
CS 240 – Data Structures and Data Management

Module 7: Dictionaries via Hashing

O. Veksler
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2025

Outline

▪ Dictionaries via Hashing

▪ Hashing Introduction

▪ Hashing with Chaining

▪ Open Addressing

▪ probe sequences

▪ cuckoo hashing

▪ Hash Function Strategies

Outline

▪ Dictionaries via Hashing

▪ Hashing Introduction

▪ Hashing with Chaining

▪ Open Addressing

▪ probe sequences

▪ cuckoo hashing

▪ Hash Function Strategies

Direct Addressing
▪ Special situation: every key 𝑘 is integer with 0 ≤ 𝑘 < 𝑀

▪ Direct addressing implementation
▪ store (𝑘, 𝑣) in array 𝐴 of size 𝑀 via 𝐴[𝑘] ← 𝑣

dog

cat

0

1

2

3

4

5

6

7

8

▪ search(𝑘): check if 𝐴[𝑘] is empty

▪ insert(𝑘, 𝑣): 𝐴[𝑘] ← 𝑣

𝐷 = { 2, dog , 6, cat }

insert(8, pig)

pig

Direct Addressing
▪ Special situation: every key 𝑘 is integer with 0 ≤ 𝑘 < 𝑀

▪ Direct addressing implementation
▪ store (𝑘, 𝑣) in array 𝐴 of size 𝑀 via 𝐴[𝑘] ← 𝑣

dog

cat

0

1

2

3

4

5

6

7

8

▪ search(𝑘): check if 𝐴[𝑘] is empty

▪ insert(𝑘, 𝑣): 𝐴[𝑘] ← 𝑣

𝐷 = { 2, dog , 6, cat , (8,pig)}

▪ delete(𝑘): 𝐴[𝑘] ← empty

d𝑒𝑙𝑒𝑡𝑒(2)

pig

Direct Addressing
▪ Special situation: every key 𝑘 is integer with 0 ≤ 𝑘 < 𝑀

▪ Direct addressing implementation
▪ store (𝑘, 𝑣) in array 𝐴 of size 𝑀 via 𝐴[𝑘] ← 𝑣

cat

0

1

2

3

4

5

6

7

8

▪ search(𝑘): check if 𝐴[𝑘] is empty

▪ insert(𝑘, 𝑣): 𝐴[𝑘] ← 𝑣

▪ Drawbacks
1. space is wasteful if 𝑛 << 𝑀

2. keys must be integers

𝐷 = { 6, cat , (8,pig)}

▪ delete(𝑘): 𝐴[𝑘] ← empty

pig

▪ all operations are 𝑂(1)

▪ total storage is Θ(𝑀)

Hashing

▪ Idea: first map keys to a smaller integer range and then use direct addressing

Universe 𝑈 of keys ℎ {0,1, … 𝑀 − 1}

Hashing
▪ Idea: first map keys to a smaller integer range and then use direct addressing

0

1

2

3

4

5

6

7

8

9

 10

▪ Example

▪ 𝑈 = 𝑁, 𝑀 = 11, ℎ(𝑘) = 𝑘 𝑚𝑜𝑑 11

▪ keys 7, 13, 43, 45, 49, 92

▪ Assumption: keys come from some universe 𝑈

▪ typically 𝑈 = {0,1, … }, sometimes 𝑈 is finite

▪ Design hash function ℎ ∶ 𝑈 → {0, 1, . . . , 𝑀 − 1}

▪ ℎ(𝑘) is called hash value of 𝑘

▪ example: ℎ(𝑘) = 𝑘 𝑚𝑜𝑑 𝑀

▪ will see other choices later

▪ Store dictionary in array 𝑇 of size 𝑀, called hash table

▪ Item with key 𝑘 wants to be stored in slot ℎ 𝑘 of array 𝑇

Hashing

0

1

2

3

4

5

6

7

8

9

 10
▪ as usual, store KVP, but show only keys

7

13

43

45

49

92

▪ Idea: first map keys to small integer range and then use direct addressing

▪ Assumption: keys come from some universe 𝑈

▪ typically 𝑈 = {0,1, … }, sometimes 𝑈 is finite

▪ Design hash function ℎ ∶ 𝑈 → {0, 1, . . . , 𝑀 − 1}

▪ ℎ(𝑘) is called hash value of 𝑘

▪ example: ℎ(𝑘) = 𝑘 𝑚𝑜𝑑 𝑀

▪ will see other choices later

▪ Store dictionary in array 𝑇 of size 𝑀, called hash table

▪ Item with key 𝑘 wants to be stored in slot ℎ 𝑘 of array 𝑇

▪ Example

▪ 𝑈 = 𝑁, 𝑀 = 11, ℎ(𝑘) = 𝑘 𝑚𝑜𝑑 11

▪ keys 7, 13, 43, 45, 49, 92

▪ Typically choose 𝑀 ∈ Θ(𝑛)

▪ shrink or expand the hash table dynamically as items inserted/deleted

▪ There are good reasons for choosing 𝑀 to be a prime number

Hash Functions and Collisions

▪ Generally hash function ℎ is not injective

▪ many keys can map to the same integer, example

▪ ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11,

▪ ℎ(46) = 2 = ℎ(13)

▪ Collision: want to insert (𝑘, 𝑣), but 𝑇[ℎ(𝑘)] is occupied

▪ Two main strategies to deal with collisions

1. Chaining: allow multiple items at each table location

2. Open addressing: alternative slots in array

▪ probe sequence: many alternative locations

▪ linear probing

▪ double hashing

▪ cuckoo hashing: just one alternative location

▪ Hash function

▪ should be fast, 𝑂(1), to compute

0

1

2

3

4

5

6

7

8

9

 10

7

13

43

45

49

92

Outline

▪ Dictionaries via Hashing

▪ Hashing Introduction

▪ Hashing with Chaining

▪ Open Addressing

▪ probe Sequences

▪ cuckoo hashing

▪ Hash Function Strategies

Hashing with Chaining
𝑀 = 11, ℎ(𝑘) = 𝑘 𝑚𝑜𝑑 11

45

13

92

49

7

0

1

2

3

4

5

6

7

8

9

10 43

Bucket
array

▪ Each slot is a bucket containing 0 or more KVPs

▪ bucket can be implemented by
any dictionary

▪ even another hash table

▪ simplest approach is unsorted
linked list dictionary in each
bucket

▪ this is called chaining

0

1

2

3

4

5

6

7

8

9

 10

7

13

43

45

49

92

Hashing with Chaining

▪ Operations

▪ search(𝑘): look for key 𝑘 in the list at T [ℎ(𝑘)]

▪ apply MTF heuristic

▪ insert(𝑘, 𝑣): add (𝑘, 𝑣) to the front of list at 𝑇 [ℎ(𝑘)]

▪ delete(𝑘): search and delete from the list at 𝑇[ℎ(𝑘)]

45

13

92

49

7

0

1

2

3

4

5

6

7

8

9

10 43

Hashing with Chaining Example

𝑀 = 11, ℎ(𝑘) = 𝑘 𝑚𝑜𝑑 11

45

13

92

49

7

0

1

2

3

4

5

6

7

8

9

10 43

41

insert(41)

ℎ(41) = 8

Hashing with Chaining Example

𝑀 = 11, ℎ(𝑘) = 𝑘 𝑚𝑜𝑑 11

45

13

92

49

7

0

1

2

3

4

5

6

7

8

9

10 43

41

insert(46)

ℎ(46) = 2

𝑀 = 11, ℎ(𝑘) = 𝑘 𝑚𝑜𝑑 11

45

46

92

49

7

0

1

2

3

4

5

6

7

8

9

10 43

41

insert(46)

ℎ(46) = 2

13

Hashing with Chaining Example

𝑀 = 11, ℎ(𝑘) = 𝑘 𝑚𝑜𝑑 11

45

46

92

49

7

0

1

2

3

4

5

6

7

8

9

10 43

41

13

insert(16)

ℎ 16 = 5

Hashing with Chaining Example

𝑀 = 11, ℎ(𝑘) = 𝑘 𝑚𝑜𝑑 11

45

46

92

16

7

0

1

2

3

4

5

6

7

8

9

10 43

41

insert(16)

ℎ 16 = 5

13

49

Hashing with Chaining Example

𝑀 = 11, ℎ(𝑘) = 𝑘 𝑚𝑜𝑑 11

45

46

92

16

7

0

1

2

3

4

5

6

7

8

9

10 43

41

13

49

insert(79)

ℎ(79) = 2

Hashing with Chaining Example

𝑀 = 11, ℎ(𝑘) = 𝑘 𝑚𝑜𝑑 11

45

79

92

16

7

0

1

2

3

4

5

6

7

8

9

10 43

41

insert(79)

ℎ(79) = 2

46

49

13

Hashing with Chaining Example

Hashing with Chaining: Running Time

2

0

1

2

3

4

5

24 13 35

▪ insert is Θ(1)
▪ unordered linked list insertion

▪ search and delete Θ(1 + length of list at 𝑇[ℎ 𝑘])
▪ not Θ length of list at 𝑇 ℎ 𝑘 , as list length can be 0

▪ In the worst case all 𝑛 items hash to same array index
▪ hash table is essentially a list, and search and delete Θ(𝑛)

Hashing with Chaining: Worst Case Running Time

𝑛 − 1

𝟎 𝑴 − 𝟏

𝑛 − 1 𝑛 − 1 𝑛 − 1 𝑛 − 1 𝑛 − 1 𝑛 − 1

𝑀 𝑛 − 1

▪ then there at most 𝑀 𝑛 − 1 elements in 𝑈, contradiction

▪ The user may need to insert 𝑛 keys that happen to hash to same slot

▪ When can all 𝑛 items hash to the same array index?
1. For bad hash function, i.e. ℎ 𝑘 = 10

2. For any hash function, if universe is large enough, there
are 𝑛 keys that hash to the same slot

 Proof:

▪ let 𝑈 ≥ 𝑀 𝑛 − 1 + 1

▪ suppose at most 𝑛 − 1 keys hash to each table slot

Hashing with Chaining:
Average Case Runtime?

▪ Define load factor 𝛼 =
𝑛

𝑀

▪ 𝑛 is the number of items

▪ 𝑀 is the size of hash table
load factor

𝟏𝟎

𝟏𝟏

▪ Average bucket size =
𝑛

𝑀
= 𝛼

▪ This does not imply that average-case runtime of search and delete is Θ(1 + 𝛼)

▪ consider the case when user inserts keys which all hash to the same slot

▪ average bucket-size is still 𝛼

▪ but search and delete nevertheless take Θ 𝑛 on average

▪ message: when you hear ‘average’, ask ‘average over what’

▪ To get meaningful average-case bounds, we need some assumptions on hash-
function and keys the user will insert

▪ hard to make realistic assumptions

▪ Easier to switch to randomized hashing

Hashing with Chaining: Randomization

▪ How can we randomize?
▪ cannot insert at a random location, as key 𝑘 must hash to the hash

value ℎ(𝑘)

▪ Idea: assume the hash-function is chosen randomly from a set of
all hash functions

▪ This is called Uniform Hashing Assumption (UHA): any possible
hash-function is equally likely to be chosen

▪ not realistic, but this assumption makes analysis easier

Uniform Hashing Assumption Properties
▪ Under UHA (any hash-function is chosen equally likely)

1. 𝑃(ℎ(𝑘) = 𝑖) =
1

𝑀
 for any key 𝑘 and slot 𝑖

Proof:
 Let 𝑘, 𝑖 be some key and slot

 Let ℋ𝑗 (for 𝑗 = 0, . . 𝑀 − 1) be set of hash-functions ℎ s.t. ℎ(𝑘) = 𝑗

 For 𝑗 ≠ 𝑖, one-to-one map between ℋ𝑗 and ℋ𝑖

 size of ℋ𝑗 equal to size of ℋ𝑖

 when sampling ℎ(𝑘) end up in ℋ𝑗 with probability
1

𝑀

 𝑃 ℎ 𝑘 = 𝑖 = 𝑃 ℎ 𝑘 ∈ ℋ𝑖

2. hash-values of any two keys are independent of each other
𝑃 ℎ 𝑘 = 𝑖 and ℎ 𝑘′ = 𝑗 = 𝑃 ℎ 𝑘 = 𝑖)𝑃(ℎ 𝑘′ = 𝑗

Proof: …

…

ℋ𝑗

…

ℋ𝑖

=
1

𝑀

ℋ0 ℋ1 ℋ𝑀−1

1

𝑀

1

𝑀

1

𝑀

1

𝑀

1

𝑀

Hashing with Chaining with Randomly Chosen Hash Function

▪ 𝑃(ℎ(𝑘) = 𝑖) =
1

𝑀
 for any key 𝑘 and slot 𝑖

▪ load factor 𝛼 =
𝑛

𝑀

Claim: for any key 𝑘, the expected size of bucket 𝑇[ℎ 𝑘] is at most 1 + 𝛼
Proof:

▪ Let ℎ 𝑘 = 𝑖

▪ Case 1: 𝑘 is not in the dictionary

▪ then each of 𝑛 dictionary items hashes to 𝑖 with probability
1

𝑀

▪ let 𝐼𝑞
𝑖 = 1 if key 𝑞 hashes to 𝑖 and 𝐼𝑞

𝑖 = 0 otherwise

▪ 𝐸 |𝑇 𝑖 |

▪ search, delete have runtime Θ(1 + size of bucket 𝑇[ℎ 𝑘])

▪ Expected runtime of search and delete is Θ(1 + 𝛼), insert is Θ(1)

▪ Case 2: 𝑘 is in the dictionary

▪ 𝑇 𝑖 definitely has key 𝑘

▪ the remaining 𝑛 − 1 dictionary items hash to 𝑖 with probability
1

𝑀

▪ 𝐸 |𝑇 𝑖 | = 1 +
𝑛−1

𝑀
≤ 1 + 𝛼

=
𝑛

𝑀
=𝐸 σkeys 𝑞 𝐼𝑞

𝑖 =σkeys 𝑞 𝐸 𝐼𝑞
𝑖 =σkeys 𝑞 𝑃𝑟 𝐼𝑞

𝑖 = 1 ≤ 1 + 𝛼

Load factor and re-hashing

▪ Maintaining hash array of appropriate size

▪ start with small 𝑀

▪ during insert/delete, update 𝑛

▪ if load factor becomes too big, i.e. 𝛼 =
𝑛

𝑀
> 𝑚𝑎𝑥𝐿𝑜𝑎𝑑𝐹, rehash

▪ chose new 𝑀’ ≈ 2𝑀

▪ find a new random hash function ℎ’ that maps 𝑈 into {0,1, … 𝑀’ − 1}

▪ create new hash table 𝑇’ of size 𝑀’

▪ reinsert each KVP from 𝑇 into 𝑇’

▪ update 𝑇 ← 𝑇’, ℎ ← ℎ’

▪ if load factor becomes too small, i.e. 𝛼 =
𝑛

𝑀
< 𝑚𝑖𝑛𝐿𝑜𝑎𝑑𝐹, rehash with

smaller 𝑀’

▪ Rehashing costs Θ(𝑀 + 𝑛) but happens rarely, cost amortized over all operations

▪ Load factor 𝛼 =
𝑛

𝑀

▪ Expected space is Θ(𝑀 + 𝑛) = Θ(𝑛/𝛼 + 𝑛), expected time is Θ(1 + 𝛼)
▪ if we maintain 𝛼 ∈ Θ(1), expected running time is 𝑂(1) and space is Θ 𝑛

Rehashing when Load Factor Too Large

𝑀 = 5, ℎ(𝑘) = 𝑘 𝑚𝑜𝑑 5

6

12

0

1

2

3

4

2 17

0

1

2

3

4

5

6

7

8

9

10

2

𝑀′ = 11, ℎ′(𝑘) = 𝑘 𝑚𝑜𝑑 11

6

12

17 6

Randomization in Practice

▪ Uniform Hashing Assumption is not possible to satisfy in practice

▪ In practice can chose a random hash function from a certain family
of hash function

▪ The following family of functions is often used
▪ choose prime number 𝑝 > 𝑀 and random 𝑎, 𝑏 ∈ 0, . . . 𝑝 − 1 , 𝑎 ≠ 0

▪ ℎ 𝑘 = 𝑎𝑘 + 𝑏 mod 𝑝 mod 𝑀

▪ can show that the expected runtime of search/delete hold in this case

Hashing with Chaining Summary
▪ Rehash so that 𝛼 ∈ Θ(1)

▪ Rehashing costs Θ(𝑀 + 𝑛) time (plus the time to find a
new hash function)

▪ Rehashing happens rarely enough that we can ignore
this term when amortizing over all operations

▪ We should also re-hash when 𝛼 gets too small, so that
𝑀 ∈ Θ(𝑛) and the space is always Θ(𝑛)

▪ The amortized expected cost for hashing with changing
is and the space is 𝑂(1)

▪ assuming uniform hashing and 𝛼 ∈ Θ(1)throughout

▪ Theoretically perfect, but slow in practice

Outline

▪ Dictionaries via Hashing

▪ Hashing Introduction

▪ Hashing with Chaining

▪ Open Addressing

▪ probe sequences

▪ cuckoo hashing

▪ Hash Function Strategies

Open Addressing
▪ Chaining wastes space on links

▪ Can we resolve collisions in the array 𝐻?

▪ Idea: each hash table entry holds only one
item, but key 𝑘 can go in multiple locations

▪ Probe sequence
▪ search and insert follow a probe sequence of possible locations

for key 𝑘
 ℎ(𝑘, 0), ℎ(𝑘, 1), ℎ(𝑘, 2), . . .

▪ until an empty spot is found

ℎ(𝑘, 0)

ℎ(𝑘, 1)

ℎ(𝑘, 2)

Open Addressing: Linear Probing

▪ Linear probing is the simplest method for probe sequence

▪ If ℎ(𝑘) is occupied, place item in the next available location

▪ probe sequence is

▪ ℎ 𝑘, 0 = ℎ 𝑘

▪ ℎ 𝑘, 1 = ℎ 𝑘 + 1

▪ ℎ 𝑘, 2 = ℎ 𝑘 + 2

▪ etc…

▪ Assume circular array, i.e. modular arithmetic

▪ ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 𝑚𝑜𝑑 𝑀

45

13

92

49

7

43

0

1

2

3

4

5

6

7

8

9

10

Linear Probing Example

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

insert 41

ℎ(41) = 8

45

13

92

49

7

41

43

0

1

2

3

4

5

6

7

8

9

10

Linear Probing Example

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

insert 41

ℎ(41) = 8

45

13

92

49

7

41

43

0

1

2

3

4

5

6

7

8

9

10

Linear Probing Example

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

insert 84

ℎ(84) = 7

45

13

92

49

7

41

43

0

1

2

3

4

5

6

7

8

9

10

Linear Probing Example

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

insert 84

ℎ(84) = 7

occupied

45

13

92

49

7

41

43

0

1

2

3

4

5

6

7

8

9

10

Linear Probing Example

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

insert 84

ℎ(84) = 7

occupied

occupied

45

13

92

49

7

41

84

43

0

1

2

3

4

5

6

7

8

9

10

Linear Probing Example

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

insert 84

ℎ(84) = 7

occupied

occupied

Linear Probing Formula

▪ Linear probing explores positions

 ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀

▪ for 𝑖 = 0, 1, … until an empty location is found

▪ where ℎ 𝑘 is some hash function

Linear probing example Continued

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

 ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0, 1, …

45

13

92

49

7

41

84

43

0

1

2

3

4

5

6

7

8

9

10

insert 20

 ℎ(20) = 9

 ℎ 20, 0 = 9 + 0 mod 11 = 9

Linear probing example Continued

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

 ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

45

13

92

49

7

41

84

43

0

1

2

3

4

5

6

7

8

9

10

occupied

insert 20

 ℎ(20) = 9

 ℎ 20, 0 = 9 + 0 mod 11 = 9

Linear probing example Continued

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

 ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

45

13

92

49

7

41

84

43

0

1

2

3

4

5

6

7

8

9

10

occupied

occupied

45

13

92

49

7

41

84

43

insert 20

 ℎ(20) = 9

 ℎ 20, 1 = 9 + 1 mod 11 = 10

Linear probing example Continued

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

 ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

45

13

92

49

7

41

84

43

0

1

2

3

4

5

6

7

8

9

10

occupied

occupied

20

45

13

92

49

7

41

84

43

insert 20

 ℎ(20) = 9

 ℎ 20, 2 = 9 + 2 mod 11 = 0

Linear probing example: Search

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

 ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

20

45

13

92

49

7

41

84

43

0

1

2

3

4

5

6

7

8

9

10

search 23

 ℎ(23) = 1

 ℎ(23, 0) = 1 + 0 mod 11 = 1

occupied

20

45

13

92

49

7

41

84

43

Linear probing example: Search

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

 ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

20

45

13

92

49

7

41

84

43

0

1

2

3

4

5

6

7

8

9

10

occupied

occupied

20

45

13

92

49

7

41

84

43

search 23

 ℎ(23) = 1

 ℎ(23, 1) = 1 + 1 mod 11 = 2

Linear probing example: Search

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

 ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

20

45

13

92

49

7

41

84

43

0

1

2

3

4

5

6

7

8

9

10

occupied

occupied

not found

search 23

 ℎ(23) = 1

 ℎ(23, 2) = 1 + 2 mod 11 = 3

Linear probing: Delete

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

 ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

20

45

13

92

49

7

41

84

43

0

1

2

3

4

5

6

7

8

9

10

delete 84

 ℎ(84) = 7

 ℎ(84, 0) = 7 + 0 mod 11 = 7

Linear probing: Delete

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

 ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

20

45

13

92

49

7

41

84

43

0

1

2

3

4

5

6

7

8

9

10

occupied

delete 84

 ℎ(84) = 7

 ℎ(84, 0) = 7 + 0 mod 11 = 7

Linear probing: Delete

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

 ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

20

45

13

92

49

7

41

84

43

0

1

2

3

4

5

6

7

8

9

10

occupied

occupied

20

45

13

92

49

7

41

84

43

delete 84

 ℎ(84) = 7

 ℎ(84, 1) = 7 + 1 mod 11 = 8

Linear probing: Delete

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

 ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

20

45

13

92

49

7

8

84

43

0

1

2

3

4

5

6

7

8

9

10

occupied

occupied

found

20

45

13

92

49

7

41

84

43

delete 84

 ℎ(84) = 7

 ℎ(84, 2) = 7 + 2 mod 11 = 9

Linear probing: Delete

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

 ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

20

45

13

92

49

7

41

43

0

1

2

3

4

5

6

7

8

9

10

delete 84

 ℎ(84) = 7

 ℎ(84, 2) = 7 + 2 mod 11 = 9

Linear probing: Delete

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

 ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

20

45

13

92

49

7

41

43

0

1

2

3

4

5

6

7

8

9

10

not found

search 20

 ℎ(20) = 9

 ℎ(20, 0) = 9 + 0 mod 11 = 9

Open Addressing

▪ delete becomes problematic

▪ cannot leave an empty spot behind

▪ next search might otherwise not go far enough

▪ Idea: lazy deletion

▪ mark spot as deleted (rather than empty)

▪ continue searching past deleted spots

▪ insert in empty or deleted spot

▪ keep track of how many items are deleted and re-
hash if there are too many

▪ to keep space Θ(𝑛)

Linear probing: Delete

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

 ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

20

45

13

92

49

7

41

84

43

0

1

2

3

4

5

6

7

8

9

 10

occupied

occupied

found

20

45

13

92

49

7

41

84

43

delete 84

 ℎ(84) = 7

20

45

13

92

49

7

41

84

43

20

45

13

92

49

7

41

84

43

 ℎ(84, 0) = 7 + 0 mod 11 = 7

ℎ(84, 1) = 7 + 1 mod 11 = 8

 ℎ(84, 2) = 7 + 2 mod 11 = 9

Linear probing: Delete

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

 ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

0

1

2

3

4

5

6

7

8

9

10

occupied

occupied

20

45

13

92

49

7

41

deleted

43

delete 84

 ℎ(84) = 7

 ℎ(84, 0) = 7 + 0 mod 11 = 7

ℎ(84, 1) = 7 + 1 mod 11 = 8

 ℎ(84, 2) = 7 + 2 mod 11 = 9

20

45

13

92

49

7

41

deleted

43

Linear probing example

20

45

13

92

49

7

41

deleted

43

0

1

2

3

4

5

6

7

8

9

10

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

 ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

occupied

search 20

 ℎ(20) = 9

 ℎ(20, 0) = 9 + 0 mod 11 = 9

Linear probing example

20

45

13

92

49

7

41

84

43

0

1

2

3

4

5

6

7

8

9

10

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

 ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

occupied

occupied

20

45

13

92

49

7

41

deleted

43

search 20

 ℎ(20) = 9

 ℎ(20, 1) = 9 + 1 mod 11 = 10

Linear probing example

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

 ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

20

45

13

92

49

7

41

84

43

0

1

2

3

4

5

6

7

8

9

10

occupied

occupied

found20

45

13

92

49

7

41

deleted

43

search 20

 ℎ(20) = 9

 ℎ(20, 2) = 9 + 2 mod 11 = 0

Linear probing example

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

 ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

20

45

13

92

49

7

41

84

deleted

0

1

2

3

4

5

6

7

8

9

10

insert 10

 ℎ(10) = 10

 ℎ(10, 0) = 10 + 0 mod 11 = 10

Linear probing example

𝑀 = 11, ℎ 𝑘 = 𝑘 𝑚𝑜𝑑 11

 ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑖 mod 𝑀 for sequence 𝑖 = 0,1, …

20

45

13

92

49

7

41

84

10

0

1

2

3

4

5

6

7

8

9

10

insert 10

 ℎ(10) = 10

 ℎ(10, 0) = 10 + 0 mod 11 = 10

Open Addressing

▪ Can use lazy deletion for other data structures
▪ mark as deleted items in AVL tree instead of actual deletion

▪ if a lot of items are deleted, rebuild AVL tree

▪ While in other data structures lazy deletion can be used
to improve performance, in probing lazy deletion is
required for correct performance

Probe Sequence Operations

probe-sequence::insert(𝑇, (𝑘, 𝑣))

 for (𝑖 = 0; 𝑖 < 𝑀; 𝑖 ++)

 if 𝑇 [ℎ(𝑘, 𝑖)] is empty or deleted

 𝑇 [ℎ(𝑘, 𝑖)] = (𝑘, 𝑣)

 return success

 return failure to insert

probe-sequence::search(𝑇 , 𝑘)

 for (𝑖 = 0; 𝑖 < 𝑀; 𝑖 ++)

 if 𝑇 [ℎ(𝑘, 𝑖)] is empty

 return item-not-found

 if 𝑇 [ℎ(𝑘, 𝑖)] has key 𝑘 return 𝑇 ℎ 𝑘, 𝑖

 // 𝑇 ℎ 𝑘, 𝑖 = deleted or not in the data structure

 // therefore keep searching

 return item not found

▪ Stop inserting after 𝑀 tries

▪ provided 𝛼 < 1 , linear probing
does not need this

▪ some probing methods need this

▪ If insert fails, call rehash

Linear probing drawbacks

▪ Entries tend to cluster into contiguous regions

▪ Many probes for each search, insert, and delete

▪ How to avoid clustering?

45

92

28

7

41

84

0

1

2

3

4

5

6

7

8

9

10

Double Hashing Motivation

𝒊 = 𝟎

𝒊 = 𝟐

𝒊 = 𝟏

𝒊 = 𝟑

𝒊 = 𝟎

𝒊 = 𝟏

𝒊 = 𝟐

𝒊 = 𝟑

linear
probing

double
hashing

ℎ 𝑘

▪ Linear probing attempts inserting into
consecutive locations, i.e. step size 1

 ℎ(𝑘) ℎ(𝑘) + 1 ℎ (𝑘) + 2

▪ To avoid consecutive locations, let each key have its
own step size

 ℎ(𝑘) ℎ(𝑘) + 1 ∙ 𝑠𝑡𝑒𝑝(𝑘) ℎ(𝑘) + 2 ∙ 𝑠𝑡𝑒𝑝(𝑘)

▪ This helps to avoid the clustering side effect

▪ For each key 𝑘, probe sequence is always the same

▪ Example

▪ for 𝑘 = 14, probe sequence is always

▪ 4, 7, 10, 13

▪ for 𝑘 = 24, probe sequence is always

▪ 5, 10, 15, 20

Double Hashing

▪ Double hashing : open addressing with probe sequence

ℎ 𝑘, 𝑖 = ℎ0 (𝑘) + 𝑖 · ℎ1(𝑘) 𝑚𝑜𝑑 𝑀 for 𝑖 = 0,1, …

▪ Where

▪ ℎ1 is a secondary hash function (step size) s.t. ℎ1(𝑘) ≠ 0

𝒊 = 𝟎

𝒊 = 𝟐

𝒊 = 𝟏

𝒊 = 𝟑

▪ Double hashing with a good secondary hash function does not
cause the bad clustering produced by linear probing

▪ search, insert, delete work as in linear probing, but with this
different probe sequence

▪ linear probing is a special case of double hashing with ℎ1(𝑘) = 1

▪ ℎ1(𝑘) is relative prime with 𝑀 for all keys 𝑘

▪ otherwise probe-sequence does not explore the
entire hash table

▪ easiest to choose 𝑀 prime, and ensure ℎ1(𝑘) < 𝑀

double
hashing

ℎ 𝑘, 0

ℎ 𝑘, 1

ℎ 𝑘, 2

ℎ 𝑘, 3

Independent Hash functions
▪ When two hash functions ℎ0, ℎ1 are required, they should be independent

𝑃 ℎ0 (𝑘) = 𝑖, ℎ1(𝑘) = 𝑗 = 𝑃(ℎ0(𝑘) = 𝑖) 𝑃(ℎ1(𝑘) = 𝑗)

▪ Using two modular hash-functions may lead to dependencies

▪ Better idea: use multiplicative method for second hash function

▪ let 0 < 𝐴 < 1

▪ ℎ 𝑘 = 𝑀 𝑘𝐴 − 𝑘𝐴

0 ≤ fractional part of 𝑘𝐴 < 1

0 ≤ 𝑀 ⋅ (fractional part of 𝑘𝐴) < 𝑀

▪ Example: 𝑀 = 11, 𝐴 = 0.2

▪ ℎ 34 = 11 ∙ 34 ∙ 0.2 − 34 ∙ 0.2 = 11 ∙ (6.8 − 6.8) = 11 ∙ 0.8 = 8

▪ Multiplying with 𝐴 scrambles the keys

▪ should use at least log |𝑈| + log |𝑀| bits of 𝐴

▪ 𝐴 = 𝜑 =
5−1

2
≈ 0.618033988749 works well

▪ For double hashing, to ensure 0 < ℎ 𝑘 < 𝑀, use
ℎ1(𝑘) = (𝑀 − 1) 𝑘𝐴 − 𝑘𝐴 + 1

for table size 𝑀 − 1: 0 ≤ values < 𝑀 − 1

Double Hashing Example

45

13

92

49

7

43

ℎ 𝑘, 𝑖 = ℎ0(𝑘) + 𝑖 · ℎ1(𝑘) 𝑚𝑜𝑑 𝑀 for sequence 𝑖 = 0,1, …

5−1

2

0

1

2

3

4

5

6

7

8

9

10

𝑀 = 11, ℎ0(𝑘) = 𝑘 mod 11, ℎ1 (𝑘) = 10 𝜑𝑘 − 𝜑𝑘 + 1

Double Hashing Example

45

13

92

49

7

43

insert(41)
ℎ0 (41) = 8
ℎ1 (41) = 4

 ℎ 41, 0 = 8 + 0 · 4 𝑚𝑜𝑑 11 = 8

0

1

2

3

4

5

6

7

8

9

10

ℎ 𝑘, 𝑖 = ℎ0(𝑘) + 𝑖 · ℎ1(𝑘) 𝑚𝑜𝑑 𝑀 for sequence 𝑖 = 0,1, …

𝑀 = 11, ℎ0(𝑘) = 𝑘 mod 11, ℎ1 (𝑘) = 10 𝜑𝑘 − 𝜑𝑘 + 1

Double Hashing Example

45

13

92

49

7

41

43

0

1

2

3

4

5

6

7

8

9

10

insert(41)
ℎ0 (41) = 8
ℎ1 (41) = 4

 ℎ 41, 0 = 8 + 0 · 4 𝑚𝑜𝑑 11 = 8

ℎ 𝑘, 𝑖 = ℎ0(𝑘) + 𝑖 · ℎ1(𝑘) 𝑚𝑜𝑑 𝑀 for sequence 𝑖 = 0,1, …

𝑀 = 11, ℎ0(𝑘) = 𝑘 mod 11, ℎ1 (𝑘) = 10 𝜑𝑘 − 𝜑𝑘 + 1

Double Hashing Example

45

13

92

49

7

41

43

insert 194
ℎ0(194) = 7
ℎ1(194) = 9

 ℎ 194, 0 = 7 + 0 · 9 𝑚𝑜𝑑 11 = 7

0

1

2

3

4

5

6

7

8

9

10

ℎ 𝑘, 𝑖 = ℎ0(𝑘) + 𝑖 · ℎ1(𝑘) 𝑚𝑜𝑑 𝑀 for sequence 𝑖 = 0,1, …

𝑀 = 11, ℎ0(𝑘) = 𝑘 mod 11, ℎ1 (𝑘) = 10 𝜑𝑘 − 𝜑𝑘 + 1

Double Hashing Example

45

13

92

49

7

41

43

0

1

2

3

4

5

6

7

8

9

10

insert 194
ℎ0(194) = 7
ℎ1(194) = 9

 ℎ 194, 0 = 7 + 0 · 9 𝑚𝑜𝑑 11 = 7

ℎ 𝑘, 𝑖 = ℎ0(𝑘) + 𝑖 · ℎ1(𝑘) 𝑚𝑜𝑑 𝑀 for sequence 𝑖 = 0,1, …

𝑀 = 11, ℎ0(𝑘) = 𝑘 mod 11, ℎ1 (𝑘) = 10 𝜑𝑘 − 𝜑𝑘 + 1

Double Hashing Example

45

13

92

49

7

41

43

0

1

2

3

4

5

6

7

8

9

10

ℎ 𝑘, 𝑖 = ℎ0(𝑘) + 𝑖 · ℎ1(𝑘) 𝑚𝑜𝑑 𝑀 for sequence 𝑖 = 0,1, …

𝑀 = 11, ℎ0(𝑘) = 𝑘 mod 11, ℎ1 (𝑘) = 10 𝜑𝑘 − 𝜑𝑘 + 1

insert 194
ℎ0(194) = 7
ℎ1(194) = 9

 ℎ 194, 1 = 7 + 1 · 9 𝑚𝑜𝑑 11 = 5

Double Hashing Example

45

13

92

49

7

41

43

0

1

2

3

4

5

6

7

8

9

10

ℎ 𝑘, 𝑖 = ℎ0(𝑘) + 𝑖 · ℎ1(𝑘) 𝑚𝑜𝑑 𝑀 for sequence 𝑖 = 0,1, …

𝑀 = 11, ℎ0(𝑘) = 𝑘 mod 11, ℎ1 (𝑘) = 10 𝜑𝑘 − 𝜑𝑘 + 1

insert 194
ℎ0(194) = 7
ℎ1(194) = 9

 ℎ 194, 1 = 7 + 1 · 9 𝑚𝑜𝑑 11 = 5

Double Hashing Example

45

13

92

49

7

41

43

0

1

2

3

4

5

6

7

8

9

10

ℎ 𝑘, 𝑖 = ℎ0(𝑘) + 𝑖 · ℎ1(𝑘) 𝑚𝑜𝑑 𝑀 for sequence 𝑖 = 0,1, …

𝑀 = 11, ℎ0(𝑘) = 𝑘 mod 11, ℎ1 (𝑘) = 10 𝜑𝑘 − 𝜑𝑘 + 1

insert 194
ℎ0(194) = 7
ℎ1(194) = 9

 ℎ 194, 2 = 7 + 2 · 9 𝑚𝑜𝑑 11 = 3

Double Hashing Example

45

13

194

92

49

7

41

43

0

1

2

3

4

5

6

7

8

9

10

ℎ 𝑘, 𝑖 = ℎ0(𝑘) + 𝑖 · ℎ1(𝑘) 𝑚𝑜𝑑 𝑀 for sequence 𝑖 = 0,1, …

𝑀 = 11, ℎ0(𝑘) = 𝑘 mod 11, ℎ1 (𝑘) = 10 𝜑𝑘 − 𝜑𝑘 + 1

insert 194
ℎ0(194) = 7
ℎ1(194) = 9

 ℎ 194, 2 = 7 + 2 · 9 𝑚𝑜𝑑 11 = 3

Outline

▪ Dictionaries via Hashing

▪ Hashing Introduction

▪ Hashing with Chaining

▪ Open Addressing

▪ probe Sequences

▪ cuckoo hashing

▪ Hash Function Strategies

Cuckoo Hashing

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

ℎ0(𝑘) ℎ1(𝑘)

𝑘 = 25

▪ Main idea: An item with key 𝑘 can be only at 𝑇0[ℎ0(𝑘)] or 𝑇1[ℎ1(𝑘)]

𝑻𝟎 𝑻𝟏

Cuckoo Hashing

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

ℎ0(𝑘) ℎ1(𝑘)

𝑘 = 25

▪ Main idea: An item with key k can be only at 𝑇0[ℎ0(𝑘)] or 𝑇1[ℎ1(𝑘)]

𝑘 = 15

𝑻𝟎 𝑻𝟏

▪ search and delete take 𝑂(1) time

Cuckoo Hashing

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

ℎ0(𝑘) ℎ1(𝑘)

▪ How to insert?

insert(25)

𝑻𝟎 𝑻𝟏

Cuckoo Hashing

0

1

2

3

4

5

6

7

8

9

10

25

0

1

2

3

4

5

6

7

8

9

10

ℎ0(𝑘) ℎ1(𝑘)

▪ How to insert?

insert(25)

𝑻𝟎 𝑻𝟏

Cuckoo Hashing

0

1

2

3

4

5

6

7

8

9

10

25

0

1

2

3

4

5

6

7

8

9

10

ℎ0(𝑘) ℎ1(𝑘)

▪ How to insert 𝑘 when ℎ0(𝑘) is already occupied?

insert(15)

𝑻𝟎 𝑻𝟏

25

Cuckoo Hashing

0

1

2

3

4

5

6

7

8

9

10

15

0

1

2

3

4

5

6

7

8

9

10

ℎ0(𝑘) ℎ1(𝑘)

▪ How to insert 𝑘 when ℎ0(𝑘) is already occupied?

insert(15)

𝑻𝟎 𝑻𝟏

Cuckoo Hashing

0

1

2

3

4

5

6

7

8

9

10

15

0

1

2

3

4

5

6

7

8

9

10

ℎ0(𝑘) ℎ1(𝑘)

insert(15)

▪ How to insert 𝑘 when ℎ0(𝑘) is already occupied?

𝑻𝟎 𝑻𝟏

Cuckoo Hashing

0

1

2

3

4

5

6

7

8

9

10

15

0

1

2

3

4

5

6

7

8

9

10

ℎ0(𝑘) ℎ1(𝑘)

insert(15)

▪ How to insert 𝑘 when ℎ0(𝑘) is already occupied?

𝑻𝟎 𝑻𝟏

Cuckoo Hashing

25

0

1

2

3

4

5

6

7

8

9

10

15

0

1

2

3

4

5

6

7

8

9

10

ℎ0(𝑘) ℎ1(𝑘)

insert(15)

▪ How to insert 𝑘 when ℎ0(𝑘) is already occupied?

𝑻𝟎 𝑻𝟏

Cuckoo Hashing

35

0

1

2

3

4

5

6

7

8

9

10

15

0

1

2

3

4

5

6

7

8

9

10

ℎ0(𝑘) ℎ1(𝑘)

insert(15)

▪ How to insert 𝑘 when ℎ0(𝑘) is already occupied?

𝑻𝟎 𝑻𝟏

35

Cuckoo Hashing

35

0

1

2

3

4

5

6

7

8

9

10

15

0

1

2

3

4

5

6

7

8

9

10

ℎ0(𝑘) ℎ1(𝑘)

insert(25)

▪ How to insert 𝑘 when ℎ0(𝑘) is already occupied?

𝑻𝟎 𝑻𝟏

Cuckoo Hashing

25

0

1

2

3

4

5

6

7

8

9

10

15

0

1

2

3

4

5

6

7

8

9

10

ℎ0(𝑘) ℎ1(𝑘)

▪ Continue until all items placed, or failure

▪ rehash if failure

𝑻𝟎 𝑻𝟏

insert(25)

Cuckoo Hashing [Pagh & Rodler, 2001]

▪ Use independent hash functions ℎ0, ℎ1 and two tables 𝑇0, 𝑇1

▪ Key 𝑘 can be only at 𝑇0[ℎ0(𝑘)] or 𝑇1[ℎ1(𝑘)]

▪ search and delete take constant time

▪ insert always initially puts key 𝑘 into 𝑇0[ℎ0(𝑘)]
▪ evict item that my have been there already

▪ if so, evicted item 𝑘’ is inserted at 𝑇1[ℎ1(𝑘′)]

▪ may lead to a loop of evictions

▪ can show that if insertion is possible, then there are at most 2𝑛
evictions

▪ so abort after too many attempts

Cuckoo Hashing

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

ℎ0(𝑘) ℎ1(𝑘)

𝑘 = 25

▪ Intuitively

▪ each key has 2 locations (locations can coincide)

𝑘 = 15

𝑘 = 11

𝑘 = 5

11

15

25

5

▪ try to “match” keys to locations so that everyone is placed

Cuckoo Hashing

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

ℎ0(𝑘) ℎ1(𝑘)

𝑘 = 25

▪ Sometimes no solution for the “matching” problem

▪ would loop infinitely if not stopped by force

𝑘 = 15

𝑘 = 11

Cuckoo hashing: Insert
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

44

59

92

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

𝑖𝑛𝑠𝑒𝑟𝑡 51

 𝑖 = 0

 𝑘 = 51

 ℎ0(𝑘) = 7

Cuckoo hashing: Insert
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

𝑖𝑛𝑠𝑒𝑟𝑡 51

 𝑖 = 0

 𝑘 = 51

 ℎ0(𝑘) = 7

44

59

92

44

59

51

92

Cuckoo hashing: Insert
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

44

59

51

92

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

𝑖𝑛𝑠𝑒𝑟𝑡 95

 𝑖 = 0

 𝑘 = 95

 ℎ0(𝑘) = 7

Cuckoo hashing: Insert
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

𝑖𝑛𝑠𝑒𝑟𝑡 95

 𝑖 = 0

 𝑘 = 95

 ℎ0(𝑘) = 7

44

59

51

92

Cuckoo hashing: Insert
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

𝑖𝑛𝑠𝑒𝑟𝑡 95

 𝑖 = 0

 𝑘 = 95

 ℎ0(𝑘) = 7

51

44

59

95

92

Cuckoo hashing: Insert
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

𝑖𝑛𝑠𝑒𝑟𝑡 95

 𝑖 = 1

 𝑘 = 51

 ℎ1(𝑘) = 5

44

59

95

92

51

Cuckoo hashing: Insert
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

𝑖𝑛𝑠𝑒𝑟𝑡 95

 𝑖 = 1

 𝑘 = 51

 ℎ1(𝑘) = 5

51

44

59

95

92

51

Cuckoo hashing: Insert
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

0

1

2

3

4

5

6

7

8

9

10

51

0

1

2

3

4

5

6

7

8

9

10

𝑖𝑛𝑠𝑒𝑟𝑡 26

 𝑖 = 0

 𝑘 = 26

 ℎ0 𝑘 = 4

44

59

95

92

44

59

95

92

Cuckoo hashing: Insert
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

0

1

2

3

4

5

6

7

8

9

10

51

0

1

2

3

4

5

6

7

8

9

10

𝑖𝑛𝑠𝑒𝑟𝑡 26

 𝑖 = 0

 𝑘 = 26

 ℎ0 𝑘 = 4
59

44

26

95

92

Cuckoo hashing: Insert
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

0

1

2

3

4

5

6

7

8

9

10

51

0

1

2

3

4

5

6

7

8

9

10

 𝑖 = 1

 𝑘 = 59

 ℎ1(𝑘) = 5

51

𝑖𝑛𝑠𝑒𝑟𝑡 26

59

44

26

95

92

Cuckoo hashing: Insert
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

0

1

2

3

4

5

6

7

8

9

10

51

0

1

2

3

4

5

6

7

8

9

10

𝑖𝑛𝑠𝑒𝑟𝑡 26

 𝑖 = 1

 𝑘 = 59

 ℎ1(𝑘) = 5

59 51

44

26

95

92

Cuckoo hashing: Insert
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

0

1

2

3

4

5

6

7

8

9

10

59

0

1

2

3

4

5

6

7

8

9

10

𝑖𝑛𝑠𝑒𝑟𝑡 26

 𝑖 = 0

 𝑘 = 51

 ℎ0 𝑘 = 7

44

26

95

92

44

26

95

92

51

Cuckoo hashing: Insert
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

0

1

2

3

4

5

6

7

8

9

10

59

0

1

2

3

4

5

6

7

8

9

10

𝑖𝑛𝑠𝑒𝑟𝑡 26

 𝑖 = 0

 𝑘 = 51

 ℎ0(𝑘) = 7

95

44

26

51

92

Cuckoo hashing: Insert
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

0

1

2

3

4

5

6

7

8

9

10

59

0

1

2

3

4

5

6

7

8

9

10

𝑖𝑛𝑠𝑒𝑟𝑡 26

59

 𝑖 = 1

 𝑘 = 95

 ℎ1(𝑘) = 7

95

44

26

51

92

Cuckoo hashing: Insert
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

0

1

2

3

4

5

6

7

8

9

10

59

95

0

1

2

3

4

5

6

7

8

9

10

𝑖𝑛𝑠𝑒𝑟𝑡 26

 𝑖 = 1

 𝑘 = 95

 ℎ1(𝑘) = 7

44

26

51

92

Cuckoo Hashing: Insert Pseudocode

cuckoo::insert(𝑘, 𝑣)

 𝑖 ← 0

 do at most 2𝑛 times

 if 𝑇𝑖[ℎ𝑖(𝑘)] is empty

 𝑇𝑖[ℎ𝑖(𝑘)] ← (𝑘, 𝑣)

 return “success”

 //insert 𝑇𝑖 [ℎ𝑖(𝑘)] into the other table

 swap 𝑘, 𝑣 , 𝑇𝑖[ℎ𝑖(𝑘)] // kick out current occupant

 𝑖 ← 1 − 𝑖 // alternate between 0 and 1

 return failure // re-hash

▪ Practical tip

▪ do not wait for 2𝑛 unsuccessful tries to declare failure

▪ In practice, declare failure much earlier than 2𝑛

Cuckoo hashing: Search
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

0

1

2

3

4

5

6

7

8

9

10

59

95

0

1

2

3

4

5

6

7

8

9

10

search 59

ℎ0 (59) = 4
ℎ1(59) = 5

59

95

found

44

26

51

92

44

26

51

92

Cuckoo hashing: Delete
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

delete 59

 ℎ0 59 = 4
 ℎ1(59) = 5

0

1

2

3

4

5

6

7

8

9

10

59

95

0

1

2

3

4

5

6

7

8

9

10

59

95

found

44

26

51

92

44

26

51

92

Cuckoo hashing: Delete
𝑀 = 11, ℎ0 𝑘 = 𝑘 mod 11, ℎ1 𝑘 = 11 𝜑𝑘 − 𝜑𝑘

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

no need to mark
deleted spot

delete 59

 ℎ0 59 = 4
 ℎ1(59) = 5

95

44

26

51

92

Cuckoo hashing discussion

▪ Load factor 𝛼 = 𝑛/(size of 𝑇0 + size of 𝑇1)

▪ Can show that if the load factor is small enough, then insertion has
𝑂(1) expected time

▪ this requires 𝛼 < 1/2

▪ so wasted space

▪ Can show expected space is 𝑂(𝑛)

▪ There are many variations of cuckoo hashing

▪ two hash tables do not have to be of the same size

▪ two hash tables can be combined into one

▪ more flexible when inserting: always consider both possible
positions

▪ Use 𝑘 > 2 allowed locations

▪ 𝑘 tables or 𝑘 hash functions

Running Time of Open Addressing Strategies

▪ For any open addressing scheme, we must have 𝛼 ≤ 1 (why?)

▪ For analysis, require 0 < 𝛼 < 1 , for Cuckoo hashing require 𝛼 < 1/2

▪ not arbitrarily close

▪ Under these restrictions and the Universal Hashing Assumption

▪ All strategies have 𝑂(1) expected time for search, insert, delete

▪ Cuckoo hashing has 𝑂(1) worst case for search, delete

▪ Probe sequence use 𝑂(𝑛) worst case space

▪ Cuckoo hashing uses 𝑂(𝑛) expected space

▪ For any hashing, the worst case runtime is Θ 𝑛 for insert

▪ In practice, double hashing is the most popular

▪ Or cuckoo hashing if there are many more searches than insertions

Outline

▪ Dictionaries via Hashing

▪ Hashing Introduction

▪ Hashing with Chaining

▪ Open Addressing

▪ probe Sequences

▪ cuckoo hashing

▪ Hash Function Strategies

Choosing Good Hash Function

▪ Satisfying the uniform hashing assumption is impossible

▪ too many hash functions and for most, computing ℎ(𝑘) is not cheap for most
of them

▪ Two ways to compromise

1. Deterministic: hope for a good performance by choosing a hash
function that is

▪ unrelated to any possible patterns in the data

▪ depends on all parts of the key

2. Randomized: choose randomly among a limited set of functions

▪ but aim for 𝑃(two keys collide) =
1

𝑀

▪ this is enough to prove expected runtime bounds for
chaining

Deterministic Hash Functions

▪ We saw two basic methods (for integer keys)

▪ Modular method: ℎ(𝑘) = 𝑘 𝑚𝑜𝑑 𝑀

▪ chose 𝑀 to be a prime

▪ Means finding a suitable prime quickly when re-hashing

▪ can be done in 𝑂(Mlog log 𝑛) time

▪ no details

▪ Multiplicative method: ℎ(𝑘) = 𝑀(𝑘𝐴 − 𝑘𝐴)

▪ multiplying with 0 < 𝐴 < 1 is used to scramble keys

▪ so A should be irrational to avoid patterns in keys

▪ experiments show that good scrambling is achieved when 𝐴 is the
golden ratio

▪ should use at least log 𝑈 + log𝑀 bits of log U

Randomized Hash Functiosn: Carter-Wegman’s
Universal Hashing

▪ Randomization that uses easy-to-compute hash functions

▪ Requires: all keys are in 0, . . . 𝑝 − 1 for some (big) prime 𝑝

▪ At initialization and whenever rehash

▪ choose number 𝑀 < 𝑝

▪ 𝑀 equal to some power of 2 is ok

▪ choose (and store) two random numbers 𝑎, 𝑏 ∈ 0, . . . 𝑝 − 1

▪ 𝑏 = 𝑟𝑎𝑛𝑑𝑜𝑚(𝑝)

▪ 𝑎 = 1 + 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝 − 1

▪ so that 𝑎 ≠ 0

▪ Use as hash function

 ℎ(𝑘) = (𝑎𝑘 + 𝑏 mod 𝑝)

mod 𝑀

▪ can be computed quickly

▪ can prove that two keys collide with probability at most
1

𝑀

▪ enough to prove the expected runtime bounds for chaining,
although uniform hashing assumption is not satisfied

Multi-dimensional Data
▪ May need multi-dimensional non integer keys

▪ example: strings in Σ
∗

1. Construct 𝑓 𝑤 ∈ 𝑁 for converting string 𝑤 to integer

▪ should depend on all parts of the key

▪ ASCII representation of APPLE is 65, 80, 80, 76, 69

▪ simple addition: 𝑓 𝐴𝑃𝑃𝐿𝐸 = 65 + 80 + 80 + 76 + 69

▪ many collisions, ‘stop’=‘tops’=‘pots’

▪ polynomial accumulation works better

▪ choose radix 𝑅, e.g. 𝑅 = 255

▪ 𝑓 𝐴𝑃𝑃𝐿𝐸 = 65𝑅4 + 80𝑅3 + 80𝑅2 + 76𝑅1 + 69𝑅0

▪ compute in 𝑂(|𝑤|) time with Horner’s rule

▪ either ignoring overflow

2. Now apply any hash function, such as ℎ(𝑤) = 𝑓(𝑤) 𝑚𝑜𝑑 𝑀

▪ or apply 𝑚𝑜𝑑 𝑀 after each addition

𝑓 𝐴𝑃𝑃𝐿𝐸 = 65𝑅 + 80 𝑅 + 80 𝑅 + 76 𝑅 + 69

Hashing vs. Balanced Search Trees

▪ Advantages of Balanced Search Trees

▪ 𝑂(log 𝑛) worst-case operation cost

▪ does not require any assumptions, special functions, or
known properties of input distribution

▪ predictable space usage (exactly 𝑛 nodes)

▪ never need to rebuild the entire structure

▪ supports ordered dictionary operations (rank, select etc.)

▪ Advantages of Hash Tables

▪ 𝑂(1) expected time operations (if hashes well-spread and load

factor small)

▪ can choose space-time trade-off via load factor

▪ cuckoo hashing achieves 𝑂(1) worst-case for search & delete

	Slide 1
	Slide 2: Outline
	Slide 3: Outline
	Slide 4: Direct Addressing
	Slide 5: Direct Addressing
	Slide 6: Direct Addressing
	Slide 7: Hashing
	Slide 8: Hashing
	Slide 9: Hashing
	Slide 10: Hash Functions and Collisions
	Slide 11: Outline
	Slide 12
	Slide 13: Hashing with Chaining
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Hashing with Chaining: Running Time
	Slide 22: Hashing with Chaining: Worst Case Running Time
	Slide 23: Hashing with Chaining: Average Case Runtime?
	Slide 24: Hashing with Chaining: Randomization
	Slide 25: Uniform Hashing Assumption Properties
	Slide 26: Hashing with Chaining with Randomly Chosen Hash Function
	Slide 27: Load factor and re-hashing
	Slide 28: Rehashing when Load Factor Too Large
	Slide 29: Randomization in Practice
	Slide 30: Hashing with Chaining Summary
	Slide 31: Outline
	Slide 32: Open Addressing
	Slide 33: Open Addressing: Linear Probing
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40: Linear Probing Formula
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54: Open Addressing
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62: Open Addressing
	Slide 63: Probe Sequence Operations
	Slide 64
	Slide 65: Double Hashing Motivation
	Slide 66: Double Hashing
	Slide 67: Independent Hash functions
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77: Outline
	Slide 78: Cuckoo Hashing
	Slide 79: Cuckoo Hashing
	Slide 80: Cuckoo Hashing
	Slide 81: Cuckoo Hashing
	Slide 82: Cuckoo Hashing
	Slide 83: Cuckoo Hashing
	Slide 84: Cuckoo Hashing
	Slide 85: Cuckoo Hashing
	Slide 86: Cuckoo Hashing
	Slide 87: Cuckoo Hashing
	Slide 88: Cuckoo Hashing
	Slide 89: Cuckoo Hashing
	Slide 90: Cuckoo Hashing [Pagh & Rodler, 2001]
	Slide 91: Cuckoo Hashing
	Slide 92: Cuckoo Hashing
	Slide 93: Cuckoo hashing: Insert
	Slide 94: Cuckoo hashing: Insert
	Slide 95: Cuckoo hashing: Insert
	Slide 96: Cuckoo hashing: Insert
	Slide 97: Cuckoo hashing: Insert
	Slide 98: Cuckoo hashing: Insert
	Slide 99: Cuckoo hashing: Insert
	Slide 100: Cuckoo hashing: Insert
	Slide 101: Cuckoo hashing: Insert
	Slide 102: Cuckoo hashing: Insert
	Slide 103: Cuckoo hashing: Insert
	Slide 104: Cuckoo hashing: Insert
	Slide 105: Cuckoo hashing: Insert
	Slide 106: Cuckoo hashing: Insert
	Slide 107: Cuckoo hashing: Insert
	Slide 108: Cuckoo Hashing: Insert Pseudocode
	Slide 109: Cuckoo hashing: Search
	Slide 110: Cuckoo hashing: Delete
	Slide 111: Cuckoo hashing: Delete
	Slide 112: Cuckoo hashing discussion
	Slide 113: Running Time of Open Addressing Strategies
	Slide 114: Outline
	Slide 115: Choosing Good Hash Function
	Slide 116: Deterministic Hash Functions
	Slide 117: Randomized Hash Functiosn: Carter-Wegman’s Universal Hashing
	Slide 118: Multi-dimensional Data
	Slide 119: Hashing vs. Balanced Search Trees

