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Dictionary ADT: Implementations Thus Far

▪ Search is Θ(log 𝑛) in fastest implementations of dictionary ADT
▪ 𝑛 is the number of items stored 

▪ Search is Ω(log 𝑛) in all realizations of ADT we know

▪ Question: Can we do better than Θ(log 𝑛) search?

▪ Answer: It depends on what we allow

▪ No: comparison-based searching lower bound is Ω(log 𝑛) 

▪ Yes: non-comparison based searching can achieve 𝑜(log 𝑛) 
▪ keys have special properties

1. interpolation search: keys have special distribution

2. tries: keys are strings



Lower Bound For Search
Theorem: Ω(log 𝑛) comparisons required for search in comparison based model

Proof:

not found𝑘 = 𝑥1

▪ Let algorithm 𝐴 search for key for 𝑘 among 𝑛 items 𝑥1, 𝑥2, … , 𝑥𝑛

▪ There is a corresponding binary decision tree 

▪ Chose a set of distinct keys 𝑆 = {𝑥1, 𝑥2, … , 𝑥𝑛}

▪ Consider 𝑛 + 1 instances of search problem

▪ search 𝑆 for 𝑘 = 𝑥1 

▪ search 𝑆 for 𝑘 = 𝑥2 

▪ …

▪ search 𝑆 for 𝑘 = 𝑥𝑛 

▪ search 𝑆 for 𝑘 different from keys in 𝑆

▪ Decision tree must have one leaf for each instance above

▪ Decision tree must have at least (𝑛 + 1) leaves

▪ Binary tree of height ℎ has at most 2ℎ  leaves

▪ Thus 2ℎ ≥ 𝑛 + 1

▪ Taking log of both sides,  ℎ ≥ log(𝑛 + 1)

𝑘 = 𝑥2

decision tree

…
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Binary Search on Ordered Array
▪ insert and delete: Θ(𝑛), search is Θ(log 𝑛)

Binary-search(𝐴, 𝑛, 𝑘)

 𝐴: Array of size 𝑛,  𝑘: key

  𝑙 ← 0

  𝑟 ← 𝑛 −  1

  while 𝑙 ≤ 𝑟

   𝑚 ←
𝑙+𝑟

2

          if (𝑘 = 𝐴 𝑚 )  return “found at 𝐴 𝑚 ”

   else if 𝐴 𝑚 < 𝑘  // key cannot be in the left part of 𝐴

            𝑙 ← 𝑚 +  1

  els𝐞 𝑟 ← 𝑚 − 1  // key cannot be in the right part of 𝐴

  return “not found but would be between 𝐴 𝑙 − 1  and 𝐴 𝑙  ”



Interpolation Search: Motivation
▪ binary search looks at index

𝑙 𝑟

40 120

middle

= 𝑙 +
1

2
(𝑟 − 𝑙 − 1)

𝑙 + 𝑟

2



Interpolation Search: Motivation

▪ If keys are close to evenly distributed, where would key 𝑘 = 100 be? 
𝑙 𝑟

40 120

▪ 100 should be much further away from 𝐴 𝑙 = 40 than from  𝐴 𝑟 = 120

▪ binary search looks at index

𝑙 𝑟

40 120

middle

= 𝑙 +
1

2
(𝑟 − 𝑙 − 1)

𝑙 + 𝑟

2



Interpolation Search: Motivation

𝐴[𝑟] − 𝐴[𝑙] = 80

𝑘 − 𝐴[𝑙]  =  60

▪ fractional distance: 
𝑘−𝐴[𝑙]

𝐴 𝑟 −𝐴[𝑙]
= 60/80 =

3

4
  of the way between 𝑙  and  𝑟

▪ If keys are close to evenly distributed, where would key 𝑘 = 100 be? 
𝑙 𝑟

40 120

▪ binary search looks at index

𝑙 𝑟

40 120

middle

= 𝑙 +
1

2
(𝑟 − 𝑙 − 1)

𝑙 + 𝑟

2

▪ 100 should be much closer to 𝐴 𝑟 = 120 than to  𝐴 𝑙 = 40

▪ Interpolation search looks at index 𝑙 +
𝑘−𝐴 𝑙

𝐴 𝑟 −𝐴 𝑙
(𝑟 − 𝑙 − 1)



Interpolation Search Example

0 1 2 3 4 5 6 7 8 9

0 1 2 3 448 449 600 800 1000 1200 1500

10

▪ Search(449), iteration 1

𝑙 =  0, 𝑟 =  𝑛 −  1 =  10,

𝑚 = 𝑙 +
𝑘 − 𝐴 𝑙

𝐴 𝑟 − 𝐴 𝑙
(𝑟 − 𝑙 − 1)

𝑚 = 0 +
449 − 0

1500 − 0
(10 − 0 − 1) = 3

𝑙 𝑟



Interpolation Search Example

0 1 2 3 4 5 6 7 8 9

0 1 2 3 448 449 600 800 1000 1200 1500

10

▪ Search(449), iteration 2

𝑙 = 4, 𝑟 =  10,

𝑙 𝑟

▪ Found!

𝑚 = 𝑙 +
𝑘 − 𝐴 𝑙

𝐴 𝑟 − 𝐴 𝑙
(𝑟 − 𝑙 − 1)

𝑚 = 4 +
449 − 498

1500 − 498
(10 − 4 − 1) = 5



Interpolation Search

CS240 – Module 6

▪ Search(10), iteration 1

𝑙 =  0, 𝑟 =  𝑛 −  1 =  10, = 1

𝑙 𝑟

▪ Works well if keys are close to evenly distributed

▪ But worst case performance on unevenly distributed keys is Θ(𝑛)

▪ Example: search(10)

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 1500

10

𝑚 = 0 +
10 − 0

1500 − 0
(10 − 0 − 1)



Interpolation Search

CS240 – Module 6

▪ Search(10), iteration 2

𝑙 = 2, 𝑟 = 10,

𝑙 𝑟

▪ Works well if keys are close to evenly distributed

▪ But worst case performance on unevenly distributed keys is Θ(𝑛)

▪ Example: search(10)

0 1 2 3 4 5 6 7 8 9 10

𝑚 = 2 +
10 − 2

1500 − 2
(10 − 2 − 1) = 3

0 1 2 3 4 5 6 7 8 9 1500



Interpolation Search

CS240 – Module 6

▪ Search(10), iteration 3

𝑙 = 4, 𝑟 = 10,

𝑙 𝑟

▪ Works well if keys are close to evenly distributed

▪ But worst case performance on unevenly distributed keys is Θ(𝑛)

▪ Example: search(10)

0 1 2 3 4 5 6 7 8 9 10

▪ Will continue in steps of 2 at each iteration until reach the end of the array

▪ Θ 𝑛  runtime

0 1 2 3 4 5 6 7 8 9 1500

𝑚 = 4 +
10 − 4

1500 − 4
(10 − 4 − 1) = 5



Interpolation Search

▪ Works well on average

▪  can show (difficult): 𝑇𝑎𝑣𝑔 𝑛 ≤ 𝑇𝑎𝑣𝑔( 𝑛) +  Θ(1)

▪ recurse into array of 𝑛 size, on average

▪  resolves to 𝑇𝑎𝑣𝑔(𝑛)  ∈  𝑂(log log 𝑛)

CS240 – Module 6

▪ Clever trick

▪ use interpolation search for at most  log 𝑛 steps

▪ if key is still not found, switch to binary search

▪ guarantees 𝑂(log 𝑛) worst case, but could be 𝑂(log log 𝑛)



Interpolation Search
▪ Code similar to binary search, but compare at interpolated index 

▪ Need extra test to avoid division by zero due to 𝐴[𝑙] = 𝐴[𝑟]

Interpolation-search(𝐴, 𝑛, 𝑘)

 𝐴: Sorted array of size 𝑛, 𝑘: key

  𝑙 ← 0,  𝑟 ← 𝑛 −  1

  while 𝑙 ≤ 𝑟 

         if (𝑘 <  𝐴 𝑙  or 𝑘 >  𝐴[𝑟]) return  “not found”

                        if (𝑘 = 𝐴[𝑟]) return “found at 𝐴[𝑟]”

   𝑚 ← 𝑙 +
𝑘−𝐴 𝑙

𝐴 𝑟 −𝐴 𝑙
(𝑟 − 𝑙 − 1)

                     if 𝐴 𝑚 = 𝑘  return “found at 𝐴[𝑚]” 
  else if 𝐴 𝑚 < 𝑘        

𝑙 ← 𝑚 +  1

    elsif 𝑟 ← 𝑚 − 1

         // always return from inside the while loop
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Words: review
▪ Scenario: Keys in dictionary are words

▪ Words (=strings): sequence of characters over alphabet Σ
{be, bear, beer}

▪ Typical alphabets: {0,1} (bitstrings), ASCII, etc.

▪ Stored in an array: 𝑤[𝑖] gets 𝑖th character (for 𝑖 = 0,1, …)

▪ Convention: words have end-sentinel $ (sometimes not shown)
▪ $ is smaller than any other character and does not occur in Σ

▪ 𝑤. 𝑠𝑖𝑧𝑒 = 𝑤 = number of non-sentinel characters
▪ be$ = 2 

▪ Should know
▪ prefix, suffix, substring

▪ sorting of words lexicographically 

be$ <lex bear$ 

▪ this is different from sorting numbers

010$ < lex 1$

bear$ < lex beer$



Tries: Introduction

▪ Trie (also known as radix tree): a dictionary for bit strings

▪ comes from word retrieval, but pronounced “try”

▪ Trie vs. AVL tree

▪ let the number of strings in dictionary be 𝑛 

▪ Trie: insert, find, delete is 𝑂( 𝑤 ) time

▪ independent of 𝑛 

▪ AVL tree: insert, find delete is 𝑂( 𝑤 log(𝑛)) time

▪ 𝑂(log(𝑛)) nodes on a path, 𝑂( 𝑤 ) operations at each node

▪ Trie applications

▪ auto-completion

▪ smart phones, commands for operating systems

▪ spell checking

▪ DNA sequencing



Tries: Introduction

▪ Trie (radix tree): dictionary for bitstrings

▪ tree based on bitwise comparisons

▪ edges labelled with corresponding bit

▪ store words by comparing edge labels and word bits

▪ similar to radix sort: compare individual bits, not the whole key

▪ due to end-sentinels $, all key-value pairs are at leaves

▪ 𝑛 is the number of words (strings) stored in the trie

 001$

0

0

1

1

1

000$

$

011$

10

0001$

$ 1

$
11$

$

$$

 0100$

0

0

$

01$

1



Tries: Search Example

root

$  

00$

$

0001$

0

1

0

$

01001$

0

1

0

$  

011$

$

01101$

0

1

1

1

0

$  

110$

1101$

1

$

0

$

111$

1

1

1

Example: Search(011$) 𝑃 =



Tries: Search Example
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Tries: Search Example

root

$  
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0001$

0
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011$

$

01101$

0

1

1

1

0

$  
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$
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Example: Search(011$)

$

𝑃 =

011$

successful



Tries: Search Example

root

$  

00$

$

0001$

0

1

0

$

01001$

0

1

0

$  

011$

$

01101$

0

1

1

1

0

$  

110$

1101$

1

$

0

$

111$

1

1

1

Example: Search(0111$)

no 1-child

unsuccessful
𝑃 =

011



Tries: Search
▪ Follow links that correspond to current bits in 𝑤

▪ Repeat until 𝑤 is found or no such link

Trie::get-path-to(𝑤)

Output: 𝑤 in the trie: stack holds path leading to and including 𝑤 

 𝑤 not in the trie: stack holds ancestors of where 𝑤 would have been 

𝑃 ⟵ empty stack; 𝑧 ⟵ root; 𝑑 ⟵ 0; 𝑃.push(𝑧)

while 𝑑 ≤ |𝑤| 

            if 𝑧 has a child-link labelled with 𝑤 𝑑

 𝑧 ⟵ child at this link; 𝑑++; 𝑃.push(𝑧)

           else break

return 𝑃

Trie::search(𝑤)

𝑃 ⟵ get-path-to(𝑤); 𝑧 ⟵ 𝑃.top()

if 𝑧 is not a leaf then

            return “not found, would be in sub-trie of 𝑧”

return key-value pair at 𝑧



Tries: Leaf-References

▪ For later applications of tries, want prefix-search(𝑤)

▪ find word 𝑣 in a trie for which 𝑤 is a prefix

▪ prefix 𝑤 does not end with $

 001$

0

0

1

1

1

000$

$

011$

10

0001$

$ 1

$
11$

$

$$

 0100$

0

0

$

01$

1

prefix-search(01) can return:

01$

 0100$

011$

01$ or 0100$ or 011$ 



Tries: Leaf-References

▪ For later applications of tries, want prefix-search(𝑤)

▪ find word 𝑣 in a trie for which 𝑤 is a prefix

 001$

0

0

1

1

1

000$

$

011$

10

0001$

$ 1

$
11$

$

$$

 0100$

0

0

$

01$

1

▪ To find 𝑣 quickly, need leaf-references

▪ Convention: reference to leaf with longest word in the subtree

▪ ties broken arbitrarily

not all leaf-references are shown



Tries: Leaf-References
▪ Example: Trie::prefix-search(00)

 001$

0

0

1

1

1

000$

$

011$

10

0001$

$ 1

$
11$

$

$$

 0100$

0

0

$

01$

1

𝑃 =

matched prefix!

▪ If match, stack size is larger by 
exactly 1 than size of prefix 𝑤

▪ 1 node for the root

▪ 1 node for each 
character of 𝑤

Trie::prefix-search(𝑤)

   𝑃 ⟵ get-path-to(𝑤) 

    if number of nodes on 𝑃 is 𝑤. 𝑠𝑖𝑧𝑒 or less then

            return “not string with prefix 𝑤 found”

    𝑝 ⟵ 𝑃.top()

    return 𝑝. 𝑙𝑒𝑎𝑓

00



Tries: Insert

$  

00$

$

0001$

0

1

0

0

1

0

$  

011$
$

 0111$

1

1

1

0

$  

110$

1101$

1

$

0

$

111$

1

1

1

$

010010$

0

▪ 𝑃 ⟵ get-path-to(𝑤) gives ancestors that exist already

▪ Expand trie from 𝑝 ⟵ 𝑃.top() by adding nodes for the extra bits of 𝑤

▪ Update leaf-references for new nodes and also for nodes in 𝑃 

▪ 𝑤 could be longer that the leaves nodes in 𝑃 currently point to

▪ Example: Insert(01101$)

no 0-child

011



Tries: Insert

$  

00$

$

0001$

0

1

0

0

1

0

$  

011$
$

 0111$

1

1

1

0

$  

110$

1101$

1

$

0

$

111$

1

1

1

$

010010$

0

▪ 𝑃 ⟵ get-path-to(𝑤) gives ancestors that exist already

▪ Expand trie from 𝑝 ⟵ 𝑃.top() by adding nodes for the extra bits of 𝑤

▪ Update leaf-references for new nodes and also for nodes in 𝑃 

▪ 𝑤 could be longer that the leaves nodes in 𝑃 currently point to

▪ Example: Insert(01101$)

0



Tries: Insert

$  

00$

$

0001$

0

1

0

0

1

0

$  

011$
$

 0111$

1

1

1

0

$  
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1

$

0
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111$

1
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▪ 𝑃 ⟵ get-path-to(𝑤) gives ancestors that exist already

▪ Expand trie from 𝑝 ⟵ 𝑃.top() by adding nodes for the extra bits of 𝑤

▪ Update leaf-references for new nodes and also for nodes in 𝑃 

▪ 𝑤 could be longer that the leaves nodes in 𝑃 currently point to

▪ Example: Insert(01101$)

0

1



Tries: Insert

$  

00$

$

0001$

0

1

0

0

1

0

$  

011$
$

 0111$

1

1

1

0

$  
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1101$

1

$

0

$

111$

1

1

1
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010010$

0

▪ 𝑃 ⟵ get-path-to(𝑤) gives ancestors that exist already

▪ Expand trie from 𝑝 ⟵ 𝑃.top() by adding nodes for the extra bits of 𝑤

▪ Update leaf-references for new nodes and also for nodes in 𝑃 

▪ 𝑤 could be longer that the leaves nodes in 𝑃 currently point to

▪ Example: Insert(01101$)

0

1

01101$

$



Tries: Insert

$  

00$

$

0001$

0

1

0

0

1

0

$  

011$
$

 0111$

1

1

1

0

$  

110$

1101$

1

$

0

$

111$

1

1

1

$
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▪ 𝑃 ⟵ get-path-to(𝑤) gives ancestors that exist already

▪ Expand trie from 𝑝 ⟵ 𝑃.top() by adding nodes for the extra bits of 𝑤

▪ Update leaf-references for new nodes and also for nodes in 𝑃 

▪ 𝑤 could be longer that the leaves nodes in 𝑃 currently point to

▪ Example: Insert(01101$)

0

1

01101$

$



Tries: Delete
▪ 𝑃 ⟵ get-path-to(𝑤) gives all ancestors

▪ Let 𝑙 be the leaf where 𝑤 is stored

▪ Delete 𝑙 and nodes on 𝑃 until ancestor has two or more children

▪ Update leaf-references on the rest of 𝑃 

▪ if 𝑧ϵ𝑃 referred to 𝑙, find new 𝑧. 𝑙𝑒𝑎𝑓 from current children of 𝑧

▪ Delete(0100$)

 001$

0

0

1

1

1

000$

$

011$

10

0001$

$ 1

$
11$

$

$$

 0100$

0

0

$

01$

1



Tries: Delete
▪ 𝑃 ⟵ get-path-to(𝑤) gives all ancestors

▪ Let 𝑙 be the leaf where 𝑤 is stored

▪ Delete 𝑙 and nodes on 𝑃 until ancestor has two or more children

▪ Update leaf-references on the rest of 𝑃 

▪ if 𝑧ϵ𝑃 referred to 𝑙, find new 𝑧. 𝑙𝑒𝑎𝑓 from current children of 𝑧

▪ Delete(0100$)

 001$

0

0

1

1

1

000$

$

011$

10

0001$

$ 1

$
11$

$

$$

 0100$

0

0

$

01$

1

𝑙



Tries: Delete

 001$

0

0

1

1

1

000$

$

011$

10

0001$

$ 1

$
11$

$

$$ 01$

1

▪ 𝑃 ⟵ get-path-to(𝑤) gives all ancestors

▪ Let 𝑙 be the leaf where 𝑤 is stored

▪ Delete 𝑙 and nodes on 𝑃 until ancestor has two or more children

▪ Update leaf-references on the rest of 𝑃 

▪ if 𝑧ϵ𝑃 referred to 𝑙, find new 𝑧. 𝑙𝑒𝑎𝑓 from current children of 𝑧

▪ Delete(0100$)



Tries: Delete

 001$

0

0

1

1

1

000$

$

011$

10

0001$

$ 1

$
11$

$

$$ 01$

1

▪ 𝑃 ⟵ get-path-to(𝑤) gives all ancestors

▪ Let 𝑙 be the leaf where 𝑤 is stored

▪ Delete 𝑙 and nodes on 𝑃 until ancestor has two or more children

▪ Update leaf-references on the rest of 𝑃 

▪ if 𝑧ϵ𝑃 referred to 𝑙, find new 𝑧. 𝑙𝑒𝑎𝑓 from current children of 𝑧

▪ Delete(0100$)



Tries: Delete

 001$
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10
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$
11$
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$$ 01$
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▪ 𝑃 ⟵ get-path-to(𝑤) gives all ancestors

▪ Let 𝑙 be the leaf where 𝑤 is stored

▪ Delete 𝑙 and nodes on 𝑃 until ancestor has two or more children

▪ Update leaf-references on the rest of 𝑃 

▪ if 𝑧ϵ𝑃 referred to 𝑙, find new 𝑧. 𝑙𝑒𝑎𝑓 from current children of 𝑧

▪ Delete(0100$)



Tries: Delete

 001$

0

0

1

1

1

000$

$

011$

10

0001$

$ 1

$
11$

$

$$ 01$

1

▪ 𝑃 ⟵ get-path-to(𝑤) gives all ancestors

▪ Let 𝑙 be the leaf where 𝑤 is stored

▪ Delete 𝑙 and nodes on 𝑃 until ancestor has two or more children

▪ Update leaf-references on the rest of 𝑃 

▪ if 𝑧ϵ𝑃 referred to 𝑙, find new 𝑧. 𝑙𝑒𝑎𝑓 from current children of 𝑧

▪ Delete(0100$)



Standard Trie Summary

▪ search 𝑤 , prefix-search 𝑤 , insert 𝑤 , delete 𝑤  all take Θ(|𝑤|) time

▪ time is independent of 𝑛, the number of words stored in the trie

▪ time is small for short words

▪ Trie for a given set of words is unique

▪ except for order of children and ties among leaf-references

▪ Disadvantages

▪ can be wasteful with respect to space

▪ the problem is ‘chains’

▪ Worst case space is Θ(𝑛 ∙ maximum word length)

▪ How to save space? 



Outline

▪ Lower bound for search

▪ Interpolation Search

▪ Tries

▪ Standard Trie

▪ Pruned Trie

▪ Compressed Trie

▪ Multiway Trie



Pruned Trie

▪ Sub-trie with one key has only one node

▪ Convert standard trie into pruned trie
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Pruned Trie

▪ Sub-trie with one key has only one node

▪ Convert standard trie into pruned trie
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Pruned Trie

▪ Sub-trie with one key has only one node

▪ Convert standard trie into pruned trie
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Pruned Trie

▪ Sub-trie with one key has only one node

▪ Convert standard trie into pruned trie
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Pruned Trie

▪ Sub-trie with one key has only one node

▪ Convert standard trie into pruned trie
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Pruned Trie

▪ Sub-trie with one key has only one node

▪ Convert standard trie into pruned trie
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Pruned Trie

▪ Sub-trie with one key has only one node

▪ Convert standard trie into pruned trie

0

0

1

1

1

000$

$

011$

10

0001$

$ 1

$

$

0

01$

11$

7 keys

6 keys 1 key
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2 keys 1 key
001$

1 key
0100$



Pruned Trie

▪ Sub-trie with one key has only one node

▪ Final pruned trie
0

0

1

1

1

000$

$

011$

10

0001$

$ 1
0

01$

11$

001$ 0100$

▪ node has a child only if it has two or more descendants

▪ saves space if there are only few bitstrings that are long

▪ can even store really long bitstrings more efficiently (real numbers)

▪ more  efficient version of tries, but operations get a bit more complicated

▪ in particular, have to change prefix-search(𝑤) to search at the leaf if full prefix is 
not found prior to visiting the leaf



Outline

▪ Lower bound for search

▪ Interpolation Search

▪ Tries

▪ Standard Trie

▪ Pruned  Trie

▪ Compressed Trie

▪ Multiway Trie



Pruned Trie: Internal Nodes with One Child

▪ Pruned trie can have internal 
nodes with one child

$ 0
   00$ 0001$

0

0
01001$

$ 0
011$ 01101$

1

1

0

$ 1
110$ 1101$

0 1
111$

1

1

▪ Such ‘chains’ in a trie waste space and reduce efficiency

▪ Extreme example



Compressing Singly Linked Chains

▪ Singly linked ‘chains’ in a trie waste space and reduce efficiency

▪ If compress chains into one node, each internal node will have at least 2 children

▪ Let 𝑛 be the number of leaf nodes (i.e. the number of stored keys) 

▪ Will show that if each internal node has 2 or more children, then there are at 
most 𝑛 − 1 internal nodes 

▪ Therefore at most 2𝑛 − 1 total nodes

▪ 𝑛 external + at most 𝑛 − 1 internal

▪ space is 𝑂(𝑛), not much wasted space

compress



Tree with no ‘chains’ Theorem

▪ Let T be a tree with 𝑚 leafs. If every  non-leaf (internal) node has at 
least 2 children, then the tree has at most  𝑚 −  1 internal nodes

▪ Visual proof

▪ put a stone on each leaf



Tree with no ‘chains’ Theorem

▪ Let T be a tree with 𝑚 leafs. If every  non-leaf (internal) node has at 
least 2 children, then the tree has at most  𝑚 −  1 internal nodes

▪ Visual proof

▪ put a stone on each leaf

▪ there are 𝑚 stones

▪ all leaves pass a stone to the parent



Tree with no ‘chains’ Theorem

▪ Let T be a tree with 𝑚 leafs. If every  non-leaf (internal) node has at 
least 2 children, then the tree has at most  𝑚 −  1 internal nodes

▪ Visual proof

▪ put a stone on each leaf

▪ all  internal nodes at level ℎ − 1 have 
at least 2 stones, they leave one 
stone and pass one stone to parent

▪ there are 𝑚 stones

▪ all leaves pass a stone to the parent



Tree with no ‘chains’ Theorem

▪ Let T be a tree with 𝑚 leafs. If every  non-leaf (internal) node has at 
least 2 children, then the tree has at most  𝑚 −  1 internal nodes

▪ Visual proof

▪ put a stone on each leaf

▪ all internal nodes at level ℎ −2 have at 
least 2 stones, they leave one stone and 
pass one stone to the parent

▪ all  internal nodes at level ℎ − 1 have 
at least 2 stones, they leave one 
stone and pass one stone to parent

▪ there are 𝑚 stones

▪ all leaves pass a stone to the parent



Tree with no ‘chains’ Theorem

▪ Let T be a tree with 𝑚 leafs. If every  non-leaf (internal) node has at 
least 2 children, then the tree has at most  𝑚 −  1 internal nodes

▪ Visual proof

▪ continue until reach the root

▪ now each internal node has 1 stone 
and root has 2 or more stones



Tree with no ‘chains’ Theorem

▪ Let T be a tree with 𝑚 leafs. If every  non-leaf (internal) node has at 
least 2 children, then the tree has at most  𝑚 −  1 internal nodes

▪ Visual proof

▪ continue until reach the root

▪ now each internal node has 1 stone 
and root has 2 or more stones

▪ root leaves 1 stone and throws the 
rest outside the tree

▪ now each internal node has 1 stone, 
and there is one or more stones 
outside the tree

▪ since number of stones is 𝑚, the 
number of internal nodes is strictly 
less than 𝑚



Compressing Chains

1

0

0

1

1

trie above

trie below

trie above

trie below

bit 5

bit 6

bit 7

bit 8

bit 9

bit 10

bit 11

11

▪ But now we lost part of the binary string ‘10011’

after this node, search 
according to bit 11

bit 5

bit 11

compressing

‘******’

▪ Check if the leaf we reach stores the search key 



Compressed Tries (Patricia Tries)

▪ Morrison (1968): Patricia-Tries

▪ Practical Algorithm to Retrieve Information Coded in Alphanumeric

▪ Idea: compress paths of nodes with only one child

▪ Each node stores an index : next bit to be tested during a search

▪ Compressed trie with 𝑛 keys has at most 𝑛 −  1 internal (non-leaf) nodes

0

1

2

00$

$ 0

0
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011$ 01101$

0

0 1

0001$   01001$ 3

$
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0
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3

 $ 1    
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1

$  
00$

 $ 
0001$

011$
$

1

0

0

0 1

0 0 1

 1 0

1
110$

$

1101$
$

1

0

$

111$

1

1

1

 $ 
01001$

 $ 
01101$



Compressed Tries: Search Example

Example: Search(10$)
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Compressed Tries: Search Example

Example: Search(10$)
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Compressed Tries: Search Example

Example: Search(10$)
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Compressed Tries: Search Example

Example: Search(10$)
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Compressed Tries: Search Example

Example: Search(101$)
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Compressed Tries: Search Example

Example: Search(101$)
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Compressed Tries: Search Example

Example: Search(101$)
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Compressed Tries: Search Example

Example: Search(101$)
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Compressed Tries: Search Example

Example: Search(101$)
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Compressed Tries: Search Example

Example: Search(111$)
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Compressed Tries: Search Example

Example: Search(111$)
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Compressed Tries: Search Example

Example: Search(111$)
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Compressed Tries: Search Example

Example: Search(111$)
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Compressed Tries: Search Example

Example: Search(111$)
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Compressed Tries: Search

▪ As in standard tries, follow links that correspond to current bits in 𝑤

▪ Main difference

▪ stored indices say which bits to compare

▪ also must compare 𝑤 to the word found at the leaf

CompressedTrie::get-path-to(𝑤)

𝑃 ⟵ empty stack; 𝑧 ⟵ root;  𝑃.push(𝑧)

while 𝑧 is not a leaf and 𝑑 ⟵ 𝑧. 𝑖𝑛𝑑𝑒𝑥 ≤ 𝑤. 𝑠𝑖𝑧𝑒  do

            if 𝑧 has a child-link labelled with 𝑤 𝑑

 𝑧 ⟵ child at this link; 𝑃.push(𝑧)

      else break

return 𝑃

CompressedTrie::search(𝑤)

𝑃 ⟵ get-path-to(𝑤); 𝑧 ⟵ 𝑃.top()

if 𝑧 is not a leaf or word stored at 𝑧 is not 𝑤 then

            return “not found”

return key-value pair at 𝑧



Compressed Trie: Links to Leaves

▪ Links to leaves established as in uncompressed tries
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▪ Need to modify prefix-search(𝑤) to check if the leaf has prefix matching 𝑤

▪ All keys in a subtree of the node where search for 𝑤 ends have the same 
prefix of length 𝑤

▪ prefix 𝑤 either matches all keys in the subtree, or none of subtrees keys

all keys in 
subtree have 
prefix 11

all keys in 
subtree have 
prefix 11



Compressed Tries: Summary

▪ search 𝑤  and prefix-search 𝑤  are easy

▪ insert 𝑤  and delete 𝑤  are conceptually simple
▪ search for path 𝑃 to word 𝑤 (say we reach node 𝑧)

▪ uncompress this path (using characters of 𝑧. 𝑙𝑒𝑎𝑓)

▪ insert/delete 𝑤 as in uncompressed trie

▪ compress path from root to where changed happened

▪ All operations take 𝑂(|𝑤|) time for word 𝑤

▪ Use 𝑂(𝑛) space

▪ More complicated than standard tries, but space 
savings are worth it if words are unevenly distributed



Outline

▪ Lower bound for search

▪ Interpolation Search

▪ Tries

▪ Standard Trie

▪ Pruned Tries

▪ Compressed Trie

▪ Multiway Trie



Multiway Tries: Larger Alphabet

be$

$

$

bear$

r $

ben$

a n

e

$

soul$

l

$

soup$

p

o

u

▪ Represents Strings over any fixed alphabet Σ

▪ Any node has at most |Σ| + 1 children 

▪ one child for the  end-of-word character $

▪ Example: A trie holding strings {bear$, ben$, be$, soul$, soup$}

b s



Compressed Multiway Tries
▪ Compressed multi-way tries

▪ Example: A compressed trie holding strings {bear$, ben$, be$, soul$,  soup$}

2

be$

$

bear$

a

ben$

n

b

3

l

soul$

p

soup$

s

0



Multiway Tries: Summary

▪ Operations search(𝑤), prefix-search(𝑤), insert(𝑤) and delete(𝑤) are as for 
bitstring tries

▪ Run-time 𝑂(|𝑤|  ·  (time to find the appropriate child))

▪ Each node now has up to |Σ|  +  1 children

▪ How should children be stored? 

▪ Time/Space tradeoff: arrays are fast, lists are space efficient

▪ run-time 𝑂(|𝑤|) with arrays storing children

▪ AVL tree is best in theory, but not worth it in practice unless |Σ| is huge

▪ In practice, use hashing (next module)

array linked list AVL tree
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