
CS 240 – Data Structures and Data Management

Module 6: Dictionaries for special keys

O. Veksler
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2025

Outline

▪ Lower bound for search

▪ Interpolation Search

▪ Tries

▪ Standard Trie

▪ Pruned Trie

▪ Compressed Trie

▪ Multiway Trie

Outline

▪ Lower bound for search

▪ Interpolation Search

▪ Tries

▪ Standard Trie

▪ Pruned Trie

▪ Compressed Trie

▪ Multiway Trie

Dictionary ADT: Implementations Thus Far

▪ Search is Θ(log 𝑛) in fastest implementations of dictionary ADT
▪ 𝑛 is the number of items stored

▪ Search is Ω(log 𝑛) in all realizations of ADT we know

▪ Question: Can we do better than Θ(log 𝑛) search?

▪ Answer: It depends on what we allow

▪ No: comparison-based searching lower bound is Ω(log 𝑛)

▪ Yes: non-comparison based searching can achieve 𝑜(log 𝑛)
▪ keys have special properties

1. interpolation search: keys have special distribution

2. tries: keys are strings

Lower Bound For Search
Theorem: Ω(log 𝑛) comparisons required for search in comparison based model

Proof:

not found𝑘 = 𝑥1

▪ Let algorithm 𝐴 search for key for 𝑘 among 𝑛 items 𝑥1, 𝑥2, … , 𝑥𝑛

▪ There is a corresponding binary decision tree

▪ Chose a set of distinct keys 𝑆 = {𝑥1, 𝑥2, … , 𝑥𝑛}

▪ Consider 𝑛 + 1 instances of search problem

▪ search 𝑆 for 𝑘 = 𝑥1

▪ search 𝑆 for 𝑘 = 𝑥2

▪ …

▪ search 𝑆 for 𝑘 = 𝑥𝑛

▪ search 𝑆 for 𝑘 different from keys in 𝑆

▪ Decision tree must have one leaf for each instance above

▪ Decision tree must have at least (𝑛 + 1) leaves

▪ Binary tree of height ℎ has at most 2ℎ leaves

▪ Thus 2ℎ ≥ 𝑛 + 1

▪ Taking log of both sides, ℎ ≥ log(𝑛 + 1)

𝑘 = 𝑥2

decision tree

…

Outline

▪ Lower bound for search

▪ Interpolation Search

▪ Tries

▪ Standard Trie

▪ Pruned Trie

▪ Compressed Trie

▪ Multiway Trie

Binary Search on Ordered Array
▪ insert and delete: Θ(𝑛), search is Θ(log 𝑛)

Binary-search(𝐴, 𝑛, 𝑘)

 𝐴: Array of size 𝑛, 𝑘: key

 𝑙 ← 0

 𝑟 ← 𝑛 − 1

 while 𝑙 ≤ 𝑟

 𝑚 ←
𝑙+𝑟

2

 if (𝑘 = 𝐴 𝑚) return “found at 𝐴 𝑚 ”

 else if 𝐴 𝑚 < 𝑘 // key cannot be in the left part of 𝐴

 𝑙 ← 𝑚 + 1

 els𝐞 𝑟 ← 𝑚 − 1 // key cannot be in the right part of 𝐴

 return “not found but would be between 𝐴 𝑙 − 1 and 𝐴 𝑙 ”

Interpolation Search: Motivation
▪ binary search looks at index

𝑙 𝑟

40 120

middle

= 𝑙 +
1

2
(𝑟 − 𝑙 − 1)

𝑙 + 𝑟

2

Interpolation Search: Motivation

▪ If keys are close to evenly distributed, where would key 𝑘 = 100 be?
𝑙 𝑟

40 120

▪ 100 should be much further away from 𝐴 𝑙 = 40 than from 𝐴 𝑟 = 120

▪ binary search looks at index

𝑙 𝑟

40 120

middle

= 𝑙 +
1

2
(𝑟 − 𝑙 − 1)

𝑙 + 𝑟

2

Interpolation Search: Motivation

𝐴[𝑟] − 𝐴[𝑙] = 80

𝑘 − 𝐴[𝑙] = 60

▪ fractional distance:
𝑘−𝐴[𝑙]

𝐴 𝑟 −𝐴[𝑙]
= 60/80 =

3

4
 of the way between 𝑙 and 𝑟

▪ If keys are close to evenly distributed, where would key 𝑘 = 100 be?
𝑙 𝑟

40 120

▪ binary search looks at index

𝑙 𝑟

40 120

middle

= 𝑙 +
1

2
(𝑟 − 𝑙 − 1)

𝑙 + 𝑟

2

▪ 100 should be much closer to 𝐴 𝑟 = 120 than to 𝐴 𝑙 = 40

▪ Interpolation search looks at index 𝑙 +
𝑘−𝐴 𝑙

𝐴 𝑟 −𝐴 𝑙
(𝑟 − 𝑙 − 1)

Interpolation Search Example

0 1 2 3 4 5 6 7 8 9

0 1 2 3 448 449 600 800 1000 1200 1500

10

▪ Search(449), iteration 1

𝑙 = 0, 𝑟 = 𝑛 − 1 = 10,

𝑚 = 𝑙 +
𝑘 − 𝐴 𝑙

𝐴 𝑟 − 𝐴 𝑙
(𝑟 − 𝑙 − 1)

𝑚 = 0 +
449 − 0

1500 − 0
(10 − 0 − 1) = 3

𝑙 𝑟

Interpolation Search Example

0 1 2 3 4 5 6 7 8 9

0 1 2 3 448 449 600 800 1000 1200 1500

10

▪ Search(449), iteration 2

𝑙 = 4, 𝑟 = 10,

𝑙 𝑟

▪ Found!

𝑚 = 𝑙 +
𝑘 − 𝐴 𝑙

𝐴 𝑟 − 𝐴 𝑙
(𝑟 − 𝑙 − 1)

𝑚 = 4 +
449 − 498

1500 − 498
(10 − 4 − 1) = 5

Interpolation Search

CS240 – Module 6

▪ Search(10), iteration 1

𝑙 = 0, 𝑟 = 𝑛 − 1 = 10, = 1

𝑙 𝑟

▪ Works well if keys are close to evenly distributed

▪ But worst case performance on unevenly distributed keys is Θ(𝑛)

▪ Example: search(10)

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 1500

10

𝑚 = 0 +
10 − 0

1500 − 0
(10 − 0 − 1)

Interpolation Search

CS240 – Module 6

▪ Search(10), iteration 2

𝑙 = 2, 𝑟 = 10,

𝑙 𝑟

▪ Works well if keys are close to evenly distributed

▪ But worst case performance on unevenly distributed keys is Θ(𝑛)

▪ Example: search(10)

0 1 2 3 4 5 6 7 8 9 10

𝑚 = 2 +
10 − 2

1500 − 2
(10 − 2 − 1) = 3

0 1 2 3 4 5 6 7 8 9 1500

Interpolation Search

CS240 – Module 6

▪ Search(10), iteration 3

𝑙 = 4, 𝑟 = 10,

𝑙 𝑟

▪ Works well if keys are close to evenly distributed

▪ But worst case performance on unevenly distributed keys is Θ(𝑛)

▪ Example: search(10)

0 1 2 3 4 5 6 7 8 9 10

▪ Will continue in steps of 2 at each iteration until reach the end of the array

▪ Θ 𝑛 runtime

0 1 2 3 4 5 6 7 8 9 1500

𝑚 = 4 +
10 − 4

1500 − 4
(10 − 4 − 1) = 5

Interpolation Search

▪ Works well on average

▪ can show (difficult): 𝑇𝑎𝑣𝑔 𝑛 ≤ 𝑇𝑎𝑣𝑔(𝑛) + Θ(1)

▪ recurse into array of 𝑛 size, on average

▪ resolves to 𝑇𝑎𝑣𝑔(𝑛) ∈ 𝑂(log log 𝑛)

CS240 – Module 6

▪ Clever trick

▪ use interpolation search for at most log 𝑛 steps

▪ if key is still not found, switch to binary search

▪ guarantees 𝑂(log 𝑛) worst case, but could be 𝑂(log log 𝑛)

Interpolation Search
▪ Code similar to binary search, but compare at interpolated index

▪ Need extra test to avoid division by zero due to 𝐴[𝑙] = 𝐴[𝑟]

Interpolation-search(𝐴, 𝑛, 𝑘)

 𝐴: Sorted array of size 𝑛, 𝑘: key

 𝑙 ← 0, 𝑟 ← 𝑛 − 1

 while 𝑙 ≤ 𝑟

 if (𝑘 < 𝐴 𝑙 or 𝑘 > 𝐴[𝑟]) return “not found”

 if (𝑘 = 𝐴[𝑟]) return “found at 𝐴[𝑟]”

 𝑚 ← 𝑙 +
𝑘−𝐴 𝑙

𝐴 𝑟 −𝐴 𝑙
(𝑟 − 𝑙 − 1)

 if 𝐴 𝑚 = 𝑘 return “found at 𝐴[𝑚]”
 else if 𝐴 𝑚 < 𝑘

𝑙 ← 𝑚 + 1

 elsif 𝑟 ← 𝑚 − 1

 // always return from inside the while loop

Outline

▪ Lower bound for search

▪ Interpolation Search

▪ Tries

▪ Standard Trie

▪ Pruned Trie

▪ Compressed Trie

▪ Multiway Trie

Words: review
▪ Scenario: Keys in dictionary are words

▪ Words (=strings): sequence of characters over alphabet Σ
{be, bear, beer}

▪ Typical alphabets: {0,1} (bitstrings), ASCII, etc.

▪ Stored in an array: 𝑤[𝑖] gets 𝑖th character (for 𝑖 = 0,1, …)

▪ Convention: words have end-sentinel $ (sometimes not shown)
▪ $ is smaller than any other character and does not occur in Σ

▪ 𝑤. 𝑠𝑖𝑧𝑒 = 𝑤 = number of non-sentinel characters
▪ be$ = 2

▪ Should know
▪ prefix, suffix, substring

▪ sorting of words lexicographically

be$ <lex bear$

▪ this is different from sorting numbers

010$ < lex 1$

bear$ < lex beer$

Tries: Introduction

▪ Trie (also known as radix tree): a dictionary for bit strings

▪ comes from word retrieval, but pronounced “try”

▪ Trie vs. AVL tree

▪ let the number of strings in dictionary be 𝑛

▪ Trie: insert, find, delete is 𝑂(𝑤) time

▪ independent of 𝑛

▪ AVL tree: insert, find delete is 𝑂(𝑤 log(𝑛)) time

▪ 𝑂(log(𝑛)) nodes on a path, 𝑂(𝑤) operations at each node

▪ Trie applications

▪ auto-completion

▪ smart phones, commands for operating systems

▪ spell checking

▪ DNA sequencing

Tries: Introduction

▪ Trie (radix tree): dictionary for bitstrings

▪ tree based on bitwise comparisons

▪ edges labelled with corresponding bit

▪ store words by comparing edge labels and word bits

▪ similar to radix sort: compare individual bits, not the whole key

▪ due to end-sentinels $, all key-value pairs are at leaves

▪ 𝑛 is the number of words (strings) stored in the trie

 001$

0

0

1

1

1

000$

$

011$

10

0001$

$ 1

$
11$

$

$$

 0100$

0

0

$

01$

1

Tries: Search Example

root

$

00$

$

0001$

0

1

0

$

01001$

0

1

0

$

011$

$

01101$

0

1

1

1

0

$

110$

1101$

1

$

0

$

111$

1

1

1

Example: Search(011$) 𝑃 =

Tries: Search Example

root

$

00$

$

0001$

0

1

0

$

01001$

0

1

0

$

011$

$

01101$

0

1

1

1

0

$

110$

1101$

1

$

0

$

111$

1

1

1

Example: Search(011$) 𝑃 =

Tries: Search Example

root

$

00$

$

0001$

0

1

0

$

01001$

0

1

0

$

011$

$

01101$

0

1

1

1

0

$

110$

1101$

1

$

0

$

111$

1

1

1

Example: Search(011$) 𝑃 =

Tries: Search Example

root

$

00$

$

0001$

0

1

0

$

01001$

0

1

0

$

011$

$

01101$

0

1

1

1

0

$

110$

1101$

1

$

0

$

111$

1

1

1

Example: Search(011$) 𝑃 =

Tries: Search Example

root

$

00$

$

0001$

0

1

0

$

01001$

0

1

0

011$

$

01101$

0

1

1

1

0

$

110$

1101$

1

$

0

$

111$

1

1

1

Example: Search(011$)

$

𝑃 =

011$

successful

Tries: Search Example

root

$

00$

$

0001$

0

1

0

$

01001$

0

1

0

$

011$

$

01101$

0

1

1

1

0

$

110$

1101$

1

$

0

$

111$

1

1

1

Example: Search(0111$)

no 1-child

unsuccessful
𝑃 =

011

Tries: Search
▪ Follow links that correspond to current bits in 𝑤

▪ Repeat until 𝑤 is found or no such link

Trie::get-path-to(𝑤)

Output: 𝑤 in the trie: stack holds path leading to and including 𝑤

 𝑤 not in the trie: stack holds ancestors of where 𝑤 would have been

𝑃 ⟵ empty stack; 𝑧 ⟵ root; 𝑑 ⟵ 0; 𝑃.push(𝑧)

while 𝑑 ≤ |𝑤|

 if 𝑧 has a child-link labelled with 𝑤 𝑑

 𝑧 ⟵ child at this link; 𝑑++; 𝑃.push(𝑧)

 else break

return 𝑃

Trie::search(𝑤)

𝑃 ⟵ get-path-to(𝑤); 𝑧 ⟵ 𝑃.top()

if 𝑧 is not a leaf then

 return “not found, would be in sub-trie of 𝑧”

return key-value pair at 𝑧

Tries: Leaf-References

▪ For later applications of tries, want prefix-search(𝑤)

▪ find word 𝑣 in a trie for which 𝑤 is a prefix

▪ prefix 𝑤 does not end with $

 001$

0

0

1

1

1

000$

$

011$

10

0001$

$ 1

$
11$

$

$$

 0100$

0

0

$

01$

1

prefix-search(01) can return:

01$

 0100$

011$

01$ or 0100$ or 011$

Tries: Leaf-References

▪ For later applications of tries, want prefix-search(𝑤)

▪ find word 𝑣 in a trie for which 𝑤 is a prefix

 001$

0

0

1

1

1

000$

$

011$

10

0001$

$ 1

$
11$

$

$$

 0100$

0

0

$

01$

1

▪ To find 𝑣 quickly, need leaf-references

▪ Convention: reference to leaf with longest word in the subtree

▪ ties broken arbitrarily

not all leaf-references are shown

Tries: Leaf-References
▪ Example: Trie::prefix-search(00)

 001$

0

0

1

1

1

000$

$

011$

10

0001$

$ 1

$
11$

$

$$

 0100$

0

0

$

01$

1

𝑃 =

matched prefix!

▪ If match, stack size is larger by
exactly 1 than size of prefix 𝑤

▪ 1 node for the root

▪ 1 node for each
character of 𝑤

Trie::prefix-search(𝑤)

 𝑃 ⟵ get-path-to(𝑤)

 if number of nodes on 𝑃 is 𝑤. 𝑠𝑖𝑧𝑒 or less then

 return “not string with prefix 𝑤 found”

 𝑝 ⟵ 𝑃.top()

 return 𝑝. 𝑙𝑒𝑎𝑓

00

Tries: Insert

$

00$

$

0001$

0

1

0

0

1

0

$

011$
$

 0111$

1

1

1

0

$

110$

1101$

1

$

0

$

111$

1

1

1

$

010010$

0

▪ 𝑃 ⟵ get-path-to(𝑤) gives ancestors that exist already

▪ Expand trie from 𝑝 ⟵ 𝑃.top() by adding nodes for the extra bits of 𝑤

▪ Update leaf-references for new nodes and also for nodes in 𝑃

▪ 𝑤 could be longer that the leaves nodes in 𝑃 currently point to

▪ Example: Insert(01101$)

no 0-child

011

Tries: Insert

$

00$

$

0001$

0

1

0

0

1

0

$

011$
$

 0111$

1

1

1

0

$

110$

1101$

1

$

0

$

111$

1

1

1

$

010010$

0

▪ 𝑃 ⟵ get-path-to(𝑤) gives ancestors that exist already

▪ Expand trie from 𝑝 ⟵ 𝑃.top() by adding nodes for the extra bits of 𝑤

▪ Update leaf-references for new nodes and also for nodes in 𝑃

▪ 𝑤 could be longer that the leaves nodes in 𝑃 currently point to

▪ Example: Insert(01101$)

0

Tries: Insert

$

00$

$

0001$

0

1

0

0

1

0

$

011$
$

 0111$

1

1

1

0

$

110$

1101$

1

$

0

$

111$

1

1

1

$

010010$

0

▪ 𝑃 ⟵ get-path-to(𝑤) gives ancestors that exist already

▪ Expand trie from 𝑝 ⟵ 𝑃.top() by adding nodes for the extra bits of 𝑤

▪ Update leaf-references for new nodes and also for nodes in 𝑃

▪ 𝑤 could be longer that the leaves nodes in 𝑃 currently point to

▪ Example: Insert(01101$)

0

1

Tries: Insert

$

00$

$

0001$

0

1

0

0

1

0

$

011$
$

 0111$

1

1

1

0

$

110$

1101$

1

$

0

$

111$

1

1

1

$

010010$

0

▪ 𝑃 ⟵ get-path-to(𝑤) gives ancestors that exist already

▪ Expand trie from 𝑝 ⟵ 𝑃.top() by adding nodes for the extra bits of 𝑤

▪ Update leaf-references for new nodes and also for nodes in 𝑃

▪ 𝑤 could be longer that the leaves nodes in 𝑃 currently point to

▪ Example: Insert(01101$)

0

1

01101$

$

Tries: Insert

$

00$

$

0001$

0

1

0

0

1

0

$

011$
$

 0111$

1

1

1

0

$

110$

1101$

1

$

0

$

111$

1

1

1

$

010010$

0

▪ 𝑃 ⟵ get-path-to(𝑤) gives ancestors that exist already

▪ Expand trie from 𝑝 ⟵ 𝑃.top() by adding nodes for the extra bits of 𝑤

▪ Update leaf-references for new nodes and also for nodes in 𝑃

▪ 𝑤 could be longer that the leaves nodes in 𝑃 currently point to

▪ Example: Insert(01101$)

0

1

01101$

$

Tries: Delete
▪ 𝑃 ⟵ get-path-to(𝑤) gives all ancestors

▪ Let 𝑙 be the leaf where 𝑤 is stored

▪ Delete 𝑙 and nodes on 𝑃 until ancestor has two or more children

▪ Update leaf-references on the rest of 𝑃

▪ if 𝑧ϵ𝑃 referred to 𝑙, find new 𝑧. 𝑙𝑒𝑎𝑓 from current children of 𝑧

▪ Delete(0100$)

 001$

0

0

1

1

1

000$

$

011$

10

0001$

$ 1

$
11$

$

$$

 0100$

0

0

$

01$

1

Tries: Delete
▪ 𝑃 ⟵ get-path-to(𝑤) gives all ancestors

▪ Let 𝑙 be the leaf where 𝑤 is stored

▪ Delete 𝑙 and nodes on 𝑃 until ancestor has two or more children

▪ Update leaf-references on the rest of 𝑃

▪ if 𝑧ϵ𝑃 referred to 𝑙, find new 𝑧. 𝑙𝑒𝑎𝑓 from current children of 𝑧

▪ Delete(0100$)

 001$

0

0

1

1

1

000$

$

011$

10

0001$

$ 1

$
11$

$

$$

 0100$

0

0

$

01$

1

𝑙

Tries: Delete

 001$

0

0

1

1

1

000$

$

011$

10

0001$

$ 1

$
11$

$

$$ 01$

1

▪ 𝑃 ⟵ get-path-to(𝑤) gives all ancestors

▪ Let 𝑙 be the leaf where 𝑤 is stored

▪ Delete 𝑙 and nodes on 𝑃 until ancestor has two or more children

▪ Update leaf-references on the rest of 𝑃

▪ if 𝑧ϵ𝑃 referred to 𝑙, find new 𝑧. 𝑙𝑒𝑎𝑓 from current children of 𝑧

▪ Delete(0100$)

Tries: Delete

 001$

0

0

1

1

1

000$

$

011$

10

0001$

$ 1

$
11$

$

$$ 01$

1

▪ 𝑃 ⟵ get-path-to(𝑤) gives all ancestors

▪ Let 𝑙 be the leaf where 𝑤 is stored

▪ Delete 𝑙 and nodes on 𝑃 until ancestor has two or more children

▪ Update leaf-references on the rest of 𝑃

▪ if 𝑧ϵ𝑃 referred to 𝑙, find new 𝑧. 𝑙𝑒𝑎𝑓 from current children of 𝑧

▪ Delete(0100$)

Tries: Delete

 001$

0

0

1

1

1

000$

$

011$

10

0001$

$ 1

$
11$

$

$$ 01$

1

▪ 𝑃 ⟵ get-path-to(𝑤) gives all ancestors

▪ Let 𝑙 be the leaf where 𝑤 is stored

▪ Delete 𝑙 and nodes on 𝑃 until ancestor has two or more children

▪ Update leaf-references on the rest of 𝑃

▪ if 𝑧ϵ𝑃 referred to 𝑙, find new 𝑧. 𝑙𝑒𝑎𝑓 from current children of 𝑧

▪ Delete(0100$)

Tries: Delete

 001$

0

0

1

1

1

000$

$

011$

10

0001$

$ 1

$
11$

$

$$ 01$

1

▪ 𝑃 ⟵ get-path-to(𝑤) gives all ancestors

▪ Let 𝑙 be the leaf where 𝑤 is stored

▪ Delete 𝑙 and nodes on 𝑃 until ancestor has two or more children

▪ Update leaf-references on the rest of 𝑃

▪ if 𝑧ϵ𝑃 referred to 𝑙, find new 𝑧. 𝑙𝑒𝑎𝑓 from current children of 𝑧

▪ Delete(0100$)

Standard Trie Summary

▪ search 𝑤 , prefix-search 𝑤 , insert 𝑤 , delete 𝑤 all take Θ(|𝑤|) time

▪ time is independent of 𝑛, the number of words stored in the trie

▪ time is small for short words

▪ Trie for a given set of words is unique

▪ except for order of children and ties among leaf-references

▪ Disadvantages

▪ can be wasteful with respect to space

▪ the problem is ‘chains’

▪ Worst case space is Θ(𝑛 ∙ maximum word length)

▪ How to save space?

Outline

▪ Lower bound for search

▪ Interpolation Search

▪ Tries

▪ Standard Trie

▪ Pruned Trie

▪ Compressed Trie

▪ Multiway Trie

Pruned Trie

▪ Sub-trie with one key has only one node

▪ Convert standard trie into pruned trie

 001$

0

0

1

1

1

000$

$

011$

10

0001$

$ 1

$
11$

$

$$

 0100$

0

0

$

1

7 keys

6 keys 1 key

1

01$

Pruned Trie

▪ Sub-trie with one key has only one node

▪ Convert standard trie into pruned trie

 001$

0

0

1

1

1

000$

$

011$

10

0001$

$ 1

$
11$

$

$$

 0100$

0

0

$

1

$
11$

1

7 keys

6 keys 1 key

01$

Pruned Trie

▪ Sub-trie with one key has only one node

▪ Convert standard trie into pruned trie

 001$

0

0

1

1

1

000$

$

011$

10

0001$

$ 1

$

$$

 0100$

0

0

$

11$

7 keys

6 keys 1 key

3 keys 3 keys

2 keys 1 key

01$

Pruned Trie

▪ Sub-trie with one key has only one node

▪ Convert standard trie into pruned trie

 001$

0

0

1

1

1

000$

$

011$

10

0001$

$ 1

$

$
$

 0100$

0

0

$

11$

7 keys

6 keys 1 key

3 keys 3 keys

2 keys 1 key

01$

Pruned Trie

▪ Sub-trie with one key has only one node

▪ Convert standard trie into pruned trie

0

0

1

1

1

000$

$

011$

10

0001$

$ 1

$

$

 0100$

0

0

$

11$

7 keys

6 keys 1 key

3 keys 3 keys

2 keys 1 key
001$

1 key
01$

Pruned Trie

▪ Sub-trie with one key has only one node

▪ Convert standard trie into pruned trie

0

0

1

1

1

000$

$

011$

10

0001$

$ 1

$

$

 0100$

0

0

$

11$

7 keys

6 keys 1 key

3 keys 3 keys

2 keys 1 key
001$

1 key
01$

Pruned Trie

▪ Sub-trie with one key has only one node

▪ Convert standard trie into pruned trie

0

0

1

1

1

000$

$

011$

10

0001$

$ 1

$

$

0

01$

11$

7 keys

6 keys 1 key

3 keys 3 keys

2 keys 1 key
001$

1 key
0100$

Pruned Trie

▪ Sub-trie with one key has only one node

▪ Final pruned trie
0

0

1

1

1

000$

$

011$

10

0001$

$ 1
0

01$

11$

001$ 0100$

▪ node has a child only if it has two or more descendants

▪ saves space if there are only few bitstrings that are long

▪ can even store really long bitstrings more efficiently (real numbers)

▪ more efficient version of tries, but operations get a bit more complicated

▪ in particular, have to change prefix-search(𝑤) to search at the leaf if full prefix is
not found prior to visiting the leaf

Outline

▪ Lower bound for search

▪ Interpolation Search

▪ Tries

▪ Standard Trie

▪ Pruned Trie

▪ Compressed Trie

▪ Multiway Trie

Pruned Trie: Internal Nodes with One Child

▪ Pruned trie can have internal
nodes with one child

$ 0
 00$ 0001$

0

0
01001$

$ 0
011$ 01101$

1

1

0

$ 1
110$ 1101$

0 1
111$

1

1

▪ Such ‘chains’ in a trie waste space and reduce efficiency

▪ Extreme example

Compressing Singly Linked Chains

▪ Singly linked ‘chains’ in a trie waste space and reduce efficiency

▪ If compress chains into one node, each internal node will have at least 2 children

▪ Let 𝑛 be the number of leaf nodes (i.e. the number of stored keys)

▪ Will show that if each internal node has 2 or more children, then there are at
most 𝑛 − 1 internal nodes

▪ Therefore at most 2𝑛 − 1 total nodes

▪ 𝑛 external + at most 𝑛 − 1 internal

▪ space is 𝑂(𝑛), not much wasted space

compress

Tree with no ‘chains’ Theorem

▪ Let T be a tree with 𝑚 leafs. If every non-leaf (internal) node has at
least 2 children, then the tree has at most 𝑚 − 1 internal nodes

▪ Visual proof

▪ put a stone on each leaf

Tree with no ‘chains’ Theorem

▪ Let T be a tree with 𝑚 leafs. If every non-leaf (internal) node has at
least 2 children, then the tree has at most 𝑚 − 1 internal nodes

▪ Visual proof

▪ put a stone on each leaf

▪ there are 𝑚 stones

▪ all leaves pass a stone to the parent

Tree with no ‘chains’ Theorem

▪ Let T be a tree with 𝑚 leafs. If every non-leaf (internal) node has at
least 2 children, then the tree has at most 𝑚 − 1 internal nodes

▪ Visual proof

▪ put a stone on each leaf

▪ all internal nodes at level ℎ − 1 have
at least 2 stones, they leave one
stone and pass one stone to parent

▪ there are 𝑚 stones

▪ all leaves pass a stone to the parent

Tree with no ‘chains’ Theorem

▪ Let T be a tree with 𝑚 leafs. If every non-leaf (internal) node has at
least 2 children, then the tree has at most 𝑚 − 1 internal nodes

▪ Visual proof

▪ put a stone on each leaf

▪ all internal nodes at level ℎ −2 have at
least 2 stones, they leave one stone and
pass one stone to the parent

▪ all internal nodes at level ℎ − 1 have
at least 2 stones, they leave one
stone and pass one stone to parent

▪ there are 𝑚 stones

▪ all leaves pass a stone to the parent

Tree with no ‘chains’ Theorem

▪ Let T be a tree with 𝑚 leafs. If every non-leaf (internal) node has at
least 2 children, then the tree has at most 𝑚 − 1 internal nodes

▪ Visual proof

▪ continue until reach the root

▪ now each internal node has 1 stone
and root has 2 or more stones

Tree with no ‘chains’ Theorem

▪ Let T be a tree with 𝑚 leafs. If every non-leaf (internal) node has at
least 2 children, then the tree has at most 𝑚 − 1 internal nodes

▪ Visual proof

▪ continue until reach the root

▪ now each internal node has 1 stone
and root has 2 or more stones

▪ root leaves 1 stone and throws the
rest outside the tree

▪ now each internal node has 1 stone,
and there is one or more stones
outside the tree

▪ since number of stones is 𝑚, the
number of internal nodes is strictly
less than 𝑚

Compressing Chains

1

0

0

1

1

trie above

trie below

trie above

trie below

bit 5

bit 6

bit 7

bit 8

bit 9

bit 10

bit 11

11

▪ But now we lost part of the binary string ‘10011’

after this node, search
according to bit 11

bit 5

bit 11

compressing

‘******’

▪ Check if the leaf we reach stores the search key

Compressed Tries (Patricia Tries)

▪ Morrison (1968): Patricia-Tries

▪ Practical Algorithm to Retrieve Information Coded in Alphanumeric

▪ Idea: compress paths of nodes with only one child

▪ Each node stores an index : next bit to be tested during a search

▪ Compressed trie with 𝑛 keys has at most 𝑛 − 1 internal (non-leaf) nodes

0

1

2

00$

$ 0

0

2

011$ 01101$

0

0 1

0001$ 01001$ 3

$

1

0

2

3

 $ 1

110$ 1101$

0

111$

1

1

$
00$

 $
0001$

011$
$

1

0

0

0 1

0 0 1

 1 0

1
110$

$

1101$
$

1

0

$

111$

1

1

1

 $
01001$

 $
01101$

Compressed Tries: Search Example

Example: Search(10$)

0

1
0

2 2
$ 1 0

00$ 0001$ 01001$

011$
$

01101$
0

1
3

1

0

2

3

$ 1
110$ 1101$

0

111$

1

1

Compressed Tries: Search Example

Example: Search(10$)

0

1
0

2 2
$ 1 0

00$ 0001$ 01001$

011$

$

01101$

0

1
3

1

0

2

3

$ 1
110$ 1101$

0

111$

1

1

Compressed Tries: Search Example

Example: Search(10$)

0

1
0

2 2
$ 1 0

00$ 0001$ 01001$

011$

$

01101$

0

1
3

1

0

2

3

$ 1
110$ 1101$

0

111$

1

1

skip

Compressed Tries: Search Example

Example: Search(10$)

0

1
0

2 2
$ 1 0

00$ 0001$ 01001$

011$

$

01101$

0

1
3

1

0

2

3

$ 1
110$ 1101$

0

111$

1

1 no $-child

unsuccessful

Compressed Tries: Search Example

Example: Search(101$)

0

1
0

2 2
$ 1 0

00$ 0001$ 01001$

011$

$

01101$

0

1
3

1

0

2

3

$ 1
110$ 1101$

0

111$

1

1

Compressed Tries: Search Example

Example: Search(101$)

0

1
0

2 2
$ 1 0

00$ 0001$ 01001$

011$

$

01101$

0

1
3

1

0

2

3

$ 1
110$ 1101$

0

111$

1

1

Compressed Tries: Search Example

Example: Search(101$)

0

1
0

2 2
$ 1 0

00$ 0001$ 01001$

011$

$

01101$

0

1
3

1

0

2

3

$ 1
110$ 1101$

0

111$

1

1

skip

Compressed Tries: Search Example

Example: Search(101$)

0

1
0

2 2
$ 1 0

00$ 0001$ 01001$

011$

$

01101$

0

1
3

1

0

2

3

$ 1
110$ 1101$

0

111$

1

1

Compressed Tries: Search Example

Example: Search(101$)

0

1
0

2 2
$ 1 0

00$ 0001$ 01001$

011$

$

01101$

0

1
3

1

0

2

3

$ 1
110$ 1101$

0

111$

1

1

Unsuccessful

compare to 101$

Compressed Tries: Search Example

Example: Search(111$)

0

1
0

2 2
$ 1 0

00$ 0001$ 01001$

011$

$

01101$

0

1
3

1

0

2

3

$ 1
110$ 1101$

0

111$

1

1

Compressed Tries: Search Example

Example: Search(111$)

0

1
0

2 2
$ 1 0

00$ 0001$ 01001$

011$

$

01101$

0

1
3

1

0

2

3

$ 1
110$ 1101$

0

111$

1

1

Compressed Tries: Search Example

Example: Search(111$)

0

1
0

2 2
$ 1 0

00$ 0001$ 01001$

011$

$

01101$

0

1
3

1

0

2

3

$ 1
110$ 1101$

0

111$

1

1

skip

Compressed Tries: Search Example

Example: Search(111$)

0

1
0

2 2
$ 1 0

00$ 0001$ 01001$

011$

$

01101$

0

1
3

1

0

2

3

$ 1
110$ 1101$

0

111$

1

1

Compressed Tries: Search Example

Example: Search(111$)

0

1
0

2 2
$ 1 0

00$ 0001$ 01001$

011$

$

01101$

0

1
3

1

0

2

3

$ 1
110$ 1101$

0

111$

1

1

successful

compare to 111$

Compressed Tries: Search

▪ As in standard tries, follow links that correspond to current bits in 𝑤

▪ Main difference

▪ stored indices say which bits to compare

▪ also must compare 𝑤 to the word found at the leaf

CompressedTrie::get-path-to(𝑤)

𝑃 ⟵ empty stack; 𝑧 ⟵ root; 𝑃.push(𝑧)

while 𝑧 is not a leaf and 𝑑 ⟵ 𝑧. 𝑖𝑛𝑑𝑒𝑥 ≤ 𝑤. 𝑠𝑖𝑧𝑒 do

 if 𝑧 has a child-link labelled with 𝑤 𝑑

 𝑧 ⟵ child at this link; 𝑃.push(𝑧)

 else break

return 𝑃

CompressedTrie::search(𝑤)

𝑃 ⟵ get-path-to(𝑤); 𝑧 ⟵ 𝑃.top()

if 𝑧 is not a leaf or word stored at 𝑧 is not 𝑤 then

 return “not found”

return key-value pair at 𝑧

Compressed Trie: Links to Leaves

▪ Links to leaves established as in uncompressed tries

0

1

2

00$

$ 0

0

2

011$ 01101$

0

0 1

0001$ 01001$ 3

$

1

0

2

3

 $ 1

110$ 1101$

0

111$

1

1

$
00$

 $
0001$

011$
$

1

0

0

0 1

0 0 1

 1 0

1
110$

$

1101$
$

1

0

$

111$

1

1

1

 $
01001$

 $
01101$

▪ Need to modify prefix-search(𝑤) to check if the leaf has prefix matching 𝑤

▪ All keys in a subtree of the node where search for 𝑤 ends have the same
prefix of length 𝑤

▪ prefix 𝑤 either matches all keys in the subtree, or none of subtrees keys

all keys in
subtree have
prefix 11

all keys in
subtree have
prefix 11

Compressed Tries: Summary

▪ search 𝑤 and prefix-search 𝑤 are easy

▪ insert 𝑤 and delete 𝑤 are conceptually simple
▪ search for path 𝑃 to word 𝑤 (say we reach node 𝑧)

▪ uncompress this path (using characters of 𝑧. 𝑙𝑒𝑎𝑓)

▪ insert/delete 𝑤 as in uncompressed trie

▪ compress path from root to where changed happened

▪ All operations take 𝑂(|𝑤|) time for word 𝑤

▪ Use 𝑂(𝑛) space

▪ More complicated than standard tries, but space
savings are worth it if words are unevenly distributed

Outline

▪ Lower bound for search

▪ Interpolation Search

▪ Tries

▪ Standard Trie

▪ Pruned Tries

▪ Compressed Trie

▪ Multiway Trie

Multiway Tries: Larger Alphabet

be$

$

$

bear$

r $

ben$

a n

e

$

soul$

l

$

soup$

p

o

u

▪ Represents Strings over any fixed alphabet Σ

▪ Any node has at most |Σ| + 1 children

▪ one child for the end-of-word character $

▪ Example: A trie holding strings {bear$, ben$, be$, soul$, soup$}

b s

Compressed Multiway Tries
▪ Compressed multi-way tries

▪ Example: A compressed trie holding strings {bear$, ben$, be$, soul$, soup$}

2

be$

$

bear$

a

ben$

n

b

3

l

soul$

p

soup$

s

0

Multiway Tries: Summary

▪ Operations search(𝑤), prefix-search(𝑤), insert(𝑤) and delete(𝑤) are as for
bitstring tries

▪ Run-time 𝑂(|𝑤| · (time to find the appropriate child))

▪ Each node now has up to |Σ| + 1 children

▪ How should children be stored?

▪ Time/Space tradeoff: arrays are fast, lists are space efficient

▪ run-time 𝑂(|𝑤|) with arrays storing children

▪ AVL tree is best in theory, but not worth it in practice unless |Σ| is huge

▪ In practice, use hashing (next module)

array linked list AVL tree

	Slide 1
	Slide 2
	Slide 3
	Slide 4: Dictionary ADT: Implementations Thus Far
	Slide 5: Lower Bound For Search
	Slide 6
	Slide 7: Binary Search on Ordered Array
	Slide 8: Interpolation Search: Motivation
	Slide 9: Interpolation Search: Motivation
	Slide 10: Interpolation Search: Motivation
	Slide 11: Interpolation Search Example
	Slide 12: Interpolation Search Example
	Slide 13: Interpolation Search
	Slide 14: Interpolation Search
	Slide 15: Interpolation Search
	Slide 16: Interpolation Search
	Slide 17: Interpolation Search
	Slide 18
	Slide 19: Words: review
	Slide 20: Tries: Introduction
	Slide 21: Tries: Introduction
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28: Tries: Search
	Slide 29: Tries: Leaf-References
	Slide 30: Tries: Leaf-References
	Slide 31: Tries: Leaf-References
	Slide 32: Tries: Insert
	Slide 33: Tries: Insert
	Slide 34: Tries: Insert
	Slide 35: Tries: Insert
	Slide 36: Tries: Insert
	Slide 37: Tries: Delete
	Slide 38: Tries: Delete
	Slide 39: Tries: Delete
	Slide 40: Tries: Delete
	Slide 41: Tries: Delete
	Slide 42: Tries: Delete
	Slide 43: Standard Trie Summary
	Slide 44
	Slide 45: Pruned Trie
	Slide 46: Pruned Trie
	Slide 47: Pruned Trie
	Slide 48: Pruned Trie
	Slide 49: Pruned Trie
	Slide 50: Pruned Trie
	Slide 51: Pruned Trie
	Slide 52: Pruned Trie
	Slide 53
	Slide 54: Pruned Trie: Internal Nodes with One Child
	Slide 55: Compressing Singly Linked Chains
	Slide 56: Tree with no ‘chains’ Theorem
	Slide 57: Tree with no ‘chains’ Theorem
	Slide 58: Tree with no ‘chains’ Theorem
	Slide 59: Tree with no ‘chains’ Theorem
	Slide 60: Tree with no ‘chains’ Theorem
	Slide 61: Tree with no ‘chains’ Theorem
	Slide 62: Compressing Chains
	Slide 63: Compressed Tries (Patricia Tries)
	Slide 64: Compressed Tries: Search Example
	Slide 65: Compressed Tries: Search Example
	Slide 66: Compressed Tries: Search Example
	Slide 67: Compressed Tries: Search Example
	Slide 68: Compressed Tries: Search Example
	Slide 69: Compressed Tries: Search Example
	Slide 70: Compressed Tries: Search Example
	Slide 71: Compressed Tries: Search Example
	Slide 72: Compressed Tries: Search Example
	Slide 73: Compressed Tries: Search Example
	Slide 74: Compressed Tries: Search Example
	Slide 75: Compressed Tries: Search Example
	Slide 76: Compressed Tries: Search Example
	Slide 77: Compressed Tries: Search Example
	Slide 78: Compressed Tries: Search
	Slide 79: Compressed Trie: Links to Leaves
	Slide 80: Compressed Tries: Summary
	Slide 81
	Slide 82: Multiway Tries: Larger Alphabet
	Slide 83: Compressed Multiway Tries
	Slide 84: Multiway Tries: Summary

