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Dictionary ADT: Implementations thus far
▪ A dictionary is a collection of key-value pairs (KVPs)

▪ search, insert, and delete

▪ Realizations we have seen so far

▪ Balanced search trees (AVL trees)

▪ Θ(log 𝑛) search, insert, and delete

▪ complex code and not necessarily the fastest running time in practice

▪ Binary search trees 

▪ Θ(ℎ𝑒𝑖𝑔ℎ𝑡) search, insert and delete 

▪ simpler than AVL tree, randomization helps efficiency

▪ Ordered array

▪ simple implementation, Θ(log 𝑛) search 

▪ Θ(𝑛) insert and delete  

6544 69 79 8337▪ Ordered linked list

▪ simple implementation

▪ Θ(𝑛) search, insert and delete

▪ search is the bottleneck, insert and delete would be Θ(1) if do search first and 
account for its running time separately

▪ efficient search (like binary search) in ordered linked list?
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Skip Lists: Motivation
▪ Build a hierarchy of linked lists to imitate binary search in ordered linked list

▪ start from the bottom list and take every second item in the list above

▪ downward links are needed to navigate from list above to the list below
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Skip Lists: Motivation

6544 69 7923 8337
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▪ Search goes through the higher lists while possible, before 
dropping down to the list below

▪ top list enables search by ½ of the list, next by ¼ of the list, and so on

▪ Search(83)

search by 
1

2

search by 
1

4
 



Skip Lists: Motivation
▪ Hierarchy of linked lists

log 𝑛 
height 

▪ When searching, go through the highest level possible

▪ thus visit at most two items at each level, and total time to search Θ(log 𝑛) 

▪ each list has 1/2 of items from the list below

▪ total number of linked lists (height) is log 𝑛

▪ total number of nodes ≤ 2𝑛 
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Skip Lists: Motivation

6544 69 7923 8337
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▪ Deleted 65, no longer every second item is in the list above

▪ Big problem: deletion or insertion of items ruins ‘every second item is in 
the list above’ property

▪ crucial property for efficiency

▪ Thus the hierarchy of linked lists works only for static  dictionary

▪ know all items beforehand, and do not insert or delete 

▪ but in static case an ordered array is more efficient in practice (no links)

▪ Randomization enables hierarchical linked list with efficient insert and delete

▪ instead of requiring a deterministic subset of items in list above, randomly 
chose a subset  of the items in the list above



Skip Lists: Motivation

23 37 6544 69 79 8783 94

▪ For next level, choose each item from previous level with probability  ½ (coin toss)

0 0 1 0 1 1 0 1 0

1 0 1 0

44 79
0 1

79

𝑛

expected 
number of nodes

𝑛

2

𝑛

22

𝑛

23

▪ 𝑖th list is expected to have 𝑛/2𝑖 nodes

▪ Expect about log(𝑛) lists in total

44 69 79 87



Skip Lists: Motivation

23 37 6544 69 79 8783 94

▪ Insert ‘boundary’ nodes with special sentinel symbols −∞ and +∞ 
▪ to simplify code for searching

44 79

79

44 69 79 87
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Skip Lists: Motivation
▪ Insert sentinel only level, with only −∞ and +∞ 

▪ to simplify code for searching

−∞ +∞

23 37 6544 69 79 8783 94

44 79

79

44 69 79 87

−∞ +∞

−∞ +∞

−∞ +∞

−∞ +∞



23,v 37,v 65,v44,v 69,v 79,v 87,v83,v 94,v−∞ +∞

37 65 83 94−∞ +∞

−∞ +∞

65−∞ +∞

𝐿0

𝐿1

𝐿2

𝐿3

Skip Lists [Pugh’1989]
▪ A hierarchy L of ordered linked lists (levels) 𝐿0, 𝐿1, … , 𝐿ℎ

▪ other lists store only keys

▪ 𝐿0  contains the KVPs of some 𝑆 in non-decreasing order

▪ each  𝐿𝑖 contains  special keys (sentinels)  −∞ and +∞ 

▪ each list is a subsequence of previous one, i.e.  𝐿0 ⊇ 𝐿1 ⊇ ⋯ ⊇ 𝐿ℎ

▪ 𝐿ℎ contains only sentinels, the left sentinel is the root
root

▪ node is entry in one list vs. KVP is one non-sentinel entry in 𝐿0 

▪ 𝑛 is number of KVP, here,  𝑛 = 9  (number of nodes is 22)



23 37 6544 69 79 8783 94−∞ +∞

37 65 83 94−∞ +∞
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65−∞ +∞

𝐿0

𝐿1

𝐿2

𝐿3

Skip Lists
▪ Show only keys from now on

▪ Each key 𝑘 belongs to a tower of nodes

▪ height of tower for 𝑘 ∶ largest 𝑖 s.t. 𝑘 ∈ 𝐿𝑖 

▪ Each node 𝑝 has references to after(𝑝) and below(𝑝)

tower of height 1

after 65

below 65

▪ Height of the skip list is the maximum height of any tower
▪ which is the same as largest ℎ for which 𝐿ℎ exists

▪ height is 3 in this example
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𝐿0

𝐿1

𝐿2

𝐿3

Search in Skip Lists
▪ search(87)

▪ For each level, predecessor of key 𝑘 is

▪ If key 𝑘 is present at the level: node before node with key 𝑘 

▪ if key 𝑘 is not present at the level:  node before node where 𝑘 would have been 

▪ 𝑃 collects predecessors of key 𝑘 for all levels

▪ nodes where we drop down and the rightmost node in 𝐿0 with key <  𝑘

▪ these are needed for insert/delete

▪ 𝑘 is in skip list if and only if 𝑃. 𝑡𝑜𝑝(). 𝑎𝑓𝑡𝑒𝑟 has key 𝑘

𝑃 = −∞

65

83

83

comparison
scan-forward

drop-down
comparison

leading to node we do not take



Search in Skip Lists

getPredecessors(𝑘)

 𝑝 ← root

 𝑃 ← stack of nodes, initially containing 𝑝

 while 𝑝. 𝑏𝑒𝑙𝑜𝑤 ≠ 𝑁𝑈𝐿𝐿 do

   𝑝 ← 𝑝. below

   while 𝑝. 𝑎𝑓𝑡𝑒𝑟. 𝑘𝑒𝑦 <  𝑘 do

                                    𝑝 ←  𝑝. 𝑎𝑓𝑡𝑒𝑟

         𝑃. 𝑝𝑢𝑠ℎ(𝑝)

 return 𝑃

// keep dropping down until reach 𝐿0

// predecessor of 𝑘 in 𝐿0

skipList::search(𝑘)

 𝑃 ← getPredecessors 𝑘

 𝑞 ← 𝑃. 𝑡𝑜𝑝() 

 if 𝑞. 𝑎𝑓𝑡𝑒𝑟. 𝑘𝑒𝑦 = 𝑘 return 𝑞. 𝑎𝑓𝑡𝑒𝑟 

 else return ‘not found, but would be after 𝑞’

// move to the right 

// this is next predecessor



Insert in Skip Lists

𝐿0

𝐿1

𝐿2

𝐿3

insert new item

insert new item with probability ½

if in 𝐿1, then insert new item with probability ½

if in 𝐿2, then insert new item with probability ½

▪ Keep “tossing a coin” until 𝑇 appears

▪ Insert into 𝐿0 
and as many other 𝐿𝑖 as there are heads

▪ Examples

▪ 𝐻, 𝐻, 𝑇 (insert into 𝐿0, 𝐿1, 𝐿2)   ⇒ will say 𝑖 = 2

▪ 𝐻, 𝑇       (insert into 𝐿0, 𝐿1)         ⇒ will say 𝑖 = 1

▪ 𝑇 (insert into 𝐿0)       ⇒ will say 𝑖 = 0              

▪ No choice as to where put the tower of 𝑘

▪ The only choice is how talls hould we make the tower of 𝑘



Insert in Skip Lists: Example 1
▪  skipList::insert(52, 𝑣 )

▪  coin tosses: 𝐻, 𝑇 ⇒  𝑖 =  1

▪  getPredecessors(52)

𝑃 = −∞
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−∞ +∞

65−∞ +∞
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𝐿2

𝐿3



Insert in Skip Lists: Example 1
▪  skipList::insert(52, 𝑣 )

▪  coin tosses: 𝐻, 𝑇 ⇒  𝑖 =  1

▪  getPredecessors(52)

▪     now insert into 𝐿0 and 𝐿1 𝑃 = −∞

37

44

−∞

23 37 6544 69 8783 94−∞ +∞

37 65 83 94−∞ +∞

−∞ +∞

65−∞ +∞

𝐿0

𝐿1

𝐿2

𝐿3

52

52



Insert in Skip Lists: Example 2
▪  skipList::insert(100, 𝑣 )

▪  coin tosses: 𝐻, 𝐻, 𝐻, 𝑇 ⇒  𝑖 = 3

▪      first increase height 
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Insert in Skip Lists: Example 2
▪  skipList::insert(100, 𝑣 )

▪  coin tosses: 𝐻, 𝐻, 𝐻, 𝑇 ⇒  𝑖 = 3

▪      first increase height

23 37 6544 69 8783 94−∞ +∞

37 65 83 94−∞ +∞

−∞ +∞

65−∞ +∞

𝐿0

𝐿1

𝐿2

𝐿3

−∞ +∞𝐿4

▪   next getPredecessors (100)



Insert in Skip Lists: Example 2
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▪  skipList::insert(100, 𝑣 )

▪  coin tosses: 𝐻, 𝐻, 𝐻, 𝑇 ⇒  𝑖 = 3

▪      first increase height

▪   next getPredecessors (100)



Insert in Skip Lists: Example 2
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▪  skipList::insert(100, 𝑣 )

▪  coin tosses: 𝐻, 𝐻, 𝐻, 𝑇 ⇒  𝑖 = 3

▪      first increase height

▪   next getPredecessors (100)

▪   insert new key



Insert in Skip Lists: Example 2
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▪   insert new key

▪  skipList::insert(100, 𝑣 )

▪  coin tosses: 𝐻, 𝐻, 𝐻, 𝑇 ⇒  𝑖 = 3

▪      first increase height

▪   next getPredecessors (100)



Insert in Skip Lists
skipList::insert(𝑘, 𝑣)

 for 𝑖 ← 0;  𝑟𝑎𝑛𝑑𝑜𝑚 2 = 1; 𝑖 ← 𝑖 + 1  {}

 for ℎ ← 0, 𝑝 ← 𝑟𝑜𝑜𝑡. 𝑏𝑒𝑙𝑜𝑤; 𝑝 ≠ 𝑁𝐼𝐿𝐿;  𝑝 ← 𝑝. 𝑏𝑒𝑙𝑙𝑜𝑤  do ℎ ++ 

 while 𝑖 ≥ ℎ

   create new sentinel-only list; link it in below topmost level

                       ℎ ++

              𝑃 ← getPredecessors(𝑘)

              𝑝 ← 𝑃. 𝑝𝑜𝑝()

              𝑧𝐵𝑒𝑙𝑙𝑜𝑤 ← new node with (𝑘, 𝑣) inserted after 𝑝

              while 𝑖 > 0

                       𝑝 ← 𝑃. 𝑝𝑜𝑝()

                       𝑧 ← new node with 𝑘 added after 𝑝

                       𝑧. 𝑏𝑒𝑙𝑜𝑤 ← 𝑧𝐵𝑒𝑙𝑙𝑜𝑤

   𝑧𝐵𝑒𝑙𝑙𝑜𝑤 ← 𝑧

                      𝑖 ← 𝑖 − 1

// random tower height

// increase skip-list height if needed

// insert (𝑘, 𝑣) in 𝐿0

// insert 𝑘 in 𝐿1 𝐿2,…, Li



Example: Delete in Skip Lists
▪ skipList::delete 65

▪ first getPredecessors 𝑆, 65

𝑃 = −∞

37

44

−∞

23 37 6544 69 8783 94−∞ +∞

37 65 83 94−∞ +∞

−∞ +∞

65−∞ +∞

𝑆0

𝑆1

𝑆2

𝑆3

▪ then delete key 65 from all 𝑆𝑖

▪ 𝑃 has predecessor of each node to be deleted 



Example: Delete in Skip Lists

23 37 44 69 8783 94−∞ +∞

37 83 94−∞ +∞
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𝑆0

𝑆1

𝑆2

𝑆3

▪ height decrease: delete all unnecessary 𝑆𝑖, if any

▪ skipList::delete 65
▪ first getPredecessors 𝑆, 65

▪ then delete key 65 from all 𝑆𝑖

▪ 𝑃 has predecessor of each node to be deleted 



Example: Delete in Skip Lists

23 37 44 69 8783 94−∞ +∞

37 83 94−∞ +∞

−∞ +∞

𝑆0

𝑆1

𝑆2

▪ skipList::delete 65
▪ first getPredecessors 𝑆, 65

▪ then delete key 65 from all 𝑆𝑖

▪ 𝑃 has predecessor of each node to be deleted 

▪ height decrease: delete all unnecessary 𝑆𝑖, if any



Delete in Skip Lists

skipList::delete(𝑘)

 𝑃 ← getPredecessors(𝑘)

 while 𝑃 is non-empty

              𝑝 ← 𝑃. 𝑝𝑜𝑝()

              if 𝑝. 𝑎𝑓𝑡𝑒𝑟. 𝑘𝑒𝑦 = 𝑘

  𝑝. 𝑎𝑓𝑡𝑒𝑟 ← 𝑝. 𝑎𝑓𝑡𝑒𝑟. 𝑎𝑓𝑡𝑒𝑟

              else break

                𝑝 ← left sentinel of the root-list

 while 𝑝. 𝑏𝑒𝑙𝑜𝑤. 𝑎𝑓𝑡𝑒𝑟 is the ∞ sentinel

     𝑝. 𝑏𝑒𝑙𝑜𝑤 ←  𝑝. 𝑏𝑒𝑙𝑜𝑤. 𝑏𝑒𝑙𝑜𝑤

     𝑝. 𝑎𝑓𝑡𝑒𝑟. 𝑏𝑒𝑙𝑜𝑤 ←  𝑝. 𝑎𝑓𝑡𝑒𝑟. 𝑏𝑒𝑙𝑜𝑤. 𝑏𝑒𝑙𝑜𝑤

// predecessor of 𝑘 in some layer

// no more copies of 𝑘

// the two top lists are both only sentinels, remove one

// removes the second empty list



Skip List Analysis

▪ In the worst case, the height of a tower could be arbitrary large

▪ no bound on height in terms of 𝑛

▪ Operations could be arbitrarily slow, and space requirements arbitrarily large

▪ but this is exceedingly unlikely

▪ Let us analyse expected run-time and space-usage (randomized data structure)

𝑃 𝑋𝑘 ≥ 𝑖 = 𝑃 𝐻 𝐻 …  𝐻

𝑖  times

=
1

2

𝑖

height 1

▪ Let 𝑋𝑘 be the height of tower for key 𝑘

𝑃(𝑋𝑘 ≥ 1) = 𝑃(𝑋𝑘 ≥ 2) = 𝑃(𝑋𝑘 ≥ 3) =

▪ In general 

toss H….

1

2
 

toss HH….

1

2
∙

1

2

1

2
∙

1

2
∙

1

2
toss HHH….

37

37

37

37

37

37

37

37

37

height 2 height 3
toss HT toss HHT toss HHHT

height 0
37

toss T



Skip List Analysis

▪ Let 𝑋𝑘 be the height of tower for key 𝑘, we know 𝑃(𝑋𝑘 ≥ 𝑖) =
1

2𝑖

𝐿0

𝐿1

𝐿2

𝐿3

𝑘1 𝑘2 𝑘3 𝑘4

𝑋𝑘1 = 3

▪ If 𝑋𝑘 ≥ 𝑖 then list 𝐿𝑖  includes key 𝑘

𝑋𝑘2 = 1 𝑋𝑘3 = 0 𝑋𝑘4 = 2

▪ Let 𝐿𝑖  be the number of keys in list 𝐿𝑖

▪ sentinels do not count towards the length

▪ 𝐿0 always contains all 𝑛 keys

𝐿0 = 4

𝐿1 = 3

𝐿2 = 2

𝐿3 = 1



Skip List Analysis

▪ Let 𝐼𝑖, 𝑘 = ቊ
0 if 𝑋𝑘 < 𝑖 
1 if 𝑋𝑘 ≥ 𝑖

 

▪ Let 𝑋𝑘 be the height of tower for key 𝑘, we know 𝑃(𝑋𝑘 ≥ 𝑖) =
1

2𝑖

▪ If 𝑋𝑘 ≥ 𝑖 then list 𝐿𝑖  includes key 𝑘

▪ 𝐿𝑖 = σ𝑘𝑒𝑦 𝑘 𝐼𝑖, 𝑘

𝐿0

𝐿1

𝐿2

𝐿3

▪ Let 𝐿𝑖  be the number of keys in list 𝐿𝑖

𝐼1, 𝑘1 = 1 𝐼1, 𝑘3 = 0𝐼1, 𝑘2 = 1 𝐼1, 𝑘4 = 1

𝐼2, 𝑘1 = 1 𝐼2, 𝑘3 = 0𝐼2, 𝑘2 = 0 𝐼2, 𝑘4 = 1

𝐼3, 𝑘1 = 1 𝐼3, 𝑘3 = 0𝐼3, 𝑘2 = 0 𝐼3, 𝑘4 = 0

▪ 𝐸[ 𝐿𝑖 ] = 

𝑘𝑒𝑦 𝑘

𝐸[𝐼𝑖, 𝑘]= 𝐸 
𝑘𝑒𝑦 𝑘

𝐼𝑖, 𝑘 = 

𝑘𝑒𝑦 𝑘

𝑃(𝐼𝑖, 𝑘 = 1) = 

𝑘𝑒𝑦 𝑘

𝑃 (𝑋𝑘 ≥ 𝑖) =
𝑛

2𝑖

▪ The expected length of list 𝑆𝑖 is 
𝑛

2𝑖

𝐿1 = 3

𝐿2 = 2

𝐿3 = 1

= 

𝑘𝑒𝑦 𝑘

1

2𝑖

𝑋𝑘1 = 3 𝑋𝑘2 = 1 𝑋𝑘3 = 0 𝑋𝑘4 = 2

= ቊ
0 if list 𝐿𝑖 does not include key 𝑘
1 if list 𝐿𝑖 includes key 𝑘 



Skip List Analysis

▪ Let 𝐼𝑖 = ቊ
0 if 𝐿𝑖 = 0 
1 if 𝐿𝑖 ≥ 1

 

▪ Since 𝐼𝑖 ≤ 1 we have that  𝐸[𝐼𝑖] ≤ 1 

▪ Since 𝐼𝑖 ≤ 𝐿𝑖  we have that  𝐸[𝐼𝑖] ≤ 𝐸[ 𝐿𝑖 ] 

𝐿0

𝐿1

𝐿2

𝐿3

𝐼1 = 1

𝑘1 𝑘2 𝑘3 𝑘4

𝐼2 = 1

𝐼3 = 1
▪ 𝐿𝑖  is number of keys in list 𝐿𝑖

▪ 𝐸[ 𝐿𝑖 ] =
𝑛

2𝑖

▪ 𝐸[ℎ] = 1 + 

𝑖≥1

𝐸[𝐼𝑖]= 𝐸 1 + 

𝑖≥1

𝐼𝑖  = 1 + 
𝑖=1

log 𝑛

𝐸[𝐼𝑖] + 
𝑖=1+log 𝑛

∞

𝐸[𝐼𝑖]

𝐼4 = 0𝐿4 has only sentinels

▪ ℎ = 1 + σ𝑖≥1 𝐼𝑖 (here  +1 is for the sentinel-only level)

≤ 1 + 
𝑖=1

log 𝑛

1

=
𝑛

2𝑖

≤ 1 +  log 𝑛 

▪ For ease of derivation, assume 𝑛 is a power of 2

+ 
𝑖=1+log 𝑛

∞ 𝑛

2𝑖

+ 
𝑖=0

∞ 𝑛

2𝑖+1+log 𝑛



Skip List Analysis

▪ Let 𝐼𝑖 = ቊ
0 if 𝐿𝑖 = 0 
1 if 𝐿𝑖 ≥ 1

 

▪ Since 𝐼𝑖 ≤ 1 we have that  𝐸[𝐼𝑖] ≤ 1 

▪ Since 𝐼𝑖 ≤ 𝐿𝑖  we have that  𝐸[𝐼𝑖] ≤ 𝐸[ 𝑆𝑖 ] 

𝑆0

𝑆1

𝑆2

𝐿3

𝐼1 = 1

𝑘1 𝑘2 𝑘3 𝑘4

𝐼2 = 1

𝐼3 = 1
▪ 𝐿𝑖  is number of keys in list 𝑆𝑖

▪ 𝐸[ 𝐿𝑖 ] =
𝑛

2𝑖

▪ 𝐸[ℎ] = 1 + 

𝑖≥1

𝐸[𝐼𝑖]= 𝐸 1 + 

𝑖≥1

𝐼𝑖  = 1 + 
𝑖=1

log 𝑛

𝐸[𝐼𝑖] + 
𝑖=1+log 𝑛

∞

𝐸[𝐼𝑖]

𝐼4 = 0𝐿4 has only sentinels

▪ ℎ = 1 + σ𝑖≥1 𝐼𝑖 (here  +1 is for the sentinel-only level)

≤ 1 + 
𝑖=1

log 𝑛

1

=
𝑛

2𝑖

≤ 1 +  log 𝑛 

▪ For ease of derivation, assume 𝑛 is a power of 2

+ 
𝑖=1+log 𝑛

∞ 𝑛

2𝑖

+ 
𝑖=0

∞ 𝑛

2𝑖+1+log 𝑛

𝑆 = 
𝑖=0

∞ 1

2𝑖

= 
𝑖=0

∞ 𝑛

2𝑖212log 𝑛

=
1

2


𝑖=0

∞ 𝑛

2𝑖𝑛

=
1

2


𝑖=0

∞ 1

2𝑖


𝑖=0

∞ 𝑛

2𝑖+1+log 𝑛

2𝑆 = 
𝑖=0

∞ 2

2𝑖

= 1 +
1

2
+

1

22 +
1

23
+ ⋯

= 2 +1 +
1

2
+

1

22 + ⋯

2𝑆 − 𝑆 = 2

=
1

2
2 = 1



▪ Expected skip list height ≤  2 + log 𝑛

= 1 + log 𝑛 + 1

Skip List Analysis

▪ Let 𝐼𝑖 = ቊ
0 if 𝐿𝑖 = 0 
1 if 𝐿𝑖 ≥ 1

 

▪ Since 𝐼𝑖 ≤ 1 we have that  𝐸[𝐼𝑖] ≤ 1 

▪ Since 𝐼𝑖 ≤ 𝐿𝑖  we have that  𝐸[𝐼𝑖] ≤ 𝐸[ 𝐿𝑖 ] 

𝐿0

𝐿1

𝐿2

𝐿3

𝐼1 = 1

𝑘1 𝑘2 𝑘3 𝑘4

𝐼2 = 1

𝐼3 = 1
▪ 𝐿𝑖  is number of keys in list 𝐿𝑖

▪ 𝐸[ 𝐿𝑖 ] =
𝑛

2𝑖

▪ 𝐸[ℎ] = 1 + 

𝑖≥1

𝐸[𝐼𝑖]= 𝐸 1 + 

𝑖≥1

𝐼𝑖  = 1 + 
𝑖=1

log 𝑛

𝐸[𝐼𝑖] + 
𝑖=1+log 𝑛

∞

𝐸[𝐼𝑖]

𝐼4 = 0𝐿4 has only sentinels

▪ ℎ = 1 + σ𝑖≥1 𝐼𝑖 (here  +1 is for the sentinel-only level)

≤ 1 + 
𝑖=1

log 𝑛

1

=
𝑛

2𝑖

≤ 1 +  log 𝑛 

▪ For ease of derivation, assume 𝑛 is a power of 2

+ 
𝑖=1+log 𝑛

∞ 𝑛

2𝑖

+ 
𝑖=0

∞ 𝑛

2𝑖+1+log 𝑛



Skip List Analysis: Expected Space

▪ We need space for nodes storing sentinels and nodes storing keys

1. Space for nodes storing sentinels 

▪ there are 2ℎ +  2 sentinels, where ℎ be the skip list height

▪ 𝐸 ℎ ≤  2 + log 𝑛

▪ expected space for sentinels is at most

𝐸 2ℎ + 2 = 2𝐸 ℎ + 2 ≤ 6 + 2log 𝑛

= 2𝑛

2. Space for nodes storing keys

▪ Let 𝐿𝑖  be the number of keys in list 𝐿𝑖

▪ 𝐸[ 𝐿𝑖 ] =
𝑛

2𝑖  

▪ expected space for keys is 

𝑖≥0

𝑛

2𝑖𝐸 

𝑖≥0

𝐿𝑖 =

▪ Total expected space is Θ(𝑛)



𝑖≥0

𝐸 𝐿𝑖 =



Skip List Analysis: Expected Running Time

▪ search, insert, and delete are dominated by the runtime of getPredecessors

▪ So we analyze the expected time of getPredecessors 

▪ runtime is proportional to number of  ‘drop-down’ and ‘scan-forward’

▪ We ‘drop-down’ ℎ times, where ℎ is skip list height

▪ expected height ℎ is O(log 𝑛)

▪ total expected time spent on ‘drop-down’ operations is O(log 𝑛)

▪ Will show next  that expected number of ‘scan-forward’ is also O(log 𝑛)

▪ So total expected running time is  O(log 𝑛)

drop-down
scan-forward

drop-down
scan-forward



Expected Number of Scan-Forwards at Level 𝑖

▪ Assume 𝑖 <  ℎ 

▪ if 𝑖 = ℎ, then we are at the top sentinel-only list and do not scan forward at all

▪ Let 𝑣 be leftmost key in 𝐿𝑖 we visit during search

▪ we 𝑣 reached by dropping down from 𝐿𝑖+1

𝑤

▪ Let 𝑤 be the key right after 𝑣 

▪ height of tower of 𝑤 is at least 𝑖, but could be more than 𝑖 

▪ What is the probability of scanning from 𝑣 to 𝑤 (i.e. at least one scan) in 𝐿𝑖?

𝑣

𝑣𝐿𝑖+1

𝐿𝑖 𝑤𝑣

𝑣𝐿𝑖+1

𝐿𝑖

𝑤

would scan from 𝑣 to 𝑤 in 𝐿𝑖+1, not in 𝐿𝑖  could scan forward from 𝑣 to 𝑤 in 𝐿𝑖 

▪ if scan-forward from 𝑣 to 𝑤, then 𝑤 is not in 𝐿𝑖+1

▪ thus tower of 𝑤 has height exactly  𝑖

▪ and we already know that tower of w has height at least 𝑖



Expected Number of Scan-Forwards at Level 𝑖

▪ Assume 𝑖 <  ℎ 

▪ if 𝑖 = ℎ, then we are at the top sentinel-only list and do not scan forward at all

▪ Let 𝑣 be leftmost key in 𝐿𝑖 we visit during search

▪ we 𝑣 reached by dropping down from 𝐿𝑖+1

𝑤

▪ Let 𝑤 be the key right after 𝑣 

▪ height of tower of 𝑤 is at least 𝑖, but could be more than 𝑖 

▪ What is the probability of scanning from 𝑣 to 𝑤 (i.e. at least one scan) in 𝐿𝑖?

𝑣

𝑣𝐿𝑖+1

𝐿𝑖 𝑤𝑣

𝑣𝐿𝑖+1

𝐿𝑖

𝑤

would scan from 𝑣 to 𝑤 in 𝐿𝑖+1, not in 𝐿𝑖  could scan forward from 𝑣 to 𝑤 in 𝐿𝑖 

▪ if scan-forward from 𝑣 to 𝑤, then 𝑤 is not in 𝐿𝑖+1

▪ thus tower of 𝑤 has height exactly  𝑖

▪ and we already know that tower of w has height at least 𝑖

would scan from 𝑣 to 𝑤 in 𝑆𝑖+1, not in 𝑆𝑖   

𝑤

𝑤

𝑤

𝑤height 𝑖

…

𝑃(tower of  𝑤 has height 𝑖| tower of 𝑤 has height at least 𝑖)

next toss is 𝑇⇒ tower stops growing

= ½



Expected Number of Scan-Forwards at Level 𝑖

▪ Assume 𝑖 <  ℎ 

▪ if 𝑖 = ℎ, then we are at the top sentinel-only list and do not scan forward at all

▪ Let 𝑣 be leftmost key in 𝐿𝑖 we visit during search

▪ we 𝑣 reached by dropping down from 𝐿𝑖+1

𝑤

▪ Let 𝑤 be the key right after 𝑣 

▪ height of tower of 𝑤 is at least 𝑖, but could be more than 𝑖 

▪ What is the probability of scanning from 𝑣 to 𝑤 (i.e. at least one scan) in 𝐿𝑖?

𝑣

𝑣𝐿𝑖+1

𝐿𝑖 𝑤𝑣

𝑣𝐿𝑖+1

𝐿𝑖

𝑤

would scan from 𝑣 to 𝑤 in 𝐿𝑖+1, not in 𝐿𝑖  could scan forward from 𝑣 to 𝑤 in 𝐿𝑖 

▪ if scan-forward from 𝑣 to 𝑤, then 𝑤 is not in 𝐿𝑖+1

▪ thus tower of 𝑤 has height exactly  𝑖

▪ and we already know that tower of w has height at least 𝑖

▪ 𝑃(tower of  𝑤 has height 𝑖| tower of 𝑤 has height at least 𝑖)  = ½

▪ thus scan forward from 𝑣 to 𝑤 with probability at most ½

▪ ‘at most’ because we could scan-down down if search 𝑘𝑒𝑦 < 𝑤



Expected Number of Scan-Forwards at Level 𝑖

𝑤

▪ What is the probability of scanning twice (i.e. at least 2 scans) from 𝑣 in 𝐿𝑖?

𝑣

𝑣𝐿𝑖+1

𝐿𝑖

could scan forward from 𝑣 to 𝑤 in 𝐿𝑖 

▪ scan forward at least twice from 𝑣 with probability at most 1/2 2

▪ ‘at most’ because we could scan-down down

𝑣

𝑣𝐿𝑖+1

𝐿𝑖

could scan forward twice from 𝑣 in 𝐿𝑖 
height 𝑖 height 𝑖 

▪ In general, probability of scan-forward at least 𝑙 times is at most  1/2 𝑙

▪ i.e. P(scans ≥ 𝑙) ≤ 1/2 𝑙

𝐸[# scan-forward at level 𝑖] = 

𝑙≥1

P(scans ≥ 𝑙) ≤ 

𝑙≥1

1

2𝑙

= 1

= 

𝑙≥1

𝑙 ∙ P(scans = 𝑙)

theorem in probability 
theory



Expected Number of Scan-Forward Operations

▪ Expected number of scan-forwards is O(log 𝑛) 

= 
𝑖=1

log 𝑛

𝐸[# of scan−for at level 𝑖] + 
𝑖=1+log 𝑛

∞

𝐸[# of scan−for at level 𝑖]

≤ 
𝑖=1

log 𝑛

1 + 
𝑖=1+log 𝑛

∞ 𝑛

2𝑖

▪ At level 𝑖 < ℎ:  𝐸[number of scan-forward] ≤ 1 

▪ Also, expected number of scan-forward at level 𝑖  < number of keys at level 𝐿𝑖

▪ 𝐿𝑖  is the number of keys in list on level 𝑖, and 𝐸[ 𝐿𝑖 ] =
𝑛

2𝑖 

▪ For ease of derivation, assume 𝑛 is a power of 2

▪ Expected number of scan-forward over all levels 



𝑖≥0

𝐸[# of scan−forward at level 𝑖] =

≤ log 𝑛 + 1



Arrays Instead of Linked Lists
▪ As described now, they are no faster than randomized binary search trees

▪ Can save links by implementing each tower as an array
▪ this not only saves space, but gives better running time in practice

▪ when ‘scan-forward’, we know the correct array location to look at (level 𝑖)

▪ Search(67)

−∞ 23 44 65 69 +∞

−∞

−∞

−∞

−∞

23

23 44

+∞

+∞

+∞

+∞

65

65

65 69

69



Summary of Skip Lists

▪ For a skip list with 𝑛 items

▪ expected space usage is 𝑂(𝑛)

▪ expected running time for search, insert, delete is 𝑂(log 𝑛)

▪ Lists make it easy to implement

▪ easy to add more operations: successor, merge, …

▪ Two efficiency improvements

▪ use arrays for key towers for more efficient implementation

▪ can show: a biased coin-flip to determine tower-height gives smaller 
expected run-times

▪ expected space <  2𝑛, less than for BST



Outline

▪ Dictionaries with Lists Revisited

▪ Dictionary ADT

▪ implementations so far

▪ Skip Lists

▪ Biased Search Requests

▪ optimal static ordering

▪ dynamic ordering: MTF



Improving Unsorted Lists/Arrays
▪ Unordered lists/arrays are among simplest data structures to implement

▪ But for Dictionary ADT

▪ inefficient search: Θ(𝑛)

▪ Can we make search in unordered lists/arrays more effective in practice?

▪ No if items are accessed equally likely

▪ can show average-case search is Θ(𝑛)

▪ Yes if the search requests are biased

▪ some items are accessed much more frequently than others

▪ 80/20 rule: 80% of outcomes result from 20% of causes

▪ access = insertion or successful search

▪ Intuition: frequently accessed items should be in the front

▪  two cases

▪ know the access distribution beforehand

▪ optimal static ordering

▪ do not know access distribution beforehand

▪ dynamic ordering



Outline

▪ Dictionaries with Lists Revisited

▪ Dictionary ADT

▪ implementations so far

▪ Skip Lists

▪ Biased Search Requests

▪ optimal static ordering

▪ dynamic ordering: MTF



Optimal Static Ordering
▪ Scenario: We know access distribution, and want to find the best list order

key A B C D E

frequency of access 2 8 1 10 5

access probability 2

26

8

26

1

26

10

26

5

26

▪ Let  the cost of search for key located at position 𝑖 be 𝑖  

𝑇𝑒𝑥𝑝 𝑛 = 

𝐼∈𝐼𝑛

𝑇(𝐼) ∙ Pr(randomly chosen instance 𝐼)

= 

𝑖

𝑖 ∙ Pr(search for key at position 𝑖)

= 

𝑖

𝑖 ∙ (access probability for key at position 𝑖)



Optimal Static Ordering

▪ Order A B              C D E has  expected cost

▪ Order D B          E          A            C has expected cost

▪ Claim: ordering items by  non-increasing access-probability minimizes 
expected access cost, i.e. best static ordering

▪ static ordering: order of items does not change

▪ Proof Idea: for any other ordering, exchanging two items that are out-of-
order according to access probabilities makes total cost decrease

key A B C D E

frequency of access 2 8 1 10 5

access probability 2

26

8

26

1

26

10

26

5

26

10

26
∙ 1

≈ 3.31

≈ 2.54

2

26
∙ 1 +

8

26
∙ 2 +

1

26
∙ 3 +

10

26
∙ 4 +

5

26
∙ 5

+
8

26
∙ 2 +

5

26
∙ 3 +

2

26
∙ 4 +

1

26
∙ 5

→ → → →

→ → → →



Outline

▪ Dictionaries with Lists Revisited

▪ Dictionary ADT

▪ implementations so far

▪ Skip Lists

▪ Biased Search Requests

▪ optimal static ordering

▪ dynamic ordering: MTF



Dynamic Ordering

▪ Scenario: we do not know the access probabilities ahead of time

▪ Idea: modify the order dynamically, i.e. while we are accessing

▪ Rule of thumb: recently accessed item is likely to be accessed soon again

▪ Move-To-Front heuristic (MTF): after search, move the accessed  item to 
the front

▪ additionally, in list: always insert at the front

search D

insert F

▪ We can also do MTF on an array
▪ but should then insert and search from back so that we have room to grow

A B C D E

D A B C E

D A B C EF



Dynamic Ordering: MTF

▪ Can show: MTF is “2-competitive”
▪ no more than twice as bad as the optimal “offline” ordering

programmer A

data

frequency of 
access statistics

implements 
optimal static 

ordering

average run-time of 
operations is 𝑡

programmer B

implements 
MTF dynamic 

ordering

average run-time of 
operations is at most 2𝑡



Dynamic Ordering: Other Heuristics 
▪ Transpose heuristic: Upon a successful search, swap accessed item with the   

immediately preceding item

▪ Avoids drastic changes MTF might do, while still adapting to access patterns

search D

insert F

A B C D E

A B D C E

A B D C EF

▪ Frequency-count heuristic: Keep counters how often items were accessed, and 
sort in non-decreasing order

▪ works well in practice, but requires auxiliary space



Summary of Biased Search Requests

▪ We are unlikely to know the access-probabilities of items, so 
optimal static order is mostly of theoretical interest

▪ For any dynamic reordering heuristic, some sequence will defeat it

▪ have  Θ(𝑛) access cost for each item

▪ MTF and Frequency-Count work well in practice

▪ For MTF can prove theoretical guarantees

▪  There is very little overhead for MTF and other strategies, they 
should be applied whenever unordered arrays or lists are used

▪ hashing, text compression
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