ Intuitively, since all instances with sorting permutation 𝜋 have exactly the same 
running time, we group them together

all instances of size 3

instances with sorting permutation 𝜋 = (0, 1, 2) 

instances with sorting permutation 𝜋 = (0, 2, 1) 

instances with sorting permutation 𝜋 = (1, 0, 2) 

𝑇(0, 2, 1)

instances with sorting permutation 𝜋 = (2, 0, 1) 

instances with sorting permutation 𝜋 = (1, 2, 0) 

instances with sorting permutation 𝜋 = (2, 1, 0) 

7, 20, 10

−3, 6.6, 1.8

10, 21, 13
…

…

infinite set

infinite set

20,7, 10

6.6, −3, 1.8

21,10, 13

av
er

ag
e



Average-Case Analysis of QuickSelect
▪ For analyzing average case run-time, we assume all input items are distinct

▪ this can be forced by tie-breakers

▪ Can show (complicated) that average-case runtime is Θ 𝑛

▪ Instead, we will randomize QuickSelect

▪ when randomization is done with shuffling, the expected time   of 
randomized QuickSelect is the same as average case runtime of non-
randomized QuickSelect

▪ expected runtime of randomized QuickSelect is easier to derive

▪ In addition, randomized QuickSelect is the fastest algorithm for the 
selection problem in practice



Randomized QuickSelect: Shuffling
▪ First idea for randomization

▪ Shuffle the input then run quickSelect

quickSelectShuffled(𝐴, 𝑘)

𝐴 : array of size 𝑛

 for 𝑖 ⟵ 1  to  𝑛 − 1 do

  swap(𝐴 𝑖 , 𝐴[𝑟𝑎𝑛𝑑𝑜𝑚 𝑖 + 1 ])
 

 QuickSelect(𝐴, 𝑘)
 

▪ Can show that every permutation of 𝐴 is equally likely after shuffle

▪ As shown before, expected time of quickSelectShuffled is the same as average  
…. case time of quickSelect

// shuffle



Randomized QuickSelect Algorithm

RandomizedQuickSelect(𝐴, 𝑘)
        𝐴: array of size 𝑛,  𝑘: integer s.t. 0 ≤ 𝑘 < 𝑛

𝑝 ← random(𝐴. 𝑠𝑖𝑧𝑒) 

𝑖 ← partition(𝐴, 𝑝)

if 𝑖 = 𝑘  then return 𝐴[𝑖]

else if 𝑖 > 𝑘  then 

             return RandomizedQuickSelect(𝐴 0, 1, … , 𝑖 − 1 , 𝑘)

else if 𝑖 < 𝑘  then 

           return RandomizedQickSelect(𝐴 𝑖 + 1, … , 𝑛 − 1 , 𝑘 − (𝑖 + 1))

▪ Second idea: change pivot selection

▪ Just one line change from QuickSelect

▪ It is possible to prove that RandomizedQuickSelect has the same expected 
runtime as quickSelectShuffled  (no details)

▪ Therefore expected time for RandomizedQuickSelect  is the same as the average 
case runtime of QuickSelect 

▪ easier to compute



Randomized QuickSelect: Analysis

▪ Let 𝑇(𝐴, 𝑘, 𝑅) be number of key-comparisons on array 𝐴 of 
size 𝑛, selecting 𝑘th element, using random numbers 𝑅 

▪ asymptotically the same as running time

RandomizedQuickSelect(𝐴, 𝑘)

𝑝 ← random(𝐴. 𝑠𝑖𝑧𝑒) 

𝑖 ← partition(𝐴, 𝑝)
⋯

𝑇 𝐴, 𝑘, 𝑖, 𝑅′ = 𝑛 + ቐ
𝑇(𝐵, 𝑘, 𝑅′) if 𝑖 > 𝑘

𝑇(𝐶, 𝑘 − 𝑖 − 1, 𝑅′) if 𝑖 < 𝑘
0 otherwise

𝑣

𝒊

𝐶𝐵

select(𝑘) select(𝑘 − 𝑖 − 1)

size 𝑖 size 𝑛 − 𝑖 − 1

▪ Identify numbers 𝑝 generated by random with pivot indexes 𝑖

▪ one-one correspondence between generated numbers and pivot indexes 

▪ So 𝑅 is a sequence of randomly generated pivot indexes, 𝑅 =⟨first, the rest of 𝑅⟩= 𝑖, 𝑅′

▪ Assume  array elements are distinct

▪ probability of any pivot-index 𝑖 equal to 1/𝑛

▪ Structure of array 𝐴 after partition

▪ Recurse in array 𝐵 or 𝐶 or algorithms stops



Randomized QuickSelect: Analysis

𝑇𝑒𝑥𝑝 𝑛 = max
𝐴∈𝕀𝑛

max
𝑘∈{0,…𝑛−1}



𝑅

𝑇 𝐴, 𝑘, 𝑅 Pr(𝑅)

▪ Runtime of RandomizedQuickSelect(𝐴, 𝑘) also depends on 𝑘



Randomized QuickSelect: Analysis



𝑅

𝑇 𝐴, 𝑘, 𝑅 Pr 𝑅 =

= 

𝑅= 𝑖,𝑅′

𝑇 𝐴, 𝑘, 𝑖, 𝑅′ Pr 𝑖 Pr(𝑅′)

=
1

𝑛


𝑖=0

𝑘−1



𝑅′

𝑇 𝐴, 𝑘, 𝑖, 𝑅′ Pr(𝑅′) +
1

𝑛
∙ 𝑛 +

1

𝑛


𝑖=𝑘+1

𝑛−1



𝑅′

𝑇 𝐴, 𝑘, 𝑖, 𝑅′ Pr(𝑅′) 

𝑇 𝐴, 𝑘, 𝑖, 𝑅′ = 𝑛 + ቐ
𝑇(𝐵, 𝑘, 𝑅′) if 𝑖 > 𝑘

𝑇(𝐶, 𝑘 − 𝑖 − 1, 𝑅′) if 𝑖 < 𝑘
0 otherwise

𝑖 < 𝑘: recurse on 𝐶 𝑖 > 𝑘: recurse on 𝐵base case

=
1

𝑛


𝑖=0

𝑘−1



𝑅′

𝑛 + 𝑇(𝐶, 𝑘 − 𝑖 − 1, 𝑅′) Pr(𝑅′) +1 +
1

𝑛


𝑖=𝑘+1

𝑛−1



𝑅′

𝑛 + 𝑇(𝐵, 𝑘, 𝑅′) Pr(𝑅′)

≤ 𝑛 +
1

𝑛


𝑖=0

𝑘−1

max
𝐷∈𝕀𝑛−𝑖−1, 𝑤∈{0,…𝑘−1}



𝑅′

𝑇(𝐷, 𝑤, 𝑅′)Pr(𝑅′) +
1

𝑛


𝑖=𝑘+1

𝑛−1

max
𝐷∈𝕀𝑖, 𝑤∈{𝑘+1,…,𝑛−1}



𝑅′

𝑇(𝐷, 𝑤, 𝑅′)Pr(𝑅′)

= 𝑛 +
1

𝑛


𝑖=0

𝑘−1

𝑇𝑒𝑥𝑝 𝑛 − 𝑖 − 1 +
1

𝑛


𝑖=𝑘+1

𝑛−1

𝑇𝑒𝑥𝑝 𝑖

max
𝐴∈𝕀𝑛

max
𝑘∈{0,…𝑛−1}



𝑅

𝑇 𝐴, 𝑘, 𝑅 Pr(𝑅)𝑇𝑒𝑥𝑝 𝑛 =

▪ Since above bound works for any 𝐴 and 𝑘, it will work for the worst 𝐴 and 𝑘

≤ 𝑛 +
1

𝑛


𝑖=0

𝑛−1

max{𝑇𝑒𝑥𝑝 𝑖 , 𝑇𝑒𝑥𝑝 𝑛 − 𝑖 − 1 } 



Randomized QuickSelect: Analysis

▪ In summary, expected runtime for RandomizedQuickSelect 

𝑇𝑒𝑥𝑝 𝑛 ≤ 𝑛 +
1

𝑛


𝑖=0

𝑛−1

max{𝑇𝑒𝑥𝑝 𝑖 , 𝑇𝑒𝑥𝑝 𝑛 − 𝑖 − 1 } 



Theorem:  𝑇 𝑛  ϵ Ο(𝑛)

Proof: 

▪ will prove 𝑇 𝑛 ≤ 4𝑛 by induction on 𝑛

▪ base case, 𝑛 = 1:  𝑇 1 = 1

𝑇 1 = 1 and 𝑇(𝑛) ≤ 𝑛 +
1

𝑛


𝑖=0

𝑛−1

𝑚𝑎𝑥 𝑇 𝑖 , 𝑇(𝑛 − 𝑖 − 1)  

≤ 𝑛 +
1

𝑛


𝑖=0

𝑛−1

𝑚𝑎𝑥 4𝑖, 4(𝑛 − 𝑖 − 1)  

𝑇(𝑛) ≤ 𝑛 +
1

𝑛


𝑖=0

𝑛−1

𝑚𝑎𝑥 𝑇 𝑖 , 𝑇(𝑛 − 𝑖 − 1)  

induction hypothesis applies 
to each one of these

≤ 𝑛 +
4

𝑛


𝑖=0

𝑛−1

𝑚𝑎𝑥 𝑖, 𝑛 − 𝑖 − 1  

Randomized QuickSelect: Solving Recurrence

≤ 4 ⋅ 1

▪ induction hypothesis: assume  𝑇 𝑚 ≤ 4𝑚 for all 𝑚 < 𝑛

▪ need to show  𝑇 𝑛 ≤ 4𝑛



Proof: (cont.) 𝑇(𝑛) ≤ 𝑛 +
4

𝑛


𝑖=0

𝑛−1

𝑚𝑎𝑥 𝑖, 𝑛 − 𝑖 − 1  



𝑖=0

𝑛−1

𝑚𝑎𝑥 𝑖, 𝑛 − 𝑖 − 1  = + 

𝑖=
𝑛
2

𝑛−1

𝑚𝑎𝑥 𝑖, 𝑛 − 𝑖 − 1  

𝑖=0

𝑛
2−1

𝑚𝑎𝑥 𝑖, 𝑛 − 𝑖 − 1  

+𝑚𝑎𝑥 1, 𝑛 − 2= 𝑚𝑎𝑥 0, 𝑛 − 1 +𝑚𝑎𝑥 2, 𝑛 − 3 + ⋯ + 𝑚𝑎𝑥
𝑛

2
− 1,

𝑛

2

+𝑚𝑎𝑥
𝑛

2
+ 1,

𝑛

2
− 2+𝑚𝑎𝑥

𝑛

2
,
𝑛

2
− 1 + ⋯ + 𝑚𝑎𝑥 𝑛 − 1,0

= 𝑛 − 1 + (𝑛 − 2) + ⋯ +
𝑛

2
+

𝑛

2
+

𝑛

2
+ 1 + ⋯ 𝑛 − 1

3𝑛

2
− 1

𝑛

4

3𝑛

2
− 1

𝑛

4

=

≤
3

4
𝑛2

3𝑛

2
− 1

𝑛

2

≤ 𝑛 +
4

𝑛
∙

3

4
𝑛2 = 4𝑛

exactly what we 
need for the proof

Randomized QuickSelect: Solving Recurrence



Expected runtime of RandomizedQuickSelect is Θ(𝑛)
▪ the bound is tight since partition takes Ω(𝑛)

▪ if unlucky with random numbers, then runtime is Ω(𝑛2)

▪ worst case: worst instance, worst luck

▪ Therefore quickSelectShuffled has expected runtimeΘ(𝑛)

▪ Therefore quickSelect has average case runtime Θ(𝑛)

▪ RandomizedQuickSelect is generally the fastest implementation of  
selection algorithm

▪ There is a selection algorithm with worst-case running time Ο(𝑛)
▪ CS341

▪ but it uses double recursion and is slower in practice

Summary of Selection



Outline

▪ Sorting, average-case, and Randomization

▪ Analyzing average-case run-time

▪ Randomized Algorithms

▪ QuickSelect

▪ QuickSort

▪ Lower Bound for Comparison-Based Sorting  

▪ Non-Comparison-Based Sorting



QuickSort
▪ Hoare developed partition and 

quick-select in 1960

▪ Also used them to sort based on 
partitioning

QuickSort(𝐴)

         Input: array A of size 𝑛

if 𝑛 ≤ 1  then return

𝑝 ← choose-pivot(𝐴)

𝑖 ← partition (𝐴 ,𝑝)

QuickSort(𝐴 0, 1, … , 𝑖 − 1 )

QuickSort(𝐴 𝑖 + 1, … , 𝑛 − 1 )

𝑣≤ 𝑣 ≥ 𝑣
correct place

sort recursively sort recursively

Sorted!𝑣



QuickSort

▪ Let 𝑇 𝑛  to be the number of comparisons on size 𝑛 array

▪ running time is Θ(number of comparisons)

▪ Recurrence for pivot-index 𝑖:  𝑇 𝑛 = 𝑛 +  𝑇 𝑖 + 𝑇(𝑛 − 𝑖 − 1)

▪ Worst case   𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑛

▪ recurrence solved in the same way as quickSelect, 𝑂 𝑛2

▪ Best case 𝑇 𝑛 = 𝑇 𝑛/2 + 𝑇 𝑛/2 + 𝑛

▪ solved in the same way as mergeSort, Θ 𝑛 log 𝑛

▪ Average case?

▪ through randomized version of QuickSort

QuickSort(𝐴)

         Input: array A of size 𝑛

if 𝑛 ≤ 1  then return

𝑝 ← choose-pivot(𝐴)

𝑖 ← partition (𝐴 ,𝑝)

QuickSort(𝐴 0, 1, … , 𝑖 − 1 )

QuickSort(𝐴 𝑖 + 1, … , 𝑛 − 1 )



Randomized QuickSort: Random Pivot

▪ Let 𝑇𝑒𝑥𝑝 𝑛 =  number of comparisons 

▪ Analysis is similar to that of RandomizedQuickSelect

▪ but  recurse both in array of size 𝑖 and array of size 𝑛 − 𝑖 − 1

▪ Expected running time for RandomizedQuickSort

▪ derived similarly to RandomizedQuickSelect

𝑇𝑒𝑥𝑝 𝑛 ≤
1

𝑛


𝑖=0

𝑛−1

𝑛 + 𝑇𝑒𝑥𝑝 𝑖 + 𝑇𝑒𝑥𝑝 𝑛 − 𝑖 − 1

RandomizedQuickSort(𝐴)

         Input: array A of size 𝑛

if 𝑛 ≤ 1  then return

𝑝 ← random(𝐴. 𝑠𝑖𝑧𝑒)

𝑖 ← partition (𝐴 ,𝑝)

RandomizedQuickSort(𝐴 0, 1, … , 𝑖 − 1 )

RandomizedQuickSort(𝐴 𝑖 + 1, … , 𝑛 − 1 )



Randomized QuickSort: Expected Runtime

𝑇𝑒𝑥𝑝 𝑛 ≤
1

𝑛


𝑖=0

𝑛−1

𝑛 + 𝑇𝑒𝑥𝑝 𝑖 + 𝑇𝑒𝑥𝑝 𝑛 − 𝑖 − 1

𝑇 0 + 𝑇 1 + ⋯ + 𝑇 𝑛 − 1

= 𝑛 +
2

𝑛


𝑖=0

𝑛−1

𝑇𝑒𝑥𝑝 𝑖

▪ Simpler recursive expression for 𝑇𝑒𝑥𝑝 𝑛

▪ Thus 𝑇𝑒𝑥𝑝 𝑛 ≤ 𝑛 +
2

𝑛


𝑖=0

𝑛−1

𝑇𝑒𝑥𝑝 𝑖

= 𝑛 +
1

𝑛


𝑖=0

𝑛−1

𝑇𝑒𝑥𝑝 𝑖 +
1

𝑛


𝑖=0

𝑛−1

𝑇𝑒𝑥𝑝 𝑛 − 𝑖 − 1

𝑇 𝑛 − 1 + 𝑇 𝑛 − 2 + ⋯ + 𝑇 0



Randomized QuickSort: Solve Recurrence Relation

▪ Claim 𝑇 𝑛 ≤ 2𝑛 ln 𝑛  for all 𝑛 > 0

▪ Proof (by induction on 𝑛):

▪ 𝑇 1 = 0 (no comparisons)

▪ Suppose true for 2 ≤ 𝑚 < 𝑛 

▪ Let 𝑛 ≥ 2

𝑇 1 = 0 and 𝑇 𝑛 ≤ 𝑛 +
2

𝑛


𝑖=2

𝑛−1

𝑇 𝑖

𝑇 𝑛 ≤ 𝑛 +
2

𝑛


𝑖=2

𝑛−1

𝑇 𝑖 ≤ 𝑛 +
2

𝑛


𝑖=2

𝑛−1

2𝑖 ln 𝑖

induction 
hypothesis

▪  Upper bound by integral, since is 𝑥 ln 𝑥  is monotonically increasing for 𝑥 > 1

= 𝑛 +
4

𝑛


𝑖=2

𝑛−1

𝑖 ln 𝑖

𝟐
𝒍𝒏

𝟐

3
𝒍𝒏

𝟑

4
𝒍𝒏

𝟒

1 2 3 4

𝑥 ln 𝑥

𝑥



𝑖=2

𝑛−1

𝑖 ln 𝑖 ≤ න
2

𝑛

𝑥 ln 𝑥 𝑑𝑥 =
1

2
𝑛2 ln 𝑛 −

1

4
𝑛2 − 2 ln 2 + 1

≤
1

2
𝑛2 ln 𝑛 −

1

4
𝑛2

≤ 0



Randomized QuickSort: Solve Recurrence Relation

▪ Claim 𝑇 𝑛 ≤ 2𝑛 ln 𝑛  for all 𝑛 > 0

▪ Proof (by induction on 𝑛):

▪ 𝑇 1 = 0 (no comparisons)

▪ Suppose true for 2 ≤ 𝑚 < 𝑛 

▪ Let 𝑛 ≥ 2

𝑇 𝑛 ≤ 𝑛 +
4

𝑛

1

2
𝑛2 ln 𝑛 −

1

4
𝑛2

≤
1

2
𝑛2 ln 𝑛 −

1

4
𝑛2

= 2𝑛 ln 𝑛

▪ Expected running time of RandomizedQuickSort is 𝑂 𝑛 log 𝑛

▪ This is tight since best-case run-time is Ω 𝑛 log 𝑛

▪ Average case runtime of QuickSort is 𝑂 𝑛 log 𝑛

𝑇 1 = 0 and 𝑇 𝑛 ≤ 𝑛 +
2

𝑛


𝑖=2

𝑛−1

𝑇 𝑖

𝑇 𝑛 ≤ 𝑛 +
2

𝑛


𝑖=2

𝑛−1

𝑇 𝑖 ≤ 𝑛 +
2

𝑛


𝑖=2

𝑛−1

2𝑖 ln 𝑖

induction 
hypothesis

= 𝑛 +
4

𝑛


𝑖=2

𝑛−1

𝑖 ln 𝑖



Improvement ideas for QuickSort
▪ The auxiliary space is Ω(recursion depth)

▪ Θ 𝑛  in the worst case, Θ log 𝑛  average case 

▪ can be reduce to Θ log 𝑛  worst-case by

▪ recurse in smaller  sub-array first 

▪ replacing the other recursion by a while-loop (tail call elimination)

▪ Stop recursion when, say  𝑛 ≤  10

▪ array is not completely sorted, but almost sorted 

▪ at the end, run insertionSort, it sorts in just 𝑂 𝑛  time since all items 
are within 10 units of the required position

▪ Arrays with many duplicates sorted faster by 
changing  partition to produce three subsets

▪ Programming tricks

▪ instead of passing full arrays, pass only the range of indices

▪ avoid recursion altogether by keeping an explicit stack

< 𝒗 = 𝒗 > 𝒗



QuickSort with Tricks

QuickSortImproves(𝐴, 𝑛)
initialize a stack 𝑆 of index-pairs with { 0, 𝑛 − 1 }

while 𝑆 is not empty

𝑙, 𝑟 ← 𝑆. 𝑝𝑜𝑝() 

while 𝑟 − 𝑙 + 1 > 10  

 𝑝 ← choose-pivot(𝐴, 𝑙, 𝑟)

 𝑖 ← partition (𝐴, 𝑙, 𝑟, 𝑝)
        if 𝑖 − 𝑙 > 𝑟 − 𝑖 do

                𝑆. 𝑝𝑢𝑠ℎ 𝑙, 𝑖 − 1

𝑙 ← 𝑖 + 1 
       else

               𝑆. 𝑝𝑢𝑠ℎ 𝑖 + 1, 𝑟

𝑟 ← 𝑖 − 1 
InsertionSort(𝐴)

▪ This is often the most efficient sorting algorithm in practice

▪ although worst-case is Θ 𝑛2

// store larger  problem in 𝑆 for later

// store larger problem in 𝑆 for later

// next work on the right side

// next work on the left side

// is left side larger than right?

// work on it if it’s larger than 10

// get the next subproblem



Outline

▪ Sorting, average-case, and Randomization

▪ Analyzing average-case run-time

▪ Randomized Algorithms

▪ QuickSelect

▪ QuickSort

▪ Lower Bound for Comparison-Based Sorting  

▪ Non-Comparison-Based Sorting



Lower bounds for sorting

▪ Question: Can one do better than Θ 𝑛 log 𝑛  running time?

▪ Answer: It depends on what we allow

▪ No: comparison-based sorting lower bound is Ω 𝑛 log 𝑛
▪ no restriction on input, just must be able to compare 

▪ Yes: non-comparison-based sorting can achieve O(𝑛) 
▪ restrictions on input

▪ We have seen many sorting algorithms

Sort Running Time Analysis

Selection Sort Θ(𝑛2) worst-case

Insertion Sort Θ(𝑛2) worst-case

Merge Sort Θ(𝑛 log 𝑛) worst-case

Heap Sort Θ(𝑛 log 𝑛) worst-case

quickSort
RandomizedQuickSort

Θ 𝑛 log 𝑛
Θ(𝑛 log 𝑛)

average-case
expected



The Comparison Model

▪ All sorting algorithms seen so far are in the comparison model

▪ In the comparison model data can only be accessed in two ways

▪ comparing two elements
▪ 𝐴[𝑖] ≤ 𝐴[𝑗]

▪ moving elements around (e.g. copying, swapping)

▪ This makes very few assumptions on the things we are sorting

▪ Under comparison model, will show that any sorting algorithm 
requires Ω(𝑛log 𝑛) comparisons

▪ This lower bound is not for an algorithm, it is for the sorting 
problem

▪ How can we talk about problem without algorithm?
▪ count number of comparisons any sorting algorithm has to perform



Decision Tree

▪ Decision tree succinctly describes all decisions that are taken during 
the execution of an algorithm and the resulting outcome

▪ For each comparison-based sorting algorithm we can construct a 
corresponding decision tree

▪ Given decision tree, we can deduce the algorithm

▪ Can create decision trees for any comparison-based algorithm, not 
just sorting



Decision Tree for Concrete Algorithm Sorting 3 items 

if 𝑥0 < 𝑥1 then
        if 𝑥1 < 𝑥2 then print(𝑥0, 𝑥1, 𝑥2)
        else if 𝑥0 < 𝑥2 then print(𝑥0, 𝑥2, 𝑥1)
        else print(𝑥2, 𝑥0, 𝑥1)
else 
      if 𝑥1 < 𝑥2 then
            if 𝑥0 < 𝑥2 then print(𝑥1, 𝑥0, 𝑥2)
           else print(𝑥1, 𝑥2, 𝑥0)
     else print(𝑥2, 𝑥1, 𝑥0)

0, 1, 2 2, 1, 0

0, 2, 1 2,0,1 1, 0, 2 1,2,0

< 𝑥0: 𝑥1

𝑥1: 𝑥2

𝑥0: 𝑥2 𝑥0: 𝑥2

𝑥1: 𝑥2

<

<

<

<

≥

≥
≥

≥≥



Decision Tree: Sorting Example
𝑥0 = 4, 𝑥1 =2, 𝑥2 = 7

0, 1, 2 2, 1, 0

0, 2, 1 2,0,1 1, 0, 2 1,2,0

< 𝑥0: 𝑥1

𝑥1: 𝑥2

𝑥0: 𝑥2 𝑥0: 𝑥2

𝑥1: 𝑥2

<

<

<

<

≥

≥
≥

≥≥

𝑥1 =2 ≤ 𝑥0 = 4 ≤ 𝑥2 = 7

3 comparisons



Decision Tree: Sorting Example
𝑥0 = 8, 𝑥1 =7, 𝑥2 = 7

0, 1, 2 2, 1, 0

0, 2, 1 2,0,1 1, 0, 2 1,2,0

< 𝑥0: 𝑥1

𝑥1: 𝑥2

𝑥0: 𝑥2 𝑥0: 𝑥2

𝑥1: 𝑥2

<

<

<

<

≥

≥
≥

≥≥

𝑥2 =7 ≤ 𝑥1 = 7 ≤ 𝑥0 = 8

2 comparisons



Decision Tree

0, 1, 2 2, 1, 0

0, 2, 1 2,0,1 1, 0, 2 1,2,0

< 𝑥0: 𝑥1

𝑥1: 𝑥2

𝑥0: 𝑥2 𝑥0: 𝑥2

𝑥1: 𝑥2

<

<

<

<

≥

≥
≥

≥≥

▪ Interior nodes are comparisons
▪ root corresponds is the first comparison

▪ Each comparison has two outcomes: < and  ≥

▪ Each interior node has two children, links to the children are labeled with outcomes

▪ When algorithm makes no more comparisons, that node becomes a leaf

▪ sorting permutation has been determined once we reach a leaf

▪ label the leaf with the corresponding sorting  permutation, if reachable



Decision Tree

0, 1, 2

2, 1, 0

0, 2, 1 2,0,1 1, 0, 2 1,2,0

< 𝑥0: 𝑥1

𝑥1: 𝑥2

𝑥0: 𝑥2 𝑥0: 𝑥2

𝑥1: 𝑥2

<

<

<

<

≥

≥
≥

≥≥

▪ Can make more comparisons than necessary

▪ Can have leaves which are never reached

▪ Can have unreachable branches

▪ Unreachable branches/leaves make no difference for the runtime
▪ algorithm never goes into unreachable structure

▪ So assume everything is reachable (i.e. prune unreachable branches from decision tree)

𝑥0: 𝑥2

< ≥

not reachable

𝒙𝟎: 𝒙𝟐



Decision Tree

0, 1, 2

2, 1, 0

0, 2, 1 2,0,1 1, 0, 2 1,2,0

< 𝑥0: 𝑥1

𝑥1: 𝑥2

𝑥0: 𝑥2 𝑥0: 𝑥2

𝑥1: 𝑥2

<

<

<

<

≥

≥
≥

≥≥

▪ Can make more comparisons than necessary

▪ Can have leaves which are never reached

▪ Can have unreachable branches

▪ Unreachable branches/leaves make no difference for the runtime
▪ algorithm never goes into unreachable structure

▪ So assume everything is reachable (i.e. prune unreachable branches from decision tree)

▪ Tree height ℎ is the worst case number of comparisons

𝑥0: 𝑥2

≥

𝒙𝟎: 𝒙𝟐



Decision Tree
▪ General case:  comparison-based sort for 𝑛 elements

▪ Many sorting algorithms, for each one we have its own decision tree

....

▪ Can prove that the height of any decision tree is at least 𝑐𝑛log𝑛

▪ which is Ω(𝑛log 𝑛) 



▪ Let SortAlg be any comparison based sorting algorithm

▪ Since SortAlg is comparison based, it has a decision tree

▪ SortAlg must sort correctly any array of 𝑛 elements

▪ Let 𝑆𝑛 = set of arrays storing not-repeating integers 1, … , 𝑛

▪ 𝑆𝑛 = 𝑛! 

▪ Let 𝜋𝑥 denote the sorting permutation of 𝑥 ϵ 𝑆𝑛

▪ When we run  𝑥 through 𝑇, we must end up at a leaf labeled with 𝜋𝑥 

▪ 𝑥, 𝑦 ϵ 𝑆𝑛 with 𝑥 ≠ 𝑦 have sorting permutations 𝜋𝑥 ≠ 𝜋𝑦

▪ 𝑛! instances in  𝑆𝑛 must go to distinct leaves

𝑇

Lower bound for sorting in the comparison model
Theorem: Comparison-based sorting algorithm requires Ω(𝑛log 𝑛) comparisons

Proof:

0, 1, 22, 1, 0 0, 2, 12,0,1 1, 0, 2 1,2,0

𝑆3 = { 1,2,3 , 1,3,2 , 2,1,3 , 2,3,1 , 3,1,2 , [3,2,1]}

⇒ tree must have at least 𝒏! leaves



▪ Therefore, the tree must have at least 𝑛! leaves

▪ Binary tree with height ℎ has at most 2ℎ leaves

▪ Height ℎ must be at least such that 2ℎ ≥ 𝑛!

Lower bound for sorting in the comparison model
Proof: (cont.)

▪ Taking logs of both sides

log(𝑛!) = log(𝑛 𝑛 − 1 … ⋅ 1) = log𝑛 + ⋯ + log(
𝑛

2
+ 1) + log

𝑛

2
+ ⋯ + log 1 

≥ log
𝑛

2
+ ⋯ + log

𝑛

2
=

𝑛

2
log

𝑛

2
=

𝑛

2
log𝑛 −

𝑛

2
∈ Ω(𝑛log 𝑛) 

ℎ ≥

> log
𝑛

2

𝑛

2
 terms

▪ Notes about the proof

▪ proof does not assume the algorithm sorts only distinct elements

▪ proof does not assume the algorithms sorts only integers in range 1, … , 𝑛

▪ poof is based on finding 𝑛! input instances that must go to distinct leaves

▪ total number of inputs is infinite

□



Outline

▪ Sorting, average-case, and Randomization

▪ Analyzing average-case run-time

▪ Randomized Algorithms

▪ QuickSelect

▪ QuickSort

▪ Lower Bound for Comparison-Based Sorting 

▪ Non-Comparison-Based Sorting



Non-Comparison-Based Sorting

▪ Sort without comparing items to each other

▪ Non-comparison based sorting is less general than comparison 
based sorting

▪ In particular, need to make assumptions about items we sort
▪ unlike in comparison based sorting, which sorts any data, as long as it 

can be compared

▪ Will assume we are sorting non-negative integers
▪ can adapt to negative integers 

▪ also to some other data types, such as strings

▪ but cannot sort arbitrary data



Non-Comparison-Based Sorting

▪ Suppose all keys in 𝐴 of size 𝑛 are integers in range [0, … , 𝐿 − 1]

▪ How would you sort if 𝐿 is not too large?

▪ say 𝐿 < 𝑛



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Bucket Sort
▪ Suppose all keys in 𝐴 of size 𝑛 are integers in range [0, … , 𝐿 − 1]

▪ How would you sort if 𝐿 is not too large?

▪ Use an axillary bucket array 𝐵[0, … , 𝐿 − 1] to sort

▪ i.e. array of initially empty linked lists, initialization is Θ(𝐿)

▪ Example with 𝐿 = 15

A

12

14

7

6

7

0

10

B



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Bucket Sort
▪ Suppose all keys in 𝐴 of size 𝑛 are integers in range [0, … , 𝐿 − 1]

▪ Use an axillary bucket array 𝐵[0, … , 𝐿 − 1] to sort

▪ i.e. array of linked lists, initialization is Θ(𝐿)

▪ Example with 𝐿 = 15

A
12

14

7

6

7

0

10

12

𝑘 = 0 B



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Bucket Sort
▪ Suppose all keys in 𝐴 of size 𝑛 are integers in range [0, … , 𝐿 − 1]

▪ Use an axillary bucket array 𝐵[0, … , 𝐿 − 1] to sort

▪ i.e. array of linked lists, initialization is Θ(𝐿)

▪ Example with 𝐿 = 15

A
12

14

7

6

7

0

10

12 14𝑘 = 1

B
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Bucket Sort
▪ Suppose all keys in 𝐴 of size 𝑛 are integers in range [0, … , 𝐿 − 1]

▪ Use an axillary bucket array 𝐵[0, … , 𝐿 − 1] to sort

▪ i.e. array of linked lists, initialization is Θ(𝐿)

▪ Example with 𝐿 = 15

A
12

14

7

6

7

0

10

12 14

𝑘 = 2

7

B
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Bucket Sort
▪ Suppose all keys in 𝐴 of size 𝑛 are integers in range [0, … , 𝐿 − 1]

▪ Use an axillary bucket array 𝐵[0, … , 𝐿 − 1] to sort

▪ i.e. array of linked lists, initialization is Θ(𝐿)

▪ Example with 𝐿 = 15

A
12

14

7

6

7

0

10

12 14

𝑘 = 3

76

B
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Bucket Sort
▪ Suppose all keys in 𝐴 of size 𝑛 are integers in range [0, … , 𝐿 − 1]

▪ Use an axillary bucket array 𝐵[0, … , 𝐿 − 1] to sort

▪ i.e. array of linked lists, initialization is Θ(𝐿)

▪ Example with 𝐿 = 15

A
12

14

7

6

7

0

10

12 14

𝑘 = 4

76

7

B
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Bucket Sort
▪ Suppose all keys in 𝐴 of size 𝑛 are integers in range [0, … , 𝐿 − 1]

▪ Use an axillary bucket array 𝐵[0, … , 𝐿 − 1] to sort

▪ i.e. array of linked lists, initialization is Θ(𝐿)

▪ Example with 𝐿 = 15

A
12

14

7

6

7

0

10

12 14

𝑘 = 5

760

7

B
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Bucket Sort
▪ Suppose all keys in 𝐴 of size 𝑛 are integers in range [0, … , 𝐿 − 1]

▪ Use an axillary bucket array 𝐵[0, … , 𝐿 − 1] to sort

▪ i.e. array of linked lists, initialization is Θ(𝐿)

▪ Example with 𝐿 = 15

A
12

14

7

6

7

0

10

12 14

𝑘 = 6

760 10

7

B
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Bucket Sort

▪ Running time is Θ(𝐿 + 𝑛)

▪ runtime depends on both 𝑛 and 𝐿 

▪ Auxiliary space is Θ(𝐿 + 𝑛)

A
12

14

7

6

7

0

10

12 14760 10

7

0

6

7

7

10

12

14

▪ Suppose all keys in 𝐴 of size 𝑛 are integers in range [0, … , 𝐿 − 1]

▪ Use an axillary bucket array 𝐵[0, … , 𝐿 − 1] to sort

▪ i.e. array of linked lists, initialization is Θ(𝐿)

▪ Example with 𝐿 = 15

▪ Now iterate through 𝐵 and copy non-empty buckets to 𝐴

B
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Bucket Sort

▪ Running time is Θ(𝐿 + 𝑛)

▪ 𝑛 is size of 𝐴, runtime depends on both 𝑛 and 𝐿 

▪ Auxiliary space is Θ(𝑳 + 𝑛)

A
12

14

7

6

7

0

10

12 14760 10

7

0

6

7

7

10

12

14

▪ Suppose all keys in 𝐴 are integers in range [0, … , 𝐿 − 1]

▪ Use an axillary bucket array 𝐵[0, … , 𝐿 − 1] to sort

▪ i.e. array of linked lists, initialization is Θ(𝐿)

▪ Example with 𝐿 = 15

▪ Now iterate through 𝐵 and copy non-empty buckets to 𝐴

B

𝑛

12 14760 10

7



Digit Based Non-Comparison-Based Sorting

123 230 21 320 210 232 101

▪ Running time of bucket sort is Θ(𝐿 + 𝑛)

▪ 𝑛 is size of 𝐴

▪ 𝐿 is range [0, 𝐿) of integers in 𝐴

▪ What if 𝐿 is much larger than 𝑛?

▪ i.e. 𝐴 has size 100, range of integers in 𝐴 is [0, … , 99999]

▪ Can sort ‘digit by digit’

021

▪ pad with leading 0s to get keys of equal length 𝑚
▪ Assume keys have length of 𝑚 digits

123
230
021
320

MSD-Radix-Sort: forward

123
230
021
320

LSD-Radix-Sort: backward

1 → 𝑚 1 ⟵ 𝑚 

▪ Bucketsort is perfect for sorting ‘by digit’



Base 𝑅 number representation
▪ Can represent numbers in any base 𝑅 representation

▪ digits go from 0 to 𝑅 − 1

▪ 𝑅 buckets

▪ numbers are in the range {0, 1, … , 𝑅𝑚 − 1}

▪ Number of distinct digits gives the number of buckets 𝑅

▪ Useful to control number of buckets

▪ larger 𝑅 ⇒ smaller 𝑚

▪ less iterations but more work per iteration (larger bucket array)

▪ (100010)2 = (34)10

▪ From now on, assume keys are numbers in base 𝑅 (𝑅: radix)

▪ 𝑅 =  2, 10, 128, 256 are common

123 230 21 320 210 232 101

▪ Example (𝑅 =  4)



Bucket Sort on Last Digit
▪ Equivalent to normal bucket  sort if we redefine comparison 

▪ 𝑎 ≤ 𝑏 if the last digit of 𝑎 is smaller than (or equal) to the last digit of 𝑏

▪ example: 21𝟏 < 12𝟑 

A

123

230

121

320

210

232

101

B

123

230

121

320 210

232

101

A

230

320

210

121

101

232

123

0

1

2

3

123

230

121

320

210

232

101



Bucket Sort on Last Digit
▪ Equivalent to normal bucket  sort if we redefine comparison 

▪ 𝑎 ≤ 𝑏 if the last digit of 𝑎 is smaller than (or equal) to the last digit of 𝑏

▪ example: 211 < 123 

▪ Bucket sort is stable: equal items stay in original order

▪ crucial for developing LSD radix sort later

A

123

230

121

320

210

232

101

B

123

230

121

320 210

232

101

A

230

320

210

121

101

232

123

0

1

2

3

123

230

121

320

210

232

101

230

320

210

230

320

210



Single Digit Bucket Sort 
Bucket-sort(𝐴, 𝑑)
𝐴 : array of size  𝑛, contains numbers with digits in {0, … , 𝑅 − 1}

𝑑:   index of digit by which we wish to sort

 initialize array 𝐵 0, … , 𝑅 − 1  of empty lists (buckets)

 for 𝑖 ⟵ 0  to 𝑛 − 1  do

  𝑛𝑒𝑥𝑡 ⟵  𝐴[𝑖]  

  append 𝑛𝑒𝑥𝑡 at end of 𝐵[𝑑th digit of 𝑛𝑒𝑥𝑡]

 𝑖 ⟵ 0

 for 𝑗 ⟵ 0 to 𝑅 − 1 do

  while 𝐵[𝑗] is non-empty do

          move first element of 𝐵[𝑗] to 𝐴[𝑖++] 

▪ Sorting is stable: equal items stay in original order

▪ Run-time Θ(𝑛 + 𝑅) 

▪ Auxiliary space Θ(𝑛 + 𝑅)
▪ Θ(𝑅) for array 𝐵, and linked lists are  Θ 𝑛  



MSD-Radix-Sort
▪ Sorts multi-digit numbers from the most significant to the least significant

▪ Start by sorting the whole array by the first digit

123

232

021

320

210

230

101



MSD-Radix-Sort

123

232

021

320

210

230

101

▪ Sorts multi-digit numbers from the most significant to the least significant

▪ Start by sorting the whole array by the first digit



MSD-Radix-Sort

021

123

101

232

210

230

320

▪ Cannot sort the whole array by the second digit, will mess up the order

▪ Have to break down in groups by the first digit

▪ each group can be safely sorted by the second digit

▪ call sort recursively on each group, with appropriate array bounds

sort the whole array 
by the second digit

group 1

group 2

group 3

group 4

▪ Sorts multi-digit numbers from the most significant to the least significant

▪ Start by sorting the whole array by the first digit

101

210

021

123

320

232

230



MSD-Radix-Sort

021

123

101

232

210

230

320

021
0

0

recursion 
depth 1

recursion 
depth 0

▪ Recursively sorts multi-digit numbers

▪ sort by leading digit, group by next digit, then call sort recursively on each group

group 1

group 2

group 3

group 4



MSD-Radix-Sort

021

123

101

232

210

230

320

021
0

0

recursion 
depth 1

recursion 
depth 0

group 1

group 2

group 3

group 4

▪ Recursively sorts multi-digit numbers

▪ sort by leading digit, group by next digit, then call sort recursively on each group



MSD-Radix-Sort

021

123

101

232

210

230

320

021

123

101

0

0

1

2

recursion 
depth 1

recursion 
depth 0

group 1

group 2

group 3

group 4

▪ Recursively sorts multi-digit numbers

▪ sort by leading digit, group by next digit, then call sort recursively on each group



MSD-Radix-Sort

021

123

101

232

210

230

320

021

101

123

0

0

1

2

101
1
1

recursion 
depth 1

recursion 
depth 0

recursion 
depth 2

group 1

group 2

group 3

group 4

▪ Recursively sorts multi-digit numbers

▪ sort by leading digit, group by next digit, then call sort recursively on each group



MSD-Radix-Sort

021

123

101

232

210

230

320

021

101

123

0

0

1

2

101
1
1

recursion 
depth 1

recursion 
depth 0

recursion 
depth 2

group 1

group 2

group 3

group 4

▪ Recursively sorts multi-digit numbers

▪ sort by leading digit, group by next digit, then call sort recursively on each group



MSD-Radix-Sort

021

123

101

232

210

230

320

021

101

123

0

0

1

2

101

123

1
1

2
2

recursion 
depth 1

recursion 
depth 0

recursion 
depth 2

group 1

group 2

group 3

group 4

▪ Recursively sorts multi-digit numbers

▪ sort by leading digit, group by next digit, then call sort recursively on each group



MSD-Radix-Sort

021

123

101

232

210

230

320

021

101

123

0

0

1

2

101

123

1
1

2
2

232

210

230

3

5

recursion 
depth 1

recursion 
depth 0

recursion 
depth 2

group 1

group 2

group 3

group 4

▪ Recursively sorts multi-digit numbers

▪ sort by leading digit, group by next digit, then call sort recursively on each group



MSD-Radix-Sort

021

123

101

232

210

230

320

021

101

123

0

0

1

2

101

123

1
1

2
2

3

5

210

232

230

recursion 
depth 1

recursion 
depth 0

recursion 
depth 2

group 1

group 2

group 3

group 4

▪ Recursively sorts multi-digit numbers

▪ sort by leading digit, group by next digit, then call sort recursively on each group



MSD-Radix-Sort

021

123

101

232

210

230

320

021

101

123

0

0

1

2

101

123

1
1

2
2

3

5

210

232

230

210
3

3

recursion 
depth 1

recursion 
depth 0

recursion 
depth 2

group 1

group 2

group 3

group 4

▪ Recursively sorts multi-digit numbers

▪ sort by leading digit, group by next digit, then call sort recursively on each group



MSD-Radix-Sort

021

123

101

232

210

230

320

021

101

123

0

0

1

2

101

123

1
1

2
2

3

5

210

232

230

210
3

3

recursion 
depth 1

recursion 
depth 0

recursion 
depth 2

group 1

group 2

group 3

group 4

▪ Recursively sorts multi-digit numbers

▪ sort by leading digit, group by next digit, then call sort recursively on each group



MSD-Radix-Sort

021

123

101

232

210

230

320

021

101

123

0

0

1

2

101

123

1
1

2
2

3

5

210

232

230

210
3

3

232

230

4

5

recursion 
depth 1

recursion 
depth 0

recursion 
depth 2

group 1

group 2

group 3

group 4

▪ Recursively sorts multi-digit numbers

▪ sort by leading digit, group by next digit, then call sort recursively on each group



MSD-Radix-Sort

021

123

101

232

210

230

320

021

101

123

0

0

1

2

101

123

1
1

2
2

3

5

210

232

230

210
3

3

230

232

4

5

recursion 
depth 1

recursion 
depth 0

recursion 
depth 2

group 1

group 2

group 3

group 4

▪ Recursively sorts multi-digit numbers

▪ sort by leading digit, group by next digit, then call sort recursively on each group

done, no more digits to sort



MSD-Radix-Sort

021

123

101

232

210

230

320

021

101

123

0

0

1

2

101

123

1
1

2
2

3

5

210

232

230

210
3

3

230

232

4

5

320
6

6
recursion 
depth 1

recursion 
depth 0

recursion 
depth 2

group 1

group 2

group 3

group 4

▪ Recursively sorts multi-digit numbers

▪ sort by leading digit, group by next digit, then call sort recursively on each group



MSD-Radix-Sort

021

123

101

232

210

230

320

021

101

123

320

210

232

230

0

0

1

2

3

5

6

6

101

123

210

230

232

1
1

2
2

3

3

4

5

recursion 
depth 1

recursion 
depth 0

recursion 
depth 2

group 1

group 2

group 3

group 4

▪ Recursively sorts multi-digit numbers

▪ sort by leading digit, group by next digit, then call sort recursively on each group

many digits are 
never examined

21

20



MSD-Radix-Sort Space Analysis

021

123

101

232

210

230

320

021

101

123

320

210

232

230

101

123

210

230

232

recursion 
depth 1

recursion 
depth 0

recursion 
depth 2

▪ Bucket-sort 

▪ auxiliary space  Θ 𝑛 + 𝑅

▪ Recursion depth is 𝑚 − 1

▪ auxiliary space  Θ 𝑚

▪ Total auxiliary space Θ 𝑛 + 𝑅 + 𝑚



MSD-Radix-Sort Time Analysis
▪ Time spent for each recursion depth

▪ Depth 𝑑 = 0

▪ one bucket sort on 𝑛 items

▪ Θ 𝑛 + 𝑅

▪ At depth 𝑑 > 0

▪ let 𝑘 be number of bucket sorts 

▪ 𝑘 ≤ 𝑛 

▪ index bucketsorts as 1, … , 𝑖 … , 𝑘

▪ bucketsort 𝑖 involves 𝑛𝑖 keys

▪ bucket sort 𝑖 takes 𝑛𝑖 + 𝑅 time 

recursion 
depth 1

recursion 
depth 0

recursion 
depth 2

𝐴

1 bucket 
sort

up to 𝑅 
bucket sorts

up to 𝑅2 
bucket sorts

at any depth, number of  bucketsorts ≤ 𝑛

each bucket 
sort needs at 
least 𝟏 number 
from array 𝐴

▪ total time at depth 𝑑 is 𝑂 𝑛𝑅

▪ Number of depths is at most 𝑚 − 1 

▪ Total time 𝑂 𝑚𝑛𝑅



𝑖=1

𝑘

(𝑛𝑖+𝑅) +𝑘𝑅= 

𝑖=1

𝑘

𝑛𝑖 + 

𝑖=1

𝑘

𝑅 ≤ 𝑛 ≤ 𝑛 + 𝑛𝑅



MSD-Radix-Sort Pseudocode
▪ Sorts array of 𝑚-digit radix-𝑅 numbers recursively

▪ Sort by leading digit, then each group by next  digit, etc.

MSD-Radix-sort 𝐴, 𝑙 ← 0, 𝑟 ← 𝑛 − 1, 𝑑 ← 𝑙𝑒𝑎𝑑𝑖𝑛𝑔 𝑑𝑖𝑔𝑖𝑡 𝑖𝑛𝑑𝑒𝑥

𝑙, 𝑟 :  indexes between which to sort, 0 ≤ 𝑙, 𝑟 ≤ 𝑛 − 1

 if 𝑙 < 𝑟

 bucket-sort(𝐴 𝑙 … 𝑟 , 𝑑)  

 if  there are digits left 

      𝑙′ ← 𝑙

      while 𝑙′ < 𝑟  do

          let 𝑟′ ≥ 𝑙′ be the maximal s.t 𝐴 𝑙′ … 𝑟′   have the same 𝑑th digit

         MSD-Radix-sort 𝐴, 𝑙′, 𝑟′, 𝑑 + 1

                                       𝑙′ ← 𝑟′ + 1

▪ Run-time 𝑂(𝑚𝑛𝑅), auxiliary space is  Θ 𝑚 + 𝑛 + 𝑅  

▪ Advantage: many digits may remain unexamined

▪ Drawback:  many recursions



MSD-Radix-Sort Time Analysis
▪ Total time 𝑂 𝑚𝑛𝑅

▪ This is 𝑂 𝑛  if sort items in limited range 
▪ suppose  𝑅 = 2, and we sort are 𝑛 integers in the range [0, 210)

▪ then 𝑚 = 10, 𝑅 = 2, and sorting is 𝑂 𝑛

▪ note that 𝑛, the number of items to sort, can be arbitrarily large 

▪ This does not contradict Ω(𝑛log 𝑛) bound on the sorting problem, 
since the bound applies to comparison-based sorting

▪ Comparing different 𝑅
▪ sort 𝑛 integers in the range [0, 210)

▪ if 𝑅 = 2, then 𝑚 = 10, and sorting is 𝑂 20𝑛

▪ if 𝑅 = 10, then 𝑚 = 4 (210 =1024)  and sorting is 𝑂 40𝑛



LSD-Radix-Sort

▪ Idea: apply single digit bucket sort from least significant digit 
to the most significant digit

▪ Observe that digit bucket sort is stable

▪ equal elements stay in the original order

▪ therefore, we can apply single digit bucket sort to the 
whole array, and the output will be sorted after 
iterations over all digits



LSD-Radix-Sort
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▪ 𝑚 bucket sorts, on 𝑛 items each, one bucket sort is Θ(𝑛 + 𝑅)

▪ Total time cost Θ(𝑚 𝑛 + 𝑅 )



LSD-Radix-Sort

LSD-radix-sort(𝐴)

𝐴: array of size n, contains m-digit radix-R numbers

 for 𝑑 ← least significant down to most significant digit  do

  bucket-sort(𝐴, 𝑑)

▪ Loop invariant: after iteration 𝑖,  𝐴 is sorted w.r.t. the last  𝑖 digits of each entry

▪ Time cost Θ(𝑚 𝑛 + 𝑅 )

▪ Auxiliary space Θ(𝑛 + 𝑅)



Summary
▪ Sorting is an important and very well-studied problem

▪ Can be done in Θ 𝑛log 𝑛  time

▪ faster is not possible for general input  

▪ HeapSort is the only Θ 𝑛log 𝑛  time algorithm we have seen with Ο 1  
auxiliary space

▪ MergeSort is also Θ 𝑛log 𝑛  time

▪ Selection and insertion sorts are Θ 𝑛2

▪ QuickSort is worst-case Θ 𝑛2 , but often the fastest in practice  

▪ BucketSort and RadixSort can achieve o 𝑛log 𝑛  if the input is special

▪ Randomized algorithms can eliminate “bad instances”

▪ Best-case, worst-case, average-case can all differ

▪ Often easier to analyze the run-time on randomly chosen input rather than the 
average-case runtime
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