
CS 240 – Data Structures and Data Management

Module 5: Other Dictionary Implementations

O. Veksler

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2025

Outline

▪ Dictionaries with Lists Revisited

▪ Dictionary ADT

▪ implementations so far

▪ Skip Lists

▪ Biased Search Requests
▪ optimal static ordering

▪ dynamic ordering: MTF

Outline

▪ Dictionaries with Lists Revisited

▪ Dictionary ADT

▪ implementations so far

▪ Skip Lists

▪ Biased Search Requests

▪ optimal static ordering

▪ dynamic ordering: MTF

Dictionary ADT: Implementations thus far
▪ A dictionary is a collection of key-value pairs (KVPs)

▪ search, insert, and delete

▪ Realizations we have seen so far

▪ Balanced search trees (AVL trees)

▪ Θ(log 𝑛) search, insert, and delete

▪ complex code and not necessarily the fastest running time in practice

▪ Binary search trees

▪ Θ(ℎ𝑒𝑖𝑔ℎ𝑡) search, insert and delete

▪ simpler than AVL tree, randomization helps efficiency

▪ Ordered array

▪ simple implementation, Θ(log 𝑛) search

▪ Θ(𝑛) insert and delete

6544 69 79 8337▪ Ordered linked list

▪ simple implementation

▪ Θ(𝑛) search, insert and delete

▪ search is the bottleneck, insert and delete would be Θ(1) if do search first and
account for its running time separately

▪ efficient search (like binary search) in ordered linked list?

Outline

▪ Dictionaries with Lists Revisited

▪ Dictionary ADT

▪ implementations so far

▪ Skip Lists

▪ Re-ordering items

▪ optimal static ordering

▪ dynamic ordering: MTF

Skip Lists: Motivation
▪ Build a hierarchy of linked lists to imitate binary search in ordered linked list

▪ start from the bottom list and take every second item in the list above

▪ downward links are needed to navigate from list above to the list below

6544 69 7923 8337

7937 65

65

Skip Lists: Motivation

6544 69 7923 8337

65

7937 65

▪ Search goes through the higher lists while possible, before
dropping down to the list below

▪ top list enables search by ½ of the list, next by ¼ of the list, and so on

▪ Search(83)

search by
1

2

search by
1

4

Skip Lists: Motivation
▪ Hierarchy of linked lists

log 𝑛
height

▪ When searching, go through the highest level possible

▪ thus visit at most two items at each level, and total time to search Θ(log 𝑛)

▪ each list has 1/2 of items from the list below

▪ total number of linked lists (height) is log 𝑛

▪ total number of nodes ≤ 2𝑛

6544 69 7923 8337

65

7937 65

Skip Lists: Motivation

6544 69 7923 8337

65

7937 65

▪ Deleted 65, no longer every second item is in the list above

▪ Big problem: deletion or insertion of items ruins ‘every second item is in
the list above’ property

▪ crucial property for efficiency

▪ Thus the hierarchy of linked lists works only for static dictionary

▪ know all items beforehand, and do not insert or delete

▪ but in static case an ordered array is more efficient in practice (no links)

▪ Randomization enables hierarchical linked list with efficient insert and delete

▪ instead of requiring a deterministic subset of items in list above, randomly
chose a subset of the items in the list above

Skip Lists: Motivation

23 37 6544 69 79 8783 94

▪ For next level, choose each item from previous level with probability ½ (coin toss)

0 0 1 0 1 1 0 1 0

1 0 1 0

44 79
0 1

79

𝑛

expected
number of nodes

𝑛

2

𝑛

22

𝑛

23

▪ 𝑖th list is expected to have 𝑛/2𝑖 nodes

▪ Expect about log(𝑛) lists in total

44 69 79 87

Skip Lists: Motivation

23 37 6544 69 79 8783 94

▪ Insert ‘boundary’ nodes with special sentinel symbols −∞ and +∞
▪ to simplify code for searching

44 79

79

44 69 79 87

−∞ +∞

−∞ +∞

−∞ +∞

−∞ +∞

Skip Lists: Motivation
▪ Insert sentinel only level, with only −∞ and +∞

▪ to simplify code for searching

−∞ +∞

23 37 6544 69 79 8783 94

44 79

79

44 69 79 87

−∞ +∞

−∞ +∞

−∞ +∞

−∞ +∞

23,v 37,v 65,v44,v 69,v 79,v 87,v83,v 94,v−∞ +∞

37 65 83 94−∞ +∞

−∞ +∞

65−∞ +∞

𝐿0

𝐿1

𝐿2

𝐿3

Skip Lists [Pugh’1989]
▪ A hierarchy L of ordered linked lists (levels) 𝐿0, 𝐿1, … , 𝐿ℎ

▪ other lists store only keys

▪ 𝐿0 contains the KVPs of some 𝑆 in non-decreasing order

▪ each 𝐿𝑖 contains special keys (sentinels) −∞ and +∞

▪ each list is a subsequence of previous one, i.e. 𝐿0 ⊇ 𝐿1 ⊇ ⋯ ⊇ 𝐿ℎ

▪ 𝐿ℎ contains only sentinels, the left sentinel is the root
root

▪ node is entry in one list vs. KVP is one non-sentinel entry in 𝐿0

▪ 𝑛 is number of KVP, here, 𝑛 = 9 (number of nodes is 22)

23 37 6544 69 79 8783 94−∞ +∞

37 65 83 94−∞ +∞

−∞ +∞

65−∞ +∞

𝐿0

𝐿1

𝐿2

𝐿3

Skip Lists
▪ Show only keys from now on

▪ Each key 𝑘 belongs to a tower of nodes

▪ height of tower for 𝑘 ∶ largest 𝑖 s.t. 𝑘 ∈ 𝐿𝑖

▪ Each node 𝑝 has references to after(𝑝) and below(𝑝)

tower of height 1

after 65

below 65

▪ Height of the skip list is the maximum height of any tower
▪ which is the same as largest ℎ for which 𝐿ℎ exists

▪ height is 3 in this example

23 37 6544 69 79 8783 94−∞ +∞

37 65 83 94−∞ +∞

−∞ +∞

65−∞ +∞

𝐿0

𝐿1

𝐿2

𝐿3

Search in Skip Lists
▪ search(87)

▪ For each level, predecessor of key 𝑘 is

▪ If key 𝑘 is present at the level: node before node with key 𝑘

▪ if key 𝑘 is not present at the level: node before node where 𝑘 would have been

▪ 𝑃 collects predecessors of key 𝑘 for all levels

▪ nodes where we drop down and the rightmost node in 𝐿0 with key < 𝑘

▪ these are needed for insert/delete

▪ 𝑘 is in skip list if and only if 𝑃. 𝑡𝑜𝑝(). 𝑎𝑓𝑡𝑒𝑟 has key 𝑘

𝑃 = −∞

65

83

83

comparison
scan-forward

drop-down
comparison

leading to node we do not take

Search in Skip Lists

getPredecessors(𝑘)

 𝑝 ← root

 𝑃 ← stack of nodes, initially containing 𝑝

 while 𝑝. 𝑏𝑒𝑙𝑜𝑤 ≠ 𝑁𝑈𝐿𝐿 do

 𝑝 ← 𝑝. below

 while 𝑝. 𝑎𝑓𝑡𝑒𝑟. 𝑘𝑒𝑦 < 𝑘 do

 𝑝 ← 𝑝. 𝑎𝑓𝑡𝑒𝑟

 𝑃. 𝑝𝑢𝑠ℎ(𝑝)

 return 𝑃

// keep dropping down until reach 𝐿0

// predecessor of 𝑘 in 𝐿0

skipList::search(𝑘)

 𝑃 ← getPredecessors 𝑘

 𝑞 ← 𝑃. 𝑡𝑜𝑝()

 if 𝑞. 𝑎𝑓𝑡𝑒𝑟. 𝑘𝑒𝑦 = 𝑘 return 𝑞. 𝑎𝑓𝑡𝑒𝑟

 else return ‘not found, but would be after 𝑞’

// move to the right

// this is next predecessor

Insert in Skip Lists

𝐿0

𝐿1

𝐿2

𝐿3

insert new item

insert new item with probability ½

if in 𝐿1, then insert new item with probability ½

if in 𝐿2, then insert new item with probability ½

▪ Keep “tossing a coin” until 𝑇 appears

▪ Insert into 𝐿0
and as many other 𝐿𝑖 as there are heads

▪ Examples

▪ 𝐻, 𝐻, 𝑇 (insert into 𝐿0, 𝐿1, 𝐿2) ⇒ will say 𝑖 = 2

▪ 𝐻, 𝑇 (insert into 𝐿0, 𝐿1) ⇒ will say 𝑖 = 1

▪ 𝑇 (insert into 𝐿0) ⇒ will say 𝑖 = 0

▪ No choice as to where put the tower of 𝑘

▪ The only choice is how talls hould we make the tower of 𝑘

Insert in Skip Lists: Example 1
▪ skipList::insert(52, 𝑣)

▪ coin tosses: 𝐻, 𝑇 ⇒ 𝑖 = 1

▪ getPredecessors(52)

𝑃 = −∞

37

44

−∞

23 37 6544 69 8783 94−∞ +∞

37 65 83 94−∞ +∞

−∞ +∞

65−∞ +∞

𝐿0

𝐿1

𝐿2

𝐿3

Insert in Skip Lists: Example 1
▪ skipList::insert(52, 𝑣)

▪ coin tosses: 𝐻, 𝑇 ⇒ 𝑖 = 1

▪ getPredecessors(52)

▪ now insert into 𝐿0 and 𝐿1 𝑃 = −∞

37

44

−∞

23 37 6544 69 8783 94−∞ +∞

37 65 83 94−∞ +∞

−∞ +∞

65−∞ +∞

𝐿0

𝐿1

𝐿2

𝐿3

52

52

Insert in Skip Lists: Example 2
▪ skipList::insert(100, 𝑣)

▪ coin tosses: 𝐻, 𝐻, 𝐻, 𝑇 ⇒ 𝑖 = 3

▪ first increase height

23 37 6544 69 8783 94−∞ +∞

37 65 83 94−∞ +∞

−∞ +∞

65−∞ +∞

𝐿0

𝐿1

𝐿2

𝐿3

Insert in Skip Lists: Example 2
▪ skipList::insert(100, 𝑣)

▪ coin tosses: 𝐻, 𝐻, 𝐻, 𝑇 ⇒ 𝑖 = 3

▪ first increase height

23 37 6544 69 8783 94−∞ +∞

37 65 83 94−∞ +∞

−∞ +∞

65−∞ +∞

𝐿0

𝐿1

𝐿2

𝐿3

−∞ +∞𝐿4

▪ next getPredecessors (100)

Insert in Skip Lists: Example 2

23 37 6544 69 8783 94−∞ +∞

37 65 83 94−∞ +∞

−∞ +∞

65−∞ +∞

𝐿0

𝐿1

𝐿2

𝐿3

−∞ +∞𝐿4

▪ skipList::insert(100, 𝑣)

▪ coin tosses: 𝐻, 𝐻, 𝐻, 𝑇 ⇒ 𝑖 = 3

▪ first increase height

▪ next getPredecessors (100)

Insert in Skip Lists: Example 2

23 37 6544 69 8783 94−∞ +∞

37 65 83 94−∞ +∞

−∞ +∞

65−∞ +∞

𝐿0

𝐿1

𝐿2

𝐿3

−∞ +∞𝐿4

▪ skipList::insert(100, 𝑣)

▪ coin tosses: 𝐻, 𝐻, 𝐻, 𝑇 ⇒ 𝑖 = 3

▪ first increase height

▪ next getPredecessors (100)

▪ insert new key

Insert in Skip Lists: Example 2

23 37 6544 69 8783 94−∞ +∞

37 65 83 94−∞ +∞

−∞ +∞

65−∞ +∞

𝐿0

𝐿1

𝐿2

𝐿3

−∞ +∞𝐿4

100

100

100

100

▪ insert new key

▪ skipList::insert(100, 𝑣)

▪ coin tosses: 𝐻, 𝐻, 𝐻, 𝑇 ⇒ 𝑖 = 3

▪ first increase height

▪ next getPredecessors (100)

Insert in Skip Lists
skipList::insert(𝑘, 𝑣)

 for 𝑖 ← 0; 𝑟𝑎𝑛𝑑𝑜𝑚 2 = 1; 𝑖 ← 𝑖 + 1 {}

 for ℎ ← 0, 𝑝 ← 𝑟𝑜𝑜𝑡. 𝑏𝑒𝑙𝑜𝑤; 𝑝 ≠ 𝑁𝐼𝐿𝐿; 𝑝 ← 𝑝. 𝑏𝑒𝑙𝑙𝑜𝑤 do ℎ ++

 while 𝑖 ≥ ℎ

 create new sentinel-only list; link it in below topmost level

 ℎ ++

 𝑃 ← getPredecessors(𝑘)

 𝑝 ← 𝑃. 𝑝𝑜𝑝()

 𝑧𝐵𝑒𝑙𝑙𝑜𝑤 ← new node with (𝑘, 𝑣) inserted after 𝑝

 while 𝑖 > 0

 𝑝 ← 𝑃. 𝑝𝑜𝑝()

 𝑧 ← new node with 𝑘 added after 𝑝

 𝑧. 𝑏𝑒𝑙𝑜𝑤 ← 𝑧𝐵𝑒𝑙𝑙𝑜𝑤

 𝑧𝐵𝑒𝑙𝑙𝑜𝑤 ← 𝑧

 𝑖 ← 𝑖 − 1

// random tower height

// increase skip-list height if needed

// insert (𝑘, 𝑣) in 𝐿0

// insert 𝑘 in 𝐿1 𝐿2,…, Li

Example: Delete in Skip Lists
▪ skipList::delete 65

▪ first getPredecessors 𝑆, 65

𝑃 = −∞

37

44

−∞

23 37 6544 69 8783 94−∞ +∞

37 65 83 94−∞ +∞

−∞ +∞

65−∞ +∞

𝑆0

𝑆1

𝑆2

𝑆3

▪ then delete key 65 from all 𝑆𝑖

▪ 𝑃 has predecessor of each node to be deleted

Example: Delete in Skip Lists

23 37 44 69 8783 94−∞ +∞

37 83 94−∞ +∞

−∞ +∞

−∞ +∞

𝑆0

𝑆1

𝑆2

𝑆3

▪ height decrease: delete all unnecessary 𝑆𝑖, if any

▪ skipList::delete 65
▪ first getPredecessors 𝑆, 65

▪ then delete key 65 from all 𝑆𝑖

▪ 𝑃 has predecessor of each node to be deleted

Example: Delete in Skip Lists

23 37 44 69 8783 94−∞ +∞

37 83 94−∞ +∞

−∞ +∞

𝑆0

𝑆1

𝑆2

▪ skipList::delete 65
▪ first getPredecessors 𝑆, 65

▪ then delete key 65 from all 𝑆𝑖

▪ 𝑃 has predecessor of each node to be deleted

▪ height decrease: delete all unnecessary 𝑆𝑖, if any

Delete in Skip Lists

skipList::delete(𝑘)

 𝑃 ← getPredecessors(𝑘)

 while 𝑃 is non-empty

 𝑝 ← 𝑃. 𝑝𝑜𝑝()

 if 𝑝. 𝑎𝑓𝑡𝑒𝑟. 𝑘𝑒𝑦 = 𝑘

 𝑝. 𝑎𝑓𝑡𝑒𝑟 ← 𝑝. 𝑎𝑓𝑡𝑒𝑟. 𝑎𝑓𝑡𝑒𝑟

 else break

 𝑝 ← left sentinel of the root-list

 while 𝑝. 𝑏𝑒𝑙𝑜𝑤. 𝑎𝑓𝑡𝑒𝑟 is the ∞ sentinel

 𝑝. 𝑏𝑒𝑙𝑜𝑤 ← 𝑝. 𝑏𝑒𝑙𝑜𝑤. 𝑏𝑒𝑙𝑜𝑤

 𝑝. 𝑎𝑓𝑡𝑒𝑟. 𝑏𝑒𝑙𝑜𝑤 ← 𝑝. 𝑎𝑓𝑡𝑒𝑟. 𝑏𝑒𝑙𝑜𝑤. 𝑏𝑒𝑙𝑜𝑤

// predecessor of 𝑘 in some layer

// no more copies of 𝑘

// the two top lists are both only sentinels, remove one

// removes the second empty list

Skip List Analysis

▪ In the worst case, the height of a tower could be arbitrary large

▪ no bound on height in terms of 𝑛

▪ Operations could be arbitrarily slow, and space requirements arbitrarily large

▪ but this is exceedingly unlikely

▪ Let us analyse expected run-time and space-usage (randomized data structure)

𝑃 𝑋𝑘 ≥ 𝑖 = 𝑃 𝐻 𝐻 … 𝐻

𝑖 times

=
1

2

𝑖

height 1

▪ Let 𝑋𝑘 be the height of tower for key 𝑘

𝑃(𝑋𝑘 ≥ 1) = 𝑃(𝑋𝑘 ≥ 2) = 𝑃(𝑋𝑘 ≥ 3) =

▪ In general

toss H….

1

2

toss HH….

1

2
∙

1

2

1

2
∙

1

2
∙

1

2
toss HHH….

37

37

37

37

37

37

37

37

37

height 2 height 3
toss HT toss HHT toss HHHT

height 0
37

toss T

Skip List Analysis

▪ Let 𝑋𝑘 be the height of tower for key 𝑘, we know 𝑃(𝑋𝑘 ≥ 𝑖) =
1

2𝑖

𝐿0

𝐿1

𝐿2

𝐿3

𝑘1 𝑘2 𝑘3 𝑘4

𝑋𝑘1 = 3

▪ If 𝑋𝑘 ≥ 𝑖 then list 𝐿𝑖 includes key 𝑘

𝑋𝑘2 = 1 𝑋𝑘3 = 0 𝑋𝑘4 = 2

▪ Let 𝐿𝑖 be the number of keys in list 𝐿𝑖

▪ sentinels do not count towards the length

▪ 𝐿0 always contains all 𝑛 keys

𝐿0 = 4

𝐿1 = 3

𝐿2 = 2

𝐿3 = 1

Skip List Analysis

▪ Let 𝐼𝑖, 𝑘 = ቊ
0 if 𝑋𝑘 < 𝑖
1 if 𝑋𝑘 ≥ 𝑖

▪ Let 𝑋𝑘 be the height of tower for key 𝑘, we know 𝑃(𝑋𝑘 ≥ 𝑖) =
1

2𝑖

▪ If 𝑋𝑘 ≥ 𝑖 then list 𝐿𝑖 includes key 𝑘

▪ 𝐿𝑖 = σ𝑘𝑒𝑦 𝑘 𝐼𝑖, 𝑘

𝐿0

𝐿1

𝐿2

𝐿3

▪ Let 𝐿𝑖 be the number of keys in list 𝐿𝑖

𝐼1, 𝑘1 = 1 𝐼1, 𝑘3 = 0𝐼1, 𝑘2 = 1 𝐼1, 𝑘4 = 1

𝐼2, 𝑘1 = 1 𝐼2, 𝑘3 = 0𝐼2, 𝑘2 = 0 𝐼2, 𝑘4 = 1

𝐼3, 𝑘1 = 1 𝐼3, 𝑘3 = 0𝐼3, 𝑘2 = 0 𝐼3, 𝑘4 = 0

▪ 𝐸[𝐿𝑖] =

𝑘𝑒𝑦 𝑘

𝐸[𝐼𝑖, 𝑘]= 𝐸
𝑘𝑒𝑦 𝑘

𝐼𝑖, 𝑘 =

𝑘𝑒𝑦 𝑘

𝑃(𝐼𝑖, 𝑘 = 1) =

𝑘𝑒𝑦 𝑘

𝑃 (𝑋𝑘 ≥ 𝑖) =
𝑛

2𝑖

▪ The expected length of list 𝑆𝑖 is
𝑛

2𝑖

𝐿1 = 3

𝐿2 = 2

𝐿3 = 1

=

𝑘𝑒𝑦 𝑘

1

2𝑖

𝑋𝑘1 = 3 𝑋𝑘2 = 1 𝑋𝑘3 = 0 𝑋𝑘4 = 2

= ቊ
0 if list 𝐿𝑖 does not include key 𝑘
1 if list 𝐿𝑖 includes key 𝑘

Skip List Analysis

▪ Let 𝐼𝑖 = ቊ
0 if 𝐿𝑖 = 0
1 if 𝐿𝑖 ≥ 1

▪ Since 𝐼𝑖 ≤ 1 we have that 𝐸[𝐼𝑖] ≤ 1

▪ Since 𝐼𝑖 ≤ 𝐿𝑖 we have that 𝐸[𝐼𝑖] ≤ 𝐸[𝐿𝑖]

𝐿0

𝐿1

𝐿2

𝐿3

𝐼1 = 1

𝑘1 𝑘2 𝑘3 𝑘4

𝐼2 = 1

𝐼3 = 1
▪ 𝐿𝑖 is number of keys in list 𝐿𝑖

▪ 𝐸[𝐿𝑖] =
𝑛

2𝑖

▪ 𝐸[ℎ] = 1 +

𝑖≥1

𝐸[𝐼𝑖]= 𝐸 1 +

𝑖≥1

𝐼𝑖 = 1 +
𝑖=1

log 𝑛

𝐸[𝐼𝑖] +
𝑖=1+log 𝑛

∞

𝐸[𝐼𝑖]

𝐼4 = 0𝐿4 has only sentinels

▪ ℎ = 1 + σ𝑖≥1 𝐼𝑖 (here +1 is for the sentinel-only level)

≤ 1 +
𝑖=1

log 𝑛

1

=
𝑛

2𝑖

≤ 1 + log 𝑛

▪ For ease of derivation, assume 𝑛 is a power of 2

+
𝑖=1+log 𝑛

∞ 𝑛

2𝑖

+
𝑖=0

∞ 𝑛

2𝑖+1+log 𝑛

Skip List Analysis

▪ Let 𝐼𝑖 = ቊ
0 if 𝐿𝑖 = 0
1 if 𝐿𝑖 ≥ 1

▪ Since 𝐼𝑖 ≤ 1 we have that 𝐸[𝐼𝑖] ≤ 1

▪ Since 𝐼𝑖 ≤ 𝐿𝑖 we have that 𝐸[𝐼𝑖] ≤ 𝐸[𝑆𝑖]

𝑆0

𝑆1

𝑆2

𝐿3

𝐼1 = 1

𝑘1 𝑘2 𝑘3 𝑘4

𝐼2 = 1

𝐼3 = 1
▪ 𝐿𝑖 is number of keys in list 𝑆𝑖

▪ 𝐸[𝐿𝑖] =
𝑛

2𝑖

▪ 𝐸[ℎ] = 1 +

𝑖≥1

𝐸[𝐼𝑖]= 𝐸 1 +

𝑖≥1

𝐼𝑖 = 1 +
𝑖=1

log 𝑛

𝐸[𝐼𝑖] +
𝑖=1+log 𝑛

∞

𝐸[𝐼𝑖]

𝐼4 = 0𝐿4 has only sentinels

▪ ℎ = 1 + σ𝑖≥1 𝐼𝑖 (here +1 is for the sentinel-only level)

≤ 1 +
𝑖=1

log 𝑛

1

=
𝑛

2𝑖

≤ 1 + log 𝑛

▪ For ease of derivation, assume 𝑛 is a power of 2

+
𝑖=1+log 𝑛

∞ 𝑛

2𝑖

+
𝑖=0

∞ 𝑛

2𝑖+1+log 𝑛

𝑆 =
𝑖=0

∞ 1

2𝑖

=
𝑖=0

∞ 𝑛

2𝑖212log 𝑛

=
1

2

𝑖=0

∞ 𝑛

2𝑖𝑛

=
1

2

𝑖=0

∞ 1

2𝑖

𝑖=0

∞ 𝑛

2𝑖+1+log 𝑛

2𝑆 =
𝑖=0

∞ 2

2𝑖

= 1 +
1

2
+

1

22 +
1

23
+ ⋯

= 2 +1 +
1

2
+

1

22 + ⋯

2𝑆 − 𝑆 = 2

=
1

2
2 = 1

▪ Expected skip list height ≤ 2 + log 𝑛

= 1 + log 𝑛 + 1

Skip List Analysis

▪ Let 𝐼𝑖 = ቊ
0 if 𝐿𝑖 = 0
1 if 𝐿𝑖 ≥ 1

▪ Since 𝐼𝑖 ≤ 1 we have that 𝐸[𝐼𝑖] ≤ 1

▪ Since 𝐼𝑖 ≤ 𝐿𝑖 we have that 𝐸[𝐼𝑖] ≤ 𝐸[𝐿𝑖]

𝐿0

𝐿1

𝐿2

𝐿3

𝐼1 = 1

𝑘1 𝑘2 𝑘3 𝑘4

𝐼2 = 1

𝐼3 = 1
▪ 𝐿𝑖 is number of keys in list 𝐿𝑖

▪ 𝐸[𝐿𝑖] =
𝑛

2𝑖

▪ 𝐸[ℎ] = 1 +

𝑖≥1

𝐸[𝐼𝑖]= 𝐸 1 +

𝑖≥1

𝐼𝑖 = 1 +
𝑖=1

log 𝑛

𝐸[𝐼𝑖] +
𝑖=1+log 𝑛

∞

𝐸[𝐼𝑖]

𝐼4 = 0𝐿4 has only sentinels

▪ ℎ = 1 + σ𝑖≥1 𝐼𝑖 (here +1 is for the sentinel-only level)

≤ 1 +
𝑖=1

log 𝑛

1

=
𝑛

2𝑖

≤ 1 + log 𝑛

▪ For ease of derivation, assume 𝑛 is a power of 2

+
𝑖=1+log 𝑛

∞ 𝑛

2𝑖

+
𝑖=0

∞ 𝑛

2𝑖+1+log 𝑛

Skip List Analysis: Expected Space

▪ We need space for nodes storing sentinels and nodes storing keys

1. Space for nodes storing sentinels

▪ there are 2ℎ + 2 sentinels, where ℎ be the skip list height

▪ 𝐸 ℎ ≤ 2 + log 𝑛

▪ expected space for sentinels is at most

𝐸 2ℎ + 2 = 2𝐸 ℎ + 2 ≤ 6 + 2log 𝑛

= 2𝑛

2. Space for nodes storing keys

▪ Let 𝐿𝑖 be the number of keys in list 𝐿𝑖

▪ 𝐸[𝐿𝑖] =
𝑛

2𝑖

▪ expected space for keys is

𝑖≥0

𝑛

2𝑖𝐸

𝑖≥0

𝐿𝑖 =

▪ Total expected space is Θ(𝑛)

𝑖≥0

𝐸 𝐿𝑖 =

Skip List Analysis: Expected Running Time

▪ search, insert, and delete are dominated by the runtime of getPredecessors

▪ So we analyze the expected time of getPredecessors

▪ runtime is proportional to number of ‘drop-down’ and ‘scan-forward’

▪ We ‘drop-down’ ℎ times, where ℎ is skip list height

▪ expected height ℎ is O(log 𝑛)

▪ total expected time spent on ‘drop-down’ operations is O(log 𝑛)

▪ Will show next that expected number of ‘scan-forward’ is also O(log 𝑛)

▪ So total expected running time is O(log 𝑛)

drop-down
scan-forward

drop-down
scan-forward

Expected Number of Scan-Forwards at Level 𝑖

▪ Assume 𝑖 < ℎ

▪ if 𝑖 = ℎ, then we are at the top sentinel-only list and do not scan forward at all

▪ Let 𝑣 be leftmost key in 𝐿𝑖 we visit during search

▪ we 𝑣 reached by dropping down from 𝐿𝑖+1

𝑤

▪ Let 𝑤 be the key right after 𝑣

▪ height of tower of 𝑤 is at least 𝑖, but could be more than 𝑖

▪ What is the probability of scanning from 𝑣 to 𝑤 (i.e. at least one scan) in 𝐿𝑖?

𝑣

𝑣𝐿𝑖+1

𝐿𝑖 𝑤𝑣

𝑣𝐿𝑖+1

𝐿𝑖

𝑤

would scan from 𝑣 to 𝑤 in 𝐿𝑖+1, not in 𝐿𝑖 could scan forward from 𝑣 to 𝑤 in 𝐿𝑖

▪ if scan-forward from 𝑣 to 𝑤, then 𝑤 is not in 𝐿𝑖+1

▪ thus tower of 𝑤 has height exactly 𝑖

▪ and we already know that tower of w has height at least 𝑖

Expected Number of Scan-Forwards at Level 𝑖

▪ Assume 𝑖 < ℎ

▪ if 𝑖 = ℎ, then we are at the top sentinel-only list and do not scan forward at all

▪ Let 𝑣 be leftmost key in 𝐿𝑖 we visit during search

▪ we 𝑣 reached by dropping down from 𝐿𝑖+1

𝑤

▪ Let 𝑤 be the key right after 𝑣

▪ height of tower of 𝑤 is at least 𝑖, but could be more than 𝑖

▪ What is the probability of scanning from 𝑣 to 𝑤 (i.e. at least one scan) in 𝐿𝑖?

𝑣

𝑣𝐿𝑖+1

𝐿𝑖 𝑤𝑣

𝑣𝐿𝑖+1

𝐿𝑖

𝑤

would scan from 𝑣 to 𝑤 in 𝐿𝑖+1, not in 𝐿𝑖 could scan forward from 𝑣 to 𝑤 in 𝐿𝑖

▪ if scan-forward from 𝑣 to 𝑤, then 𝑤 is not in 𝐿𝑖+1

▪ thus tower of 𝑤 has height exactly 𝑖

▪ and we already know that tower of w has height at least 𝑖

would scan from 𝑣 to 𝑤 in 𝑆𝑖+1, not in 𝑆𝑖

𝑤

𝑤

𝑤

𝑤height 𝑖

…

𝑃(tower of 𝑤 has height 𝑖| tower of 𝑤 has height at least 𝑖)

next toss is 𝑇⇒ tower stops growing

= ½

Expected Number of Scan-Forwards at Level 𝑖

▪ Assume 𝑖 < ℎ

▪ if 𝑖 = ℎ, then we are at the top sentinel-only list and do not scan forward at all

▪ Let 𝑣 be leftmost key in 𝐿𝑖 we visit during search

▪ we 𝑣 reached by dropping down from 𝐿𝑖+1

𝑤

▪ Let 𝑤 be the key right after 𝑣

▪ height of tower of 𝑤 is at least 𝑖, but could be more than 𝑖

▪ What is the probability of scanning from 𝑣 to 𝑤 (i.e. at least one scan) in 𝐿𝑖?

𝑣

𝑣𝐿𝑖+1

𝐿𝑖 𝑤𝑣

𝑣𝐿𝑖+1

𝐿𝑖

𝑤

would scan from 𝑣 to 𝑤 in 𝐿𝑖+1, not in 𝐿𝑖 could scan forward from 𝑣 to 𝑤 in 𝐿𝑖

▪ if scan-forward from 𝑣 to 𝑤, then 𝑤 is not in 𝐿𝑖+1

▪ thus tower of 𝑤 has height exactly 𝑖

▪ and we already know that tower of w has height at least 𝑖

▪ 𝑃(tower of 𝑤 has height 𝑖| tower of 𝑤 has height at least 𝑖) = ½

▪ thus scan forward from 𝑣 to 𝑤 with probability at most ½

▪ ‘at most’ because we could scan-down down if search 𝑘𝑒𝑦 < 𝑤

Expected Number of Scan-Forwards at Level 𝑖

𝑤

▪ What is the probability of scanning twice (i.e. at least 2 scans) from 𝑣 in 𝐿𝑖?

𝑣

𝑣𝐿𝑖+1

𝐿𝑖

could scan forward from 𝑣 to 𝑤 in 𝐿𝑖

▪ scan forward at least twice from 𝑣 with probability at most 1/2 2

▪ ‘at most’ because we could scan-down down

𝑣

𝑣𝐿𝑖+1

𝐿𝑖

could scan forward twice from 𝑣 in 𝐿𝑖
height 𝑖 height 𝑖

▪ In general, probability of scan-forward at least 𝑙 times is at most 1/2 𝑙

▪ i.e. P(scans ≥ 𝑙) ≤ 1/2 𝑙

𝐸[# scan-forward at level 𝑖] =

𝑙≥1

P(scans ≥ 𝑙) ≤

𝑙≥1

1

2𝑙

= 1

=

𝑙≥1

𝑙 ∙ P(scans = 𝑙)

theorem in probability
theory

Expected Number of Scan-Forward Operations

▪ Expected number of scan-forwards is O(log 𝑛)

=
𝑖=1

log 𝑛

𝐸[# of scan−for at level 𝑖] +
𝑖=1+log 𝑛

∞

𝐸[# of scan−for at level 𝑖]

≤
𝑖=1

log 𝑛

1 +
𝑖=1+log 𝑛

∞ 𝑛

2𝑖

▪ At level 𝑖 < ℎ: 𝐸[number of scan-forward] ≤ 1

▪ Also, expected number of scan-forward at level 𝑖 < number of keys at level 𝐿𝑖

▪ 𝐿𝑖 is the number of keys in list on level 𝑖, and 𝐸[𝐿𝑖] =
𝑛

2𝑖

▪ For ease of derivation, assume 𝑛 is a power of 2

▪ Expected number of scan-forward over all levels

𝑖≥0

𝐸[# of scan−forward at level 𝑖] =

≤ log 𝑛 + 1

Arrays Instead of Linked Lists
▪ As described now, they are no faster than randomized binary search trees

▪ Can save links by implementing each tower as an array
▪ this not only saves space, but gives better running time in practice

▪ when ‘scan-forward’, we know the correct array location to look at (level 𝑖)

▪ Search(67)

−∞ 23 44 65 69 +∞

−∞

−∞

−∞

−∞

23

23 44

+∞

+∞

+∞

+∞

65

65

65 69

69

Summary of Skip Lists

▪ For a skip list with 𝑛 items

▪ expected space usage is 𝑂(𝑛)

▪ expected running time for search, insert, delete is 𝑂(log 𝑛)

▪ Lists make it easy to implement

▪ easy to add more operations: successor, merge, …

▪ Two efficiency improvements

▪ use arrays for key towers for more efficient implementation

▪ can show: a biased coin-flip to determine tower-height gives smaller
expected run-times

▪ expected space < 2𝑛, less than for BST

Outline

▪ Dictionaries with Lists Revisited

▪ Dictionary ADT

▪ implementations so far

▪ Skip Lists

▪ Biased Search Requests

▪ optimal static ordering

▪ dynamic ordering: MTF

Improving Unsorted Lists/Arrays
▪ Unordered lists/arrays are among simplest data structures to implement

▪ But for Dictionary ADT

▪ inefficient search: Θ(𝑛)

▪ Can we make search in unordered lists/arrays more effective in practice?

▪ No if items are accessed equally likely

▪ can show average-case search is Θ(𝑛)

▪ Yes if the search requests are biased

▪ some items are accessed much more frequently than others

▪ 80/20 rule: 80% of outcomes result from 20% of causes

▪ access = insertion or successful search

▪ Intuition: frequently accessed items should be in the front

▪ two cases

▪ know the access distribution beforehand

▪ optimal static ordering

▪ do not know access distribution beforehand

▪ dynamic ordering

Outline

▪ Dictionaries with Lists Revisited

▪ Dictionary ADT

▪ implementations so far

▪ Skip Lists

▪ Biased Search Requests

▪ optimal static ordering

▪ dynamic ordering: MTF

Optimal Static Ordering
▪ Scenario: We know access distribution, and want to find the best list order

key A B C D E

frequency of access 2 8 1 10 5

access probability 2

26

8

26

1

26

10

26

5

26

▪ Let the cost of search for key located at position 𝑖 be 𝑖

𝑇𝑒𝑥𝑝 𝑛 =

𝐼∈𝐼𝑛

𝑇(𝐼) ∙ Pr(randomly chosen instance 𝐼)

=

𝑖

𝑖 ∙ Pr(search for key at position 𝑖)

=

𝑖

𝑖 ∙ (access probability for key at position 𝑖)

Optimal Static Ordering

▪ Order A B C D E has expected cost

▪ Order D B E A C has expected cost

▪ Claim: ordering items by non-increasing access-probability minimizes
expected access cost, i.e. best static ordering

▪ static ordering: order of items does not change

▪ Proof Idea: for any other ordering, exchanging two items that are out-of-
order according to access probabilities makes total cost decrease

key A B C D E

frequency of access 2 8 1 10 5

access probability 2

26

8

26

1

26

10

26

5

26

10

26
∙ 1

≈ 3.31

≈ 2.54

2

26
∙ 1 +

8

26
∙ 2 +

1

26
∙ 3 +

10

26
∙ 4 +

5

26
∙ 5

+
8

26
∙ 2 +

5

26
∙ 3 +

2

26
∙ 4 +

1

26
∙ 5

→ → → →

→ → → →

Outline

▪ Dictionaries with Lists Revisited

▪ Dictionary ADT

▪ implementations so far

▪ Skip Lists

▪ Biased Search Requests

▪ optimal static ordering

▪ dynamic ordering: MTF

Dynamic Ordering

▪ Scenario: we do not know the access probabilities ahead of time

▪ Idea: modify the order dynamically, i.e. while we are accessing

▪ Rule of thumb: recently accessed item is likely to be accessed soon again

▪ Move-To-Front heuristic (MTF): after search, move the accessed item to
the front

▪ additionally, in list: always insert at the front

search D

insert F

▪ We can also do MTF on an array
▪ but should then insert and search from back so that we have room to grow

A B C D E

D A B C E

D A B C EF

Dynamic Ordering: MTF

▪ Can show: MTF is “2-competitive”
▪ no more than twice as bad as the optimal “offline” ordering

programmer A

data

frequency of
access statistics

implements
optimal static

ordering

average run-time of
operations is 𝑡

programmer B

implements
MTF dynamic

ordering

average run-time of
operations is at most 2𝑡

Dynamic Ordering: Other Heuristics
▪ Transpose heuristic: Upon a successful search, swap accessed item with the

immediately preceding item

▪ Avoids drastic changes MTF might do, while still adapting to access patterns

search D

insert F

A B C D E

A B D C E

A B D C EF

▪ Frequency-count heuristic: Keep counters how often items were accessed, and
sort in non-decreasing order

▪ works well in practice, but requires auxiliary space

Summary of Biased Search Requests

▪ We are unlikely to know the access-probabilities of items, so
optimal static order is mostly of theoretical interest

▪ For any dynamic reordering heuristic, some sequence will defeat it

▪ have Θ(𝑛) access cost for each item

▪ MTF and Frequency-Count work well in practice

▪ For MTF can prove theoretical guarantees

▪ There is very little overhead for MTF and other strategies, they
should be applied whenever unordered arrays or lists are used

▪ hashing, text compression

	Intro
	Slide 1
	Slide 2
	Slide 3
	Slide 4: Dictionary ADT: Implementations thus far

	SkipListMotivation
	Slide 5
	Slide 6: Skip Lists: Motivation
	Slide 7: Skip Lists: Motivation
	Slide 8: Skip Lists: Motivation
	Slide 9: Skip Lists: Motivation
	Slide 10: Skip Lists: Motivation
	Slide 11: Skip Lists: Motivation
	Slide 12: Skip Lists: Motivation
	Slide 13: Skip Lists [Pugh’1989]
	Slide 14: Skip Lists

	SkipSearch
	Slide 15: Search in Skip Lists
	Slide 16: Search in Skip Lists

	SkipInsertDelete
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: Insert in Skip Lists
	Slide 26
	Slide 27
	Slide 28
	Slide 29: Delete in Skip Lists

	SkipAnalysis
	Slide 30: Skip List Analysis
	Slide 31: Skip List Analysis
	Slide 32: Skip List Analysis
	Slide 33: Skip List Analysis
	Slide 34: Skip List Analysis
	Slide 35: Skip List Analysis
	Slide 36: Skip List Analysis: Expected Space
	Slide 37: Skip List Analysis: Expected Running Time
	Slide 38: Expected Number of Scan-Forwards at Level i.
	Slide 39: Expected Number of Scan-Forwards at Level i.
	Slide 40: Expected Number of Scan-Forwards at Level i.
	Slide 41: Expected Number of Scan-Forwards at Level i.
	Slide 42: Expected Number of Scan-Forward Operations
	Slide 43: Arrays Instead of Linked Lists
	Slide 44: Summary of Skip Lists

	Reordering
	Slide 45
	Slide 46: Improving Unsorted Lists/Arrays
	Slide 47
	Slide 48: Optimal Static Ordering
	Slide 49: Optimal Static Ordering
	Slide 50
	Slide 51: Dynamic Ordering
	Slide 52: Dynamic Ordering: MTF
	Slide 53: Dynamic Ordering: Other Heuristics
	Slide 54: Summary of Biased Search Requests

