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Direct Addressing
▪ Special situation:  every key 𝑘 is integer with 0 ≤ 𝑘 < 𝑀

▪ Direct addressing implementation 
▪ store (𝑘, 𝑣) in array 𝐴 of size 𝑀 via 𝐴[𝑘]  ←  𝑣 
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▪ search(𝑘): check if 𝐴[𝑘] is empty

▪ insert(𝑘, 𝑣): 𝐴[𝑘]  ←  𝑣 

𝐷 = { 2, dog , 6, cat }

insert(8, pig) 

pig



Direct Addressing
▪ Special situation:  every key 𝑘 is integer with 0 ≤ 𝑘 < 𝑀

▪ Direct addressing implementation
▪ store (𝑘, 𝑣) in array 𝐴 of size 𝑀 via 𝐴[𝑘]  ←  𝑣 
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▪ search(𝑘): check if 𝐴[𝑘] is empty

▪ insert(𝑘, 𝑣): 𝐴[𝑘]  ←  𝑣 

𝐷 = { 2, dog , 6, cat , (8,pig)}

▪ delete(𝑘): 𝐴[𝑘]  ← empty

d𝑒𝑙𝑒𝑡𝑒(2) 

pig



Direct Addressing
▪ Special situation:  every key 𝑘 is integer with 0 ≤ 𝑘 < 𝑀

▪ Direct addressing implementation
▪ store (𝑘, 𝑣) in array 𝐴 of size 𝑀 via 𝐴[𝑘]  ←  𝑣 

cat

0

1

2

3

4

5

6

7

8

▪ search(𝑘): check if 𝐴[𝑘] is empty

▪ insert(𝑘, 𝑣): 𝐴[𝑘]  ←  𝑣 

▪ Drawbacks
1. space is wasteful if 𝑛 <<  𝑀

2. keys must be integers

𝐷 = { 6, cat , (8,pig)}

▪ delete(𝑘): 𝐴[𝑘]  ← empty

pig

▪ all operations are 𝑂(1)

▪ total storage is Θ(𝑀)



Hashing

▪ Idea: first map keys to a smaller integer range and then use  direct addressing

Universe 𝑈 of keys ℎ {0,1, … 𝑀 − 1}



Hashing
▪ Idea: first map keys to a smaller integer range and then use  direct addressing
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▪ Example

▪ 𝑈 =  𝑁,  𝑀 =  11, ℎ(𝑘)  =  𝑘 𝑚𝑜𝑑 11

▪ keys  7, 13, 43, 45, 49, 92

▪ Assumption: keys come from some universe 𝑈

▪ typically 𝑈 = {0,1, … }, sometimes 𝑈 is finite

▪ Design  hash function ℎ ∶  𝑈 →  {0, 1, . . . , 𝑀 −  1}

▪ ℎ(𝑘) is called hash value of 𝑘

▪ example: ℎ(𝑘)  =  𝑘 𝑚𝑜𝑑 𝑀

▪ will see other choices later

▪ Store dictionary in array 𝑇 of size 𝑀, called hash table

▪ Item with key 𝑘 wants to be stored in slot ℎ 𝑘  of array  𝑇



Hashing
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▪ as usual, store KVP, but show only keys
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▪ Idea: first map keys to small integer range and then use  direct addressing

▪ Assumption: keys come from some universe 𝑈

▪ typically 𝑈 = {0,1, … }, sometimes 𝑈 is finite

▪ Design  hash function ℎ ∶  𝑈 →  {0, 1, . . . , 𝑀 −  1}

▪ ℎ(𝑘) is called hash value of 𝑘

▪ example: ℎ(𝑘)  =  𝑘 𝑚𝑜𝑑 𝑀

▪ will see other choices later

▪ Store dictionary in array 𝑇 of size 𝑀, called hash table

▪ Item with key 𝑘 wants to be stored in slot ℎ 𝑘  of array  𝑇

▪ Example

▪ 𝑈 =  𝑁,  𝑀 =  11, ℎ(𝑘)  =  𝑘 𝑚𝑜𝑑 11

▪ keys  7, 13, 43, 45, 49, 92

▪ Typically choose 𝑀 ∈ Θ(𝑛)  

▪ shrink or expand the hash table dynamically as items inserted/deleted

▪ There are good reasons for choosing 𝑀 to be a prime number



Hash Functions and Collisions

▪ Generally hash function ℎ is not injective

▪ many keys can map to the same integer, example

▪ ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11,

▪ ℎ(46) = 2 = ℎ(13)

▪ Collision:  want to insert (𝑘, 𝑣),  but 𝑇[ℎ(𝑘)] is occupied

▪ Two main strategies to deal with collisions

1. Chaining: allow multiple items at each table location

2. Open addressing: alternative slots in array

▪ probe sequence: many alternative locations

▪ linear probing

▪ double hashing

▪ cuckoo hashing: just one alternative location

▪ Hash function 

▪ should be fast, 𝑂(1), to compute
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Hashing with Chaining
𝑀 =  11, ℎ(𝑘)  =  𝑘 𝑚𝑜𝑑 11
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Bucket 
array

▪ Each slot is a bucket containing 0 or more KVPs

▪ bucket can be implemented by 
any dictionary

▪ even another hash table

▪ simplest approach is unsorted 
linked list dictionary in each 
bucket

▪ this is called chaining
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Hashing with Chaining

▪ Operations

▪ search(𝑘): look for key 𝑘 in the list at T [ℎ(𝑘)]

▪ apply MTF heuristic

▪ insert(𝑘, 𝑣): add (𝑘, 𝑣) to the front of list at 𝑇 [ℎ(𝑘)] 

▪ delete(𝑘): search and delete from the list at 𝑇[ℎ(𝑘)]
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Hashing with Chaining Example

𝑀 =  11, ℎ(𝑘)  =  𝑘 𝑚𝑜𝑑 11
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insert(41)

ℎ(41)  =  8



Hashing with Chaining Example

𝑀 =  11, ℎ(𝑘)  =  𝑘 𝑚𝑜𝑑 11
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𝑀 =  11, ℎ(𝑘)  =  𝑘 𝑚𝑜𝑑 11
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Hashing with Chaining Example



𝑀 =  11, ℎ(𝑘)  =  𝑘 𝑚𝑜𝑑 11
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ℎ 16 = 5
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𝑀 =  11, ℎ(𝑘)  =  𝑘 𝑚𝑜𝑑 11
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𝑀 =  11, ℎ(𝑘)  =  𝑘 𝑚𝑜𝑑 11
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Hashing with Chaining Example



𝑀 =  11, ℎ(𝑘)  =  𝑘 𝑚𝑜𝑑 11
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Hashing with Chaining: Running Time
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▪ insert  is Θ(1)
▪ unordered linked list insertion

▪ search and delete Θ(1 + length of list at 𝑇[ℎ 𝑘 ])
▪ not Θ length of list at 𝑇 ℎ 𝑘 , as list length can be 0

▪ In the worst case all 𝑛 items hash to same array index
▪ hash table is essentially a list, and search and delete Θ(𝑛)



Hashing with Chaining: Worst Case Running Time

𝑛 − 1

𝟎 𝑴 − 𝟏

𝑛 − 1 𝑛 − 1 𝑛 − 1 𝑛 − 1 𝑛 − 1 𝑛 − 1

𝑀 𝑛 − 1

▪ then there at most 𝑀 𝑛 − 1  elements in 𝑈, contradiction

▪ The user may need to insert 𝑛 keys that happen to hash to same slot

▪ When can all 𝑛 items hash to the same array index?
1. For bad hash function, i.e. ℎ 𝑘 = 10

2. For any hash function, if universe is large enough, there 
are 𝑛 keys that hash to the same slot

        Proof:

▪ let 𝑈 ≥ 𝑀 𝑛 − 1 + 1 

▪ suppose at most 𝑛 − 1 keys hash to each table slot



Hashing with Chaining: 
Average Case Runtime?

▪ Define load factor  𝛼 =
𝑛

𝑀

▪ 𝑛 is the number of items

▪ 𝑀 is the size of hash table
load factor   

𝟏𝟎

𝟏𝟏

▪ Average bucket size =
𝑛

𝑀
= 𝛼

▪ This does not imply that average-case runtime of search and delete is Θ(1 + 𝛼)

▪ consider the case when user inserts keys which all hash to the same slot 

▪ average bucket-size is still 𝛼

▪ but search and delete nevertheless take Θ 𝑛  on average

▪ message: when you hear ‘average’, ask ‘average over what’

▪ To get meaningful average-case bounds, we  need some assumptions on hash-
function and keys the user will insert

▪ hard to make realistic assumptions

▪ Easier to switch to randomized hashing 



Hashing with Chaining: Randomization

▪ How can we randomize?
▪ cannot insert at a random location, as key 𝑘 must hash to the hash 

value ℎ(𝑘)

▪ Idea: assume the hash-function is chosen randomly from a set of 
all hash functions

▪ This is called Uniform Hashing Assumption (UHA): any possible 
hash-function is equally likely to be chosen

▪ not realistic, but this assumption makes analysis easier



Uniform Hashing Assumption Properties
▪ Under UHA (any hash-function is chosen equally likely )

1.  𝑃(ℎ(𝑘)  =  𝑖)  =
1

𝑀
  for any key 𝑘 and slot 𝑖

Proof: 
 Let 𝑘, 𝑖 be some key and slot

 Let ℋ𝑗 (for 𝑗 = 0, . . 𝑀 − 1) be set of hash-functions ℎ s.t.  ℎ(𝑘) = 𝑗

 For 𝑗 ≠ 𝑖, one-to-one map  between ℋ𝑗 and ℋ𝑖 

 size of ℋ𝑗 equal to size of ℋ𝑖 

                when sampling ℎ(𝑘) end up in ℋ𝑗 with probability  
1

𝑀

  𝑃 ℎ 𝑘 =  𝑖 = 𝑃 ℎ 𝑘 ∈ ℋ𝑖

2. hash-values of any two keys are independent of each other 
𝑃 ℎ 𝑘 =  𝑖 and ℎ 𝑘′ = 𝑗 = 𝑃 ℎ 𝑘 =  𝑖)𝑃(ℎ 𝑘′ = 𝑗

Proof: …

…

ℋ𝑗

…

ℋ𝑖

=
1

𝑀

ℋ0 ℋ1 ℋ𝑀−1

1

𝑀

1

𝑀

1

𝑀

1

𝑀

1

𝑀



Hashing with Chaining with Randomly Chosen Hash Function

▪ 𝑃(ℎ(𝑘)  =  𝑖)  =
1

𝑀
  for any key 𝑘 and slot 𝑖

▪ load factor  𝛼 =
𝑛

𝑀

Claim: for any key 𝑘, the expected size of bucket 𝑇[ℎ 𝑘 ] is at most 1 + 𝛼 
Proof:

▪ Let ℎ 𝑘 = 𝑖

▪ Case 1: 𝑘 is not in the dictionary

▪ then each of 𝑛 dictionary items hashes to 𝑖 with probability  
1

𝑀

▪ let 𝐼𝑞
𝑖 = 1 if key 𝑞 hashes to 𝑖 and 𝐼𝑞

𝑖 = 0 otherwise

▪ 𝐸 |𝑇 𝑖 |

▪ search, delete have runtime Θ(1 + size of bucket 𝑇[ℎ 𝑘 ]) 

▪ Expected runtime of search and delete is  Θ(1 + 𝛼), insert is Θ(1)

▪ Case 2: 𝑘 is in the dictionary

▪ 𝑇 𝑖  definitely has key 𝑘

▪ the remaining 𝑛 − 1 dictionary items hash to 𝑖 with probability  
1

𝑀

▪ 𝐸 |𝑇 𝑖 | = 1 +
𝑛−1

𝑀
≤ 1 + 𝛼

=
𝑛

𝑀
=𝐸 σkeys 𝑞 𝐼𝑞

𝑖 =σkeys 𝑞 𝐸 𝐼𝑞
𝑖 =σkeys 𝑞 𝑃𝑟 𝐼𝑞

𝑖 = 1  ≤ 1 + 𝛼



Load factor and re-hashing

▪ Maintaining hash array of appropriate size

▪ start with small 𝑀 

▪ during insert/delete, update 𝑛

▪ if load factor becomes too big, i.e.  𝛼 =
𝑛

𝑀
> 𝑚𝑎𝑥𝐿𝑜𝑎𝑑𝐹, rehash

▪ chose new 𝑀’ ≈ 2𝑀

▪ find a new random hash function ℎ’ that maps 𝑈 into {0,1, … 𝑀’ − 1}

▪ create new hash table 𝑇’ of size 𝑀’

▪ reinsert each KVP from 𝑇 into 𝑇’

▪ update 𝑇 ←  𝑇’, ℎ ← ℎ’

▪ if load factor becomes too small, i.e. 𝛼 =
𝑛

𝑀
< 𝑚𝑖𝑛𝐿𝑜𝑎𝑑𝐹, rehash with 

smaller 𝑀’

▪ Rehashing costs Θ(𝑀 + 𝑛) but happens rarely, cost amortized over all operations

▪ Load factor 𝛼 =
𝑛

𝑀

▪ Expected space  is Θ(𝑀 + 𝑛) = Θ(𝑛/𝛼 + 𝑛), expected time is  Θ(1 + 𝛼)
▪ if we maintain 𝛼 ∈  Θ(1), expected running time is 𝑂(1) and space is Θ 𝑛



Rehashing when Load Factor Too Large
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Randomization in Practice

▪ Uniform Hashing Assumption is not possible to satisfy in practice

▪ In practice can chose a random hash function from a certain family 
of hash function

▪ The following family of functions is often used
▪ choose prime number 𝑝 > 𝑀 and random 𝑎, 𝑏 ∈ 0, . . . 𝑝 − 1 , 𝑎 ≠ 0

▪ ℎ 𝑘 = 𝑎𝑘 + 𝑏  mod 𝑝 mod 𝑀

▪ can show that the expected runtime of search/delete hold in this case



Hashing with Chaining Summary
▪ Rehash so that 𝛼 ∈ Θ(1)

▪ Rehashing costs Θ(𝑀 + 𝑛) time (plus the time to find a 
new hash function)

▪ Rehashing happens rarely enough that we can ignore 
this term when amortizing over all operations

▪ We should also re-hash when 𝛼 gets too small, so that 
𝑀 ∈ Θ(𝑛) and the space is always Θ(𝑛)

▪ The amortized expected cost for hashing with changing 
is and the space is 𝑂(1)

▪ assuming uniform hashing and 𝛼 ∈ Θ(1)throughout

▪ Theoretically perfect, but slow in practice
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Open Addressing
▪ Chaining wastes space on links

▪ Can we resolve collisions in the array 𝐻?

▪ Idea: each hash table entry holds only one 
item,  but key 𝑘 can go in multiple locations

▪ Probe sequence 
▪ search and insert follow a probe sequence of possible locations     

for key 𝑘
 ℎ(𝑘, 0), ℎ(𝑘, 1), ℎ(𝑘, 2), . . .

▪ until an empty spot is found

 

ℎ(𝑘, 0)

ℎ(𝑘, 1)

ℎ(𝑘, 2)



Open Addressing: Linear Probing

▪ Linear probing is the simplest method for probe sequence

▪ If ℎ(𝑘) is occupied, place item in the next available location

▪ probe sequence is

▪ ℎ 𝑘, 0 = ℎ 𝑘

▪ ℎ 𝑘, 1 = ℎ 𝑘 + 1

▪ ℎ 𝑘, 2 = ℎ 𝑘 + 2

▪ etc…

▪ Assume circular array, i.e. modular arithmetic

▪ ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖  𝑚𝑜𝑑 𝑀
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Linear Probing Example

𝑀 = 11,  ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

insert 41

ℎ(41) = 8
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Linear Probing Example

𝑀 = 11,  ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

insert 41

ℎ(41) = 8
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Linear Probing Example

𝑀 = 11,  ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

insert 84

ℎ(84) = 7
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Linear Probing Example

𝑀 = 11,  ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

insert 84

ℎ(84) = 7

occupied
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Linear Probing Example

𝑀 = 11,  ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

insert 84

ℎ(84) = 7

occupied

occupied
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Linear Probing Example

𝑀 = 11,  ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

insert 84

ℎ(84) = 7

occupied

occupied



Linear Probing Formula

▪ Linear probing explores positions

                    ℎ 𝑘, 𝑖 = ℎ 𝑘 +  𝑖  mod 𝑀

▪ for 𝑖 =  0, 1, … until an empty location is found

▪ where ℎ 𝑘  is some hash function



Linear probing example Continued

𝑀 = 11,  ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

    ℎ 𝑘, 𝑖 = ℎ 𝑘 +  𝑖 mod 𝑀 for sequence 𝑖 = 0, 1, …
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 ℎ(20) = 9

 

             ℎ 20, 0 = 9 + 0 mod 11 = 9



Linear probing example Continued

𝑀 = 11,  ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

    ℎ 𝑘, 𝑖 = ℎ 𝑘 +  𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …
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 ℎ(20) = 9

 

             ℎ 20, 0 = 9 + 0 mod 11 = 9



Linear probing example Continued

𝑀 = 11,  ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

    ℎ 𝑘, 𝑖 = ℎ 𝑘 +  𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …
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             ℎ 20, 1 = 9 + 1 mod 11 = 10



Linear probing example Continued

𝑀 = 11,  ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

    ℎ 𝑘, 𝑖 = ℎ 𝑘 +  𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …
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 ℎ(20) = 9

 

             ℎ 20, 2 = 9 + 2 mod 11 = 0



Linear probing example: Search

𝑀 = 11,  ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

    ℎ 𝑘, 𝑖 = ℎ 𝑘 +  𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …
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             ℎ(23, 0) = 1 + 0 mod 11 = 1
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Linear probing example: Search

𝑀 = 11,  ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

    ℎ 𝑘, 𝑖 = ℎ 𝑘 +  𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …
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             ℎ(23, 1) = 1 + 1 mod 11 = 2



Linear probing example: Search

𝑀 = 11,  ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

    ℎ 𝑘, 𝑖 = ℎ 𝑘 +  𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …
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             ℎ(23, 2) = 1 + 2 mod 11 = 3



Linear probing: Delete

𝑀 = 11,  ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

    ℎ 𝑘, 𝑖 = ℎ 𝑘 +  𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …
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             ℎ(84, 0) = 7 + 0 mod 11 = 7



Linear probing: Delete

𝑀 = 11,  ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

    ℎ 𝑘, 𝑖 = ℎ 𝑘 +  𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …
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             ℎ(84, 0) = 7 + 0 mod 11 = 7



Linear probing: Delete

𝑀 = 11,  ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

    ℎ 𝑘, 𝑖 = ℎ 𝑘 +  𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …
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 ℎ(84) = 7

 

             ℎ(84, 1) = 7 + 1 mod 11 = 8



Linear probing: Delete

𝑀 = 11,  ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

    ℎ 𝑘, 𝑖 = ℎ 𝑘 +  𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …
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             ℎ(84, 2) = 7 + 2 mod 11 = 9



Linear probing: Delete

𝑀 = 11,  ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

    ℎ 𝑘, 𝑖 = ℎ 𝑘 +  𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …
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             ℎ(84, 2) = 7 + 2 mod 11 = 9



Linear probing: Delete

𝑀 = 11,  ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

    ℎ 𝑘, 𝑖 = ℎ 𝑘 +  𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …
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             ℎ(20, 0) = 9 + 0 mod 11 = 9



Open Addressing

▪ delete becomes problematic

▪ cannot leave an empty spot behind

▪ next search might otherwise  not go far enough

▪ Idea: lazy deletion

▪ mark spot as deleted (rather than empty)

▪ continue searching past deleted spots

▪ insert in empty or deleted spot

▪ keep track of how many items are deleted and re-
hash if there are too many

▪ to keep space Θ(𝑛)



Linear probing: Delete

𝑀 = 11,  ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

    ℎ 𝑘, 𝑖 = ℎ 𝑘 +  𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …
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 ℎ(84, 0) = 7 + 0 mod 11 = 7

ℎ(84, 1) = 7 + 1 mod 11 = 8

 

         ℎ(84, 2) = 7 + 2 mod 11 = 9



Linear probing: Delete

𝑀 = 11,  ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

    ℎ 𝑘, 𝑖 = ℎ 𝑘 +  𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …
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         ℎ(84, 2) = 7 + 2 mod 11 = 9
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             ℎ(20, 0) = 9 + 0 mod 11 = 9



Linear probing example
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             ℎ(20, 1) = 9 + 1 mod 11 = 10



Linear probing example

𝑀 = 11,  ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

    ℎ 𝑘, 𝑖 = ℎ 𝑘 +  𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …
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             ℎ(20, 2) = 9 + 2 mod 11 = 0



Linear probing example

𝑀 = 11,  ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

    ℎ 𝑘, 𝑖 = ℎ 𝑘 +  𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …
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 ℎ(10) = 10

 

             ℎ(10, 0) = 10 + 0 mod 11 = 10



Linear probing example

𝑀 = 11,  ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

    ℎ 𝑘, 𝑖 = ℎ 𝑘 +  𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …
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             ℎ(10, 0) = 10 + 0 mod 11 = 10



Open Addressing

▪ Can use lazy deletion for other data structures
▪ mark as deleted items in AVL tree instead of actual deletion

▪ if a lot of items are deleted, rebuild AVL tree

▪ While in other data structures lazy deletion can be used 
to improve performance, in probing lazy deletion is 
required for correct performance



Probe Sequence Operations

probe-sequence::insert(𝑇, (𝑘, 𝑣))

     for (𝑖 =  0; 𝑖 <  𝑀; 𝑖 ++)

        if 𝑇 [ℎ(𝑘, 𝑖)] is  empty or  deleted

       𝑇 [ℎ(𝑘, 𝑖)] = (𝑘, 𝑣 )

               return success

     return  failure to insert

probe-sequence::search(𝑇 , 𝑘)

     for (𝑖 =  0; 𝑖 <  𝑀; 𝑖 ++)

        if 𝑇 [ℎ(𝑘, 𝑖)] is  empty 

     return  item-not-found

        if 𝑇 [ℎ(𝑘, 𝑖)] has key 𝑘  return 𝑇 ℎ 𝑘, 𝑖

        // 𝑇 ℎ 𝑘, 𝑖 = deleted or not in the data structure

        // therefore keep searching

     return  item not found

▪ Stop inserting after 𝑀 tries

▪ provided 𝛼 < 1 , linear probing 
does not need this

▪ some probing methods need this 

▪ If insert fails, call rehash



Linear probing drawbacks

▪ Entries tend to cluster into contiguous regions

▪ Many probes for each search, insert, and delete  

▪ How to avoid clustering?
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Double Hashing Motivation

𝒊 = 𝟎

𝒊 = 𝟐

𝒊 = 𝟏

𝒊 = 𝟑

𝒊 = 𝟎

𝒊 = 𝟏

𝒊 = 𝟐

𝒊 = 𝟑

linear 
probing

double 
hashing

ℎ 𝑘

▪ Linear probing attempts inserting into 
consecutive locations, i.e. step size 1

  ℎ(𝑘) ℎ(𝑘)  + 1 ℎ (𝑘) + 2

▪ To avoid consecutive locations, let each key have its 
own step size

            ℎ(𝑘) ℎ(𝑘)  + 1 ∙ 𝑠𝑡𝑒𝑝(𝑘) ℎ(𝑘) + 2 ∙ 𝑠𝑡𝑒𝑝(𝑘)

▪ This helps to avoid the clustering side effect

▪ For each key 𝑘, probe sequence is always the same

▪ Example

▪ for 𝑘 = 14, probe sequence is always

▪ 4, 7, 10, 13

▪ for 𝑘 = 24, probe sequence is always

▪  5, 10, 15, 20



Double Hashing

▪ Double hashing :  open addressing with probe sequence

ℎ 𝑘, 𝑖 = ℎ0 (𝑘) +  𝑖 ·  ℎ1(𝑘)  𝑚𝑜𝑑 𝑀 for 𝑖 = 0,1, …

▪ Where  

▪ ℎ1 is a secondary hash function (step size) s.t. ℎ1(𝑘)  ≠ 0 

𝒊 = 𝟎

𝒊 = 𝟐

𝒊 = 𝟏

𝒊 = 𝟑

▪ Double hashing with a good secondary hash function does not 
cause the bad clustering produced by linear probing

▪ search, insert, delete work as in linear probing,  but with this 
different probe sequence

▪ linear probing is a special case of double hashing with ℎ1(𝑘) = 1 

▪ ℎ1(𝑘) is relative prime with 𝑀 for all keys 𝑘

▪ otherwise probe-sequence does not explore the 
entire hash table

▪ easiest to choose 𝑀 prime, and ensure ℎ1(𝑘) < 𝑀

double 
hashing

ℎ 𝑘, 0

ℎ 𝑘, 1

ℎ 𝑘, 2

ℎ 𝑘, 3



Independent Hash functions
▪ When two hash functions ℎ0, ℎ1 are required, they should be independent

𝑃 ℎ0 (𝑘) = 𝑖, ℎ1(𝑘) = 𝑗 = 𝑃(ℎ0(𝑘) = 𝑖 ) 𝑃(ℎ1(𝑘) = 𝑗)

▪ Using two modular hash-functions may lead to dependencies  

▪ Better idea: use multiplicative method for second hash function

▪ let 0 < 𝐴 < 1

▪ ℎ 𝑘 = 𝑀 𝑘𝐴 − 𝑘𝐴

0 ≤ fractional part of 𝑘𝐴 < 1

0 ≤ 𝑀 ⋅ (fractional part of 𝑘𝐴) < 𝑀

▪ Example: 𝑀 = 11, 𝐴 = 0.2

▪  ℎ 34 = 11 ∙ 34 ∙ 0.2 − 34 ∙ 0.2 = 11 ∙ (6.8 − 6.8 ) = 11 ∙ 0.8 = 8

▪ Multiplying with 𝐴 scrambles the keys

▪ should use at least log |𝑈| +  log |𝑀| bits of 𝐴

▪ 𝐴 = 𝜑 =
5−1

2
≈ 0.618033988749 works well

▪ For double hashing, to ensure 0 < ℎ 𝑘 < 𝑀, use 
ℎ1(𝑘) = (𝑀 − 1) 𝑘𝐴 − 𝑘𝐴 + 1

for table size 𝑀 − 1: 0 ≤ values < 𝑀 − 1 



Double Hashing Example
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ℎ 𝑘, 𝑖 = ℎ0(𝑘) +  𝑖 ·  ℎ1(𝑘) 𝑚𝑜𝑑 𝑀 for sequence 𝑖 = 0,1, …

5−1

2
 

0

1

2

3

4

5

6

7

8

9

10

𝑀 = 11,  ℎ0(𝑘) = 𝑘 mod 11, ℎ1 (𝑘) = 10 𝜑𝑘 − 𝜑𝑘 + 1



Double Hashing Example
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insert(41)
ℎ0 (41) =  8
ℎ1 (41) = 4

 ℎ 41, 0 = 8 + 0 · 4  𝑚𝑜𝑑 11 = 8
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ℎ 𝑘, 𝑖 = ℎ0(𝑘) +  𝑖 ·  ℎ1(𝑘) 𝑚𝑜𝑑 𝑀 for sequence 𝑖 = 0,1, …

𝑀 = 11,  ℎ0(𝑘) = 𝑘 mod 11, ℎ1 (𝑘) = 10 𝜑𝑘 − 𝜑𝑘 + 1



Double Hashing Example
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insert(41)
ℎ0 (41) =  8
ℎ1 (41) = 4

 ℎ 41, 0 = 8 + 0 · 4  𝑚𝑜𝑑 11 = 8

ℎ 𝑘, 𝑖 = ℎ0(𝑘) +  𝑖 ·  ℎ1(𝑘) 𝑚𝑜𝑑 𝑀 for sequence 𝑖 = 0,1, …

𝑀 = 11,  ℎ0(𝑘) = 𝑘 mod 11, ℎ1 (𝑘) = 10 𝜑𝑘 − 𝜑𝑘 + 1



Double Hashing Example
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insert 194
ℎ0(194) = 7
ℎ1(194) = 9

 ℎ 194, 0 = 7 + 0 · 9  𝑚𝑜𝑑 11 = 7
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ℎ 𝑘, 𝑖 = ℎ0(𝑘) +  𝑖 ·  ℎ1(𝑘) 𝑚𝑜𝑑 𝑀 for sequence 𝑖 = 0,1, …

𝑀 = 11,  ℎ0(𝑘) = 𝑘 mod 11, ℎ1 (𝑘) = 10 𝜑𝑘 − 𝜑𝑘 + 1



Double Hashing Example
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insert 194
ℎ0(194) = 7
ℎ1(194) = 9

 ℎ 194, 0 = 7 + 0 · 9  𝑚𝑜𝑑 11 = 7

ℎ 𝑘, 𝑖 = ℎ0(𝑘) +  𝑖 ·  ℎ1(𝑘) 𝑚𝑜𝑑 𝑀 for sequence 𝑖 = 0,1, …

𝑀 = 11,  ℎ0(𝑘) = 𝑘 mod 11, ℎ1 (𝑘) = 10 𝜑𝑘 − 𝜑𝑘 + 1



Double Hashing Example
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ℎ 𝑘, 𝑖 = ℎ0(𝑘) +  𝑖 ·  ℎ1(𝑘) 𝑚𝑜𝑑 𝑀 for sequence 𝑖 = 0,1, …
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insert 194
ℎ0(194) = 7
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 ℎ 194, 1 = 7 + 1 · 9  𝑚𝑜𝑑 11 = 5



Double Hashing Example
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ℎ 𝑘, 𝑖 = ℎ0(𝑘) +  𝑖 ·  ℎ1(𝑘) 𝑚𝑜𝑑 𝑀 for sequence 𝑖 = 0,1, …
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insert 194
ℎ0(194) = 7
ℎ1(194) = 9

 ℎ 194, 1 = 7 + 1 · 9  𝑚𝑜𝑑 11 = 5



Double Hashing Example
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ℎ 𝑘, 𝑖 = ℎ0(𝑘) +  𝑖 ·  ℎ1(𝑘) 𝑚𝑜𝑑 𝑀 for sequence 𝑖 = 0,1, …
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insert 194
ℎ0(194) = 7
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 ℎ 194, 2 = 7 + 2 · 9  𝑚𝑜𝑑 11 = 3



Double Hashing Example
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ℎ 𝑘, 𝑖 = ℎ0(𝑘) +  𝑖 ·  ℎ1(𝑘) 𝑚𝑜𝑑 𝑀 for sequence 𝑖 = 0,1, …
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 ℎ 194, 2 = 7 + 2 · 9  𝑚𝑜𝑑 11 = 3



Outline

▪ Dictionaries via Hashing  

▪ Hashing Introduction  

▪ Hashing with Chaining

▪ Open Addressing

▪ probe Sequences

▪ cuckoo hashing

▪ Hash Function Strategies



Cuckoo Hashing
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▪ Main idea: An item with key 𝑘 can be only at 𝑇0[ℎ0(𝑘)] or 𝑇1[ℎ1(𝑘)]
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Cuckoo Hashing
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▪ Main idea: An item with key k can be only at 𝑇0[ℎ0(𝑘)] or 𝑇1[ℎ1(𝑘)]
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▪ search and delete take 𝑂(1) time



Cuckoo Hashing
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▪ How to insert?

insert(25)
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Cuckoo Hashing [Pagh & Rodler, 2001]

▪ Use independent hash functions ℎ0, ℎ1 and two tables 𝑇0, 𝑇1

▪ Key 𝑘 can be only at 𝑇0[ℎ0(𝑘)] or 𝑇1[ℎ1(𝑘)]

▪ search and delete take constant time

▪ insert always initially puts key 𝑘 into 𝑇0[ℎ0(𝑘)]
▪ evict item that my have been there already

▪ if so, evicted item 𝑘’ is inserted at 𝑇1[ℎ1(𝑘′)]

▪ may lead to a loop of evictions

▪ can show that if insertion is possible, then there are at most 2𝑛 
evictions

▪ so abort after too many attempts
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▪ try to “match” keys to locations so that everyone is placed
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Cuckoo hashing: Insert
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘
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Cuckoo Hashing: Insert Pseudocode

cuckoo::insert(𝑘, 𝑣 )

 𝑖 ←  0

 do at most  2𝑛  times 

   if 𝑇𝑖[ℎ𝑖(𝑘)] is empty

    𝑇𝑖[ℎ𝑖(𝑘)] ← (𝑘, 𝑣 )

  return “success”

  //insert 𝑇𝑖 [ℎ𝑖(𝑘)] into the other table 

 swap 𝑘, 𝑣 , 𝑇𝑖[ℎ𝑖(𝑘)]  // kick out current occupant

 𝑖 ←  1 − 𝑖     // alternate between 0 and 1

 return failure        // re-hash

▪ Practical tip

▪ do not wait for 2𝑛 unsuccessful tries to declare failure

▪ In practice, declare failure much earlier than 2𝑛 



Cuckoo hashing: Search
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘
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Cuckoo hashing: Delete
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘
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Cuckoo hashing: Delete
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

no need to mark 
deleted spot

delete 59

 ℎ0 59 = 4
 ℎ1(59)  = 5

95

44

26

51

92



Cuckoo hashing discussion

▪ Load factor 𝛼 = 𝑛/(size of 𝑇0 + size of 𝑇1)

▪ Can show that if the load factor is small enough, then insertion has 
𝑂(1) expected time

▪ this  requires 𝛼 < 1/2

▪ so wasted space 

▪ Can show expected space is 𝑂(𝑛)

▪ There are many variations of cuckoo hashing

▪ two hash tables do not have to be of the same size

▪ two hash tables can be combined into one

▪ more flexible when inserting: always consider both possible 
positions

▪ Use 𝑘 > 2 allowed locations

▪ 𝑘 tables or 𝑘 hash functions



Running Time of Open Addressing Strategies

▪ For any open addressing scheme, we must have 𝛼 ≤ 1 (why?)

▪ For analysis, require 0 < 𝛼 < 1 , for Cuckoo hashing require 𝛼 < 1/2

▪ not arbitrarily close

▪ Under these restrictions and the Universal Hashing Assumption

▪ All strategies have 𝑂(1) expected time for search, insert, delete

▪ Cuckoo hashing has 𝑂(1) worst case for search, delete

▪ Probe sequence use 𝑂(𝑛) worst case space

▪ Cuckoo hashing uses 𝑂(𝑛) expected space

▪ For any hashing,  the worst case runtime is Θ 𝑛  for insert

▪ In practice, double hashing is the most popular

▪ Or cuckoo hashing if there are many more searches than insertions



Outline

▪ Dictionaries via Hashing  

▪ Hashing Introduction  

▪ Hashing with Chaining

▪ Open Addressing

▪ probe Sequences

▪ cuckoo hashing

▪ Hash Function Strategies



Choosing  Good Hash Function

▪ Satisfying the uniform hashing assumption is impossible

▪ too many hash functions and for most, computing ℎ(𝑘) is not cheap for most 
of them

▪ Two ways to compromise

1. Deterministic: hope for a good performance by choosing a hash 
function that is

▪ unrelated to any possible patterns in the data

▪ depends on all parts of the key

2. Randomized: choose randomly among a limited set of functions

▪ but aim for 𝑃(two keys collide)  =
1

𝑀
 

▪ this is enough to prove expected runtime bounds for 
chaining



Deterministic Hash Functions

▪ We saw two basic methods (for integer keys)

▪ Modular method:  ℎ(𝑘)  =  𝑘 𝑚𝑜𝑑 𝑀

▪ chose 𝑀 to be a prime

▪ Means finding a suitable prime quickly when re-hashing

▪ can be done in 𝑂(Mlog log 𝑛) time

▪ no details

▪ Multiplicative method: ℎ(𝑘) = 𝑀(𝑘𝐴 − 𝑘𝐴  )

▪ multiplying with 0 < 𝐴 < 1 is used to scramble keys 

▪ so A should be irrational to avoid patterns in keys

▪ experiments show that good scrambling is achieved when 𝐴 is the 
golden ratio

▪ should use at least log 𝑈 + log𝑀 bits of log U



Randomized Hash Functiosn: Carter-Wegman’s 
Universal Hashing

▪ Randomization that uses easy-to-compute hash functions

▪ Requires: all keys are in 0, . . . 𝑝 − 1  for some (big) prime 𝑝

▪ At initialization and whenever rehash

▪ choose number 𝑀 < 𝑝  

▪ 𝑀 equal to some power of 2 is ok 

▪ choose (and store)  two random numbers 𝑎, 𝑏 ∈ 0, . . . 𝑝 − 1

▪ 𝑏 = 𝑟𝑎𝑛𝑑𝑜𝑚(𝑝)

▪  𝑎 = 1 + 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝 − 1  

▪ so that 𝑎 ≠ 0

▪ Use as hash function 

                 ℎ(𝑘) = ( 𝑎𝑘 + 𝑏  mod 𝑝)
 

mod 𝑀

▪ can be computed quickly

▪ can prove that two keys collide with probability at most  
1

𝑀

▪ enough to prove the expected runtime bounds for chaining, 
although uniform hashing assumption is not satisfied



Multi-dimensional Data
▪ May need multi-dimensional non integer keys

▪ example:  strings in Σ
∗

1. Construct 𝑓 𝑤 ∈ 𝑁 for converting string 𝑤 to integer

▪ should depend on all parts of the key

▪ ASCII representation of APPLE is 65, 80, 80, 76, 69

▪ simple addition:  𝑓 𝐴𝑃𝑃𝐿𝐸 = 65 + 80 + 80 + 76 + 69 

▪ many collisions, ‘stop’=‘tops’=‘pots’

▪ polynomial accumulation works better

▪  choose radix 𝑅, e.g. 𝑅 =  255

▪ 𝑓 𝐴𝑃𝑃𝐿𝐸 = 65𝑅4 + 80𝑅3 + 80𝑅2 + 76𝑅1 + 69𝑅0  

▪ compute in  𝑂(|𝑤|) time with Horner’s rule

▪ either ignoring overflow

2. Now apply any hash function, such as ℎ(𝑤) = 𝑓(𝑤) 𝑚𝑜𝑑 𝑀

▪ or apply 𝑚𝑜𝑑 𝑀 after each addition

𝑓 𝐴𝑃𝑃𝐿𝐸 = 65𝑅 + 80 𝑅 + 80 𝑅 + 76 𝑅 + 69 



Hashing vs. Balanced Search Trees

▪ Advantages of Balanced Search Trees

▪ 𝑂(log 𝑛) worst-case operation cost

▪ does not require any assumptions, special functions,  or 
known properties of input distribution

▪ predictable space usage  (exactly 𝑛 nodes)

▪ never need  to rebuild the entire structure

▪ supports ordered dictionary operations (rank, select etc.)

▪ Advantages of Hash Tables

▪ 𝑂(1) expected time operations (if hashes well-spread and load 

factor small)

▪ can choose space-time trade-off via load factor

▪ cuckoo hashing achieves 𝑂(1) worst-case for search & delete
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