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Pattern Matching Definitions
▪ Search for a string (pattern) in a large body of text

▪ 𝑇[0. . . 𝑛 −  1] text (or haystack) being searched 

▪ 𝑃[0 … 𝑚 −  1] pattern (or needle) being searched for

▪ Strings over alphabet Σ  

▪ Convention: return the first occurrence of 𝑃 in 𝑇

▪ Example

 𝑇 =   L i t t l e  p i g l e t s  c o o k e d  f o r   m o t h e r  p i g

 
 

 𝑃 = p i g

 𝑛 = 36, 𝑚 = 3, 𝑖 = 7

▪ return smallest  𝑖 (leftmost occurrence) such that

𝑇 [𝑖 + 𝑗]  = 𝑃 𝑗   for 0 ≤ 𝑗 ≤ 𝑚 − 1

▪ If 𝑃 does not occur in 𝑇, return FAIL  

▪ Applications

▪ information retrieval (text editors, search engines), bioinformatics, data mining
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More Definitions

▪ Substring 𝑇 𝑖. . . 𝑗  0 ≤ 𝑖 ≤ 𝑗 + 1 ≤ 𝑛 is a string 𝑇 𝑖 , 𝑇 𝑖 + 1 , . . . , 𝑇[𝑗]

▪ length is  𝑗 − 𝑖 + 1

▪ empty string included: 𝑇 𝑖. . . 𝑖 − 1

antidisestablishmentarianism

▪ Prefix of 𝑇 is a substring 𝑇 [0. . . 𝑖 − 1] of 𝑇 for some 0 ≤ 𝑖 ≤  𝑛

▪ empty prefix included: 𝑇[0 … − 1] 

▪ Suffix of 𝑇 is a substring 𝑇 [𝑖. . . 𝑛 −  1] of 𝑇 for some 0 ≤ 𝑖 ≤ 𝑛

▪ empty suffix included: 𝑇[𝑛 … 𝑛 − 1] 

▪ The empty substring is usually denoted by  Λ

antidisestablishmentarianismantidisestablishmentarianismantidisestablishmentarianism



General Idea of Algorithms

▪ Pattern matching algorithms consist of guesses and checks

▪ a guess is a position 𝑖 such that 𝑃 might start at 𝑇[𝑖]

▪ valid guesses (initially) are 0 ≤ 𝑖 ≤ 𝑛 − 𝑚

guess at 𝑖 = 0

abbbababbab

abba

guess at 𝑖 = 1 
abbbababbab

 abba

guess at 𝑖 = 6

abbbababbab

      abba

guess at 𝑖 = 7

abbbababbab

       abba

check at 𝑗 =  0 check at 𝑗 = 1

▪ a check of a guess is a single position 𝑗 with 0 ≤ 𝑗 < 𝑚 where we  
compare 𝑇 [𝑖 +  𝑗] to 𝑃[𝑗]

abbbababbab

      abba

▪ must perform 𝑚 checks of a single correct guess

▪ may make fewer checks of an incorrect  guess

abbbababbab

      abba

…



Diagrams for Matching

▪ Diagram  single run of pattern matching algorithm by  matrix of checks

▪ each row represents a single guess

▪ shaded in gray

a    b    b    b    a    b    a     b     b    a    b
a b b a



Brute-Force Algorithm: Example
Example: 𝑇 = abbbababbab, 𝑃 = abba

a    b    b    b    a    b    a     b     b    a    b
a b b a

a

a

a

a b b

a

a b b a

guess 𝑖 = 1
check 𝑗 = 0guess 𝑖 = 0

check 𝑗 = 3



Brute-Force Algorithm: Running Time

a    a    a    a    a    a    a     a     a    a

▪ Worst possible input

▪ 𝑃 = 𝑎 … 𝑎𝑏, 𝑇 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 … 𝑎𝑎𝑎𝑎𝑎𝑎𝑎

a a a b

▪ Perform  (𝑛 − 𝑚 + 1)𝑚 checks, which is Θ( 𝑛 − 𝑚 𝑚)

▪ small 𝑚, say 𝑚 = 5  runtime is Θ(𝑛)

▪ medium 𝑚, say  𝑚 = 𝑛/2:  runtime is Θ(𝑛2)

▪ too slow! 

▪ large 𝑚, say 𝑚 = 𝑛 − 5: runtime is Θ(𝑛)

𝑚 − 1 times 𝑛 times

a a a b

a a a b

a a a b

a a a b

a a a b

a a a b



Brute-force Algorithm

Bruteforce::PatternMatching(𝑇 [0. . 𝑛 − 1], 𝑃[0. . 𝑚 −  1])

𝑇 : String of length 𝑛 (text), 𝑃: String of length 𝑚 (pattern)

 for 𝑖 ←  0 to 𝑛 − 𝑚 do

  if strcmp(𝑇, 𝑃, 𝑖, 𝑚) = 0

   return “found at guess 𝑖”

 return FAIL

▪ Note: strcmp takes Θ(𝑚) time

strcmp(𝑇 , 𝑃, 𝑖 ← 0, 𝑚 ← 𝑃. 𝑠𝑖𝑧𝑒())

// compare 𝑚 chars of 𝑇 and 𝑃, starting at 𝑇[𝑖]

for 𝑗 ← 0 to 𝑚 − 1 do

 if 𝑇 [𝑖 + 𝑗] is before 𝑃[𝑗] in Σ then return -1

 if 𝑇 [𝑖 + 𝑗] is after 𝑃[𝑗] in Σ then return 1

return 0

▪ Checks every possible guess



Improvement via Preprocesing

▪ Preprocessing: do work on some parts of the input before pattern 
matching begins, so that pattern matching goes faster

▪ Two preprocessing options for pattern matching

1. Do preprocessing on pattern 𝑃

▪ eliminate guesses based on preprocessing

▪ Karp-Rabin

▪ KMP

▪ Boyer-Moore 

2. Do preprocessing on text T

▪ create a data structure to find matches easily

▪ Suffix-tree

▪ Suffix-arrays
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Karp-Rabin Fingerprint Algorithm: Idea
▪ Idea: use hash values (called fingerprints) to eliminate guesses

▪ function ℎ: {strings of length 𝑚} ⟶ {0, … , 𝑀 − 1}

▪ call these hash-function and table-size, but there is no dictionary here

▪ insight: if ℎ(𝑃) ≠ ℎ(𝑔𝑢𝑒𝑠𝑠) then guess cannot work 

▪ if ℎ 𝑃 = ℎ(𝑔𝑢𝑒𝑠𝑠) verify with strcmp if pattern matches text

3 1 4 1 5 9 2 6 5 3 5
ℎ(31415) = 84 

ℎ(14159) = 94 

ℎ(41592) = 76 

ℎ(15926) = 18 

ℎ(59265) = 95 

fingerprint 84

fingerprint 94

fingerprint 76

fingerprint 18

fingerprint 18

= 18= (9 ∙ 104 + 2 ∙ 103 + 6 ∙ 102 + 5 ∙ 101 + 3) 𝑚𝑜𝑑 97

no strcmp 

no strcmp

no strcmp

do strcmp, false positive

do strcmp, found!

fingerprint 95

ℎ(9 2 6 5 3) = 18 

no strcmp 

▪ Example: Σ = 0 − 9 , 𝑃 = 9 2 6 5 3, 𝑇 = 3 1 4 1 5 9 2 6 5 3 5

▪ use standard hash-function for words with 𝑅 = |Σ| and 𝑀 = 97

▪ precompute ℎ 𝑃 = ℎ(9 2 6 5 3)



Karp-Rabin Fingerprint Algorithm – First Attempt

Karp-Rabin-Simple::patternMatching(𝑇, 𝑃)

 ℎ𝑃 ← ℎ(𝑃[0. . 𝑚 − 1)])

 for 𝑖 ←  0 to 𝑛 −  𝑚

  ℎ𝑇 ← ℎ(𝑇 [𝑖. . . 𝑖 + 𝑚 − 1])

  if ℎ𝑇 =  ℎ𝑃

  if strcmp(𝑇 , 𝑃, 𝑖, 𝑚) = 0

   return “found at guess 𝑖”

 return FAIL 

▪ Algorithm correctness: match is not missed

▪ ℎ(𝑇 [𝑖. . 𝑖 + 𝑚 − 1]) ≠ ℎ(𝑃) ⇒ guess 𝑖 is not 𝑃

▪ What about running time?

Θ(𝑚) 



Karp-Rabin Fingerprint Algorithm: First Attempt

3 1 4 1 5 9 2 6 5 3 5

hash-value 84

hash-value 94

hash-value 76

hash-value 18

hash-value 95

Θ(𝑚) 

Θ(𝑚) 

Θ(𝑚) 

Θ(𝑚) 

Θ(𝑚) 

▪ For each guess, Θ(𝑚) time to compute hash value

▪ since ℎ(𝑇[𝑖. . . 𝑖 + 𝑚 − 1]) depends on all 𝑚 characters

▪ worse than brute-force!
▪ it is possible for brute force matching to use less than Θ(𝑚) per 

guess, as it stops at the first mismatched character 

▪ 𝑛 − 𝑚 + 1  guesses in text to check

▪ Total time is  Θ(𝑚𝑛) if pattern not in text

▪ how can we improve this?



Karp-Rabin Fingerprint Algorithm: Idea
3 1 4 1 5 9 2 6 5 3 5

hash-value 84

hash-value 94

hash-value 76

hash-value 18

hash-value 95

Θ(𝑚) 

𝑂(1) 

𝑂(1) 

𝑂(1) 

𝑂(1) 

▪ Idea: compute next hash from previous one in 𝑂(1) time 

▪ 𝑂(𝑛)  guesses in text to check

▪ 𝛩(𝑚) to compute the first hash value

▪ 𝑂(1) to compute all other hash values 

▪ consecutive guesses share 𝑚 − 1 characters

▪ 𝑂 𝑛 + 𝑚 + 𝑚 ∙ {#false positive}  time
▪ need to check if pattern matches text when hash values of text and pattern are equal 

▪ if hash function is good, whenever hash values are equal, pattern most likely matches 
text

𝑂 𝑚  to do strcmp, false positive



▪ Can update fingerprint from previous one in 𝑂(1) time for some hash functions

▪ Example: T = 4 1 5 9 2 6 5 3 5         

▪ Algebraically, 

4 1 5 9 2 

41592 − 4 · 10000 · 10 + 6 = 15926

41592
−4 · 10000

1592
× 10

15920
+6

15926

▪ Initialization of the algorithm

1. compute first fingerprint: ℎ 41592 = 41592 𝑚𝑜𝑑 97 =  76 

2. also pre-compute 𝑅𝑚−1mod 𝑀 (here 10000 𝑚𝑜𝑑 97 =  9)

▪ Main loop: repeatedly compute next hash from the previous one

▪ Example: from  41592 𝑚𝑜𝑑 97 compute 15926 𝑚𝑜𝑑 97

▪ get rid of the old first digit and add new last digit

Karp-Rabin Fingerprint Algorithm – Fast Rehash



▪ Can update fingerprint from previous one in 𝑂(1) time for some hash functions

▪ Example: T = 4 1 5 9 2 6 5 3 5         4 1 5 9 2 

▪ Initialization of the algorithm

1. compute first fingerprint: ℎ 41592 = 41592 𝑚𝑜𝑑 97 =  76 

2. also pre-compute 𝑅𝑚−1mod 𝑀 (here 10000 𝑚𝑜𝑑 97 =  9)

▪ Main loop: repeatedly compute next hash from the previous one

▪ Example: from  41592 𝑚𝑜𝑑 97 compute 15926 𝑚𝑜𝑑 97

Karp-Rabin Fingerprint Algorithm – Fast Rehash

41592 − 4 · 10000 · 10 + 6 = 15926

15926 𝑚𝑜𝑑 97

(41592 𝑚𝑜𝑑 97 − 4 · (10000 𝑚𝑜𝑑 97) · 10 + 6) 𝑚𝑜𝑑 97 = 15926 𝑚𝑜𝑑 97

previous hash precomputed

76 − 4 · 9 · 10 + 6 𝑚𝑜𝑑 97 = 15926 𝑚𝑜𝑑 97

constant number of operations, independent of 𝑚

(41592 − 4 · 10000 · 10 + 6) 𝑚𝑜𝑑 97 =



Karp-Rabin Fingerprint Algorithm – Conclusion
Karp-Rabin-RollingHash::PatternMatching(𝑇 , 𝑃)

 𝑀 ← suitable prime number

           ℎ𝑃 ← ℎ(𝑃[0. . . 𝑚 − 1)])

 ℎ𝑇 ← ℎ(𝑇 [0. . 𝑚 − 1)])

           𝑠 ←  𝑅𝑚−1 𝑚𝑜𝑑 𝑀

 for 𝑖 ← 0 to 𝑛 − 𝑚

 if  ℎ𝑇 =  ℎ𝑃

 if strcmp(𝑇, 𝑃, 𝑖, 𝑚)  =  0

 return “found at guess 𝑖”

 if  𝑖 < 𝑛 − 𝑚 // compute fingerprint for next guess

 ℎ𝑇 ← ℎ𝑇 − 𝑇 𝑖 · 𝑠 · 𝑅 + 𝑇 𝑖 + 𝑚 𝑚𝑜𝑑 𝑀

    return FAIL

▪ Choose “table size” 𝑀 at random to be prime in 2, … , 𝑚𝑛2

▪ Analysis specific to the hash function in this pseudo-code

▪ can show that expected running time is 𝑂(𝑚 + 𝑛)

▪ Θ(𝑚𝑛) worst-case, but this extremely is unlikely  

▪ improvement: reset 𝑀 after false positive



Outline

▪ String Matching
▪ Introduction
▪ Karp-Rabin Algorithm
▪ Knuth-Morris-Pratt algorithm
▪ Boyer-Moore Algorithm  
▪ Suffix Trees 
▪ Suffix Arrays
▪ Conclusion



Knuth-Morris-Pratt (KMP) Overview

𝑇 

▪ KMP starts out similar to Brute-Force pattern matching

𝑃 =  𝑎𝑏𝑎𝑏𝑎𝑐𝑎 

c a b a b a a b a b
a mismatch at the first pattern letter, 

discard current guess and move on 
to the next guessa

letter matches the text, move 
on to the next check

b a b a c

mismatch at pattern letter which is not the 
first pattern letter: do something smarter 
than brute-force



Knuth-Morris-Pratt (KMP) Indexing

▪ KMP indexing 

▪ indexes 𝑖 and 𝑗

▪ 𝑗 is the position in the pattern

▪ 𝑖 is text position where check happens

▪ check: 𝑇 𝑖 = 𝑃 𝑗

▪ current guess is 𝑖 − 𝑗

𝑇 

𝑃 = 𝑐𝑎𝑏 

d c a b a b

𝒋=𝟎
𝒊=𝟏

𝑇 d c a b a b

𝒋=𝟎

▪ Brute-force indexing

▪ indexes 𝑖 and 𝑗

▪ 𝑗 is the position in the pattern

▪ 𝑖 is current guess

▪ check: 𝑇 𝑖 + 𝑗 = 𝑃 𝑗

𝒋=𝟏 𝒋=𝟐

𝒊=1

𝒋=𝟏
𝒊=𝟐

𝒋=𝟐
𝒊=𝟑

c a b c a b

𝑇 1 + 0 = 𝑃 0

𝑇 1 + 1 = 𝑃 1

𝑇 1 + 2 = 𝑃 2

𝑇 1 = 𝑃 0
𝑇 2 = 𝑃 1

𝑇 3 = 𝑃 2

𝒊 − 𝒋 = 1 



Knuth-Morris-Pratt (KMP) Derivation

▪ KMP starts similar to brute force pattern matching

▪ maintain variables 𝑖 and 𝑗

▪ 𝑗 is the position in the pattern

▪ 𝑖 is the position in the text where we do the check

▪ check is performed by determining if 𝑇 𝑖 = 𝑃 𝑗

▪ current guess is 𝑖 − 𝑗

𝑇 

𝑃 =  𝑎𝑏𝑎𝑏𝑎𝑐𝑎 

▪ Begin matching with 𝑖 = 0, 𝑗 = 0

c a b a b a a b a b

𝒋=𝟎
𝒊=𝟎

a

▪ If 𝑇 𝑖 ≠ 𝑃 𝑗   and 𝑗 = 0,  shift pattern by 1,  same action as in brute-force
▪ 𝑖 = 𝑖 + 1

▪ 𝑗 is unchanged

▪ old guess: 𝑖 − 𝑗, new guess:  𝑖 + 1 − 𝑗 
▪ new guess increases by 1, i.e. pattern shifts by 1



Knuth-Morris-Pratt Motivation

▪ When 𝑇[𝑖] = 𝑃[𝑗], the action is to check the next letter, as in brute-force

▪ 𝑖 = 𝑖 + 1

▪ 𝑗 = 𝑗 + 1

▪ guess was: 𝑖 − 𝑗, and it stays the same: 𝑖 + 1 − 𝑗 + 1 = 𝑖 − 𝑗

▪ pattern is not shifted

𝑇 

𝑃 =  𝑎𝑏𝑎𝑏𝑎𝑐𝑎 

c a b a b a a b a b

a

a b a b a c

▪ Failure at text position  𝑖 = 6,  pattern position  𝑗 = 5 

▪ When failure is at pattern position 𝑗 > 0, do something smarter than brute force

𝒋=𝟎
𝒊=𝟏

𝒋=𝟏
𝒊=𝟐

𝒋=𝟐
𝒊=𝟑

𝒋=𝟑
𝒊=𝟒

𝒋=𝟒
𝒊=𝟓

𝒋=𝟓
𝒊=𝟔

𝒋=𝟎
𝒊=𝟎



Knuth-Morris-Pratt Motivation

𝑇 

𝑃 =  𝑎𝑏𝑎𝑏𝑎𝑐𝑎 

c a b a b a a b a b

a

a cb a b a

▪ When failure is at pattern position 𝑗 > 0, do something smarter than brute force

▪ Prior to 𝑗 = 5, pattern and text are equal

▪ key observation: can find how to move pattern looking only at pattern 

guess = 2 does not worka

a b a guess = 3 could work

▪ If failure at 𝑗 = 5, 𝑖 stays the same, new 𝑗 = 3 

▪ 𝑖 stays the same because we will try to match the same text letter

▪ old guess is  𝑖 −5, new guess is 𝑖 − 3, so guess increased by 2

▪ we skipped one guess and 3 character checks

▪ can precompute the action of ‘shift by 2 and skip 3 characters’  before matching 
begins, from the pattern, do not need text for this computation

𝒋=𝟎
𝒊=𝟏

𝒋=𝟏
𝒊=𝟐

𝒋=𝟐
𝒊=𝟑

𝒋=𝟑
𝒊=𝟒

𝒋=𝟒
𝒊=𝟓

𝒋=𝟓
𝒊=𝟔

𝒋=𝟎
𝒊=𝟎

new guess 3, 
new check 3

old guess 1, 
old check 5



Knuth-Morris-Pratt Motivation

𝑇 

𝑃 =  𝑎𝑏𝑎𝑏𝑎𝑐𝑎 

c a b a b a a b a b

a

a cb a b a

▪ If failure at 𝑗 = 5: continue matching with the same 𝑖 and new 𝑗 = 3

▪ precomputed from pattern before matching begins

shift by 1 does not worka

a b a shift by 2 could work

prefix of  𝑃

𝑷[𝟏 … 𝒋 − 𝟏]

▪ Rule for determining new 𝑗

▪ find longest suffix of 𝑃 1 … 𝑗 − 1  which is also prefix of 𝑃

▪ call a suffix of 𝑃 valid if it is a prefix of 𝑃 

▪ new 𝑗 =  length of the longest valid suffix of 𝑃 1 … 𝑗 − 1

𝒋=𝟎
𝒊=𝟏

𝒋=𝟏
𝒊=𝟐

𝒋=𝟐
𝒊=𝟑

𝒋=𝟑
𝒊=𝟒

𝒋=𝟒
𝒊=𝟓

𝒋=𝟓
𝒊=𝟔

𝒋=𝟎
𝒊=𝟎



KMP Failure Array Computation: Slow
▪ Rule: if failure at pattern index 𝑗 > 0, continue matching with the same  𝑖 and     

new 𝑗 =  the length of the longest valid suffix of 𝑃 1 … 𝑗 − 1

▪ Computed previously for 𝑗 = 5, but  need to compute for all 𝑗

▪ Store this information in array 𝐹 0. . . 𝑚 − 1 ,  also called failure-function

0 … 𝑗 − 1 𝑗 … 𝑚 − 1
𝐹

longest valid suffix 
of 𝑃[1. . . 𝑗]

if failure at  𝑗 > 0, new 𝑗 = 𝐹[𝑗 − 1]

0 … 𝑗 − 1 𝑗 … 𝑚 − 1
𝐹

longest valid suffix 
of 𝑃[1. . . 𝑗 − 1]

if failure at  𝑗 > 0, new 𝑗 = 𝐹[𝑗]

alternative indexing of 𝐹 



KMP Failure Array Computation: Slow
▪ Rule: if failure at pattern index 𝑗 > 0, continue matching with the same  𝑖 and     

new 𝑗 =  the length of the longest valid suffix of 𝑃 1 … 𝑗 − 1

▪ Store the length of the longest valid suffix of  𝑃 1 … 𝑗  in 𝐹 𝑗

▪ If failure at pattern index 𝑗 > 0, new  𝑗 = 𝐹[𝑗 − 1]

▪ Important for efficiency: 𝐹 𝑗 ≤ 𝑗

▪ 𝑃 =  𝑎𝑏𝑎𝑏𝑎𝑐𝑎
0 1 2 3 4 5 6

100
𝐹

▪ 𝐹[0] = 0 for any pattern

▪ 𝑗 = 1

▪ 𝑃[1 … 1]  = 𝑏,  𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎, longest valid suffix is “”

▪ 𝑗 = 2

▪ 𝑃[1 … 2]  = 𝑏𝑎,  𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎, longest valid suffix is 𝑎

▪ 𝑗 = 0

▪ 𝑃[1 … 0]  = “”,  𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎, longest valid suffix is “”



KMP Failure Array Computation: Slow

0 1 2 3 4 5 6

32100
𝐹

0 1

▪ Failure array is precomputed before matching starts

▪ straightforward computation is 𝑂(𝑚3) time

 for 𝑗 = 0 to 𝑚 − 1          // go over all positions in the failure array

         for 𝑖 =  1 to  𝑗           // go over all suffixes of 𝑃[1 … 𝑗]

                 for 𝑘 = 1 to  𝑖   // compare next suffix  to prefix of 𝑃

▪ 𝑗 = 5

▪ 𝑃[1 … 5]  = 𝑏𝑎𝑏𝑎𝑐 ,  𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎, longest valid suffix is “”

▪ 𝑗 = 6

▪ 𝑃[1 … 6]  = 𝑏𝑎𝑏𝑎𝑐𝑎,  𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎, longest valid suffix is 𝑎

▪ Store the length of the longest valid suffix of  𝑃 1 … 𝑗  in 𝐹 𝑗

▪ 𝑗 = 4

▪ 𝑃[1 … 4]  = 𝑏𝑎𝑏𝑎 ,  𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎, longest valid suffix is 𝑎𝑏𝑎

▪ 𝑗 = 3

▪ 𝑃[1 … 3]  = 𝑏𝑎𝑏 ,  𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎, longest valid suffix is 𝑎𝑏



String matching with KMP: Example 

▪ 𝑇 = 𝑐𝑎𝑏𝑎𝑏𝑎𝑏𝑐𝑎𝑏𝑎𝑏𝑎𝑐𝑎, 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

c a b a b a b c a b a b a c a𝑇:

𝑃:

0 1 2 3 4 5 6

32100
𝐹

0 1

if 𝑇 𝑖 ≠ 𝑃 𝑗   and 𝑗 = 0
▪ 𝑖 = 𝑖 + 1

▪ 𝑗 is unchanged

if 𝑇[𝑖] = 𝑃[𝑗]

▪ 𝑖 = 𝑖 + 1

▪ 𝑗 = 𝑗 + 1

if 𝑇 𝑖 ≠ 𝑃 𝑗   and 𝑗 > 0
▪ 𝑖 unchanged

▪ 𝑗 = 𝐹[𝑗 − 1]

𝒊=𝟎
𝒋=𝟎

rule 1 rule 2 rule 3



String matching with KMP: Example 
▪ 𝑇 = 𝑐𝑎𝑏𝑎𝑏𝑎𝑏𝑐𝑎𝑏𝑎𝑏𝑎𝑐𝑎, 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

c a b a b a b c a b a b a c a𝑇:

𝑃:

0 1 2 3 4 5 6

32100
𝐹

0 1

𝒂

𝒋=𝟎
𝒊=𝟎

a b a b a c

𝒋=𝟎
𝒊=𝟏

𝒋=𝟏
𝒊=𝟐

𝒋=𝟐
𝒊=𝟑

𝒋=𝟑
𝒊=𝟒

𝒋=𝟒
𝒊=𝟓

𝒋=𝟓
𝒊=𝟔

new 𝑗 = 3

(a) (b) (a)

𝒋=𝟑

b

𝒋=𝟒
𝒊=𝟕

a new 𝑗 = 2

𝒋=𝟐

(a) (b) a

𝒋=𝟎

new 𝑗 = 0

a

𝒋=𝟎
𝒊=𝟖

a

𝒋=𝟏
𝒊=𝟗

b

𝒋=𝟐
𝒊=𝟏𝟎

a

𝒋=𝟑
𝒊=𝟏𝟏

b

𝒋=𝟒
𝒊=𝟏𝟐

a

𝒋=𝟓
𝒊=𝟏𝟑

c

𝒋=𝟔
𝒊=𝟏𝟒

a match!

if 𝑇 𝑖 ≠ 𝑃 𝑗   and 𝑗 = 0
▪ 𝑖 = 𝑖 + 1

▪ 𝑗 is unchanged

if 𝑇[𝑖] = 𝑃[𝑗]

▪ 𝑖 = 𝑖 + 1

▪ 𝑗 = 𝑗 + 1

if 𝑇 𝑖 ≠ 𝑃 𝑗   and 𝑗 > 0
▪ 𝑖 unchanged

▪ 𝑗 = 𝐹[𝑗 − 1]



Knuth-Morris-Pratt Algorithm

KMP::pattern-matching 𝑇, 𝑃
 𝐹 ← compute−failure−array 𝑃
 𝑖 ←  0  // current character of 𝑇
 𝑗 ←  0  // current character of 𝑃
 while 𝑖 <  𝑛 do
   if 𝑃[𝑗] = 𝑇[𝑖]
   if 𝑗 = 𝑚 − 1
        return “found at guess 𝑖 − 𝑚 + 1” 
      // guess is equal to 𝑖 − 𝑗
  else // rule 1 
 𝑖 ← 𝑖 + 1
 𝑗 ← 𝑗 + 1
 else // 𝑃[𝑗]  ≠  𝑇 [𝑖]
  if 𝑗 >  0 

             𝑗 ← 𝐹[𝑗 − 1]  // rule 2 
  else
              𝑖 ←  𝑖 + 1 // rule 3 
 return 𝐹𝐴𝐼𝐿



KMP Running Time

▪ For now, ignore the cost of computing failure array, will account for it later

▪ Have horizontal and vertical iterations

c a b a b a b c a b a b a c a𝑇:

𝑃:

if 𝑇 𝑖 ≠ 𝑃 𝑗   and 𝑗 = 0

▪ 𝑖 = 𝑖 + 1

▪ 𝑗 is unchanged

if 𝑇[𝑖] = 𝑃[𝑗]

▪ 𝑖 = 𝑖 + 1

▪ 𝑗 = 𝑗 + 1

if 𝑇 𝑖 ≠ 𝑃 𝑗   and 𝑗 > 0

▪ 𝑖 unchanged

▪ 𝑗 = 𝐹[𝑗 − 1]

𝒋=𝟎
𝒊=𝟎

𝒋=𝟎
𝒊=𝟏

𝒋=𝟏
𝒊=𝟐

𝒋=𝟐
𝒊=𝟑

𝒋=𝟑
𝒊=𝟒

𝒋=𝟒
𝒊=𝟓

𝒋=𝟓
𝒊=𝟔

𝒋=𝟑

𝒋=𝟒
𝒊=𝟕

𝒋=𝟐

𝒋=𝟎

𝒋=𝟎
𝒊=𝟖

𝒋=𝟏
𝒊=𝟗

𝒋=𝟐
𝒊=𝟏𝟎

𝒋=𝟑
𝒊=𝟏𝟏

𝒋=𝟒
𝒊=𝟏𝟐

𝒋=𝟓
𝒊=𝟏𝟑

𝒋=𝟔
𝒊=𝟏𝟒

▪ Total number of decreases of  𝑗 ≤ total number of increases of 𝑗 ≤ 𝑛

▪ At most 𝑛 vertical iterations 

▪ Each iteration is 𝑂(1), at most 2𝑛 iterations, total runtime is is 𝑂(𝑛)

𝑖 increases

𝑗 decreases

▪ At most 𝑛 horizontal iterations

▪ 𝑖 can increase at most 𝑛 times → 𝑗 can increase at most 𝑛 times  

0 1 2 3 4 5 6

32100 0 1
𝐹

▪ 𝑗 decreases



Fast Computation of 𝐹
▪ Failure array 𝐹

▪ 𝐹 0 = 0, no need to compute

▪ for 𝑗 > 0, 𝐹 𝑗 = length of the longest suffix of 𝑃[1. . . 𝑗] which is also prefix of 𝑃

▪ i.e. 𝐹 𝑗 = longest valid suffix of 𝑃 1 … 𝑗

▪ Crucial fact: after processing  𝑇, final value of  𝑗  is longest valid suffix of 𝑇

P = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎
c a b a

𝒂

a b a

𝑇:

𝑃:

𝒋=𝟎
𝒊=𝟎

𝒋=𝟎
𝒊=𝟏

𝒋=𝟏
𝒊=𝟐

𝒋=𝟐
𝒊=𝟑

𝒋=𝟑
𝒊=𝟒

a b a

▪ Use the crucial fact for computation of 𝐹

▪ match 𝑇 = 𝑃 1 … 1  with 𝑃, and set 𝐹[1]  = final 𝑗

▪ match 𝑇 = 𝑃 1 … 2  with 𝑃, and set 𝐹[2]  = final 𝑗

▪ …

▪ match 𝑇 = 𝑃 1 … 𝑚 − 1  with 𝑃, and set 𝐹[𝑚 − 1]  = final 𝑗

▪ but first, let us rename variable 𝑗 as 𝑙 (only for failure array computation)

▪ since 𝑗 is already used for 𝑇 = 𝑃 1 … 𝑗

in
d

ex
ed

 b
y 

𝑗
𝑗

=
1

…
𝑚

 



Fast Computation of 𝐹
▪ Failure array 𝐹

▪ 𝐹 0 = 0, no need to compute

▪ for 𝑗 > 0, 𝐹 𝑗 = length of the longest suffix of 𝑃[1. . . 𝑗] which is also prefix of 𝑃

▪ i.e. 𝐹 𝑗 = longest valid suffix of 𝑃 1 … 𝑗

▪ Crucial fact: after processing  𝑇, final value of  𝑙  is longest valid suffix of 𝑇

P = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎
c a b a

𝒂

a b a

𝑇:

𝑃:

𝒍=𝟎
𝒊=𝟎

𝒍=𝟎
𝒊=𝟏

𝒍=𝟏
𝒊=𝟐

𝒍=𝟐
𝒊=𝟑

𝒍=𝟑
𝒊=𝟒

a b a

▪ Use the crucial fact for computation of 𝐹

▪ match 𝑇 = 𝑃 1 … 1  with 𝑃, and set 𝐹[1]  = final 𝑙

▪ match 𝑇 = 𝑃 1 … 2  with 𝑃, and set 𝐹[2]  = final 𝑙

▪ …

▪ match 𝑇 = 𝑃 1 … 𝑚 − 1  with 𝑃, and set 𝐹[𝑚 − 1]  = final 𝑙



Fast Computation of 𝐹
▪ P = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

▪ Big idea

KMP𝑇 = 𝑃[1 … 1] 
final  𝑙

𝐹 1 = 𝑙 

KMP𝑇 = 𝑃[1 … 2] 
final  𝑙

𝐹 2 = 𝑙 

KMP𝑇 = 𝑃[1 … 𝑚 − 1] 
final  𝑙

𝐹 𝑚 − 1 = 𝑙 

…

‘chicken and egg’ 
problem with big idea:   
need 𝐹 to put text 
through KMP

c a b a

𝒂

a b a

𝑇:

𝑃:

𝒍=𝟎
𝒊=𝟎

𝒍=𝟎
𝒊=𝟏

𝒍=𝟏
𝒊=𝟐

𝒍=𝟐
𝒊=𝟑

𝒍=𝟑
𝒊=𝟒

a b a
▪ Useful fact

▪ after processing  𝑇, final value of  𝑙  is 
longest valid suffix of 𝑇

▪ Failure array 𝐹

▪ for 𝑗 > 0, 𝐹 𝑗 = length of the longest valid 
suffix of 𝑃[1. . . 𝑗] 



Fast Computation of 𝐹: Big Idea Saved

▪ 𝑗 = 1 KMP𝑇 = 𝑃[1 … 1] 
final  𝑙

𝐹 1 = 𝑙 

▪ 𝑗 = 2 KMP𝑇 = 𝑃[1 … 2] 
final  𝑙

𝐹 2 = 𝑙 

▪ start with 𝑙 = 0

▪ text has one letter, KMP can reach at most 𝑙 = 1

▪ need at most 𝐹[0], and already have it as 𝐹[0] is always 0

▪ start with 𝑙 = 0

▪ text has two letters, can reach at most 𝑙 = 2

▪ need at most 𝐹 0 , 𝐹 1 , already computed at previous iteration

▪ 𝑗 = 𝑚 − 1 KMP𝑇 = 𝑃[1 … 𝑚 − 1] 
final  𝑙

𝐹 𝑚 − 1 = 𝑙 

▪ start with 𝑙 = 0

▪ text has 𝑚 − 1  letters, can reach at most 𝑙 = 𝑚 − 1

▪ need at most 𝐹 0 , 𝐹 1 , … , 𝐹[𝑚 − 2], already computed at previous iterations

…

if failure at 𝑙 > 0, 𝑙 = 𝐹[𝑙 − 1]



Fast Computation of 𝐹: Big Idea Made Bigger

KMP𝑇 = 𝑃[1 … 1] final  𝑙
𝐹 1 = 𝑙 

KMP𝑇 = 𝑃[1 … 2] final  𝑙
𝐹 2 = 𝑙 

▪ Cost of passing 𝑃[1 … 1], 𝑃 1 … 2 , … , 𝑃[1 … 𝑚 − 1] through KMP is equal to 
the cost of passing just 𝑃[1 … 𝑚 − 1]  through KMP

KMP𝑇 = 𝑃[1 … 𝑚 − 1] final  𝑙
𝐹 𝑚 − 1 = 𝑙 

…

do not start from scratch, 

start from where 𝑃[1 … 1] 

finished

do not start from scratch, 

start from where 

𝑃[1 … 𝑚 − 2] finished

KMP𝑇 = 𝑃[1 … 3] 
final  𝑙

𝐹 3 = 𝑙 
do not start from scratch, 

start from where 𝑃[1 … 2] 

finished



Fast Computation of 𝐹
▪ Process 𝑇 = 𝑃[1 … 𝑗],  𝐹 𝑗 = final 𝑙

▪ 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

▪ Initialize 𝐹[0]  = 0

0 1 2 3 4 5 6

0
𝐹



Fast Computation of 𝐹

𝑇:

▪ Process 𝑇 = 𝑃[1 … 𝑗],  𝐹 𝑗 = final 𝑙

▪ 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

▪ 𝑗 = 1, 𝑇 = 𝑃 1 … 𝑗 = 𝑏

0 1 2 3 4 5 6

0
𝐹

𝑃:

if 𝑇 𝑖 ≠ 𝑃 𝑙   and 𝑙 = 0

▪ 𝑖 = 𝑖 + 1

▪ 𝑙 is unchanged

if 𝑇[𝑖] = 𝑃[𝑙]

▪ 𝑖 = 𝑖 + 1

▪ 𝑙 = 𝑙 + 1

if 𝑇 𝑖 ≠ 𝑃 𝑙   and 𝑙 > 0

▪ 𝑖 unchanged

▪ 𝑙 = 𝐹[𝑙 − 1]

𝒍=𝟎
𝒊=𝟎

𝒂

𝒍=𝟎
𝒊=𝟏

0

b



Fast Computation of 𝐹

𝑇:

▪ Process 𝑇 = 𝑃[1 … 𝑗],  𝐹 𝑗 = final 𝑙

▪ 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

▪ 𝑗 = 2, 𝑇 = 𝑃 1 … 𝑗 = 𝑏𝑎

0 1 2 3 4 5 6

0
𝐹

𝑃:

𝒍=𝟎
𝒊=𝟎

𝒂

𝒍=𝟎
𝒊=𝟏

0

a

𝑎

𝒍=𝟏 
𝒊=𝟐

1

if 𝑇 𝑖 ≠ 𝑃 𝑙   and 𝑙 = 0

▪ 𝑖 = 𝑖 + 1

▪ 𝑙 is unchanged

if 𝑇[𝑖] = 𝑃[𝑙]

▪ 𝑖 = 𝑖 + 1

▪ 𝑙 = 𝑙 + 1

if 𝑇 𝑖 ≠ 𝑃 𝑙   and 𝑙 > 0

▪ 𝑖 unchanged

▪ 𝑙 = 𝐹[𝑙 − 1]

b



Fast Computation of 𝐹

𝑇:

▪ Process 𝑇 = 𝑃[1 … 𝑗],  𝐹 𝑗 = final 𝑙

▪ 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

▪ 𝑗 = 3, 𝑇 = 𝑃 1 … 𝑗 = 𝑏𝑎𝑏

0 1 2 3 4 5 6

0
𝐹

𝑃:

𝒍=𝟎
𝒊=𝟎

𝒂

𝒍=𝟎
𝒊=𝟏

0

a

𝑎

𝒍=𝟏 
𝒊=𝟐

1

b

𝑏

𝒍=𝟐 
𝒊=𝟑

2

if 𝑇 𝑖 ≠ 𝑃 𝑙   and 𝑙 = 0

▪ 𝑖 = 𝑖 + 1

▪ 𝑙 is unchanged

if 𝑇[𝑖] = 𝑃[𝑙]

▪ 𝑖 = 𝑖 + 1

▪ 𝑙 = 𝑙 + 1

if 𝑇 𝑖 ≠ 𝑃 𝑙   and 𝑙 > 0

▪ 𝑖 unchanged

▪ 𝑙 = 𝐹[𝑙 − 1]

b



Fast Computation of 𝐹

𝑇:

▪ Process 𝑇 = 𝑃[1 … 𝑗],  𝐹 𝑗 = final 𝑙

▪ 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

▪ 𝑗 = 4, 𝑇 = 𝑃 1 … 𝑗 = 𝑏𝑎𝑏𝑎

0 1 2 3 4 5 6

0
𝐹

𝑃:

𝒍=𝟎
𝒊=𝟎

𝒂

𝒍=𝟎
𝒊=𝟏

0

a

𝑎

𝒍=𝟏 
𝒊=𝟐

1

b

𝑏

𝒍=𝟐 
𝒊=𝟑

2

a

𝑎

𝒍=𝟑 
𝒊=𝟒

3

if 𝑇 𝑖 ≠ 𝑃 𝑙   and 𝑙 = 0

▪ 𝑖 = 𝑖 + 1

▪ 𝑙 is unchanged

if 𝑇[𝑖] = 𝑃[𝑙]

▪ 𝑖 = 𝑖 + 1

▪ 𝑙 = 𝑙 + 1

if 𝑇 𝑖 ≠ 𝑃 𝑙   and 𝑙 > 0

▪ 𝑖 unchanged

▪ 𝑙 = 𝐹[𝑙 − 1]

b



Fast Computation of 𝐹

𝑇:

▪ Process 𝑇 = 𝑃[1 … 𝑗],  𝐹 𝑗 = final 𝑙

▪ 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

▪ 𝑗 = 5, 𝑇 = 𝑃 1 … 𝑗 = 𝑏𝑎𝑏𝑎𝑐

0 1 2 3 4 5 6

0
𝐹

𝑃:

𝒍=𝟎
𝒊=𝟎

𝒂

𝒍=𝟎
𝒊=𝟏

0

a

𝑎

𝒍=𝟏 
𝒊=𝟐

1

b

𝑏

𝒍=𝟐 
𝒊=𝟑

2

a

𝑎

𝒍=𝟑 
𝒊=𝟒

3

c

b new 𝑙 = 1

𝒍=𝟏 

(𝑎) 𝒃 new 𝑙 = 0

𝒍=𝟎

𝒂

𝒍=𝟎 
𝒊=𝟓

0

if 𝑇 𝑖 ≠ 𝑃 𝑙   and 𝑙 = 0

▪ 𝑖 = 𝑖 + 1

▪ 𝑙 is unchanged

if 𝑇[𝑖] = 𝑃[𝑙]

▪ 𝑖 = 𝑖 + 1

▪ 𝑙 = 𝑙 + 1

if 𝑇 𝑖 ≠ 𝑃 𝑙   and 𝑙 > 0

▪ 𝑖 unchanged

▪ 𝑙 = 𝐹[𝑙 − 1]

b



𝑇:

▪ Process 𝑇 = 𝑃[1 … 𝑗],  𝐹 𝑗 = final 𝑙

▪ 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

▪ 𝑗 = 6, 𝑇 = 𝑃 1 … 𝑗 = 𝑏𝑎𝑏𝑎𝑐𝑎

0 1 2 3 4 5 6

0
𝐹

𝑃:

𝒍=𝟎
𝒊=𝟎

𝒂

𝒍=𝟎
𝒊=𝟏

0

a

𝑎

𝒍=𝟏 
𝒊=𝟐

1

b

𝑏

𝒍=𝟐 
𝒊=𝟑

2

a

𝑎

𝒍=𝟑 
𝒊=𝟒

3

c

b new 𝑙 = 1

𝒍=𝟏 

(𝑎) 𝒃 new 𝑙 = 0

𝒍=𝟎

𝒂

𝒍=𝟎 
𝒊=𝟓

0

a

𝒍=𝟏 
𝒊=𝟔

1

if 𝑇 𝑖 ≠ 𝑃 𝑙   and 𝑙 = 0

▪ 𝑖 = 𝑖 + 1

▪ 𝑙 is unchanged

if 𝑇[𝑖] = 𝑃[𝑙]

▪ 𝑖 = 𝑖 + 1

▪ 𝑙 = 𝑙 + 1

if 𝑇 𝑖 ≠ 𝑃 𝑙   and 𝑙 > 0

▪ 𝑖 unchanged

▪ 𝑙 = 𝐹[𝑙 − 1]

𝑎

b

Fast Computation of 𝐹



𝑇:

▪ Equivalent to matching  𝑇 = 𝑃[1 … 𝑚 − 1] with 𝑃

▪ 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

0 1 2 3 4 5 6

0
𝐹

𝑃:

𝒍=𝟎
𝒊=𝟎

𝒂

𝒍=𝟎
𝒊=𝟏

0

a

𝑎

𝒍=𝟏 
𝒊=𝟐

1

b

𝑏

𝒍=𝟐 
𝒊=𝟑

2

a

𝑎

𝒍=𝟑 
𝒊=𝟒

3

c

b new 𝑙 = 1

𝒍=𝟏 

(𝑎) 𝒃 new 𝑙 = 0

𝒍=𝟎

𝒂

𝒍=𝟎 
𝒊=𝟓

0

a

𝒍=𝟏 
𝒊=𝟔

1

if 𝑇 𝑖 ≠ 𝑃 𝑙   and 𝑙 = 0

▪ 𝑖 = 𝑖 + 1

▪ 𝑙 is unchanged

if 𝑇[𝑖] = 𝑃[𝑙]

▪ 𝑖 = 𝑖 + 1

▪ 𝑙 = 𝑙 + 1

if 𝑇 𝑖 ≠ 𝑃 𝑙   and 𝑙 > 0

▪ 𝑖 unchanged

▪ 𝑙 = 𝐹[𝑙 − 1]

𝑎

b

Fast Computation of 𝐹



𝑷:

0 1 2 3 4 5 6

0
𝐹

𝑃:

𝒍=𝟎
𝒊=𝟏

𝒂

𝒍=𝟎
𝒊=𝟐

0

a

𝑎

𝒍=𝟏 
𝒊=𝟑

1

b

𝑏

𝒍=𝟐 
𝒊=𝟒

2

a

𝑎

𝒍=𝟑 
𝒊=𝟓

3

c

b new 𝑙 = 1

𝒍=𝟏 

(𝑎) 𝒃 new 𝑙 = 0

𝒍=𝟎

𝒂

𝒍=𝟎 
𝒊=𝟔

0

a

𝒍=𝟏 
𝒊=𝟕

1

if 𝑷 𝑖 ≠ 𝑃 𝑙   and 𝑙 = 0

▪ 𝑖 = 𝑖 + 1

▪ 𝑙 is unchanged

if 𝑷[𝑖] = 𝑃[𝑙]

▪ 𝑖 = 𝑖 + 1

▪ 𝑙 = 𝑙 + 1

if 𝑷 𝑖 ≠ 𝑃 𝑙   and 𝑙 > 0

▪ 𝑖 unchanged

▪ 𝑙 = 𝐹[𝑙 − 1]

𝑎

b

Fast Computation of 𝐹
▪ Replace 𝑇 by 𝑃 and start 𝑖 at 1

▪ since 𝑇 = 𝑃[𝟏 … 𝑚 − 1] 

▪ Update 𝐹 𝑖 = 𝑙 after letter 𝑖 is processed



𝑃:

0 1 2 3 4 5 6

0
𝐹

𝑃:

𝒍=𝟎
𝒋=𝟏

𝒂

𝒍=𝟎
𝒋=𝟐

0

a

𝑎

𝒍=𝟏 
𝒋=𝟑

1

b

𝑏

𝒍=𝟐 
𝒋=𝟒

2

a

𝑎

𝒍=𝟑 
𝒋=𝟓

3

c

b new 𝑙 = 1

𝒍=𝟏 

(𝑎) 𝒃 new 𝑙 = 0

𝒍=𝟎

𝒂

𝒍=𝟎 
𝒋=𝟔

0

a

𝒍=𝟏 
𝒋=𝟕

1

if 𝑃 𝑗 ≠ 𝑃 𝑙   and 𝑙 = 0

▪ 𝑗 = 𝑗 + 1

▪ 𝑙 is unchanged

if 𝑃[𝑗] = 𝑃[𝑙]

▪ 𝑗 = 𝑗 + 1

▪ 𝑙 = 𝑙 + 1

if 𝑃 𝑗 ≠ 𝑃 𝑙   and 𝑙 > 0

▪ 𝑗 unchanged

▪ 𝑙 = 𝐹[𝑙 − 1]

𝑎

Fast Computation of 𝐹

b

▪ Rename 𝑖 into 𝑗

▪ makes it clear that we match text is 𝑃 1 … 𝑗  at each iteration 



KMP: Computing Failure Array

compute-failure-array(𝑃)
𝑃: string of length 𝑚 (pattern)
  𝐹[0] ← 0

   𝑗 ←  1 // matching 𝑃[1 … 𝑗] 
  𝑙 ←  0
 while 𝑗 < m do
 if 𝑃[𝑗]  =  𝑃[𝑙]

    𝑙 ← 𝑙 + 1
   𝐹 𝑗 ← 𝑙
  𝑗 ← 𝑗 + 1

 else if 𝑙 >  0
  𝑙 ← 𝐹[𝑙 − 1]
 else 
  𝐹 [𝑗] ← 0
  𝑗 ← 𝑗 + 1

▪ Pseudocode is almost identical to 
KMP 𝑇, 𝑃
▪ main difference: 𝐹[𝑗] gets both 

used and updated

▪ Runtime Θ(𝑚), same analysis as 
for KMP

// rule 1 

// rule 2 

// rule 3 
// 𝑙 =  0



KMP: Main 
Function Runtime

▪ KMP main function

▪ compute-failure-array is Θ(𝑚) time

▪ The rest of KMP is Θ(𝑛) 

▪ Running time KMP altogether: Θ(𝑛 + 𝑚)

▪ which is the same as Θ(𝑛) as 𝑚 ≤ 𝑛

KMP::pattern-matching 𝑇, 𝑃
 𝐹 ← compute−failure−array 𝑃
 𝑖 ←  0  
 𝑗 ←  0
 while 𝑖 <  𝑛 do
   if 𝑃[𝑗] = 𝑇[𝑖]
   if 𝑗 = 𝑚 − 1
  return “found at guess 𝑖 − 𝑚 + 1”
  else
 𝑖 ← 𝑖 + 1
 𝑗 ← 𝑗 + 1
 else // 𝑃[𝑗]  ≠  𝑇 [𝑖]
  if 𝑗 >  0
   𝑗 ← 𝐹[𝑗 − 1]
  else
  𝑖 ←  𝑖 + 1
 return 𝐹𝐴𝐼𝐿
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Boyer-Moore Algorithm Motivation

▪ Fastest pattern matching in practice on English Text

▪ Important components

▪ Reverse-order searching

▪ compare 𝑃 with a guess moving backwards

▪ When a mismatch occurs choose the better option among the two below

1. Bad character heuristic 

▪ eliminate  shifts based on mismatched character of 𝑇

2. Good suffix heuristic

▪ eliminate shifts based on the matched part (i.e.) suffix of 𝑃

▪ similar  to the matched prefix in KMP, but now look at suffix as 
matching backwards



Reverse  Searching         vs.      Forward Searching

w h e r e i s w a l d o

𝑇= whereiswaldo,  𝑃 = aldo

a

w h e r e i s w a l d o

▪ move pattern past r

r

a l d o

a l d o

a l d o

▪  r does not occur in 𝑃 = aldo

o

▪  w does not occur in 𝑃 = aldo

w

▪ move pattern past w

odla

▪ bad character heuristic can rule out 
many guesses with reverse 
searching

w

▪ w does not occur in 𝑃 = aldo

▪ move pattern past w

o

a l d o

▪ shift by 1 moves pattern past w

▪ no guesses are ruled out

▪ bad character heuristic does not 
rule out any guesses with forward 
searching when the first character 
of the pattern is mismatched



What if Mismatched Text Character Occurs in 𝑃?

a c r a n a p p l e

𝑇= acranapple,  𝑃 = aaron

no

▪ Mismatched character in the text is a

a

▪ Find last occurrence of a in 𝑃

▪ Move the pattern to the right until last a in P aligns with a in text

▪ all smaller shifts are impossible since they do not match a

▪ Precompute last occurrence of any letter before matching starts

a a r o n

a a r o n next possible guess

this guess does not work

last occurrence of 
a in pattern



Bad Character Heuristic: Side Note

a c r a n a p p l e

𝑇= acranapple,  𝑃 = aaron

no
a

a a r o n

▪ If we moved until the first  a in P aligns with a in text

▪ this would give a possible guess, but misses an earlier guess which is 
also possible, possibly leading to a missed pattern

also a valid guess

missed valid guessa a r o n



Bad Character Heuristic: Full Version
▪ Extends to the case when mismatched text character does occur in 𝑃

a c r a n a p p l e

𝑇= acranapple,  𝑃 = aaron

no
a

[a]

▪ Mismatched character in the text is a

▪ Move the pattern to the right so that the last a in P aligns with a in text

▪ Continue matching the pattern (in reverse)



Bad Character Heuristic: Full Version
▪ Extends to the case when mismatched text character does occur in 𝑃

a c r a n a p p l e

𝑇= acranapple,  𝑃 = aaron

no
a

a a r o na a r o na a r o n[a] n

▪ Mismatched character in the text is a

▪ Move the pattern to the right so that the last a in P aligns with a in text

▪ Continue matching the pattern (in reverse)



Bad Character Heuristic: Last Occurrence Array

𝑐ℎ𝑎𝑟 a n o r all others

𝐿(𝑐) -1 -1 -1 -1 -1

▪ Compute the last occurrence array 𝐿 𝑐  of any character in the alphabet

▪ 𝐿 𝑐 = −1 if character 𝑐 does not occur in 𝑃, otherwise

▪ 𝐿 𝑐 = largest index 𝑗 such that 𝑃 𝑗 = 𝑐 

▪ Example: 𝑃 = aaron

▪ initialization

a b c d e … x y z

-1 -1 -1 -1 -1 -1 -1 -1
this means:

0 1 2 3 4 5 … 24 25

-1 -1 -1 -1 -1 -1 -1 -1
in actual implementation:



Bad Character Heuristic: Last Occurrence Array

𝑐ℎ𝑎𝑟 a n o r all others

𝐿(𝑐) -1 -1 -1 -1 -1

▪ Compute the last occurrence array 𝐿 𝑐  of any character in the alphabet

▪ 𝐿 𝑐 = −1 if character 𝑐 does not occur in 𝑃, otherwise

▪ 𝐿 𝑐 = largest index 𝑗 such that 𝑃 𝑗 = 𝑐 

▪ Example: 𝑃 = aaron

▪ computation

aaron
𝑖 = 0

a
0

𝐿 is valid for 𝑃 = a



Bad Character Heuristic: Last Occurrence Array

𝑐ℎ𝑎𝑟 a n o r all others

𝐿(𝑐) 0 -1 -1 -1 -1

▪ Compute the last occurrence array 𝐿 𝑐  of any character in the alphabet

▪ 𝐿 𝑐 = −1 if character 𝑐 does not occur in 𝑃, otherwise

▪ 𝐿 𝑐 = largest index 𝑗 such that 𝑃 𝑗 = 𝑐 

▪ Example: 𝑃 = aaron

▪ computation

aaron
𝑖 = 1

a
1

𝐿 is valid for 𝑃 = aa



Bad Character Heuristic: Last Occurrence Array

𝑐ℎ𝑎𝑟 a n o r all others

𝐿(𝑐) 1 -1 -1 -1 -1

▪ Compute the last occurrence array 𝐿 𝑐  of any character in the alphabet

▪ 𝐿 𝑐 = −1 if character 𝑐 does not occur in 𝑃, otherwise

▪ 𝐿 𝑐 = largest index 𝑗 such that 𝑃 𝑗 = 𝑐 

▪ Example: 𝑃 = aaron

▪ computation

aaron
𝑖 = 2

r
2

𝐿 is valid for 𝑃 = aar



Bad Character Heuristic: Last Occurrence Array

𝑐ℎ𝑎𝑟 a n o r all others

𝐿(𝑐) 1 -1 -1 2 -1

▪ Compute the last occurrence array 𝐿 𝑐  of any character in the alphabet

▪ 𝐿 𝑐 = −1 if character 𝑐 does not occur in 𝑃, otherwise

▪ 𝐿 𝑐 = largest index 𝑗 such that 𝑃 𝑗 = 𝑐 

▪ Example: 𝑃 = aaron

▪ computation

aaron
𝑖 = 3

o
3

𝐿 is valid for 𝑃 = aaro



Bad Character Heuristic: Last Occurrence Array

𝑐ℎ𝑎𝑟 a n o r all others

𝐿(𝑐) 1 -1 3 2 -1

▪ Compute the last occurrence array 𝐿 𝑐  of any character in the alphabet

▪ 𝐿 𝑐 = −1 if character 𝑐 does not occur in 𝑃, otherwise

▪ 𝐿 𝑐 = largest index 𝑗 such that 𝑃 𝑗 = 𝑐 

▪ Example: 𝑃 = aaron

▪ computation

aaron
𝑖 = 4

n
4

▪ Total time is 𝑂(𝑚 + |∑|)  

𝐿 is valid for 𝑃 = aaron



Boyer-More Indexing

▪ Same as in KMP

▪ maintain variables 𝑖 and 𝑗

▪ 𝑗 is the position in the pattern

▪ 𝑖 is the position in the text where we do the next check

▪ check is performed by determining if 𝑇 𝑖 = 𝑃 𝑗

▪ current guess is 𝑖 − 𝑗



Bad Character Heuristic: Formula

a c r a n a p p l e
no

a

𝒋=𝟑
𝒊=𝟑

𝑇= acranapple,  𝑃 = aaron

𝒋=𝟒
𝒊=𝟔

▪ Let 𝐿(𝑐) be the last occurrence of character 𝑐 in 𝑃

▪ 𝐿 𝐚 = 1 in our example

▪ When mismatch occurs at text position 𝑖, pattern position 𝑗, update

▪ 𝑗 = 𝑚 − 1 

▪ start matching at the end of the pattern

▪ 𝑖 = 𝑖 + 𝑚 − 1 − 𝐿(𝑐)

▪ for our example

▪ 𝑗 = 5 − 1 = 4

▪ 𝑖 = 3 + 5 − 1 − 1 = 6 

[a] n

𝑐ℎ𝑎𝑟 a n o r all others

𝐿(𝑐) 1 4 3 2 -1



Bad Character Heuristic: Formula Explained

𝑖𝑜𝑙𝑑 𝑖𝑛𝑒𝑤

+𝑳(𝒄) −(𝒎 − 𝟏) 

𝑖𝑛𝑒𝑤

𝑖𝑛𝑒𝑤 = 𝑖𝑜𝑙𝑑 + 𝑚 − 1 − 𝐿 𝑐

   𝑖 = 𝑖 + 𝑚 − 1 − 𝐿(𝑐)

𝑖

▪ Text character is 𝑐 at the mismatch position 𝑖 in the text

▪ 𝑖 = 𝑖 + 𝑚 − 1 − 𝐿(𝑐)

− 𝑚 − 1 +𝐿 𝑐 = 𝑖𝑜𝑙𝑑  

𝑐
𝑐𝑇

𝐿(𝑐)



Bad Character Heuristic: Formula Explained

𝑖

▪ Text character is 𝑐 at the mismatch position 𝑖 in the text

▪ 𝑖 = 𝑖 + 𝑚 − 1 − 𝐿(𝑐)

𝑐𝑇

𝐿(𝑐)

▪ Also works if 𝐿 𝑐 = −1

moves pattern completely past 
mismatched text character 𝑐



Bad Character Heuristic: Important Use Condition
▪ Text character is 𝑐 at the mismatch position 𝑖 in the text

▪ 𝑖 = 𝑖 + 𝑚 − 1 − 𝐿(𝑐), 𝑗 = 𝑚 − 1

▪ Old guess: 𝑖 − 𝑗 

▪ New guess: 𝑖 + (𝑚 − 1) –  𝐿(𝑐) – (𝑚 − 1) = 𝑖 − 𝐿(𝑐)

▪ If 𝐿 𝑐 > 𝑗, new guess < old guess and moves 𝑃 in wrong direction, not useful

▪ we already ruled that guess out, no point to come back to it

▪ Example:

▪ bad character heuristic makes sense to use only if  𝑳 𝒄 < 𝒋

▪ note that 𝐿 𝑐 ≠ 𝑗 in case of a mismatch

c a c r w a a p a a e

ao

a

𝒋=𝟑
𝒊=𝟖

𝑇= acranapple,  𝑃 = reroa

ao

a

𝐿 𝐚 = 4 > 𝑗 = 3

 old guess: 𝑖 − 𝑗 = 8 − 3 = 5 

 𝑖𝑛𝑒𝑤 = 8 + 5 − 1 − 4 = 8
𝑗𝑛𝑒𝑤 = 5 − 1 = 4

 new guess: 𝑖𝑛𝑒𝑤 − 𝑗𝑛𝑒𝑤 = 8 − 4 = 4



Bad Character Heuristic: Brute-Force Step
▪ If 𝐿 𝑐 > 𝑗 

▪ pattern would move in wrong direction if used bad character heuristic

▪ therefore, do brute-force step

▪ 𝑗 = 𝑚 − 1

▪ 𝑖 = 𝑖 − 𝑗 + 𝑚
𝑖𝑜𝑙𝑑 𝑖𝑛𝑒𝑤

= 𝑖𝑛𝑒𝑤

𝑖𝑛𝑒𝑤 = 𝑖𝑜𝑙𝑑 − 𝑗 + 𝑚

   𝑖 = 𝑖 − 𝑗 + 𝑚

𝑖

−𝑗

𝑚 − 1 +1

𝑖𝑜𝑙𝑑 −𝑗 +𝑚 − 1 +1

𝑗



Bad Character Heuristic: Unified Formula

1. If  𝐿(𝑐)  < 𝑗  [bad character heuristic step]

▪ 𝑗 = 𝑚 − 1

▪ 𝑖 = 𝑖 + 𝑚 − 1 − 𝐿(𝑐)

2. If 𝐿 𝑐 > 𝑗  [brute-force step]

▪ 𝑗 = 𝑚 − 1

▪ 𝑖 = 𝑖 − 𝑗 + 𝑚

▪ Unified formula for 𝑖 that works in both cases 

 𝑖 = 𝑖 + 𝑚 − 1 − min{𝐿 𝑐 , 𝑗 − 1}



f e e d a l l p o o r p a r r o t s

𝑃 = paper 

r

𝒋=𝟒
𝒊=𝟒

𝑇

Boyer-More Example 𝑐ℎ𝑎𝑟 a e p r others

𝐿(𝑐) 1 3 2 4 -1

▪ Unified formula for 𝑖 that works in all cases 

 𝑖 = 𝑖 + 𝑚 − 1 − min 𝐿 𝑐 , 𝑗 − 1

𝒊=𝟕

[a]

𝒋=𝟒
𝒊=𝟕

r 𝒊=𝟗

𝒋=𝟒
𝒊=𝟗

[p] r 𝒊 = 𝟏 4

𝒋=𝟒
 𝒊=14

re 𝒊 = 𝟏𝟓

not found!

𝒋=𝟑
 𝒊=13

r 𝒊 = 𝟐𝟎

𝒋=𝟒
 𝒊=15



Boyer-Moore Algorithm

BoyerMoore(𝑇, 𝑃)

 𝐿 ← last occurrence array computed from 𝑃

 𝑗 ← 𝑚 − 1 

  𝑖 ← 𝑚 − 1 

  while 𝑖 < 𝑛 and 𝑗 ≥ 0 do //current guess begins at index 𝑖 − 𝑗 

 if   𝑇 𝑖 = 𝑃[𝑗] then

   𝑖 ← 𝑖 − 1 

   𝑗 ← 𝑗 − 1 

                else 

  𝑖 ← 𝑖 + 𝑚 − 1 − min{𝐿 𝑐 , 𝑗 − 1} 

   𝑗 ← 𝑚 − 1 

                               if 𝑗 = −1 return “found at guess 𝑖 + 1” 

                               else  return FAIL

0



Good Suffix Heuristic
▪ Idea is similar to KMP, but applied to the suffix, since matching backwards

o n o o o b o o o i b b o u n d a r y

𝑃 = onobobo

obob

𝒋=𝟑
𝒊=𝟑

𝑇

▪ Text has letters obo

▪ Do the smallest move so that obo fits

o n o b o b o

▪ Can precompute this from the pattern itself, before matching starts

▪ ‘if failure at 𝑗 = 3, shift pattern by 2’

▪ Continue matching from the end of the new shift

▪ Will not study the precise way to do it

o n o b o b o



Boyer-Moore Summary

▪ Boyer-Moore performs very well, even when using only bad character 
heuristic

▪ Worst case run time is 𝑂(𝑛𝑚) with bad character heuristic only, but in 
practice much faster

▪ On typical English text, Boyer-Moore looks only at ≈25% of text 𝑇

▪ With good suffix heuristic, can ensure 𝑂(𝑛 + 𝑚 + |Σ|) run time

▪ no details



Outline
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Suffix Tree: Trie of Suffixes

▪ What if we search for many patterns 𝑃 within the same fixed text 𝑇?

▪ Idea: preprocess the text 𝑇 rather than pattern 𝑃

▪ Observation: 𝑃 is a substring of 𝑇 if and only if 𝑃 is a prefix of some  
suffix of 𝑇

▪ Example: 𝑃 = ish

𝑇 =establishment

▪ Naïve idea: store all suffixes of 𝑇 in a trie

▪ if |𝑇| = 𝑛, then 𝑛 + 1 suffixes together have 0 + 1 + 2 + ⋯ + 𝑛 ∈ Θ 𝑛2  
characters

▪ wastes space

▪ Suffix tree saves space in multiple ways

▪ store suffixes implicitly via indices into 𝑇

▪ use compressed trie
▪ 𝑂(𝑛) space since we store 𝑛 + 1 suffixes (words)

suffix

prefix



Trie of suffixes: Example
▪ T = bananaban

  Suffixes =  {bananaban, ananaban, nanaban, anaban, naban, aban, ban, an, n, Λ}

na

an$
n

$
aban$

a

ananaban$
$

$
anaban$

a nb

bananaban$
$naba

a

ban$

n

na

n$
na

nanaban$
$

$
naban$

a nba

$

not all leaf-references shown

▪ Convenient to order children alphabetically



Trie of suffixes: Example

na

an$
n

$
aban$

a

ananaban$
$

$
anaban$

a nb

bananaban$
$naba

a

ban$

n

na

n$
na

nanaban$
$

$
naban$

a nba

$

0 1 2 3 4 5 6 7 8 9

b a n a n a b a n $T = $

$T[9..9]

▪ Store suffixes via indices



Trie of suffixes: Example

na

an$
n

$
aban$

a

ananaban$
$

$
anaban$

a nb

bananaban$
$naba

a

ban$

n

na

n$
na

nanaban$
$

$
naban$

a nba

$

0 1 2 3 4 5 6 7 8 9

b a n a n a b a n $T = a b a n $

T[5..9]

$T[9..9]

▪ Store suffixes via indices



Tries of suffixes

0 1 2 3 4 5 6 7 8 9

b a n a n a b a n $T =

T[9..9]

T[5..9]
n $a

T[7..9]

T[3..9]
$na

$
T[1..9]

nab

$
T[0..9]

naba

a  

T[6..9]

n

na

T[8..9]

T[4..9]
n $a

$
T[2..9]

naba

▪ In actual implementation, each 
leaf 𝑙 stores the start of its 
suffix in variable  𝑙. 𝑠𝑡𝑎𝑟𝑡 

𝑙. 𝑠𝑡𝑎𝑟𝑡 = 9

𝑙. 𝑠𝑡𝑎𝑟𝑡 = 5

𝑙. 𝑠𝑡𝑎𝑟𝑡 = 3

𝑙. 𝑠𝑡𝑎𝑟𝑡 = 1

𝑙. 𝑠𝑡𝑎𝑟𝑡 = 7

𝑙. 𝑠𝑡𝑎𝑟𝑡 = 6

𝑙. 𝑠𝑡𝑎𝑟𝑡 = 0

𝑙. 𝑠𝑡𝑎𝑟𝑡 = 8

𝑙. 𝑠𝑡𝑎𝑟𝑡 = 4

𝑙. 𝑠𝑡𝑎𝑟𝑡 = 2



Suffix tree

0

T[9..9]

1

T[5..9]

2

T[7..9]

3

T[3..9]

T[1..9]T[6..9]

1

3

T[0..9]

T[8..9]

2

T[4..9]

T[2..9]

▪ Compress trie of suffixes to get suffix tree

0 1 2 3 4 5 6 7 8 9

b a n a n a b a n $T =



Suffix Tree Search

0

T[9..9]

1

T[5..9]

2

T[7..9]

3

T[3..9]

T[1..9]T[6..9]

1

3

T[0..9]

T[8..9]

2

T[4..9]

T[2..9]

0 1 2 3 4 5 6 7 8 9

b a n a n a b a n $T =

▪ If 𝑃 occurs in the text, it is a prefix of one (or more) strings stored in the trie

▪ To search for a pattern, use prefix search on tries

▪ Example: search for ana

b a n a n a b a n $

Compare ana to what is stored in T[1..3]

found!

Find the earliest occurrence, since leaf 
reference is to the longest suffix



Suffix Tree Search

0

T[9..9]

1

T[5..9]

2

T[7..9]

3

T[3..9]

T[1..9]T[6..9]

1

3

T[0..9]

T[8..9]

2

T[4..9]

T[2..9]

0 1 2 3 4 5 6 7 8 9

b a n a n a b a n $T =

▪ If 𝑃 occurs in the text, it is a prefix of one (or more) strings stored in the trie

▪ To search for a pattern, use prefix search on tries

▪ Example: search for baa

b a n a n a b a n $

Compare baa to what is stored in T[0..2]

not found!



Building Suffix Tree
▪ Building

▪ text 𝑇 has 𝑛 characters and 𝑛 + 1 suffixes

▪ can build suffix tree by inserting each suffix of 𝑇 into  compressed trie

▪ Θ |Σ|𝑛2  time

▪ there is a way to build a suffix tree of 𝑇 in Θ(|Σ|𝑛) time

▪ beyond the course scope

▪ Pattern Matching

▪ prefix-search for 𝑃 in compressed trie

▪ run-time is 

▪ 𝑂 Σ 𝑚 , assuming a node stores children in a linked list

▪ 𝑂 𝑚 , assuming a node stores children in an array

▪ Summary

▪ theoretically good, but construction is slow or complicated and lots of space-
overhead

▪ rarely used in practice



Outline

▪ String Matching
▪ Introduction
▪ Karp-Rabin Algorithm
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Suffix Arrays

▪ Relatively recent development (popularized in the 1990s)

▪ Sacrifice some performance for simplicity

▪ slightly slower (by a log-factor) than suffix trees

▪ much easier to build

▪ much simpler pattern matching

▪ very little space, only one array

▪ Idea

▪ store suffixes implicitly, by storing start indices

▪ store sorting permutation of the suffixes of 𝑇



Suffix Array Example 0 1 2 3 4 5 6 7 8 9

b a n a n a b a n $T =

i suffix 𝑇[𝑖 … 𝑛]

0 bananaban$

1 ananaban$

2 nanaban$

3 anaban$

4 naban$

5 aban$

6 ban$

7 an$

8 n$

9 $

sort lexicographically

j 𝑨𝒔[𝒋]

0 9 $

1 5 aban$

2 7 an$

3 3 anaban$

4 1 ananaban$

5 6 ban$

6 0 bananaban$

7 8 n$

8 4 naban$

9 2 nanaban$

9 5 7 3 1 6 0 8 4 2Suffix Array =

0 1 2 3 4 5 6 7 8 9

j 𝑨𝒔[𝒋]

0 9 $

1 5 aban$

2 7 an$

3 3 anaban$

4 1 ananaban$

5 6 ban$

6 0 bananaban$

7 8 n$

8 4 naban$

9 2 nanaban$



Suffix Array Construction

▪ Easy to construct using MSD-Radix-Sort (pad with any character to get the same length)

bananaban$

ananaban$*

nanaban$**

anaban$***

naban$****

aban$*****

ban$******

an$*******

n$********

$*********

$********

ananaban$

anaban$***

aban$*****

an$*******

bananaban$

ban$******

nanaban$**

naban$****

n$********

round 𝟏

$********

aban$****

ananaban$

anaban$**

an$******

bananaban$

ban$******

nanaban$**

naban$****

n$********

round 𝟐 round 𝒏

▪ Fast in practice, suffixes are unlikely to share many leading characters

▪ But worst case run-time is Θ 𝑛2

▪ recursion depth is 𝑛,  Θ 𝑛  time at 𝑛/2 recursion depths, example: 𝑇 =  𝑎𝑎 … . 𝑎$

▪ Θ |Σ|𝑛2  if accounting for alphabet size

$********

aban$****

an$*******

anaban$***

ananaban$*

ban$******

bananaban$

n$********

naban$****

nanaban$**

…

0 1 2 3 4 5 6 7 8 9

b a n a n a b a n $T =



Suffix Array Construction
▪ Idea: we do not need 𝑛 rounds

▪ Θ log 𝑛  rounds enough → Θ 𝑛 log 𝑛  run time

▪ Θ (𝑛 + Σ ) log 𝑛  if accounting for alphabet size

▪ Construction-algorithm

▪ MSD-radix sort plus some bookkeeping

▪ needs only one extra array

▪ easy to implement

▪ details are covered in an algorithms course



Pattern Matching in Suffix Arrays

j 𝑨𝒔[𝒋]

0 9 $

1 5 aban$

2 7 an$

3 3 anaban$

4 1 ananaban$

5 6 ban$

6 0 bananaban$

7 8 n$

8 4 naban$

9 2 nanaban$

▪ Suffix array stores suffixes (implicitly) in sorted order

▪ Idea: apply binary search

𝑙 →

P = ban

𝑟 →

𝑣 →

0 1 2 3 4 5 6 7 8 9

b a n a n a b a n $T = b a n a n a b a n $

ban > ana

j 𝑨𝒔[𝒋]

0 9 $

1 5 aban$

2 7 an$

3 3 anaban$

4 1 ananaban$

5 6 ban$

6 0 bananaban$

7 8 n$

8 4 naban$

9 2 nanaban$

b     a     n



Pattern Matching in Suffix Arrays

j 𝑨𝒔[𝒋]

0 9 $

1 5 aban$

2 7 an$

3 3 anaban$

4 1 ananaban$

5 6 ban$

6 0 bananaban$

7 8 n$

8 4 naban$

9 2 nanaban$

▪ Suffix array stores suffixes (implicitly) in sorted order

▪ Idea: apply binary search

𝑙 →

P = ban

𝑟 →

𝑣 →

0 1 2 3 4 5 6 7 8 9

b a n a n a b a n $T = b a n a n a b a n $

ban < n

b     a     n



Pattern Matching in Suffix Arrays

j 𝑨𝒔[𝒋]

0 9 $

1 5 aban$

2 7 an$

3 3 anaban$

4 1 ananaban$

5 6 ban$

6 0 bananaban$

7 8 n$

8 4 naban$

9 2 nanaban$

▪ Suffix array stores suffixes (implicitly) in sorted 
order

▪ Idea: apply binary search

𝑙 →

P = ban

𝑟 →

𝑣 =

▪ Θ log 𝑛  comparisons

▪ Each comparison is strcmp (𝑃, 𝑇, 𝐴𝑠 𝑣 , 𝑚)

▪ Θ 𝑚  per comparison ⟹ run-time is 
Θ 𝑚 log 𝑛  

 

0 1 2 3 4 5 6 7 8 9

b a n a n a b a n $T = b a n a n a b a n $

found!

b     a     n



Pattern Matching in Suffix Arrays

SuffixArray-Search(𝑇, 𝑃, 𝐴𝑠)

𝐴𝑠: suffix array of 𝑇, 𝑃: pattern

 𝑙 ← 0, 𝑟 ←last index of 𝐴𝑠 

  while 𝑙 ≤ 𝑟 

  𝑣 ←
𝑙+𝑟

2

                                          𝑖 ← 𝐴𝑠 𝑣

  𝑠 ← strcmp(𝑇, 𝑃, 𝑖, 𝑚) 

       // case 𝑖 + 𝑚 >  𝑛 handled correctly if 𝑇 ends with $

  if 𝑠 < 0  do 𝑙 ← 𝑣 + 1

  else 𝑠 > 0  do 𝑟 ← 𝑣 − 1

  else return ‘found at guess 𝑖’

              return FAIL

▪ Does not always find the leftmost occurrence

▪ Can find the leftmost occurrence and reduce runtime to 𝑂 𝑚 + log 𝑛  with 
further pre-computations



Outline
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String Matching Conclusion

▪ Algorithms stop once they found one occurrence

▪ Most of them can be adapted to find all occurrences within the same  
worst-case run-time

Brute
Force

KR BM KMP Suffix Trees Suffix Array

preproc. — 𝑂(𝑚) 𝑂(𝑚 + |∑|) 𝑂(𝑚)
𝑂(|∑|𝑛2)
→ 𝑂(|∑|𝑛)

𝑂(𝑛𝑙𝑜𝑔𝑛)
→ 𝑂(𝑛)

search 
time

(preproc 
excluded)

𝑂(𝑛𝑚)
𝑂(𝑛 + 𝑚)

    expected

𝑂(𝑛 + |∑|) 
with good suffix

often      
better

𝑂(𝑛) 𝑂(𝑚(|∑|)
𝑂(𝑚𝑙𝑜𝑔𝑛) 

→ 𝑂(𝑚 + 𝑙𝑜𝑔𝑛)

extra space — 𝑂(1) 𝑂(𝑚 + |∑|) 𝑂(𝑚) 𝑂(𝑛) 𝑂(𝑛)
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