CS 240 – Data Structures and Data Management

Module 5: Other Dictionary Implementations

O. Veksler

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2025

Outline

- Dictionaries with Lists Revisited
 - Dictionary ADT
 - implementations so far
 - Skip Lists
 - Biased Search Requests
 - optimal static ordering
 - dynamic ordering: MTF

Outline

- Dictionaries with Lists Revisited
 - Dictionary ADT
 - implementations so far
 - Skip Lists
 - Biased Search Requests
 - optimal static ordering
 - dynamic ordering: MTF

Dictionary ADT: Implementations thus far

- A *dictionary* is a collection of *key-value pairs* (KVPs)
 - search, insert, and delete
- Realizations we have seen so far
 - Balanced search trees (AVL trees)
 - $\Theta(\log n)$ search, insert, and delete
 - complex code and not necessarily the fastest running time in practice
 - Binary search trees
 - Θ(height) search, insert and delete
 - simpler than AVL tree, randomization helps efficiency
 - Ordered array
 - simple implementation, $\Theta(\log n)$ search
 - $\Theta(n)$ insert and delete
 - Ordered linked list
 - simple implementation
 - $\Theta(n)$ search, insert and delete
 - search is the bottleneck, insert and delete would be Θ(1) if do search first and account for its running time separately
 - efficient search (like binary search) in ordered linked list?

Outline

- Dictionaries with Lists Revisited
 - Dictionary ADT
 - implementations so far
 - Skip Lists
 - Re-ordering items
 - optimal static ordering
 - dynamic ordering: MTF

- Build a *hierarchy* of linked lists to imitate binary search in ordered linked list
 - start from the bottom list and take every second item in the list above
 - downward links are needed to navigate from list above to the list below

- Search goes through the higher lists while possible, before dropping down to the list below
 - top list enables search by ½ of the list, next by ¼ of the list, and so on
- Search(83)

- Hierarchy of linked lists
 - each list has 1/2 of items from the list below
 - total number of linked lists (height) is log n
 - total number of nodes $\leq 2n$

- When searching, go through the highest level possible
 - thus visit at most two items at each level, and total time to search Θ(log n)

Deleted 65, no longer every second item is in the list above

- Big problem: deletion or insertion of items ruins 'every second item is in the list above' property
 - crucial property for efficiency
- Thus the hierarchy of linked lists works only for static dictionary
 - know all items beforehand, and **do not** insert or delete
 - but in static case an ordered array is more efficient in practice (no links)
- *Randomization* enables hierarchical linked list **with** efficient insert and delete
 - instead of requiring a deterministic subset of items in list above, randomly chose a subset of the items in the list above

- For next level, choose each item from previous level with probability ½ (coin toss)
- *i*th list is expected to have $n/2^i$ nodes
- Expect about log(n) lists in total

expected number of nodes

- Insert 'boundary' nodes with special sentinel symbols $-\infty$ and $+\infty$
 - to simplify code for searching

- Insert sentinel only level, with only $-\infty$ and $+\infty$
 - to simplify code for searching

Skip Lists [Pugh'1989]

- A hierarchy L of ordered linked lists (*levels*) L_0, L_1, \dots, L_h
 - L_0 contains the KVPs of some S in non-decreasing order
 - other lists store only keys
 - each L_i contains special keys (sentinels) $-\infty$ and $+\infty$
 - each list is a subsequence of previous one, i.e. $L_0 \supseteq L_1 \supseteq ... \supseteq L_h$

 L_h contains only sentinels, the left sentinel is the root

- node is entry in one list vs. KVP is one non-sentinel entry in L_0
- *n* is number of KVP, here, n = 9 (number of nodes is 22)

Skip Lists

Show only keys from now on

- Each key k belongs to a tower of nodes
 - height of tower for k : largest i s.t. $k \in L_i$
- Height of the skip list is the maximum height of any tower
 - which is the same as largest h for which L_h exists
 - height is 3 in this example
- Each node p has references to after(p) and below(p)

- For each level, **predecessor** of key k is
 - If key k is present at the level: node before node with key k
 - if key k is not present at the level: node before node where k would have been
- P collects predecessors of key k for all levels
 - nodes where we drop down and the rightmost node in L_0 with key < k
 - these are needed for insert/delete
- k is in skip list if and only if P. top(). after has key k

Search in Skip Lists

```
getPredecessors(k)
p \leftarrow root
P \leftarrow stack of nodes, initially containing p
while p. below \neq NULL do// keep dropping down until reach L_0
p \leftarrow p. below
while p. after. key < k do
p \leftarrow p. after // move to the right
P. push(p) // this is next predecessor
return P
```

 $\begin{aligned} skipList::search(k) \\ P \leftarrow getPredecessors(k) \\ q \leftarrow P.top() \\ if q.after.key = k return q.after \\ else return 'not found, but would be after q' \end{aligned}$

Insert in Skip Lists

- No choice as to where put the tower of k
- The only choice is how talls hould we make the tower of k

 L_2 if in L_1 , then insert new item with probability $\frac{1}{2}$

 L_1 insert new item with probability $\frac{1}{2}$

L₀ insert new item

- Keep "tossing a coin" until T appears
- Insert into L_0 and as many other L_i as there are heads
- Examples
 - H, H, T (insert into L_0, L_1, L_2) \Rightarrow will say i = 2
 - H,T (insert into L_0, L_1) \Rightarrow will say i = 1
 - T (insert into L_0) \Rightarrow will say i = 0

- skipList::insert(52, v)
- coin tosses: $H, T \Rightarrow i = 1$
- getPredecessors(52)

- skipList::insert(52, v)
- coin tosses: $H, T \Rightarrow i = 1$
- getPredecessors(52)
- now insert into L_0 and L_1

- skipList::insert(100, v)
- coin tosses: $H, H, H, T \Rightarrow i = 3$
- first increase height

- skipList::insert(100, v)
- coin tosses: $H, H, H, T \Rightarrow i = 3$
- first increase height
- next getPredecessors (100)

- skipList::insert(100, v)
- coin tosses: $H, H, H, T \Rightarrow i = 3$
- first increase height
- next getPredecessors (100)

- skipList::insert(100, v)
- coin tosses: $H, H, H, T \Rightarrow i = 3$
- first increase height
- next getPredecessors (100)
- insert new key

- skipList::insert(100, v)
- coin tosses: $H, H, H, T \Rightarrow i = 3$
- first increase height
- next getPredecessors (100)
- insert new key

Insert in Skip Lists

skipList::insert(k, v)for $(i \leftarrow 0; random(2) = 1; i \leftarrow i + 1)$ {} // random tower height for $(h \leftarrow 0, p \leftarrow root. below; p \neq NILL; p \leftarrow p. bellow)$ do h + +while i > h// increase skip-list height if needed create new sentinel-only list; link it in below topmost level h + + $P \leftarrow qetPredecessors(k)$ $p \leftarrow P_pop()$ $zBellow \leftarrow$ new node with (k, v) inserted after p = // insert (k, v) in L_0 while i > 0// insert k in $L_1 L_2, \dots, L_k$ $p \leftarrow P_pop()$ $z \leftarrow$ new node with k added after p z below \leftarrow zBellow $zBellow \leftarrow z$ $i \leftarrow i - 1$

Example: Delete in Skip Lists

- skipList::delete(65)
 - first getPredecessors(S, 65)
 - then delete key 65 from all *S*_{*i*}
 - P has predecessor of each node to be deleted

Example: Delete in Skip Lists

- skipList::delete(65)
 - first getPredecessors(S, 65)
 - then delete key 65 from all S_i
 - P has predecessor of each node to be deleted
 - height decrease: delete all unnecessary S_i, if any

Example: Delete in Skip Lists

- skipList::delete(65)
 - first getPredecessors(S, 65)
 - then delete key 65 from all S_i
 - P has predecessor of each node to be deleted
 - height decrease: delete all unnecessary S_i, if any

Delete in Skip Lists

skipList::delete(k) $P \leftarrow getPredecessors(k)$ while *P* is non-empty // predecessor of k in some layer $p \leftarrow P.pop()$ if p. after. key = k $p.after \leftarrow p.after.after$ // no more copies of kelse break $p \leftarrow$ left sentinel of the root-list while p. below. after is the ∞ sentinel // the two top lists are both only sentinels, remove one // removes the second empty list $p.below \leftarrow p.below.below$ $p.after.below \leftarrow p.after.below.below$

- Let X_k be the height of tower for key k $P(X_k \ge 1) = \frac{1}{2}$ $P(X_k \ge 2) = \frac{1}{2} \cdot \frac{1}{2}$ $P(X_k \ge 3) = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$ $P(X_k \ge 3) = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$ $O(X_k \ge 3) = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$ $O(X_k \ge 3) = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$
- In general $P(X_k \ge i) = P(H H \dots H) = \left(\frac{1}{2}\right)^i$

i times

- In the worst case, the height of a tower could be arbitrary large
 - no bound on height in terms of n
- Operations could be arbitrarily slow, and space requirements arbitrarily large
 - but this is exceedingly unlikely
- Let us analyse *expected* run-time and space-usage (randomized data structure)

- Let X_k be the height of tower for key k, we know $P(X_k \ge i) = \frac{1}{2i}$
- If $X_k \ge i$ then list L_i includes key k
- Let $|L_i|$ be the number of keys in list L_i
 - sentinels do not count towards the length
 - L₀ always contains all n keys

• Let X_k be the height of tower for key k, we know $P(X_k \ge i) = \frac{1}{2^i}$

• If
$$X_k \ge i$$
 then list L_i includes key k

- Let $|L_i|$ be the number of keys in list L_i
- Let $I_{i,k} = \begin{cases} 0 & \text{if } X_k < i \\ 1 & \text{if } X_k \ge i \end{cases} = \begin{cases} 0 & \text{if list } L_i \text{ does not include key } k \\ 1 & \text{if list } L_i \text{ includes key } k \end{cases}$

•
$$|L_i| = \sum_{k \in \mathcal{Y} k} I_{i,k}$$

•
$$E[|L_i|] = E\left[\sum_{key k} I_{i,k}\right] = \sum_{key k} E[I_{i,k}] = \sum_{key k} P(I_{i,k} = 1) = \sum_{key k} P(X_k \ge i) = \sum_{key k} \frac{1}{2^i} = \frac{n}{2^i}$$

• The expected length of list S_i is $\frac{n}{2^i}$

- $|L_i|$ is number of keys in list L_i
 - $E[|L_i|] = \frac{n}{2^i}$
- Let $I_i = \begin{cases} 0 & \text{if } |L_i| = 0 \\ 1 & \text{if } |L_i| \ge 1 \end{cases}$

- $h = 1 + \sum_{i \ge 1} I_i$ (here +1 is for the sentinel-only level)
- Since $I_i \leq 1$ we have that $E[I_i] \leq 1$
- Since $I_i \leq |L_i|$ we have that $E[I_i] \leq E[|L_i|] = \frac{\pi}{2i}$
- For ease of derivation, assume *n* is a power of 2

•
$$E[h] = E\left[1 + \sum_{i \ge 1} I_i\right] = 1 + \sum_{i \ge 1} E[I_i] = 1 + \sum_{i=1}^{\log n} E[I_i] + \sum_{i=1+\log n}^{\infty} E[I_i]$$

 $\leq 1 + \sum_{i=1}^{\log n} 1 + \sum_{i=1+\log n}^{\infty} \frac{n}{2^i}$
 $\leq 1 + \log n + \sum_{i=0}^{\infty} \frac{n}{2^{i+1+\log n}}$

L₄ has only sentinels $I_4 = 0$ Skip List Analysis L_3 $I_{3} = 1$ $|L_i|$ is number of keys in $L_i \leftarrow S$. • $E[|L_i|] = \frac{n}{2^i}$ $\sum_{i=0}^{\infty} \frac{n}{2^{i+1} + \log n} = \sum_{i=0}^{\infty} \frac{n}{2^{i} 2^{1} 2^{\log n}}$ • Let $I_i = \begin{cases} 0 & \text{if } |L_i| = 0 \\ 1 & \text{if } |L_i| \ge 0 \end{cases}$ $=\frac{1}{2}\sum_{i=0}^{\infty}\frac{n}{2^{i}n}$ • $h = 1 + \sum_{i>1} I_i$ (here + $=\frac{1}{2}\sum_{i=0}^{\infty}\frac{1}{2^{i}}=\frac{1}{2}2=1$ Since $I_i \leq 1$ we have the Since $I_i \leq |L_i|$ we have For ease of derivation, a • For ease of derivation, a • $E[h] = E\left[1 + \sum_{i \ge 1} I_i\right] = S = \sum_{i=0}^{\infty} \frac{1}{2^i} = 1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \cdots$ $2S = \sum_{i=0}^{\infty} \frac{2}{2^i} = 2 + 1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^2} + \cdots$ 2S - S = 2 $\mathbf{i}_{i=0} 2^{i+1+\log n}$

- $|L_i|$ is number of keys in list L_i
 - $E[|L_i|] = \frac{n}{2^i}$
- Let $I_i = \begin{cases} 0 & \text{if } |L_i| = 0 \\ 1 & \text{if } |L_i| \ge 1 \end{cases}$

- $h = 1 + \sum_{i \ge 1} I_i$ (here +1 is for the sentinel-only level)
- Since $I_i \leq 1$ we have that $E[I_i] \leq 1$
- Since $I_i \leq |L_i|$ we have that $E[I_i] \leq E[|L_i|] = \frac{\pi}{2i}$
- For ease of derivation, assume *n* is a power of 2

•
$$E[h] = E\left[1 + \sum_{i \ge 1} I_i\right] = 1 + \sum_{i \ge 1} E[I_i] = 1 + \sum_{i=1}^{\log n} E[I_i] + \sum_{i=1+\log n}^{\infty} E[I_i]$$

 $\leq 1 + \sum_{i=1}^{\log n} 1 + \sum_{i=1+\log n}^{\infty} \frac{n}{2^i}$
 $\leq 1 + \log n + \sum_{i=0}^{\infty} \frac{n}{2^{i+1+\log n}}$

• Expected skip list height $\leq 2 + \log n$

Skip List Analysis: Expected Space

- We need space for nodes storing sentinels and nodes storing keys
- 1. Space for nodes storing sentinels
 - there are 2h + 2 sentinels, where h be the skip list height
 - $E[h] \leq 2 + \log n$
 - expected space for sentinels is at most

 $E[2h+2] = 2E[h] + 2 \le 6 + 2\log n$

- 2. Space for nodes storing keys
 - Let $|L_i|$ be the number of keys in list L_i

•
$$E[|L_i|] = \frac{n}{2^i}$$

spected space for keys is $E\left[\sum_{i\geq 0} |L_i|\right] = \sum_{i\geq 0} E[|L_i|] = \sum_{i\geq 0} \frac{n}{2^i} = 2n$

• Total expected space is $\Theta(n)$

ex

Skip List Analysis: Expected Running Time

- search, insert, and delete are dominated by the runtime of getPredecessors
- So we analyze the expected time of *getPredecessors*
 - runtime is proportional to number of 'drop-down' and 'scan-forward'
- We 'drop-down' *h* times, where *h* is skip list height
 - expected height h is O(log n)
 - total expected time spent on 'drop-down' operations is O(log n)
- Will show next that expected number of 'scan-forward' is also O(log n)
- So total expected running time is O(log n)

Expected Number of Scan-Forwards at Level *i*

could scan forward from v to w in L_i

would scan from v to w in L_{i+1} , not in L_i

- if i = h, then we are at the top sentinel-only list and do not scan forward at all
- Let v be leftmost key in L_i we visit during search
 - we v reached by dropping down from L_{i+1}
- Let *w* be the key right after *v*

Assume i < h

- height of tower of w is at least i, but could be more than i
- What is the probability of scanning from v to w (i.e. at least one scan) in L_i ?
 - if scan-forward from v to w, then w is not in L_{i+1}
 - thus tower of w has height exactly i
 - and we already know that tower of w has height at least i

Expected Number of Scan-Forwards at Level *i*

could scan forward from v to w in L_i

would scan from v to w in L_{i+1} , not in L_i

- if i = h, then we are at the top sentinel-only list and do not scan forward at all
- Let v be leftmost key in L_i we visit during search
 - we v reached by dropping down from L_{i+1}
- Let *w* be the key right after *v*

Assume i < h

- height of tower of w is at least i, but could be more than i
- What is the probability of scanning from v to w (i.e. at least one scan) in L_i ?
 - if scan-forward from v to w, then w is not in L_{i+1}
 - thus tower of w has height exactly i
 - and we already know that tower of w has height at least i
 - P(tower of w has height i | tower of w has height at least i) = $\frac{1}{2}$
 - thus scan forward from v to w with probability at most ½
 - 'at most' because we could scan-down down if search key < w

Expected Number of Scan-Forwards at Level *i*

_ 1

- What is the probability of scanning twice (i.e. at least 2 scans) from v in L_i ?
 - scan forward at least twice from v with probability at most $(1/2)^2$
 - 'at most' because we could scan-down down
 - In general, probability of scan-forward at least l times is at most $(1/2)^{l}$
 - i.e. $P(\text{scans} \ge l) \le (1/2)^l$

$$E[\text{# scan-forward at level } i] = \sum_{l \ge 1} l \cdot P(\text{scans} = l) = \sum_{l \ge 1} P(\text{scans} \ge l) \le \sum_{l \ge 1} \frac{1}{2^l}$$

$$\underset{\text{theorem in probability}}{\text{theory}}$$

Expected Number of Scan-Forward Operations

- At level i < h: *E*[number of scan-forward] ≤ 1
- Also, expected number of scan-forward at level i < number of keys at level L_i
 - $|L_i|$ is the number of keys in list on level *i*, and $E[|L_i|] = \frac{n}{2^i}$
- For ease of derivation, assume n is a power of 2
- Expected number of scan-forward over all levels

Expected number of scan-forwards is O(log n)

Arrays Instead of Linked Lists

- As described now, they are no faster than randomized binary search trees
- Can save links by implementing each tower as an array
 - this not only saves space, but gives better running time in practice
 - when 'scan-forward', we know the correct array location to look at (level i)
- Search(67)

Summary of Skip Lists

- For a skip list with *n* items
 - expected space usage is O(n)
 - expected running time for search, insert, delete is O(log n)
- Lists make it easy to implement
 - easy to add more operations: *successor, merge, ...*
- Two efficiency improvements
 - use arrays for key towers for more efficient implementation
 - can show: a biased coin-flip to determine tower-height gives smaller expected run-times
 - expected space < 2n, less than for BST

Outline

- Dictionaries with Lists Revisited
 - Dictionary ADT
 - implementations so far
 - Skip Lists
 - Biased Search Requests
 - optimal static ordering
 - dynamic ordering: MTF

Improving Unsorted Lists/Arrays

- Unordered lists/arrays are among simplest data structures to implement
- But for Dictionary ADT
 - inefficient *search*: $\Theta(n)$
- Can we make search in unordered lists/arrays more effective in practice?
 - No if items are accessed equally likely
 - can show average-case search is $\Theta(n)$
 - Yes if the search requests are biased
 - some items are accessed much more frequently than others
 - 80/20 rule: 80% of outcomes result from 20% of causes
 - access = insertion or successful search
 - Intuition: frequently accessed items should be in the front
 - two cases
 - know the access distribution beforehand
 - optimal static ordering
 - do not know access distribution beforehand
 - dynamic ordering

Outline

- Dictionaries with Lists Revisited
 - Dictionary ADT
 - implementations so far
 - Skip Lists
 - Biased Search Requests
 - optimal static ordering
 - dynamic ordering: MTF

Optimal Static Ordering

Scenario: We know access distribution, and want to find the best list order

key	А	В	С	D	E
frequency of access	2	8	1	10	5
access probability	$\frac{2}{26}$	$\frac{8}{26}$	$\frac{1}{26}$	$\frac{10}{26}$	5 26

• Let the cost of search for key located at position *i* be *i*

 $T^{exp}(n) = \sum_{I \in I_n} T(I) \cdot \Pr(\text{randomly chosen instance } I)$ $= \sum_{i} i \cdot \Pr(\text{search for key at position } i)$ $= \sum_{i} i \cdot (\text{access probability for key at position } i)$

Optimal Static Ordering

key	А	В	С	D	E
frequency of access	2	8	1	10	5
access probability	$\frac{2}{26}$	$\frac{8}{26}$	$\frac{1}{26}$	$\frac{10}{26}$	$\frac{5}{26}$
	20	20	20	20	20

- Order $A \rightarrow B \rightarrow C \rightarrow D \rightarrow E$ has expected cost $\frac{2}{26} \cdot 1 + \frac{8}{26} \cdot 2 + \frac{1}{26} \cdot 3 + \frac{10}{26} \cdot 4 + \frac{5}{26} \cdot 5 \approx 3.31$ Order $D \rightarrow B \rightarrow E \rightarrow A \rightarrow C$ has expected cost $\frac{10}{26} \cdot 1 + \frac{8}{26} \cdot 2 + \frac{5}{26} \cdot 3 + \frac{2}{26} \cdot 4 + \frac{1}{26} \cdot 5 \approx 2.54$
- Claim: ordering items by non-increasing access-probability minimizes expected access cost, i.e. best *static* ordering
 - *static ordering:* order of items does not change
- Proof Idea: for any other ordering, exchanging two items that are out-oforder according to access probabilities makes total cost decrease

Outline

- Dictionaries with Lists Revisited
 - Dictionary ADT
 - implementations so far
 - Skip Lists
 - Biased Search Requests
 - optimal static ordering
 - dynamic ordering: MTF

Dynamic Ordering

- Scenario: we do not know the access probabilities ahead of time
- Idea: modify the order dynamically, i.e. while we are accessing
- Rule of thumb: recently accessed item is likely to be accessed soon again
- Move-To-Front heuristic (MTF): after search, move the accessed item to the front
 - additionally, in list: always insert at the front

- We can also do MTF on an array
 - but should then insert and search from back so that we have room to grow

Dynamic Ordering: MTF

- Can show: MTF is "2-competitive"
 - no more than twice as bad as the optimal "offline" ordering

Dynamic Ordering: Other Heuristics

 Transpose heuristic: Upon a successful search, swap accessed item with the immediately preceding item

- Avoids drastic changes MTF might do, while still adapting to access patterns
- Frequency-count heuristic: Keep counters how often items were accessed, and sort in non-decreasing order
 - works well in practice, but requires auxiliary space

Summary of Biased Search Requests

- We are unlikely to know the access-probabilities of items, so optimal static order is mostly of theoretical interest
- For any dynamic reordering heuristic, some sequence will defeat it
 - have $\Theta(n)$ access cost for each item
- MTF and Frequency-Count work well in practice
- For MTF can prove theoretical guarantees
- There is very little overhead for MTF and other strategies, they should be applied whenever unordered arrays or lists are used
 - hashing, text compression