CS 240 – Data Structures and Data Management

Module 7: Dictionaries via Hashing

O. Veksler

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2025

Outline

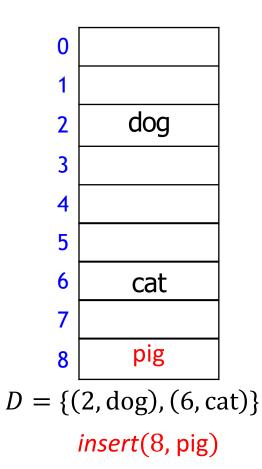
- Dictionaries via Hashing
 - Hashing Introduction
 - Hashing with Chaining
 - Open Addressing
 - probe sequences
 - cuckoo hashing
 - Hash Function Strategies

Outline

- Dictionaries via Hashing
 - Hashing Introduction
 - Hashing with Chaining
 - Open Addressing
 - probe sequences
 - cuckoo hashing
 - Hash Function Strategies

Direct Addressing

- Special situation: every key k is integer with $0 \le k < M$
- Direct addressing implementation
 - store (k, v) in array A of size M via $A[k] \leftarrow v$
 - search(k): check if A[k] is empty
 - $insert(k, v): A[k] \leftarrow v$



Direct Addressing

- Special situation: every key k is integer with $0 \le k < M$
- Direct addressing implementation
 - store (k, v) in array A of size M via $A[k] \leftarrow v$
 - search(k): check if A[k] is empty
 - $insert(k, v): A[k] \leftarrow v$
 - $delete(k): A[k] \leftarrow empty$

 $D = \{(2, dog), (6, cat), (8, pig)\}$ delete(2)

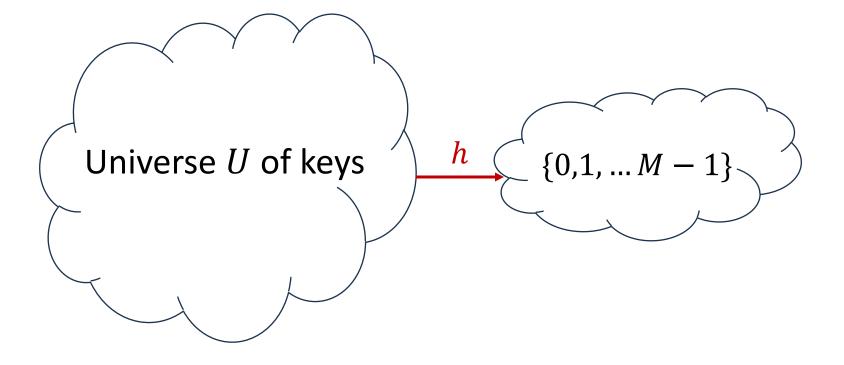
Direct Addressing

- Special situation: every key k is integer with $0 \le k < M$
- Direct addressing implementation
 - store (k, v) in array A of size M via $A[k] \leftarrow v$
 - search(k): check if A[k] is empty
 - $insert(k, v): A[k] \leftarrow v$
 - $delete(k): A[k] \leftarrow empty$
 - all operations are O(1)
 - total storage is $\Theta(M)$
 - Drawbacks
 - 1. space is wasteful if $n \ll M$
 - 2. keys must be integers

 $D = \{(6, cat), (8, pig)\}$

Hashing

• Idea: first map keys to a smaller integer range and then use direct addressing



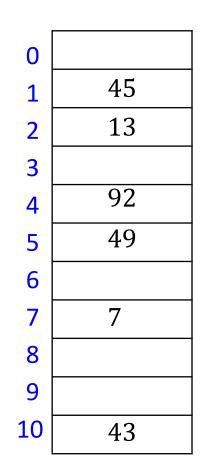
Hashing

- Idea: first map keys to a smaller integer range and then use direct addressing
- Assumption: keys come from some *universe U*
 - typically $U = \{0, 1, ...\}$, sometimes U is finite
- Design hash function $h: U \rightarrow \{0, 1, \dots, M 1\}$
 - h(k) is called *hash value* of k
 - example: $h(k) = k \mod M$
 - will see other choices later
- Store dictionary in array *T* of size *M*, called *hash table*
- Item with key k wants to be stored in *slot* h(k) of array T
- Example
 - U = N, M = 11, $h(k) = k \mod 11$
 - keys 7, 13, 43, 45, 49, 92



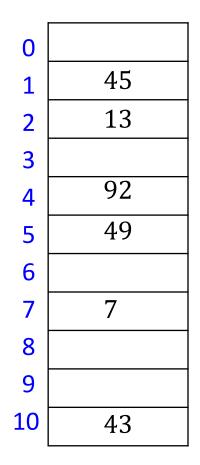
Hashing

- Idea: first map keys to small integer range and then use direct addressing
- Assumption: keys come from some *universe U*
 - typically $U = \{0, 1, ...\}$, sometimes U is finite
- Design hash function $h: U \rightarrow \{0, 1, \dots, M 1\}$
 - h(k) is called *hash value* of k
 - example: $h(k) = k \mod M$
 - will see other choices later
- Store dictionary in array *T* of size *M*, called *hash table*
- Item with key k wants to be stored in *slot* h(k) of array T
- Example
 - U = N, M = 11, $h(k) = k \mod 11$
 - keys 7, 13, 43, 45, 49, 92
 - as usual, store KVP, but show only keys
- Typically choose $M \in \Theta(n)$
 - shrink or expand the hash table dynamically as items inserted/deleted
- There are good reasons for choosing *M* to be a prime number



Hash Functions and Collisions

- Hash function
 - should be fast, O(1), to compute
- Generally hash function h is not injective
 - many keys can map to the same integer, example
 - $h(k) = k \mod 11$,
 - h(46) = 2 = h(13)
- Collision: want to insert (k, v), but T[h(k)] is occupied
- Two main strategies to deal with collisions
 - 1. Chaining: allow multiple items at each table location
 - 2. Open addressing: alternative slots in array
 - probe sequence: many alternative locations
 - linear probing
 - double hashing
 - cuckoo hashing: just one alternative location



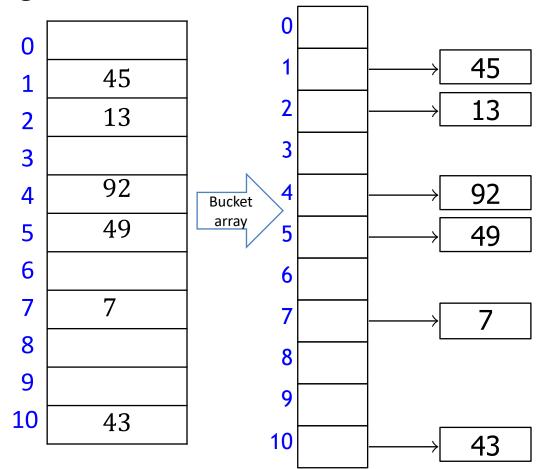
Outline

- Dictionaries via Hashing
 - Hashing Introduction
 - Hashing with Chaining
 - Open Addressing
 - probe Sequences
 - cuckoo hashing
 - Hash Function Strategies

Hashing with Chaining

$$M = 11, h(k) = k \mod 11$$

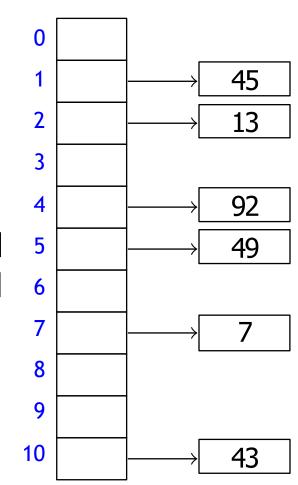
- Each slot is a *bucket* containing 0 or more KVPs
 - bucket can be implemented by any dictionary
 - even another hash table
 - simplest approach is unsorted linked list dictionary in each bucket
 - this is called chaining

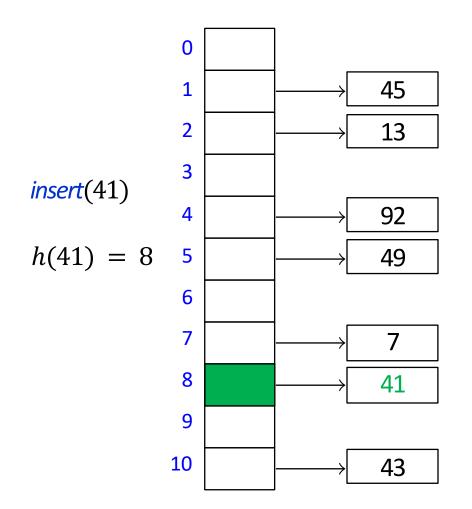


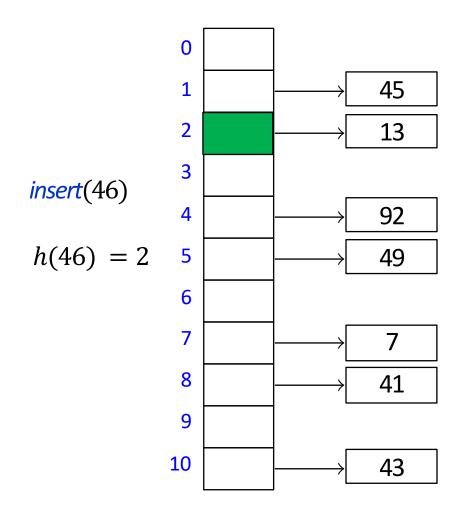
Hashing with Chaining

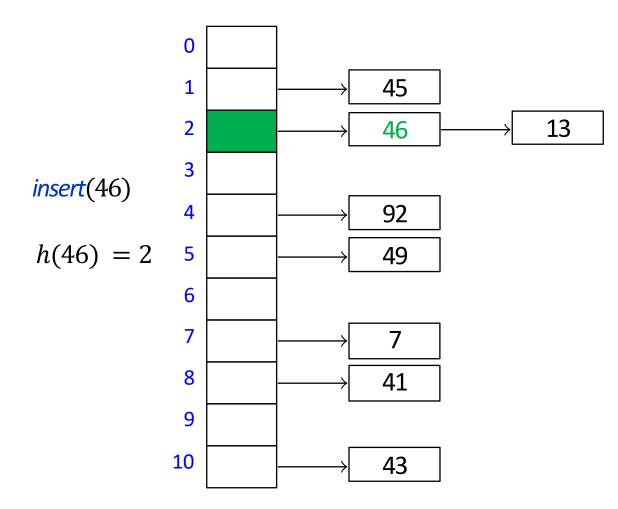
Operations

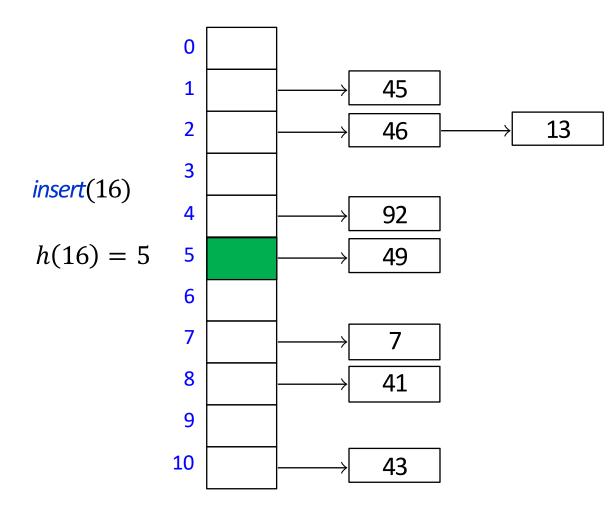
- search(k): look for key k in the list at T[h(k)]
 - apply MTF heuristic
- *insert*(k, v): add (k, v) to the *front* of list at T [h(k)]
- delete(k): search and delete from the list at T[h(k)]

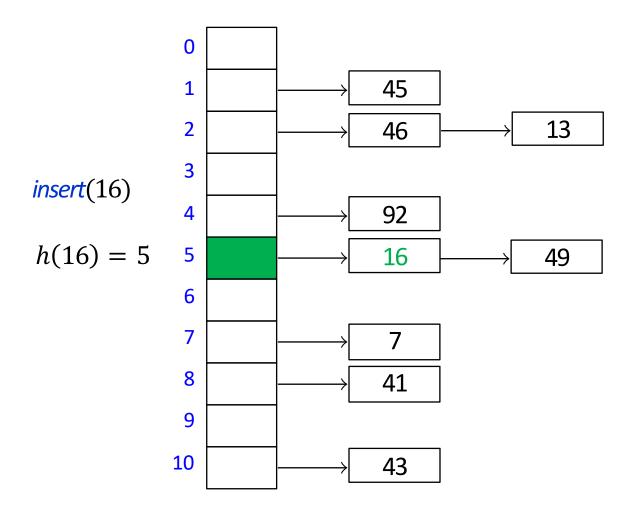


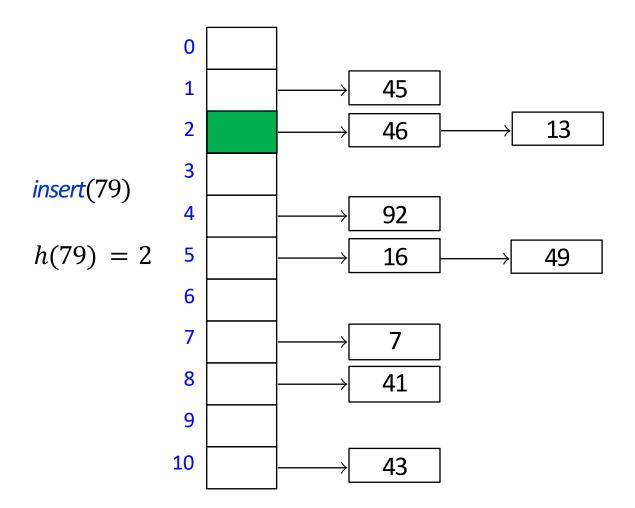


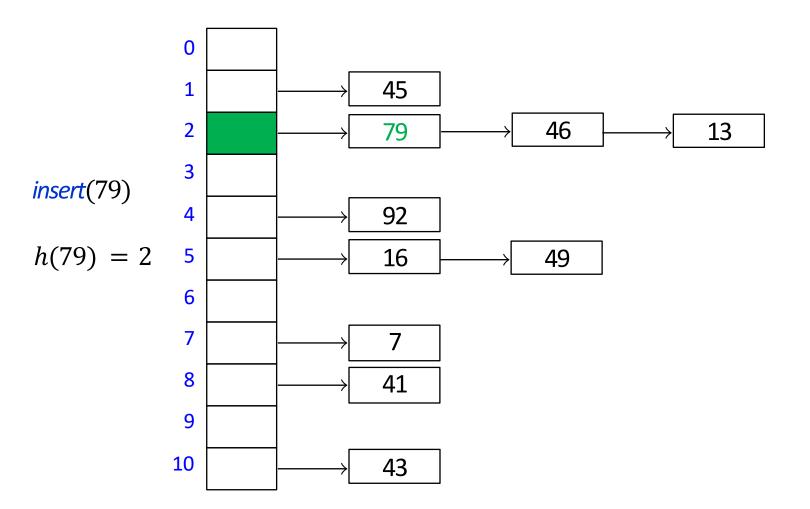






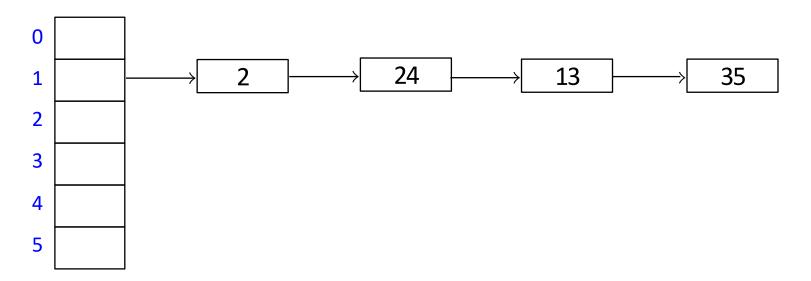






Hashing with Chaining: Running Time

- *insert* is $\Theta(1)$
 - unordered linked list insertion
- search and delete $\Theta(1 + \text{length of list at } T[h(k)])$
 - **not** $\Theta($ length of list at T[h(k)]), as list length can be 0
- In the worst case all n items hash to same array index
 - hash table is essentially a list, and *search* and *delete* $\Theta(n)$



Hashing with Chaining: Worst Case Running Time

- When can all *n* items hash to the same array index?
 - 1. For bad hash function, i.e. h(k) = 10
 - 2. For *any* hash function, if universe is large enough, there are *n* keys that hash to the same slot

Proof:

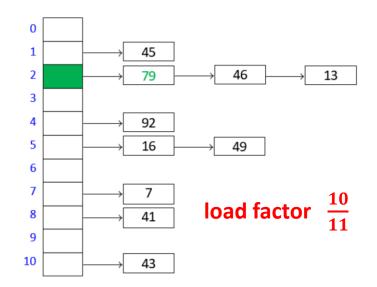
- let $|U| \ge M(n-1) + 1$
- suppose at most n-1 keys hash to each table slot

$$\begin{array}{c|c}
0 & M-1 \\
\hline
n-1 & n-1 & n-1 & n-1 & n-1 \\
\hline
M(n-1) & & & \\
\end{array}$$

- then there at most M(n-1) elements in U, contradiction
- The user may need to insert n keys that happen to hash to same slot

Hashing with Chaining: Average Case Runtime?

- Define *load factor* $\alpha = \frac{n}{M}$
 - *n* is the number of items
 - *M* is the size of hash table
- Average bucket size $= \frac{n}{M} = \alpha$



- This **does not** imply that average-case runtime of search and delete is $\Theta(1 + \alpha)$
 - consider the case when user inserts keys which all hash to the same slot
 - average bucket-size is still α
 - but search and delete nevertheless take $\Theta(n)$ on average
 - message: when you hear 'average', ask 'average over what'
- To get meaningful average-case bounds, we need some assumptions on hashfunction and keys the user will insert
 - hard to make realistic assumptions
- Easier to switch to *randomized* hashing

Hashing with Chaining: Randomization

- How can we randomize?
 - cannot insert at a random location, as key k must hash to the hash value h(k)
- Idea: assume the hash-function is chosen randomly from a set of all hash functions
- This is called Uniform Hashing Assumption (UHA): any possible hash-function is equally likely to be chosen
 - not realistic, but this assumption makes analysis easier

Uniform Hashing Assumption Properties

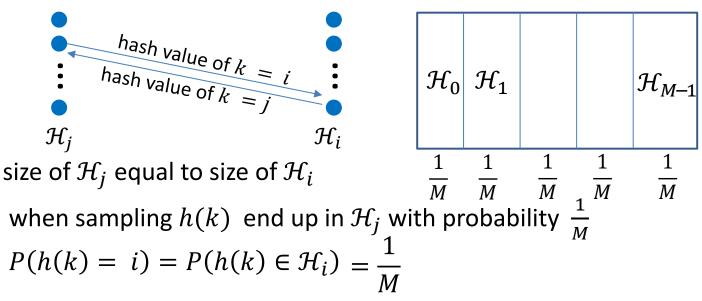
Under UHA (any hash-function is chosen equally likely)

1.
$$P(h(k) = i) = \frac{1}{M}$$
 for any key k and slot i

Proof:

Let k, i be some key and slot

Let \mathcal{H}_j (for $j = 0, \dots M - 1$) be set of hash-functions h s.t. h(k) = jFor $j \neq i$, one-to-one map between \mathcal{H}_i and \mathcal{H}_i



2. hash-values of any two keys are independent of each other P(h(k) = i and h(k') = j) = P(h(k) = i)P(h(k') = j)Proof: ...

Hashing with Chaining with Randomly Chosen Hash Function

•
$$P(h(k) = i) = \frac{1}{M}$$
 for any key k and slot i

load factor $\alpha = \frac{n}{M}$

Claim: for any key k, the expected size of bucket T[h(k)] is at most $1 + \alpha$ **Proof**:

- Let h(k) = i
- Case 1: k is not in the dictionary
 - then each of *n* dictionary items hashes to *i* with probability $\frac{1}{M}$
 - let $I_q^i = 1$ if key q hashes to i and $I_q^i = 0$ otherwise
 - $E[|T[i]|] = E\left[\sum_{\text{keys } q} I_q^i\right] = \sum_{\text{keys } q} E[I_q^i] = \sum_{\text{keys } q} Pr(I_q^i = 1) = \frac{n}{M} \le 1 + \alpha$
- Case 2: k is in the dictionary
 - T(i) definitely has key k
 - the remaining n-1 dictionary items hash to *i* with probability $\frac{1}{M}$

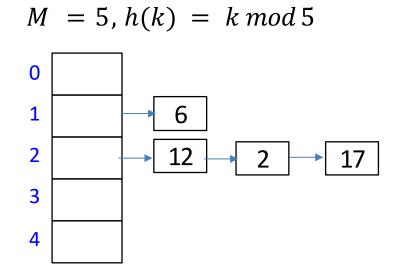
•
$$E[|T[i]|] = 1 + \frac{n-1}{M} \le 1 + \alpha$$

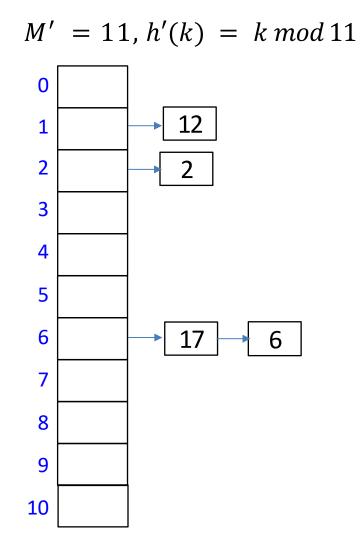
- *search, delete* have runtime $\Theta(1 + \text{size of bucket } T[h(k)])$
- Expected runtime of search and delete is $\Theta(1 + \alpha)$, insert is $\Theta(1)$

Load factor and re-hashing

- Load factor $\alpha = \frac{n}{M}$
- Expected *space* is $\Theta(M + n) = \Theta(n/\alpha + n)$, expected *time* is $\Theta(1 + \alpha)$
 - if we maintain $\alpha \in \Theta(1)$, expected running time is O(1) and space is $\Theta(n)$
- Maintaining hash array of appropriate size
 - start with small M
 - during insert/delete, update n
 - if load factor becomes too big, i.e. $\alpha = \frac{n}{M} > maxLoadF$, rehash
 - chose new $M' \approx 2M$
 - find a new random hash function h' that maps U into $\{0, 1, \dots M' 1\}$
 - create new hash table T' of size M'
 - reinsert each KVP from T into T'
 - update $T \leftarrow T'$, $h \leftarrow h'$
 - if load factor becomes too small, i.e. $\alpha = \frac{n}{M} < minLoadF$, rehash with smaller *M*'
- Rehashing costs $\Theta(M + n)$ but happens rarely, cost amortized over all operations

Rehashing when Load Factor Too Large





Randomization in Practice

- Uniform Hashing Assumption is not possible to satisfy in practice
- In practice can chose a random hash function from a certain *family* of hash function
- The following family of functions is often used
 - choose prime number p > M and random $a, b \in \{0, \dots, p-1\}, a \neq 0$
 - $h(k) = ((ak + b) \mod p) \mod M$
 - can show that the expected runtime of search/delete hold in this case

Hashing with Chaining Summary

- Rehash so that $\alpha \in \Theta(1)$
- Rehashing costs $\Theta(M + n)$ time (plus the time to find a new hash function)
- Rehashing happens rarely enough that we can ignore this term when amortizing over all operations
- We should also re-hash when α gets too small, so that $M \in \Theta(n)$ and the space is always $\Theta(n)$
- The amortized expected cost for hashing with changing is and the space is O(1)
 - assuming uniform hashing and $\alpha \in \Theta(1)$ throughout
- Theoretically perfect, but slow in practice

Outline

- Dictionaries via Hashing
 - Hashing Introduction
 - Hashing with Chaining
 - Open Addressing
 - probe sequences
 - cuckoo hashing
 - Hash Function Strategies

Open Addressing

- Chaining wastes space on links
- Can we resolve collisions in the array *H*?
- Idea: each hash table entry holds only one item, but key k can go in multiple locations
- Probe sequence
 - search and insert follow a probe sequence of possible locations for key k

 $h(k, 0), h(k, 1), h(k, 2), \dots$

until an empty spot is found

h(k,2)
h(k,0)
$b(l_{1}, 1)$
h(k, 1)

Open Addressing: Linear Probing

- Linear probing is the simplest method for probe sequence
 - If h(k) is occupied, place item in the next available location
 - probe sequence is
 - h(k,0) = h(k)
 - h(k, 1) = h(k) + 1

•
$$h(k, 2) = h(k) + 2$$

- etc...
- Assume circular array, i.e. modular arithmetic

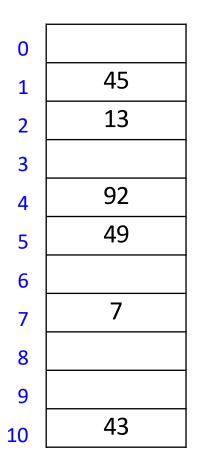
•
$$h(k,i) = (h(k) + i) \mod M$$

Linear Probing Example

 $M = 11, h(k) = k \mod 11$

insert(41)

$$h(41) = 8$$

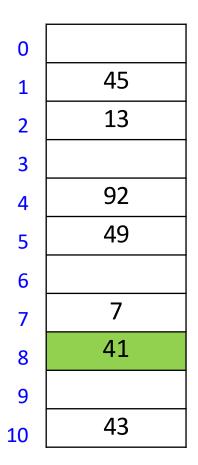


Linear Probing Example

 $M = 11, h(k) = k \mod 11$

insert(41)

$$h(41) = 8$$



Linear Probing Example

 $M = 11, h(k) = k \mod 11$

insert(84)

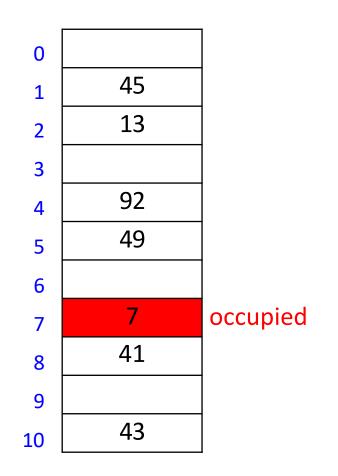
$$h(84) = 7$$

$$\begin{array}{c|ccccc} 0 & & & \\ 1 & 45 \\ 2 & 13 \\ 3 & & \\ 3 & & \\ 4 & 92 \\ 5 & 49 \\ 6 & & \\ 7 & 7 \\ 8 & 49 \\ 6 & & \\ 7 & 7 \\ 8 & 41 \\ 9 & & \\ 10 & 43 \\ \end{array}$$

 $M = 11, h(k) = k \mod 11$

insert(84)

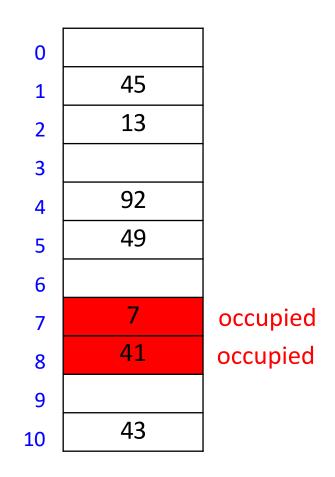
$$h(84) = 7$$



 $M = 11, h(k) = k \mod 11$

insert(84)

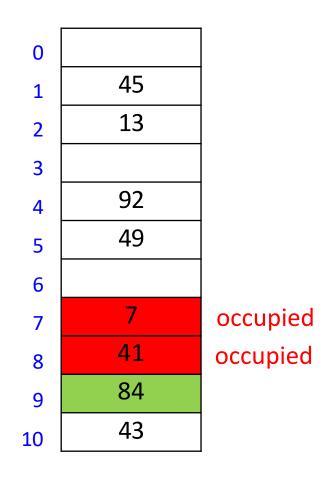
$$h(84) = 7$$



 $M = 11, h(k) = k \mod 11$

insert(84)

$$h(84) = 7$$



Linear Probing Formula

Linear probing explores positions

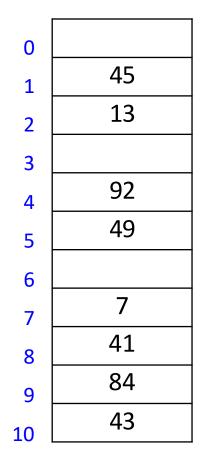
$$h(k,i) = (h(k) + i) \mod M$$

- for i = 0, 1, ... until an empty location is found
- where h(k) is some hash function

$$M = 11, h(k) = k \mod 11$$

 $h(k, i) = (h(k) + i) \mod M$ for sequence $i = 0, 1, ...$

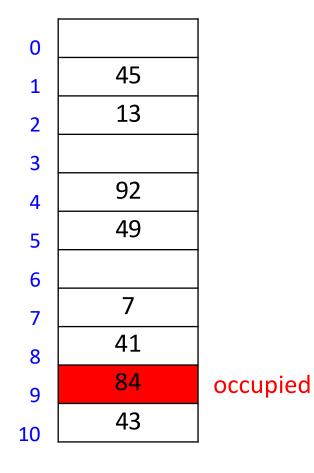
insert(20) h(20) = 9 $h(20, 0) = (9 + 0) \mod 11 = 9$



$$M = 11, h(k) = k \mod 11$$

 $h(k, i) = (h(k) + i) \mod M$ for sequence $i = 0, 1, ...$

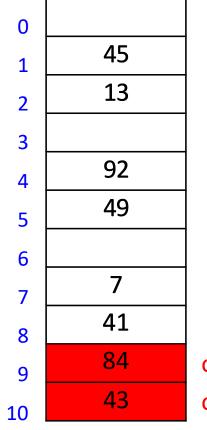
insert(20) h(20) = 9 $h(20, 0) = (9 + 0) \mod 11 = 9$



$$M = 11, h(k) = k \mod 11$$

 $h(k, i) = (h(k) + i) \mod M$ for sequence $i = 0, 1, ...$

insert(20)h(20) = 9 $h(20, 1) = (9 + 1) \mod 11 = 10$

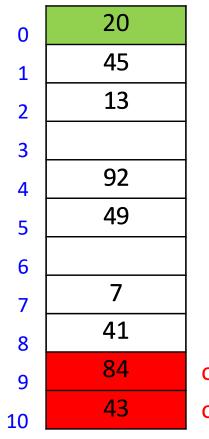


occupied occupied

$$M = 11, h(k) = k \mod 11$$

 $h(k, i) = (h(k) + i) \mod M$ for sequence $i = 0, 1, ...$

insert(20) h(20) = 9 $h(20, 2) = (9 + 2) \mod 11 = 0$

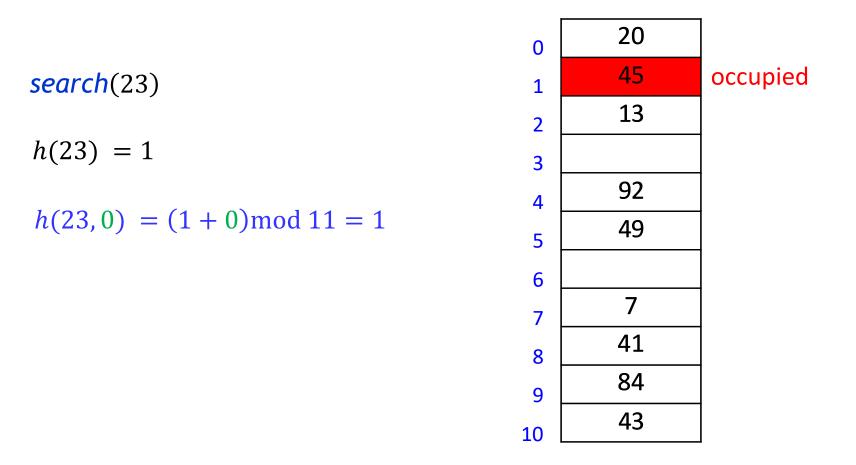


occupied occupied

Linear probing example: Search

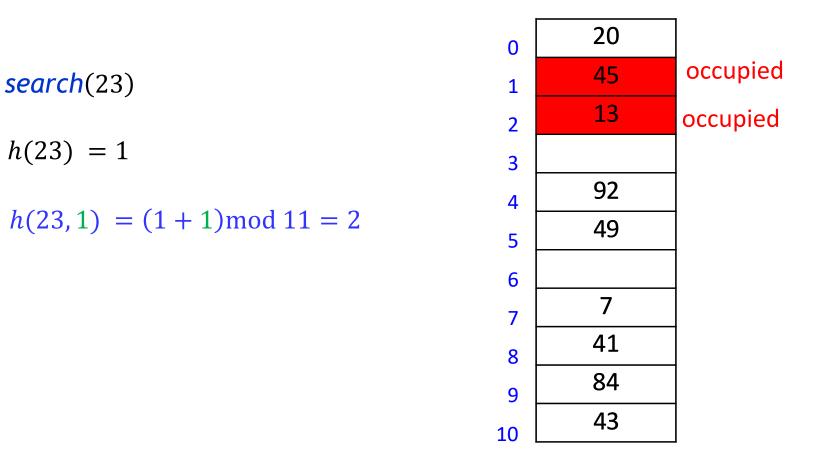
$$M = 11, h(k) = k \mod 11$$

 $h(k, i) = (h(k) + i) \mod M$ for sequence $i = 0, 1, ...$



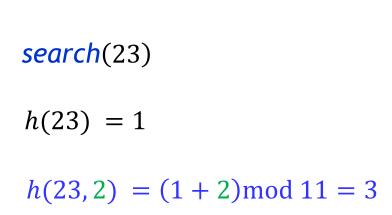
Linear probing example: Search

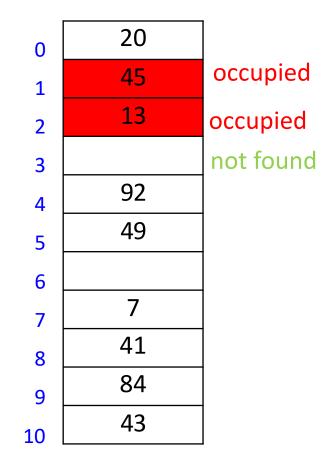
 $M = 11, h(k) = k \mod 11$ $h(k, i) = (h(k) + i) \mod M$ for sequence i = 0, 1, ...



Linear probing example: Search

 $M = 11, h(k) = k \mod 11$ $h(k, i) = (h(k) + i) \mod M$ for sequence i = 0, 1, ...





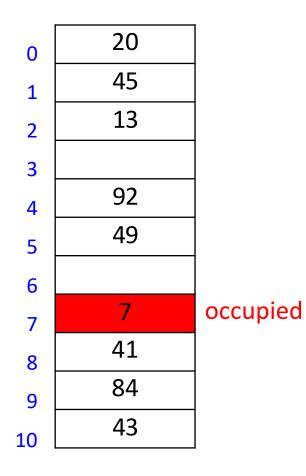
 $M = 11, h(k) = k \mod 11$ $h(k, i) = (h(k) + i) \mod M$ for sequence i = 0, 1, ...

delete(84)h(84) = 7 $h(84, 0) = (7 + 0) \mod 11 = 7$

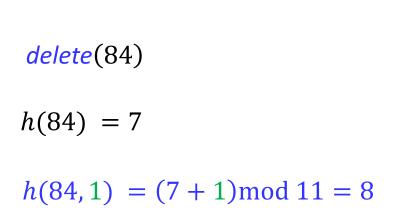
0	20
1	45
2	13
3	
4	92
5	49
6	
7	7
8	41
9	84
10	43

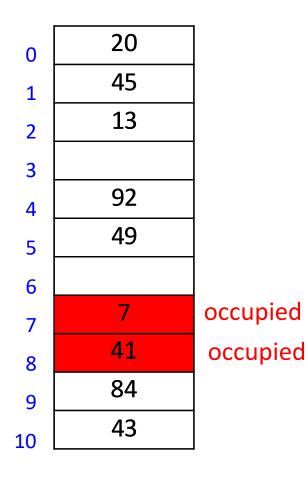
 $M = 11, h(k) = k \mod 11$ $h(k, i) = (h(k) + i) \mod M$ for sequence i = 0, 1, ...

delete(84)h(84) = 7 $h(84, 0) = (7 + 0) \mod 11 = 7$

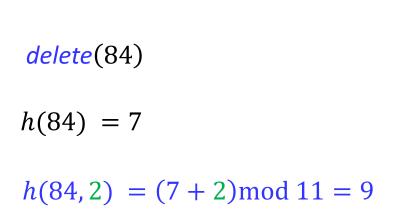


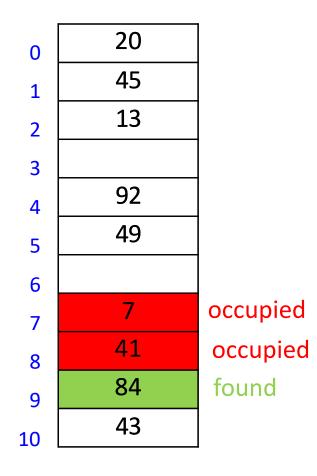
 $M = 11, h(k) = k \mod 11$ $h(k, i) = (h(k) + i) \mod M$ for sequence i = 0, 1, ...





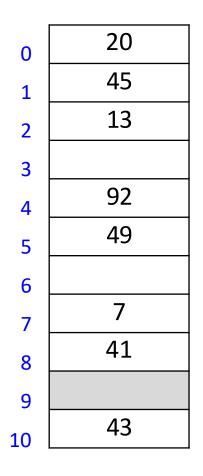
 $M = 11, h(k) = k \mod 11$ $h(k, i) = (h(k) + i) \mod M$ for sequence i = 0, 1, ...



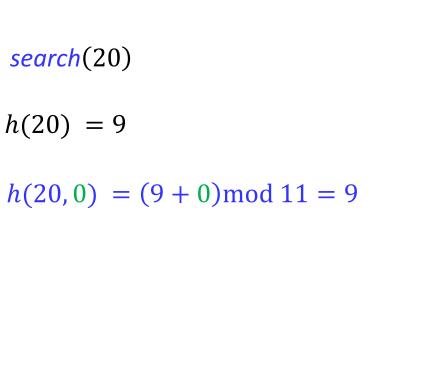


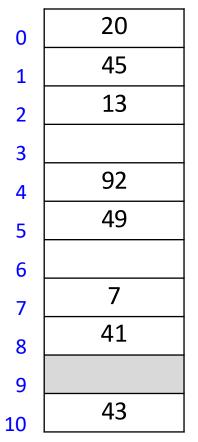
 $M = 11, h(k) = k \mod 11$ $h(k, i) = (h(k) + i) \mod M$ for sequence i = 0, 1, ...

delete(84)h(84) = 7 $h(84, 2) = (7 + 2) \mod 11 = 9$



 $M = 11, h(k) = k \mod 11$ $h(k, i) = (h(k) + i) \mod M$ for sequence i = 0, 1, ...





not found

Open Addressing

- delete becomes problematic
 - cannot leave an *empty* spot behind
 - next search might otherwise not go far enough
 - Idea: lazy deletion
 - mark spot as *deleted* (rather than *empty*)
 - continue searching past *deleted* spots
 - insert in empty or *deleted* spot
 - keep track of how many items are *deleted* and rehash if there are too many
 - to keep space $\Theta(n)$

 $M = 11, h(k) = k \mod 11$ $h(k, i) = (h(k) + i) \mod M$ for sequence i = 0, 1, ...

0	20
<i>delete</i> (84) 1	45
2	13
h(84) = 7 3	
$h(84,0) = (7+0) \mod 11 = 7$ 4	92
5	49
$h(84, 1) = (7 + 1) \mod 11 = 8$ ⁶	
7	7
$h(84,2) = (7+2) \mod 11 = 9$ 8	41
9	84

occupied occupied found

43

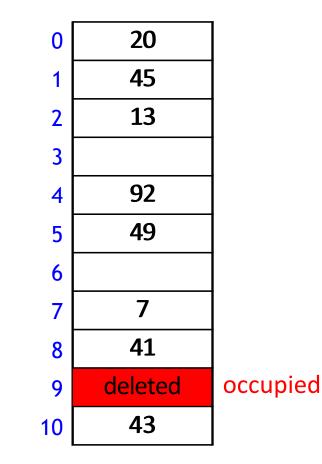
10

 $M = 11, h(k) = k \mod 11$ $h(k, i) = (h(k) + i) \mod M$ for sequence i = 0, 1, ...

delete(84)
h(84) = 7
$h(84,0) = (7+0) \mod 11 = 7$
$h(84, 1) = (7 + 1) \mod 11 = 8$
$h(84,2) = (7+2) \mod 11 = 9$



 $M = 11, h(k) = k \mod 11$ $h(k, i) = (h(k) + i) \mod M$ for sequence i = 0, 1, ...

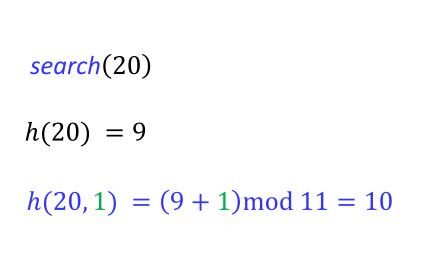


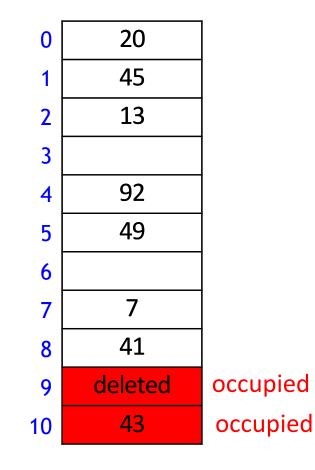
search(20)

h(20) = 9

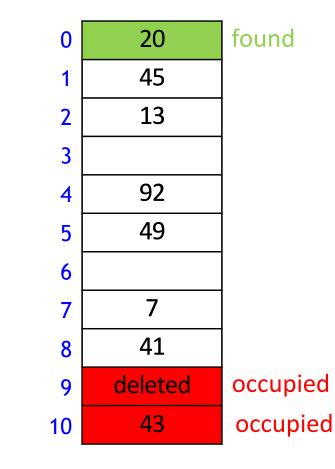
 $h(20,0) = (9+0) \mod 11 = 9$

 $M = 11, h(k) = k \mod 11$ $h(k, i) = (h(k) + i) \mod M$ for sequence i = 0, 1, ...





 $M = 11, h(k) = k \mod 11$ $h(k, i) = (h(k) + i) \mod M$ for sequence i = 0, 1, ...



search(20)

h(20) = 9

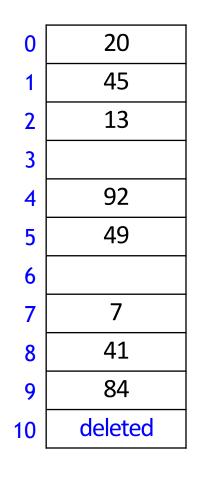
 $h(20,2) = (9+2) \mod 11 = 0$

 $M = 11, h(k) = k \mod 11$ $h(k, i) = (h(k) + i) \mod M$ for sequence i = 0, 1, ...

insert(10)

h(10) = 10

 $h(10,0) = (10+0) \mod 11 = 10$

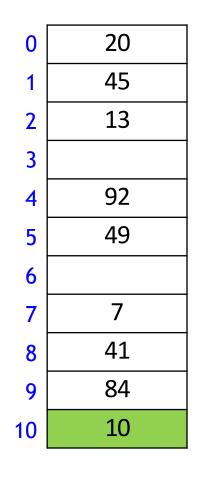


 $M = 11, h(k) = k \mod 11$ $h(k, i) = (h(k) + i) \mod M$ for sequence i = 0, 1, ...

insert(10)

h(10) = 10

 $h(10,0) = (10+0) \mod 11 = 10$



Open Addressing

- Can use lazy deletion for other data structures
 - mark as deleted items in AVL tree instead of actual deletion
 - if a lot of items are deleted, rebuild AVL tree
- While in other data structures lazy deletion can be used to improve performance, in probing lazy deletion is required for correct performance

Probe Sequence Operations

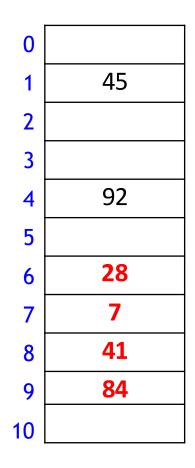
probe-sequence::insert(T, (k, v)) for (i = 0; i < M; i + +)if T [h(k, i)] is empty or deleted T [h(k, i)] = (k, v)return success return failure to insert

- Stop inserting after *M* tries
 - provided $\alpha < 1$, linear probing does not need this
 - some probing methods need this
- If insert fails, call rehash

probe-sequence::search(T,k)
for (i = 0; i < M; i + +)
if T [h(k,i)] is empty
return item-not-found
if T [h(k,i)] has key k return T [h(k,i)]
// T [h(k,i)] = deleted or not in the data structure
// therefore keep searching
return item not found</pre>

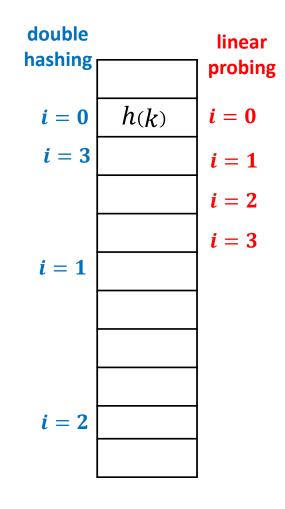
Linear probing drawbacks

- Entries tend to cluster into contiguous regions
- Many probes for each search, insert, and delete
- How to avoid clustering?



Double Hashing Motivation

- Linear probing attempts inserting into consecutive locations, i.e. step size 1
 h(k) h(k) + 1 h(k) + 2
- To avoid consecutive locations, let each key have its own step size
 h(k) h(k) + 1 · step(k) h(k) + 2 · step(k)
- This helps to avoid the clustering side effect
- For each key k, probe sequence is always the same
- Example
 - for k = 14, probe sequence is always
 - 4, 7, 10, 13
 - for k = 24, probe sequence is always
 - **5**, 10, 15, 20

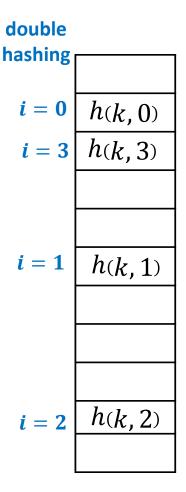


Double Hashing

Double hashing : open addressing with probe sequence

 $h(k,i) = (h_0(k) + i \cdot h_1(k)) \mod M$ for i = 0,1,...

- Where
 - h_1 is a secondary hash function (step size) s.t. $h_1(k) \neq 0$
 - *h*₁(*k*) is relative prime with *M* for all keys *k*
 - otherwise probe-sequence does not explore the entire hash table
 - easiest to choose M prime, and ensure $h_1(k) < M$
- Double hashing with a good secondary hash function does not cause the bad clustering produced by linear probing
- search, insert, delete work as in linear probing, but with this different probe sequence
 - linear probing is a special case of double hashing with $h_1(k) = 1$



Independent Hash functions

- When two hash functions h_0 , h_1 are required, they should be independent $P(h_0(k) = i, h_1(k) = j) = P(h_0(k) = i) P(h_1(k) = j)$
- Using two modular hash-functions may lead to dependencies
- Better idea: use *multiplicative method* for second hash function
 - let 0 < *A* < 1

•
$$h(k) = \lfloor M(kA - \lfloor kA \rfloor) \rfloor$$

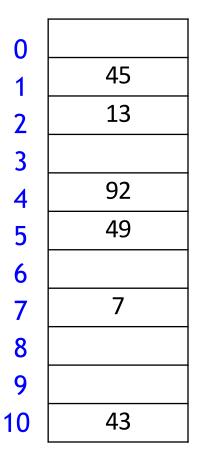
 $0 \leq \text{fractional part of } kA < 1$

 $0 \le M \cdot (\text{fractional part of } kA) < M$

- Example: M = 11, A = 0.2
 - $h(34) = [11 \cdot (34 \cdot 0.2 [34 \cdot 0.2])] = [11 \cdot (6.8 [6.8])] = [11 \cdot 0.8] = 8$
- Multiplying with A scrambles the keys
 - should use at least $\log |U| + \log |M|$ bits of A
- $A = \varphi = \frac{\sqrt{5}-1}{2} \approx 0.618033988749$ works well
- For double hashing, to ensure 0 < h(k) < M, use $h_1(k) = \lfloor (M - 1)(kA - \lfloor kA \rfloor) \rfloor + 1$

for table size $M - 1: 0 \le \text{values} \le M - 1$

 $M = 11, h_0(k) = k \mod 11, h_1(k) = \lfloor 10(\varphi k - \lfloor \varphi k \rfloor) \rfloor + 1$ $h(k,i) = (h_0(k) + i \cdot h_1(k)) \mod M \text{ for sequence } i = 0,1, \dots$



 $\sqrt{5}-1$

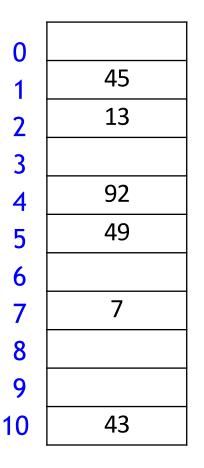
2

 $M = 11, h_0(k) = k \mod 11, h_1(k) = \lfloor 10(\varphi k - \lfloor \varphi k \rfloor) \rfloor + 1$ $h(k,i) = (h_0(k) + i \cdot h_1(k)) \mod M \text{ for sequence } i = 0,1, \dots$

insert(41)

$$h_0(41) = 8$$

 $h_1(41) = 4$
 $h(41, 0) = (8 + 0 \cdot 4) \mod 11 = 8$

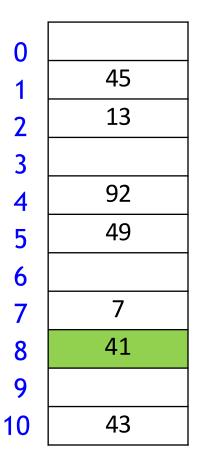


 $M = 11, h_0(k) = k \mod 11, h_1(k) = \lfloor 10(\varphi k - \lfloor \varphi k \rfloor) \rfloor + 1$ $h(k,i) = (h_0(k) + i \cdot h_1(k)) \mod M \text{ for sequence } i = 0,1, \dots$

insert(41)

$$h_0(41) = 8$$

 $h_1(41) = 4$
 $h(41, 0) = (8 + 0 \cdot 4) \mod 11 = 8$



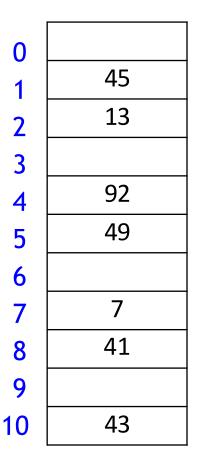
 $M = 11, h_0(k) = k \mod 11, h_1(k) = \lfloor 10(\varphi k - \lfloor \varphi k \rfloor) \rfloor + 1$ $h(k,i) = (h_0(k) + i \cdot h_1(k)) \mod M \text{ for sequence } i = 0,1, \dots$

7

insert(194)

$$h_0(194) = 7$$

 $h_1(194) = 9$
 $h(194, 0) = (7 + 0 \cdot 9) \mod 11 =$



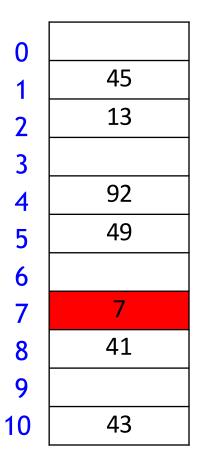
 $M = 11, h_0(k) = k \mod 11, h_1(k) = \lfloor 10(\varphi k - \lfloor \varphi k \rfloor) \rfloor + 1$ $h(k,i) = (h_0(k) + i \cdot h_1(k)) \mod M \text{ for sequence } i = 0,1, \dots$

7

insert(194)

$$h_0(194) = 7$$

 $h_1(194) = 9$
 $h(194, 0) = (7 + 0 \cdot 9) \mod 11 =$



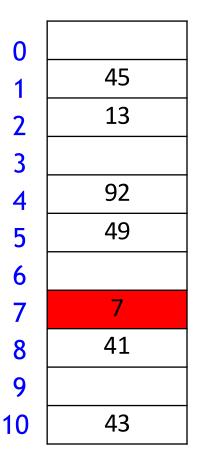
 $M = 11, h_0(k) = k \mod 11, h_1(k) = \lfloor 10(\varphi k - \lfloor \varphi k \rfloor) \rfloor + 1$ $h(k,i) = (h_0(k) + i \cdot h_1(k)) \mod M \text{ for sequence } i = 0,1, \dots$

5

insert(194)

$$h_0(194) = 7$$

 $h_1(194) = 9$
 $h(194, 1) = (7 + 1 \cdot 9) \mod 11 =$



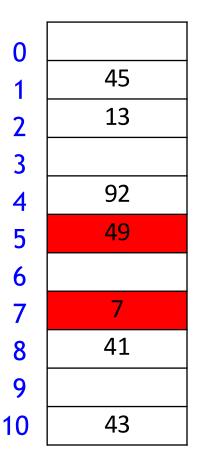
 $M = 11, h_0(k) = k \mod 11, h_1(k) = \lfloor 10(\varphi k - \lfloor \varphi k \rfloor) \rfloor + 1$ $h(k,i) = (h_0(k) + i \cdot h_1(k)) \mod M \text{ for sequence } i = 0,1, \dots$

5

insert(194)

$$h_0(194) = 7$$

 $h_1(194) = 9$
 $h(194, 1) = (7 + 1 \cdot 9) \mod 11 =$

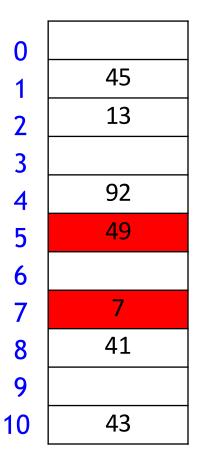


 $M = 11, h_0(k) = k \mod 11, h_1(k) = \lfloor 10(\varphi k - \lfloor \varphi k \rfloor) \rfloor + 1$ $h(k,i) = (h_0(k) + i \cdot h_1(k)) \mod M \text{ for sequence } i = 0,1, \dots$

insert(194)

$$h_0(194) = 7$$

 $h_1(194) = 9$
 $h(194, 2) = (7 + 2 \cdot 9) \mod 11 = 3$



 $M = 11, h_0(k) = k \mod 11, h_1(k) = \lfloor 10(\varphi k - \lfloor \varphi k \rfloor) \rfloor + 1$ $h(k,i) = (h_0(k) + i \cdot h_1(k)) \mod M \text{ for sequence } i = 0,1, \dots$

$$insert(194)$$

$$h_0(194) = 7$$

$$h_1(194) = 9$$

$$h(104, 2) = (7 + 2, 9) \mod 11 = 7$$

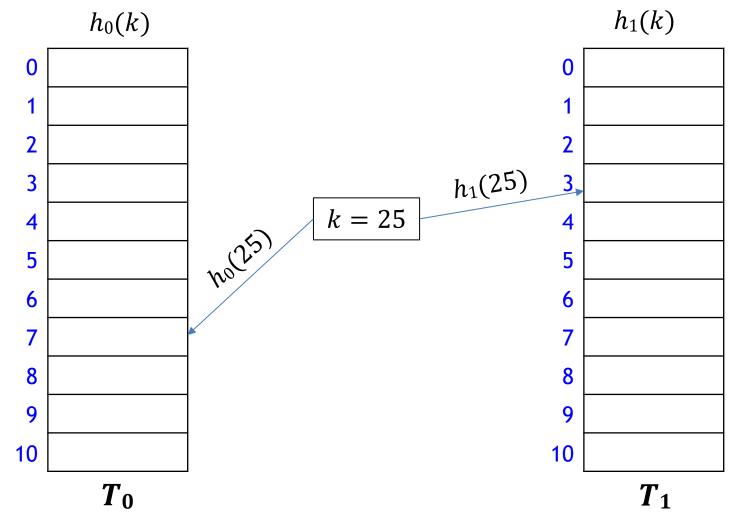
 $h(194, 2) = (7 + 2 \cdot 9) \mod 11 = 3$

Outline

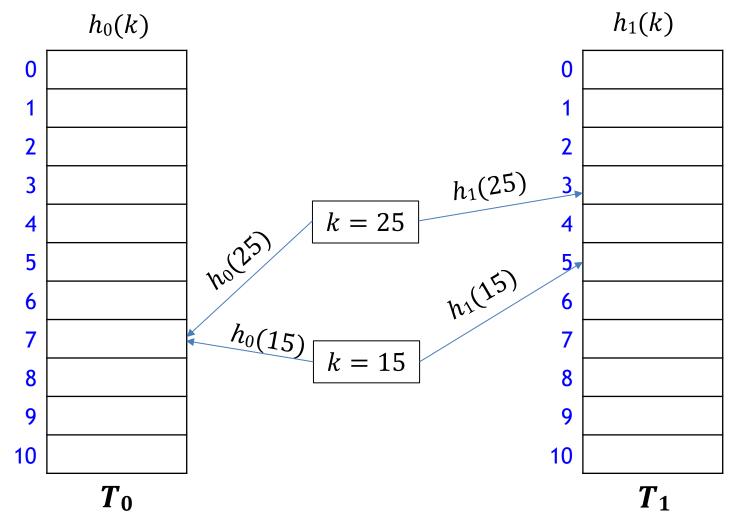
- Dictionaries via Hashing
 - Hashing Introduction
 - Hashing with Chaining
 - Open Addressing
 - probe Sequences

cuckoo hashing

Hash Function Strategies

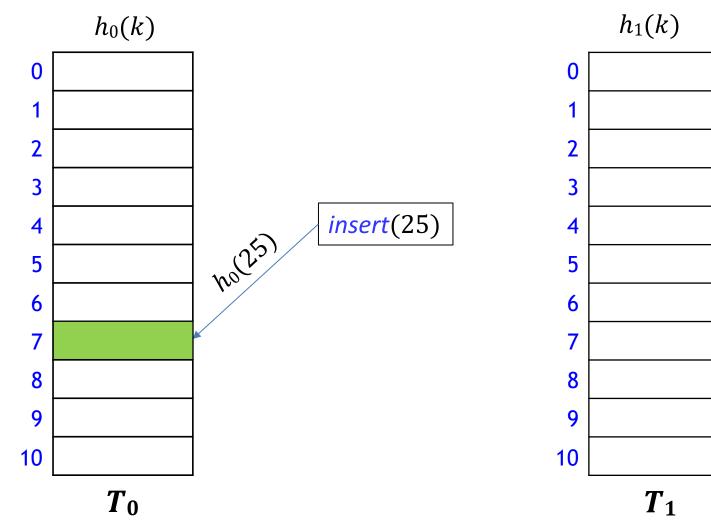


• Main idea: An item with key k can be only at $T_0[h_0(k)]$ or $T_1[h_1(k)]$

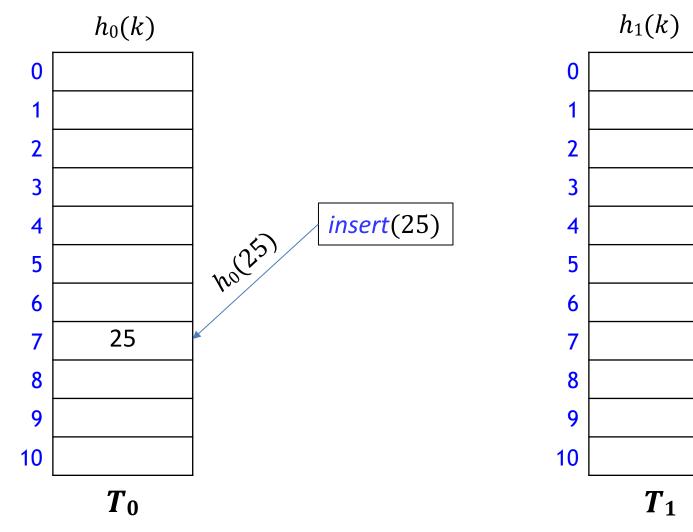


• Main idea: An item with key k can be only at $T_0[h_0(k)]$ or $T_1[h_1(k)]$

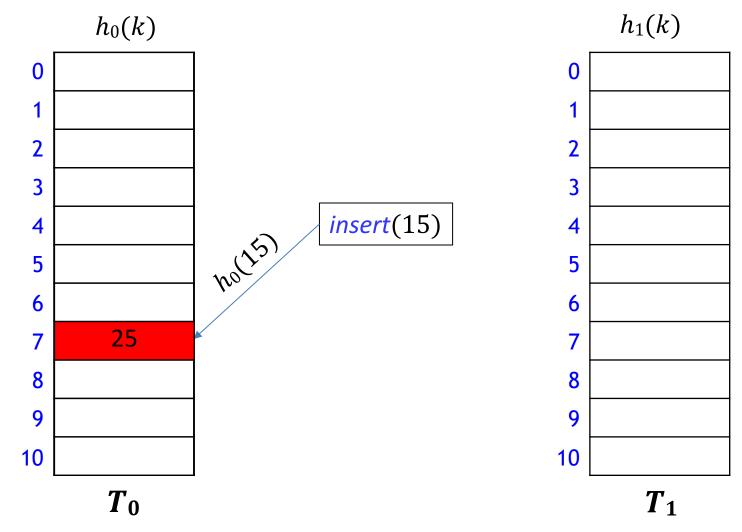
• *search* and *delete* take O(1) time



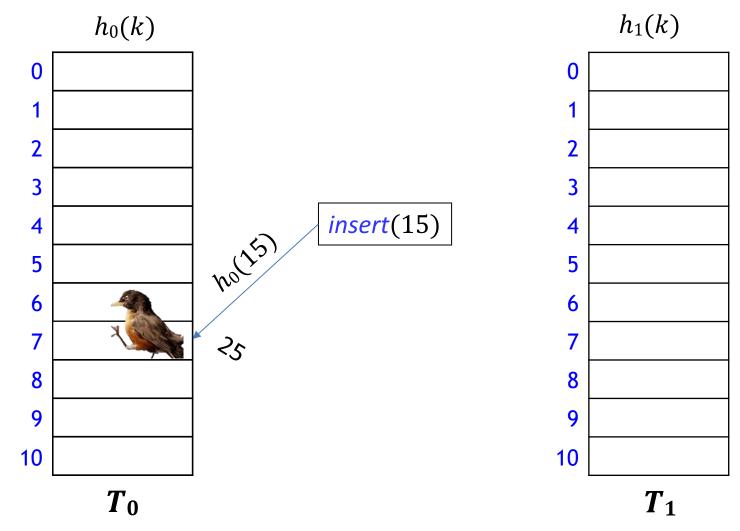
How to insert?



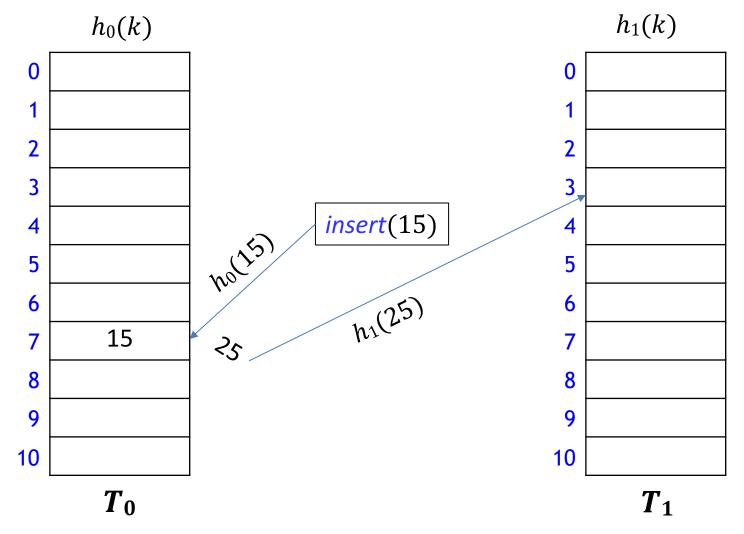
How to insert?



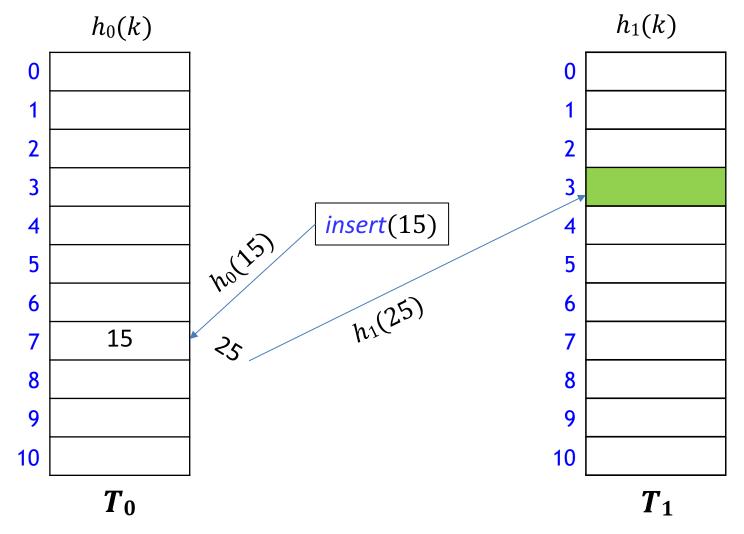
• How to insert k when $h_0(k)$ is already occupied?



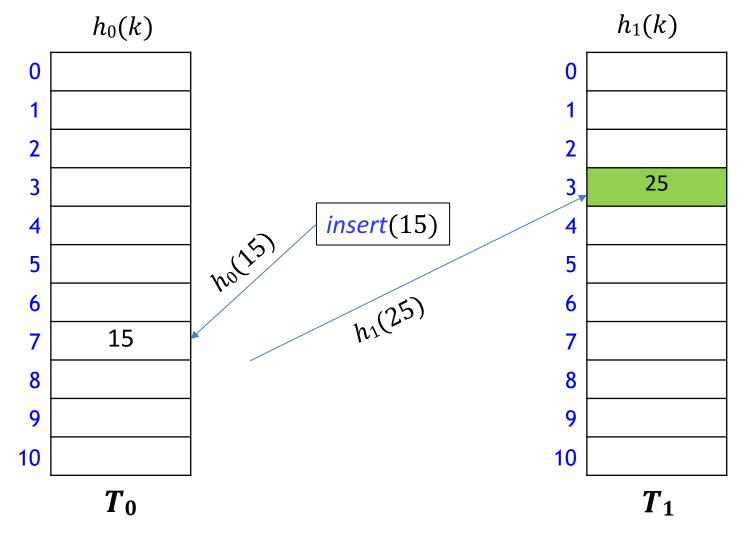
• How to insert k when $h_0(k)$ is already occupied?



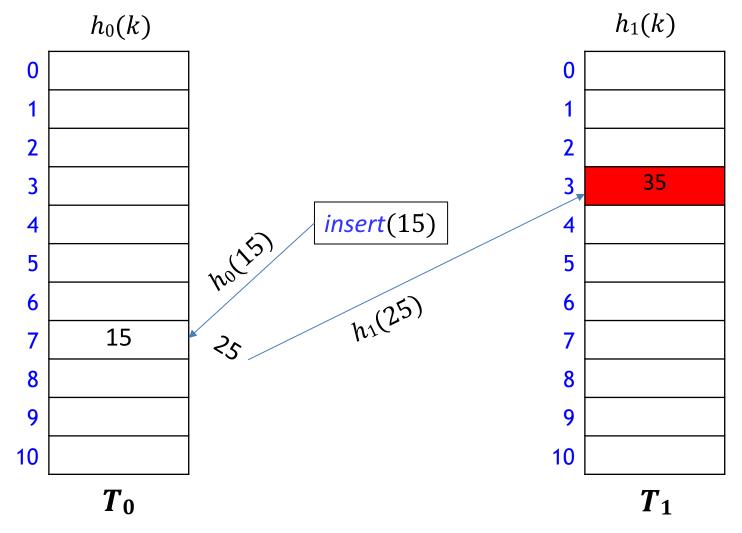
• How to insert k when $h_0(k)$ is already occupied?



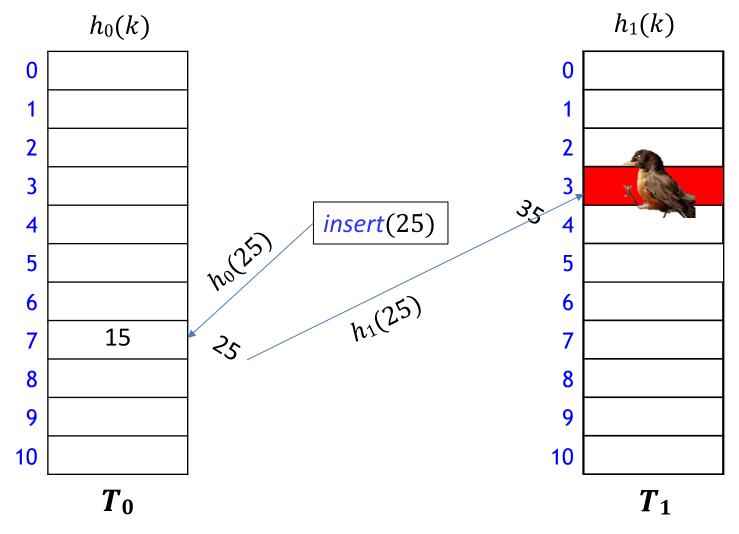
• How to insert k when $h_0(k)$ is already occupied?



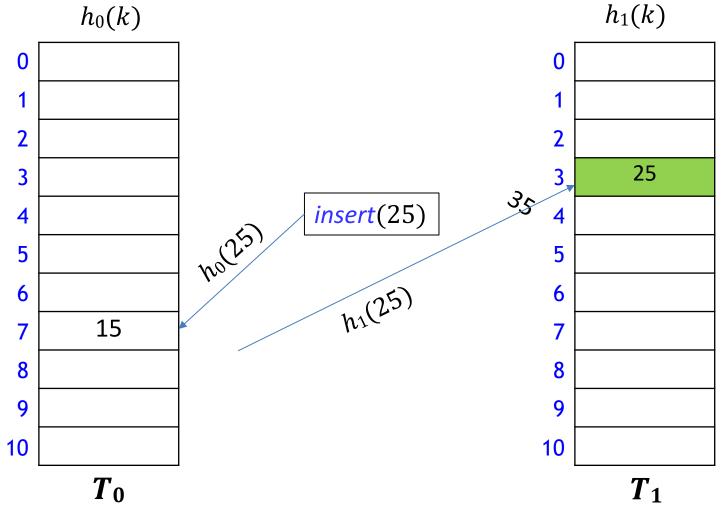
• How to insert k when $h_0(k)$ is already occupied?



• How to insert k when $h_0(k)$ is already occupied?



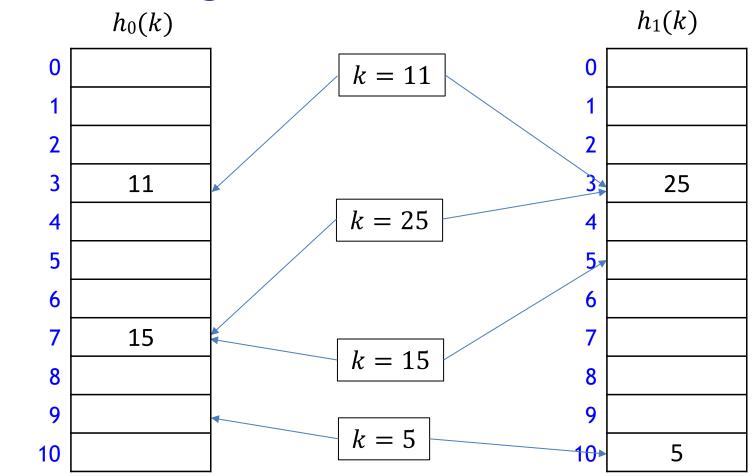
• How to insert k when $h_0(k)$ is already occupied?



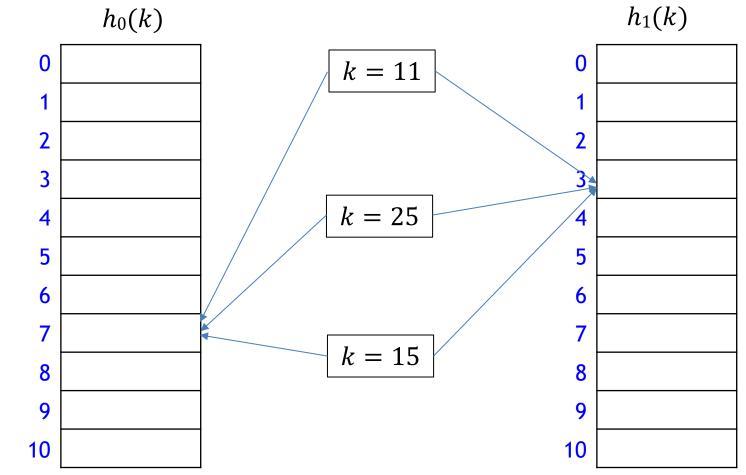
- Continue until all items placed, or *failure*
 - rehash if failure

Cuckoo Hashing [Pagh & Rodler, 2001]

- Use independent hash functions h_0 , h_1 and two tables T_0 , T_1
- Key k can be only at $T_0[h_0(k)]$ or $T_1[h_1(k)]$
 - search and delete take constant time
 - *insert* always initially puts key k into $T_0[h_0(k)]$
 - evict item that my have been there already
 - if so, evicted item k' is inserted at T₁[h₁(k')]
 - may lead to a loop of evictions
 - can show that if insertion is possible, then there are at most 2n evictions
 - so abort after too many attempts



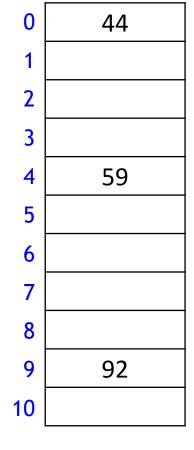
- Intuitively
 - each key has 2 locations (locations can coincide)
 - try to "match" keys to locations so that everyone is placed

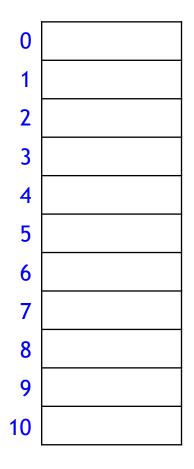


- Sometimes no solution for the "matching" problem
 - would loop infinitely if not stopped by force

 $M = 11, h_0(k) = k \mod 11, h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$

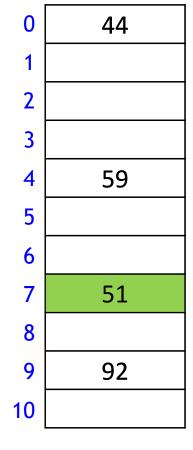
insert(51) i = 0 k = 51 $h_0(k) = 7$

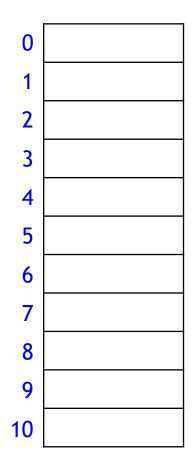




 $M = 11, h_0(k) = k \mod 11, h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$

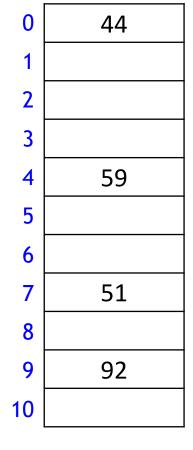
insert(51) i = 0 k = 51 $h_0(k) = 7$

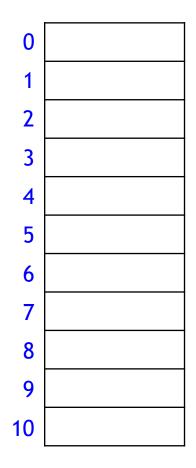




 $M = 11, h_0(k) = k \mod 11, h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$

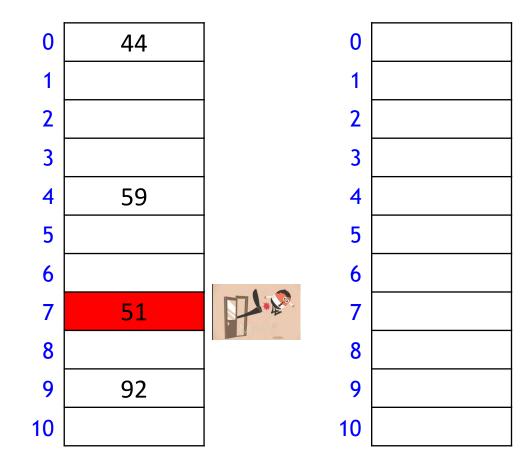
insert(95) i = 0 k = 95 $h_0(k) = 7$





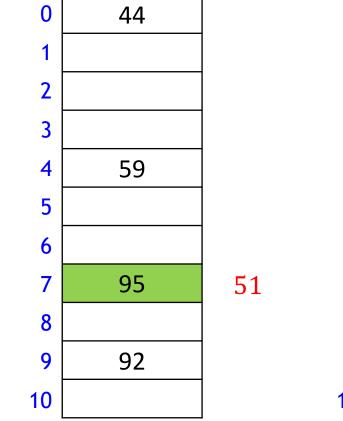
 $M = 11, h_0(k) = k \mod 11, h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$

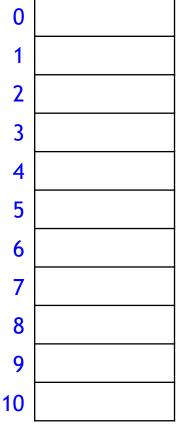
insert(95) i = 0 k = 95 $h_0(k) = 7$



 $M = 11, h_0(k) = k \mod 11, h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$

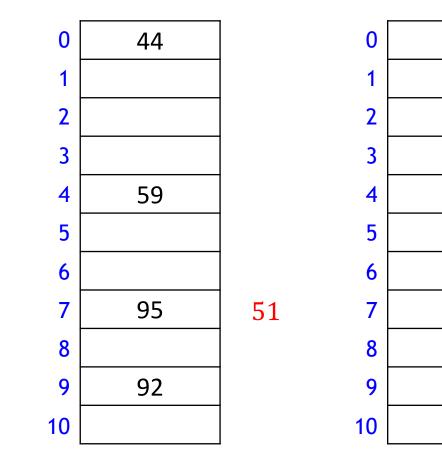
insert(95) i = 0 k = 95 $h_0(k) = 7$





 $M = 11, h_0(k) = k \mod 11, h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$

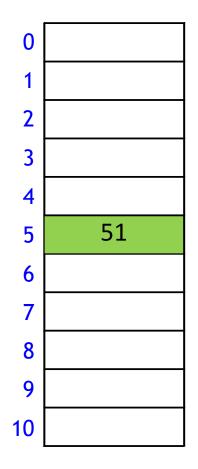
insert(95) i = 1 k = 51 $h_1(k) = 5$



 $M = 11, h_0(k) = k \mod 11, h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$

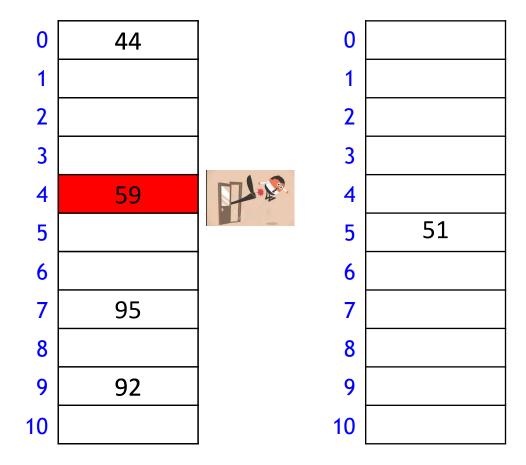
insert(95) i = 1 k = 51 $h_1(k) = 5$





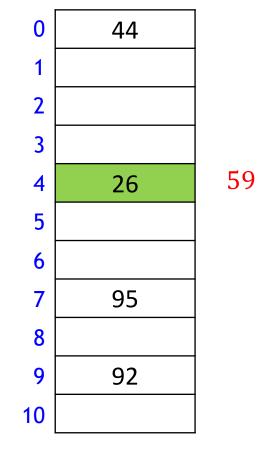
 $M = 11, h_0(k) = k \mod 11, h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$

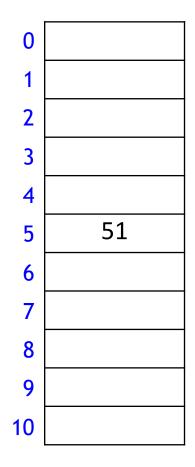
insert(26)i = 0k = 26 $h_0(k) = 4$



 $M = 11, h_0(k) = k \mod 11, h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$

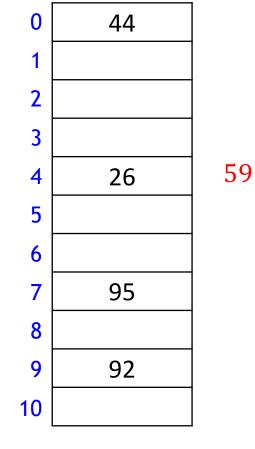
insert(26)i = 0k = 26 $h_0(k) = 4$

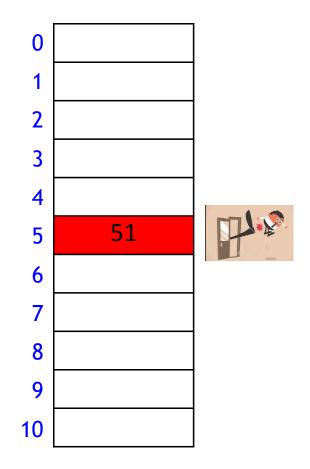




 $M = 11, h_0(k) = k \mod 11, h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$

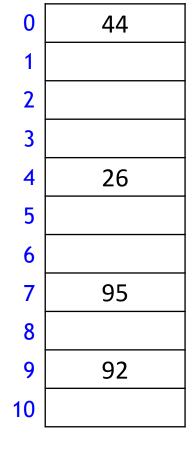
insert(26) i = 1 k = 59 $h_1(k) = 5$

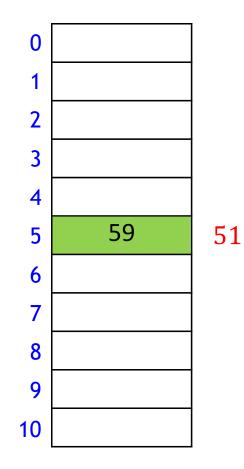


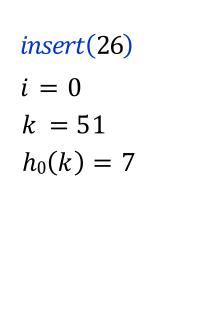


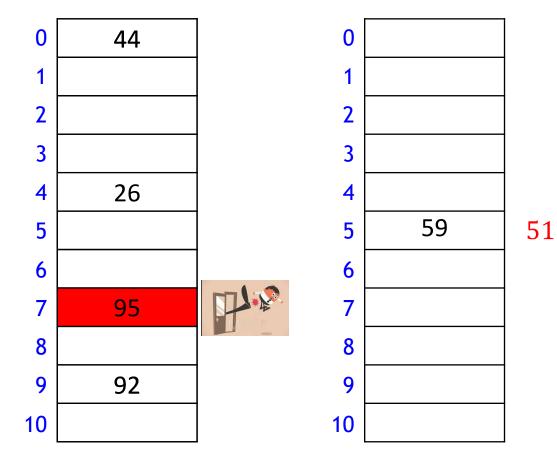
 $M = 11, h_0(k) = k \mod 11, h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$

insert(26) i = 1 k = 59 $h_1(k) = 5$



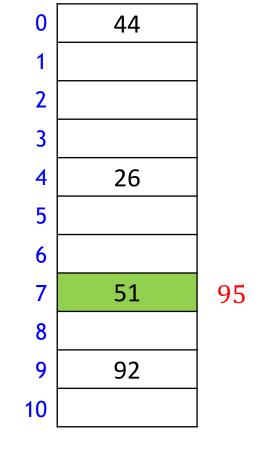


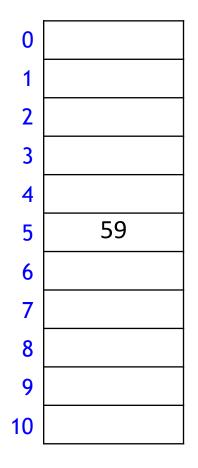




 $M = 11, h_0(k) = k \mod 11, h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$

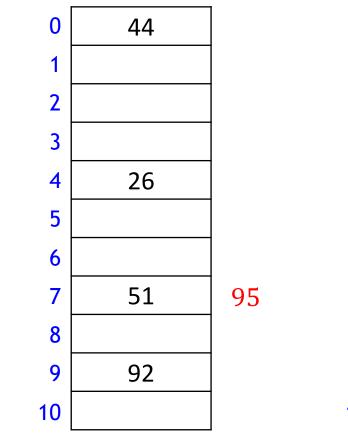
insert(26) i = 0 k = 51 $h_0(k) = 7$

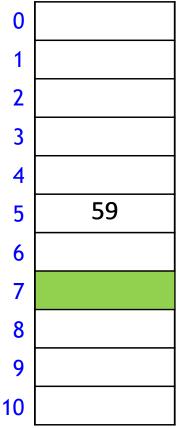




 $M = 11, h_0(k) = k \mod 11, h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$

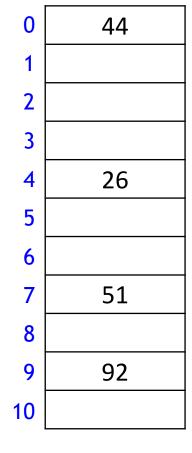
insert(26) i = 1 k = 95 $h_1(k) = 7$

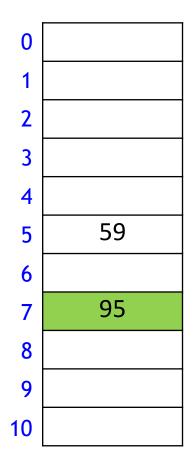




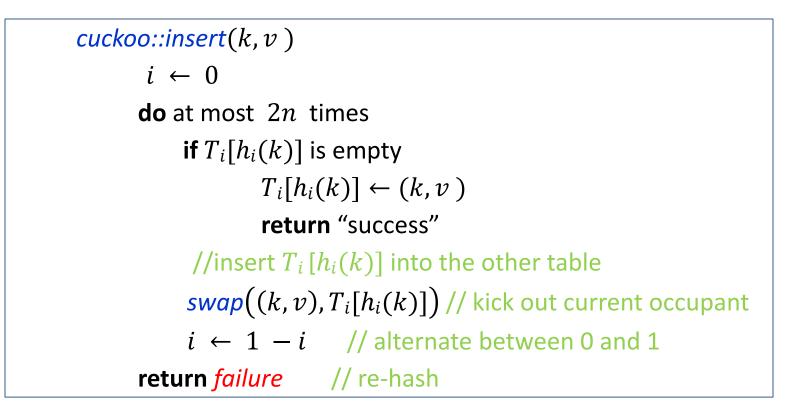
 $M = 11, h_0(k) = k \mod 11, h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$

insert(26) i = 1 k = 95 $h_1(k) = 7$



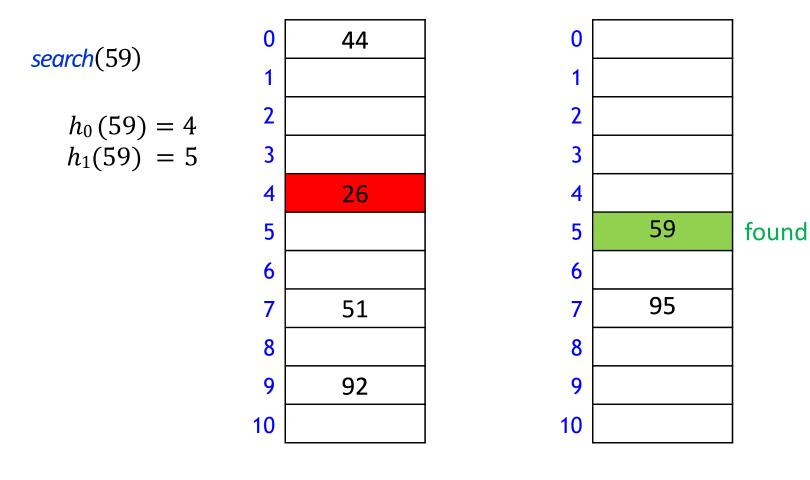


Cuckoo Hashing: Insert Pseudocode

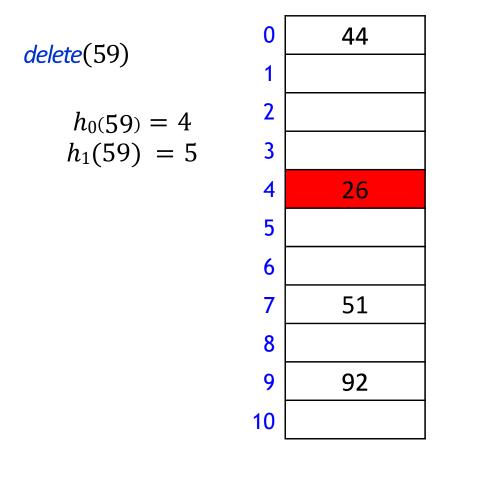


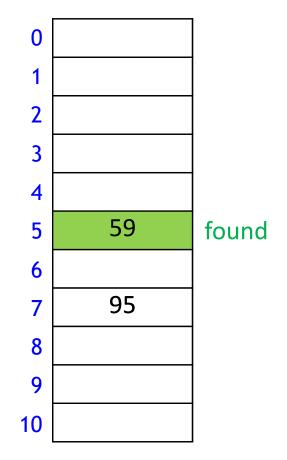
- Practical tip
 - do not wait for 2n unsuccessful tries to declare failure
 - In practice, declare failure much earlier than 2n

Cuckoo hashing: Search

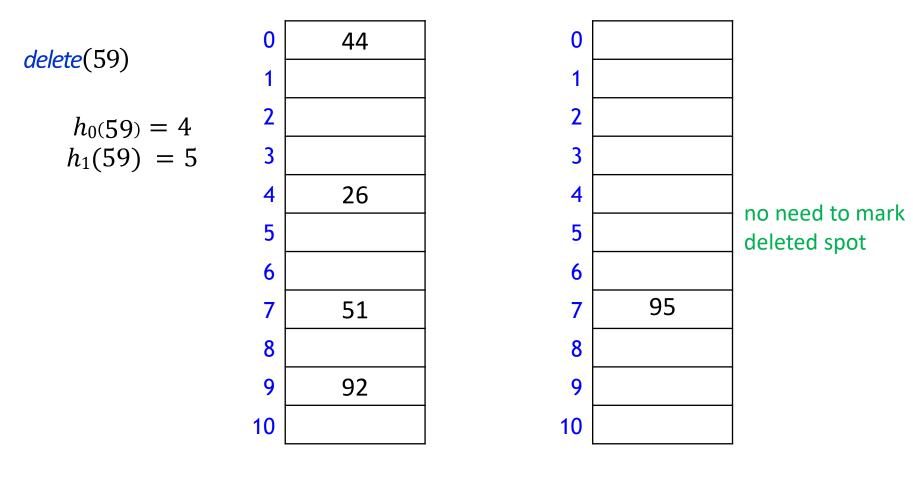


Cuckoo hashing: Delete





Cuckoo hashing: Delete



Cuckoo hashing discussion

- Load factor $\alpha = n/(\text{size of } T_0 + \text{size of } T_1)$
- Can show that if the load factor is small enough, then insertion has
 O(1) expected time
 - this requires $\alpha < 1/2$
 - so wasted space
- Can show expected space is O(n)
- There are many variations of cuckoo hashing
 - two hash tables do not have to be of the same size
 - two hash tables can be combined into one
 - more flexible when inserting: always consider both possible positions
 - Use k > 2 allowed locations
 - *k* tables or *k* hash functions

Running Time of Open Addressing Strategies

- For any open addressing scheme, we *must* have $\alpha \leq 1$ (why?)
- For analysis, require $0 < \alpha < 1$, for Cuckoo hashing require $\alpha < 1/2$
 - not arbitrarily close
- Under these restrictions and the Universal Hashing Assumption
 - All strategies have O(1) expected time for search, insert, delete
 - Cuckoo hashing has O(1) worst case for search, delete
 - Probe sequence use O(n) worst case space
 - Cuckoo hashing uses O(n) expected space
- For any hashing, the worst case runtime is $\Theta(n)$ for insert
- In practice, double hashing is the most popular
 - Or cuckoo hashing if there are many more searches than insertions

Outline

- Dictionaries via Hashing
 - Hashing Introduction
 - Hashing with Chaining
 - Open Addressing
 - probe Sequences
 - cuckoo hashing
 - Hash Function Strategies

Choosing Good Hash Function

- Satisfying the uniform hashing assumption is impossible
 - too many hash functions and for most, computing h(k) is not cheap for most of them
- Two ways to compromise
 - 1. Deterministic: hope for a good performance by choosing a hash function that is
 - unrelated to any possible patterns in the data
 - depends on all parts of the key
 - 2. Randomized: choose randomly among a limited set of functions
 - but aim for $P(\text{two keys collide}) = \frac{1}{M}$
 - this is enough to prove expected runtime bounds for chaining

Deterministic Hash Functions

- We saw two basic methods (for integer keys)
- Modular method: $h(k) = k \mod M$
 - chose *M* to be a prime
 - Means finding a suitable prime quickly when re-hashing
 - can be done in O(Mlog log n) time
 - no details
- Multiplicative method: $h(k) = \lfloor M(kA \lfloor kA \rfloor) \rfloor$
 - multiplying with 0 < A < 1 is used to scramble keys
 - so A should be irrational to avoid patterns in keys
 - experiments show that good scrambling is achieved when A is the golden ratio
 - should use at least $\log|U| + \log M$ bits of $\log|U|$

Randomized Hash Functiosn: Carter-Wegman's Universal Hashing

- Randomization that uses easy-to-compute hash functions
 - Requires: all keys are in $\{0, \dots p-1\}$ for some (big) prime p
 - At initialization and whenever rehash
 - choose number M < p
 - *M* equal to some power of 2 is ok
 - choose (and store) two random numbers $a, b \in \{0, \dots, p-1\}$
 - b = random(p)
 - a = 1 + random(p-1)
 - so that $a \neq 0$
 - Use as hash function

 $h(k) = ((ak + b) \bmod p) \bmod M$

- can be computed quickly
- can prove that two keys collide with probability at most $\frac{1}{M}$
 - enough to prove the expected runtime bounds for chaining, although uniform hashing assumption is not satisfied

Multi-dimensional Data

- May need multi-dimensional non integer keys
 - example: strings in Σ^*
- 1. Construct $f(w) \in N$ for converting string w to integer
 - should depend on all parts of the key
 - ASCII representation of APPLE is (65, 80, 80, 76, 69)
 - simple addition: f(APPLE) = 65 + 80 + 80 + 76 + 69
 - many collisions, 'stop'='tops'='pots'
 - polynomial accumulation works better
 - choose radix R, e.g. R = 255
 - $f(APPLE) = 65R^4 + 80R^3 + 80R^2 + 76R^1 + 69R^0$
 - compute in O(|w|) time with Horner's rule
 - either ignoring overflow

 $f(APPLE) = \left(\left((65R + 80)R + 80 \right)R + 76 \right)R + 69$

- or apply *mod M* after each addition
- 2. Now apply any hash function, such as $h(w) = f(w) \mod M$

Hashing vs. Balanced Search Trees

- Advantages of Balanced Search Trees
 - O(log n) worst-case operation cost
 - does not require any assumptions, special functions, or known properties of input distribution
 - predictable space usage (exactly n nodes)
 - never need to rebuild the entire structure
 - supports ordered dictionary operations (rank, select etc.)
- Advantages of Hash Tables
 - O(1) expected time operations (if hashes well-spread and load factor small)
 - can choose space-time trade-off via load factor
 - cuckoo hashing achieves O(1) worst-case for search & delete