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Dictionary ADT
▪ Dictionary ADT consists of a collection of items, each item contains

▪ a key

▪ a value (some data)

▪ Item is called a key-value pair (KVP)

▪ Keys can be compared and are (typically) unique

▪ can extend to handle non-unique keys

▪ Operations

▪ search(𝑘)
▪ also called lookup(𝑘)

▪ insert(𝑘, 𝑣 )

▪ also called insertItem(𝑘, 𝑣)

▪ delete(𝑘)

▪ also called remove(𝑘)

▪ optional: successor, join, isEmpty, size, etc.

▪ Examples: symbol table, license plate database



Dictionary ADT: Common Assumptions 

▪ We will make the following assumptions
▪ dictionary has 𝒏 KVPs

▪ each KVP uses constant space

▪ if not, the “value” could be a pointer

▪ keys can be compared in constant time



Elementary Implementations

(7,’Ace’) (1,’Pot’) (3,’Top’) (2,’Dog’)

(1,’Pot’) (2,’Dog’) (3,’Top’) (7,’Ace’)▪ Ordered array
▪ search Θ(log 𝑛)

▪ via binary search

▪ insert Θ(𝑛)

▪ delete Θ(𝑛)

▪ Unordered array or linked list
▪ search  Θ(𝑛)

▪ insert Θ 1

▪ except if using array, the array occasionally needs to resize, so it is 
Θ 1 amortized time, but we do not discuss amortization details

▪ delete Θ(𝑛)

▪ need to search
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Binary Search Trees (review)

▪ Structure 
▪ binary tree is either empty or consists of nodes

▪ all nodes have two (possibly empty) subtrees

▪ L (left) 

▪ R (right)

▪ every node stores a KVP

▪ leaves store empty subtrees

▪ empty subtrees usually not shown

▪ Ordering
▪ every key 𝑘 in the left subtree of node 𝑣 is less than 𝑣. 𝑘𝑒𝑦

▪ every key 𝑘 the right subtree of node 𝑣 greater than 𝑣. 𝑘𝑒𝑦

▪ duplicate keys not allowed

▪ can generalize to duplicate keys, if needed

more  accurate picture

25

23 29

27 50

key = 23, <value>



BST Search
▪ BST::search(𝑘)

▪ start at root, compare 𝑘 to current node

▪ stop if found or subtree is empty, else recurse at subtree

▪ Example: BST::search(24)
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BST Search
▪ BST::search(𝑘)

▪ start at root, compare 𝑘 to current node

▪ stop if found or subtree is empty, else recurse at subtree

▪ Example: BST::search(24)

not found!



BST Insert
▪ BST::insert(𝑘, 𝑣)

▪ search for 𝑘, then insert (𝑘, 𝑣) as a new node at the empty subtree 
where search stops

▪ Example: BST::insert(24, 𝑣)
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▪ First search for node 𝑥 containing the key

▪ Example: BST::delete(25)
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1. If 𝑥 has at an empty subtree

▪ If 𝑥 has a parent, reconnect the other subtree of 𝑥 to the parent of 𝑥

▪ delete 𝑥 with the empty subtree

BST Delete: Case 1



BST Delete: Case 2
▪ First search for node 𝑥 containing the key

▪ Example: BST::delete(15)

2. If 𝑥 has only non-empty subtrees

▪ delete successor node (or predecessor node)

▪ now case 1 applies

▪ swap KVP at 𝑥 with KVP at successor node (or predecessor node)
▪ successor = smallest key node in the right subtree
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BST Delete: Case 2
▪ First search for node 𝑥 containing the key

▪ Example: BST::delete(15)

2. If 𝑥 has only non-empty subtrees

▪ delete successor node (or predecessor node)

▪ now case 1 applies

▪ swap KVP at 𝑥 with KVP at successor node (or predecessor node)
▪ successor = smallest key node in the right subtree



Height of a BST

▪ BST::search, BST::insert, BST::delete all have cost Θ(ℎ)
▪ ℎ = height of the tree = maximum length path from root to a leaf node
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height 3

▪ height of an empty tree is defined to be  −1

▪ If 𝑛 items are BST::inserted one-at-a-time, how big is ℎ?

▪ worst-case is  𝑛 − 1 = Θ(𝑛)

▪ best case is Θ(log 𝑛)

▪ binary tree with 𝑛 nodes has height ≥ log(𝑛 + 1) − 1

▪ Goal

▪ create subclass of BST where height is always good,i.e. Θ(log 𝑛)



Height of a node

▪ Height of node 𝑣 is the height of the tree rooted at node 𝑣
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Height of a node

▪ Height of node 𝑣 is the height of the tree rooted at node 𝑣
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27 50

3

2 2

1

0

0 0

1

▪ Can compute heights of all nodes in post order traversal
▪ leaf height is 0

▪ height of any other node 𝑣 is

1 + max height 𝑣. left , height 𝑣. right

00
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AVL Trees
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▪ Adelson-Velski and Landis,  1962

▪ AVL Tree  is a BST with  height-balance property
▪ for any node 𝑣, heights of its left and right subtrees differ by at most 1

AVL Tree 
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AVL Trees

▪ height-balance property rephrased
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0 0

0

3

1
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8 10

ℎ𝑒𝑖𝑔ℎ𝑡(𝑣. 𝑟𝑖𝑔ℎ𝑡) − ℎ𝑒𝑖𝑔ℎ𝑡(𝑣. 𝑙𝑒𝑓𝑡) ∈ {−1, 0, 1}
▪ −1 means 𝑣 is left-heavy

▪ 0 means 𝑣 is balanced

▪ +1 means 𝑣 is right-heavy

▪ Need to store at each node 𝑣 its height 

▪ enough to store  balance factor = ℎ𝑒𝑖𝑔ℎ𝑡 𝑣. 𝑟𝑖𝑔ℎ𝑡 − ℎ𝑒𝑖𝑔ℎ𝑡(𝑣. 𝑙𝑒𝑓𝑡)
▪ fewer bits

▪ but code more complicated, especially for deleting

▪ no details

(0)

(-1)

(1)



Height of an AVL tree

▪ Only need upper bound, as height is Ω(log 𝑛)

▪ Let  𝑁(ℎ) be the smallest number of nodes an AVL tree of height ℎ can have

▪ any AVL tree of height ℎ has number of nodes 𝑛 ≥ 𝑁 ℎ

𝒉
𝒉 − 𝟏

𝒉 − 𝟐

𝑁 ℎ

8

𝑁(0)

2

4

𝑁(1)

▪ For  ℎ ≥ 2

𝑁 ℎ = 𝑁 ℎ − 1 + 𝑁 ℎ − 2 + 1 ≥ 𝑁 ℎ − 2 + 𝑁 ℎ − 2 = 2𝑁 ℎ − 2

Theorem: AVL tree on 𝑛 nodes has Θ(log 𝑛) height

▪ Thus   𝑁(ℎ) ≥ 2𝑁(ℎ − 2)

▪ number of nodes doubles every two levels ⇒ exponential growth 

Proof:



Proof: (continued)

▪ 𝑁(ℎ) is the least number of nodes in height-ℎ AVL tree

▪ any AVL tree of height ℎ has number of nodes 𝑛 ≥ 𝑁 ℎ

≥ 22𝑁 ℎ − 2 ⋅ 2 ≥ ⋯ ≥ 2𝑖𝑁 ℎ − 2 ⋅ 𝑖𝑁 ℎ ≥ 2𝑁 ℎ − 2 ≥ 23𝑁 ℎ − 2 ⋅ 3

case 1:  odd ℎ

▪ 𝑁 0 = 1, 𝑁 1 = 2 and 𝑁 ℎ ≥ 2𝑁 ℎ − 2 for ℎ ≥ 2 and

▪ Keep expanding until the base case  

▪ expand until  ℎ − 2 ⋅ 𝑖 = 1

▪ rewriting, 𝑖 = (ℎ − 1)/2

case2: even ℎ

𝑁 ℎ ≥ 2(ℎ−1)/2𝑁 1 = 2
ℎ−1
2 ⋅ 2

▪ take log

log𝑁 ℎ ≥
ℎ−1

2
+ 1

▪ rearrange

ℎ ≤ 2log𝑁 ℎ − 2𝑁 ℎ

𝑛 ≥ 𝑁 ℎ

≤ 2log 𝑛 − 2

▪ expand until  ℎ − 2 ⋅ 𝑖 = 0

▪ rewriting, 𝑖 = ℎ/2

𝑁 ℎ ≥ 2ℎ/2𝑁 0 = 2
ℎ
2 ⋅ 1

▪ take log

log𝑁 ℎ ≥
ℎ

2

▪ rearrange

ℎ ≤ 2log𝑁 ℎ ≤ 2log 𝑛𝑁 ℎ

▪ In both cases, ℎ is 𝑂(log 𝑛)

Height of an AVL tree
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AVL Insertion Example

Example: AVL::insert(2)
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AVL Insertion Example

Example: AVL::insert(2)
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AVL insertion

▪ AVL::insert(𝑇, 𝑘, 𝑣)

1. insert (𝑘, 𝑣) into 𝑇 with the usual BST insertion
▪ assume insert returns new leaf where the key was inserted

▪ heights of nodes on path from this leaf to root may have increased 

▪ by at most 1

2. move up from the new leaf to the root, updating heights
▪ either use parent-links, or BST::insert could return the path 

3. if the height difference becomes ±2 for some node on this 

path, the node is unbalanced 
▪ must re-structure the tree to restore height-balance property
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Restoring Height After Insertion: Case 1

z

ℎ + 1

ℎ ℎ − 2

after insertion

D

before insertion

▪ Let z be the first unbalanced node on path from inserted node to root

new 
node

ℎ − 2 ≥ −1

z

D

ℎ − 1 ℎ − 2

ℎ

⇒ ℎ ≥ 1



Restoring Height After Insertion: Case 1

z

ℎ + 1

ℎ − 2

after insertion, ℎ ≥ 1before insertion

▪ Let z be the first unbalanced node on path from inserted node to root

new 
node

z

ℎ − 1 ℎ − 2

ℎ

ℎ − 1

D

ℎ

y

new 
node

D
y

ℎ − 2

CC

ℎ − 2 or 
ℎ −3

?ℎ − 3ℎ − 2

taller child of z



Restoring Height After Insertion: Case 1

z

ℎ + 1

ℎ − 2

after insertion, ℎ ≥ 1before insertion

▪ Let z be the first unbalanced node on path from inserted node to root

z

ℎ − 1 ℎ − 2

ℎ

D

ℎ

y

new 
node

D
y

C

ℎ − 2 ?ℎ − 3ℎ − 2ℎ − 1

Cx

A B

new 
node

ℎ − 2

case ℎ > 1:
both A,B have height ℎ − 3 A, B have height = −1

x

A B

case ℎ > 1: 𝑥 ≠ new node; 

= ℎ − 2

one of A,B has height ℎ − 2, 
another ℎ −3

case ℎ = 1: 𝑥 = new node;

taller child of y



Restoring Height After Insertion: Case 1

z

ℎ + 1

ℎ − 2

after insertion, ℎ ≥ 1before insertion

▪ Let z be the first unbalanced node on path from inserted node to root

z

ℎ − 1 ℎ − 2

ℎ

D

ℎ

y

new 
node

D
y

C

ℎ − 2 ?ℎ − 3ℎ − 2ℎ − 1

Cx

A B

new 
node

ℎ − 2

x

A B

ℎ − 2 or ℎ −3

case ℎ > 1:
both A,B have height ℎ − 3

left-left imbalance (taller left child and taller 
left grandchild)



Restoring Height: Right Rotation
▪ Right rotation is used for left-left imbalance (taller left child and left grandchild)

y

ℎ − 1

ℎ − 2

C

z

ℎ + 1

ℎ

ℎ − 2

D

x

A B

y

x

A B

z

C D

ℎ − 2 ℎ − 2

ℎ − 1

ℎ

ℎ − 1

▪ BST order is preserved

▪ Balanced

▪ Same subtree height ℎ as before 
insertion

subtree height 
before insertion: 𝒉



Right Rotation Pseudocode

▪ Right rotation on node 𝑧

y

A B

C

D

z

rotate-right(𝑧)

y ← z.left, z.left ← y.right, y.right ← z

setHeightFromChildren(𝑧), setHeightFromChildren(𝑦)

return 𝑦 // returns new root of subtree

y ← z.left



Right Rotation Pseudocode

▪ Right rotation on node 𝑧

rotate-right(𝑧)

y ← z.left, z.left ← y.right, y.right ← z

setHeightFromChildren(𝑧), setHeightFromChildren(𝑦)

return 𝑦 // returns new root of subtree

y

A B

C

D

z

y

A B

C

D

z



y

A B

z

C D

Right Rotation Pseudocode

▪ Right rotation on node 𝑧

rotate-right(𝑧)

y ← z.left, z.left ← y.right, y.right ← z

setHeightFromChildren(𝑧), setHeightFromChildren(𝑦)

return 𝑦 // returns new root of subtree

y

A B

C

D

z

y

A B

C

D

z

resetHeight

resetHeight
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x

A B

C

D

y

x

A B

z

C D

z

After Rotation:
▪ If 𝑧 had a parent 𝑝, need to set 𝑦 as the new child of 𝑝

p

p
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x

A B

C

D

y

x

A B

z

C D

z

After Rotation:
▪ If 𝑧 had a parent 𝑝, need to set 𝑦 as the new child of 𝑝

p
p



y

x

A B

C

D

y

x

A B

z

C D

z

After Rotation:
▪ If node 𝑧 was the tree root, then 𝑦 becomes new tree root

root
root
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y
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A B

z

C D

z

After Rotation:
▪ If node 𝑧 was the tree root, then 𝑦 becomes new tree root

root
root



Why do we call this a rotation?
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y  z

x

D

Why do we call this a rotation?
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x

A B

z

C D

Why do we call this a rotation?



y

x

A B

z

C D

Why do we call this a rotation?



AVL Insertion Example

Example: AVL::insert(2)

▪ Left-left imbalance
▪ Fix with right rotation on node z
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AVL Insertion Example

Example: AVL::insert(2)

▪ Fix with right rotation on node z
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AVL Insertion Example

Example: AVL::insert(2)
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update height

▪ After rotation all node heights are correct
▪ can stop traversing up 
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Restoring Height Balance: Case 2

y

x

A B

C

D

z

A

y

B

x

z

C D

Case 1: Fixed with right rotation Fixed with left rotation

taller child of z

taller child of y

taller child of z

taller child of y

first unbalanced node first unbalanced node

left-left imbalance right-right imbalance

Case 2:



Case 2: Left Rotation

A

y

B

x

C D

z

▪ BST order is preserved

▪ Balanced

▪ Same height as before insertion

▪ Left rotation on node z is symmetric to right rotation

▪ Used to fix right-right imbalance 

ℎ − 1
ℎ − 2

ℎ + 1

ℎ
ℎ − 2

y

z

A B

x

C D

ℎ − 2 ℎ − 2

ℎ − 1

ℎ

ℎ − 1

heights for case 2 are deduced 
exactly as for case 1



Case 3: Left-Right imbalance

y

A

x D

z

x

y

A B

C

D

B C

▪ Fix with double right rotation on node 𝑧
▪ first,  left rotation at 𝒚

z
taller child of 𝒛

taller child of y

first unbalanced node 𝒛



x

y

A B

z

C D

Case 3: Left-Right imbalance

z

x

y

A B

C

D

▪ Fix with double rotation on node 𝑧
▪ first,  left rotation at 𝑦
▪ second, right rotation at 𝒛



x

y

A B

z

C D

Case 3: Left-Right imbalance
▪ Cumulative result of double right rotation on node 𝑧

▪ Left rotation at 𝑦, right rotation at 𝑧

▪ BST order is preserved

▪ Useful for left-right imbalance

▪ can argue BST ordering is preserved, as before

▪ can argue height balance property restored, as before

y

A

x D

B C

z

ℎ − 1ℎ − 2

ℎ + 1

ℎ ℎ − 2

ℎ − 2 ℎ − 2

ℎ − 1

ℎ

ℎ − 1

ℎ − 2 or ℎ −3

ℎ − 2
or ℎ −3

ℎ − 2
or ℎ −3



z

A

y

x

B C

D

x

z

A B

y

C D

▪ First, a right rotation at 𝑦,  second, a left rotation at 𝑧

Case 4: Right-Left Imbalance
▪ Symmetrically, there is a double left rotation on node 𝑧

taller child of z

taller child of y

first unbalanced node z

▪ BST order is preserved

▪ Used for right-left imbalance
▪ can argue BST ordering is preserved, as before

▪ can argue height balance property restored, as before



Unbalanced Node 𝒛: all 4 cases 

▪ 𝑧 is the first unbalanced node on the path from inserted node to the root

▪ 𝑦 is the taller child of 𝑧
▪ 𝑧 is guaranteed to have one child taller than the other

▪ 𝑥 is the taller child of 𝑦
▪ 𝑦 is guaranteed to have one child taller than the other

z

x

y

z

y

x

case 1:
left-left

case 2:
right-right

z

y

x

z

x

y

case 4: 
right-left

case 3:
left-right



Fixing Unbalanced AVL tree

restructure(𝑥, 𝑦, 𝑧)
x : node of BST that has an unbalanced grandparent,
𝑦 and 𝑧: the parent and grandparent of 𝑥

case

y

x

z

y

x

z

: // Right rotation  

return rotate-right(𝑧)

: // Double-rightrotation
z.left ← rotate-left(𝑦)

z

y

x

return rotate-right(𝑧)

: // Double-leftrotation
z.right ← rotate-right(𝑦)
return rotate-left(𝑧)

z

y

x

: // Leftrotation
return rotate-left(𝑧)

▪ In each case, the middle key of 𝑥, 𝑦, 𝑧 becomes the new root of the subtree

▪ Running time is Θ(1)

case 1

case 3

case 4

case 2



Tri-Node Restructuring

▪ All four cases can be handled with one method, Tri-Node restructuring

z

x

y

z

y

x

case 1:
left-left

case 2:
right-right

z

y

x

z

x

y

case 4: 
right-left

case 3:
left-right



Tri-Node Restructuring for Case 1 and Case 3

▪ Rename 
▪ b = node with middle key

b

a c

orphan orphan

orphan

c

a

b

▪ c = node with largest key

▪ a = node with smallest key

▪ Restructure
▪ b becomes new subtree parent

▪ a becomes left child of b

▪ c becomes right child of b

▪ subtrees of a, c with root not equal to b stay attached to where they were

▪ one or two subtrees of b get “orphaned”

▪ left subtree, if orphan,  becomes right child of a

▪ right subtree, if orphan, becomes left child of c

c

a

b
b

a c

case 3 case 1



Pseudocode for AVL insertion

AVL::insert(𝑘, 𝑣)

𝑧 ← BST::insert(𝑘, 𝑣)

while (𝑧 is not NIL)

if (|𝑧.left.height − 𝑧.right.height| > 1) then 

let 𝑦 be tallest child of 𝑧

let 𝑥 be tallest child of 𝑦

𝑧 ← restructure(𝑥, 𝑦, 𝑧)

break // done after one restructure

setHeightFromSubtrees(𝑧)

𝑧 ← parent of 𝑧

setHeightFromSubtrees(𝑢)

if 𝑢 is not an empty subtree

𝑢. ℎ𝑒𝑖𝑔ℎ𝑡 ← 1 + max{𝑢.left.height, 𝑢.right.height}



Outline

▪ Dictionaries and Balanced Search Trees
▪ Dictionary ADT 

▪ Review: Binary Search Trees

▪ AVL Trees

▪ insertion 

▪ restoring the AVL Property: Rotations

▪ deletion



AVL Deletion Example

Example: AVL::delete(22)

22

4

31

2

37

1

46

0

28

0

10

3

6

1

8

0

16

0

14

2

18

1

13

0

4

0



AVL Deletion Example

Example: AVL::delete(22)

28

4

31

2

37

1

46

0

10

3

6

1

8

0

14

2

18

1

13

0

4

0

16

0



Restoring Height After Deletion: Case 1

z

ℎ + 1

ℎ ℎ − 2

D
y

ℎ − 1
or ℎ −2

▪ Rebalancing is similar to that after insertion, but

▪ while z is guaranteed to have one taller child

▪ y may have both children of the same height

▪ which child to take as 𝑥?

z

ℎ + 1

ℎ ℎ − 2

D

deleted 
from here

ℎ ≥ 1

ℎ − 1

y

ℎ − 1
ℎ − 1

or ℎ − 2

C

z

ℎ + 1

ℎ

ℎ − 2

D

x

A B
both ℎ − 2

or one ℎ − 2, one ℎ −3

▪ Let z be the first unbalanced node on path from deleted node to the root

C



AVL Deletion Example

Example: AVL::delete(22)

28

4

31

2

37

1

46

0

10

3

6

1

8

0

16

0

14

2

18

1

13

0

4

0

z

y

x

▪ Fix with left rotation on node 𝒛

▪ Or trinode restructuring on node 𝒛

31

2

37

1

46

0

unbalanced



AVL Deletion Example

Example: AVL::delete(22)

28

4

10

3

6

1

8

0

16

0

14

2

18

1

13

0

4

0

37

1

46

0

31

2

31

0

done with this node



AVL Deletion Example

Example: AVL::delete(22)

28

4

10

3

6

1

8

0

16

0

14

2

18

1

13

0

4

0

37

1

46

0

31

0

unbalanced28

4

z



AVL Deletion Example

Example: AVL::delete(22)

28

4

10

3

6

1

8

0

16

0

14

2

18

1

13

0

4

0

37

1

46

0

31

0

unbalanced28

4

zy
10

3

x
14

2

46

0

31

0

28

4

10

3

14

2

16

0

18

1
the 

same
the 

same

13

0

▪ Fix with double right rotation (left rotate 𝒚, then rotate right 𝒛)

▪ Or trinode restructuring on node 𝒛



AVL Deletion Example

Example: AVL::delete(22)

28

4

37

1

46

0

31

0

10

3

6

1

8

0

16

0

14

2

18

1
13

0

4

0

update height
10

2

28

2
update height

14

3

update height



AVL Deletion Example

Example: AVL::delete(22)

28

2

37

1

46

0

31

0

10

2

6

1

8

0

16

0

14

4

18

1
13

0

4

0

▪ Rebalanced

14

3



AVL Deletion
▪ AVL::delete(𝑇, 𝑘)

▪ first, delete 𝑘 from 𝑇 with BST deletion

▪ delete returns parent 𝒛 of the deleted node

▪ heights of nodes on path from 𝒛 to root may have decreased

▪ next, move up the tree from 𝒛, updating heights

▪ if height difference is ±2 at node 𝒛 , then 𝒛 is unbalanced 

▪ re-structure tree to restore height-balance property

▪ like rebalancing for insertion, with two differences

1. restructuring after deletion does not guarantee to restore 
tree height to what it was before deletion

▪ must continue path up the tree, fixing any imbalances

𝒚

𝒛 𝒛

tallerChild

▪ if left and right children of 𝒚 have the same height 
must apply same side rule:

▪ return left child of 𝒚 if 𝒚 is itself the left child

▪ return right child of 𝒚 if 𝒚 is itself the right child

𝒚

2. tallerChild(𝒚)



Incorrect Deletion Example not Following Same Side Rule

28

4

37

1

46

0

31

0

10

3

6

2

8

0

16

0

14

2

18

1

13

0

4

1

28

4

z

y

3

0

28

2

10

3

6

2

8

0 16

0

14

4

18

1

13

0

4

1

3

0

37

1

46

0

31

0

unbalanced

10

3

x
14

2
ℎ − 1ℎ − 1

▪ The “other” child of 𝑦 has height ℎ − 1

▪ children of 𝑥 get separated

▪ one of them has height ℎ − 3 and becomes a sibling of the “other” child of 
𝑦 which has height ℎ − 1

ℎ −3ℎ − 1
ℎ − 1

16

0

18

1

13

0

ℎ −3



AVL Deletion Example Following Same Side Rule

▪ Rotate or trinode restructuring

28

4

37

1

46

0

31

0

10

3

6

2

8

0

16

0

14

2

18

1

13

0

4

1

28

4

z

y

x

3

0

▪ Rebalanced!
▪ children of 𝒙 do not separate

28

4

37

1

46

0

31

0

10

4

6

2

8

0

16

0

14

2

18

1

13

0

4

1

28

3

3

0

z

y

x
ℎ − 1

ℎ − 2ℎ − 1
ℎ − 1

ℎ

ℎ − 1

10

3

6

2

ℎ − 2

ℎ



Reduced Height after Deletion

z

x

y
ℎ − 1

ℎ + 1

ℎ

ℎ − 2
ℎ − 2

▪ If ‘not the tallest’ child of 𝒚 has height ℎ − 2, height decreases after rebalancing

▪ might cause imbalance higher up the tree

restructure

y

x z

ℎ − 2 ℎ − 2

ℎ − 1 ℎ − 1

ℎ

deleted node



AVL Delete Pseudocode

AVL::delete(𝑘)

𝑧 ← BST::delete(𝑘)

// Assume z is the parent of the BST node that was removed

while (𝑧 is not NIL)

if (|𝑧.left.height − 𝑧.right.height| > 1) then 

let 𝑦 be tallest child of 𝑧

let 𝑥 be tallest child of 𝑦

// break ties to prefer ‘the same side’

𝑧 ← restructure(𝑥, 𝑦, 𝑧)

setHeightFromSubtrees 𝑧

// must continue checking the path upwards

𝑧 ← parent of 𝑧



AVL Tree Operations Runtime
▪ AVL::search

▪ implemented just like in BSTs, runtime is Θ ℎ𝑒𝑖𝑔ℎ𝑡

▪ AVL::insert

▪ BST::insert

▪ then check and update along path to new leaf

▪ restructure restores the height of the tree to what it was

▪ so restructure will be called at most once

▪ total cost Θ(ℎ𝑒𝑖𝑔ℎ𝑡)

▪ AVL::delete

▪ BST::delete, then check  and update along path to deleted  node

▪ restructure may be called Θ(ℎ𝑒𝑖𝑔ℎ𝑡) times

▪ total cost Θ(ℎ𝑒𝑖𝑔ℎ𝑡)

▪ Total cost for all operations is Θ(ℎ𝑒𝑖𝑔ℎ𝑡) = Θ(log 𝑛)

▪ but in practice, the constant is quite large

▪ There are other realizations of ADT dictionary that are better in practice


