
CS 240 – Data Structures and Data Management

Module 9: String Matching

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2025

O. Veksler

Outline

▪ String Matching

▪ Introduction

▪ Karp-Rabin Algorithm

▪ Knuth-Morris-Pratt algorithm

▪ Boyer-Moore Algorithm

▪ Suffix Trees

▪ Suffix Arrays

▪ Conclusion

Pattern Matching Definitions
▪ Search for a string (pattern) in a large body of text

▪ 𝑇[0. . . 𝑛 − 1] text (or haystack) being searched

▪ 𝑃[0 … 𝑚 − 1] pattern (or needle) being searched for

▪ Strings over alphabet Σ

▪ Convention: return the first occurrence of 𝑃 in 𝑇

▪ Example

 𝑇 = L i t t l e p i g l e t s c o o k e d f o r m o t h e r p i g

 𝑃 = p i g

 𝑛 = 36, 𝑚 = 3, 𝑖 = 7

▪ return smallest 𝑖 (leftmost occurrence) such that

𝑇 [𝑖 + 𝑗] = 𝑃 𝑗 for 0 ≤ 𝑗 ≤ 𝑚 − 1

▪ If 𝑃 does not occur in 𝑇, return FAIL

▪ Applications

▪ information retrieval (text editors, search engines), bioinformatics, data mining

7
 +

 0
7

 +
 1

7
 +

 2

More Definitions

▪ Substring 𝑇 𝑖. . . 𝑗 0 ≤ 𝑖 ≤ 𝑗 + 1 ≤ 𝑛 is a string 𝑇 𝑖 , 𝑇 𝑖 + 1 , . . . , 𝑇[𝑗]

▪ length is 𝑗 − 𝑖 + 1

▪ empty string included: 𝑇 𝑖. . . 𝑖 − 1

antidisestablishmentarianism

▪ Prefix of 𝑇 is a substring 𝑇 [0. . . 𝑖 − 1] of 𝑇 for some 0 ≤ 𝑖 ≤ 𝑛

▪ empty prefix included: 𝑇[0 … − 1]

▪ Suffix of 𝑇 is a substring 𝑇 [𝑖. . . 𝑛 − 1] of 𝑇 for some 0 ≤ 𝑖 ≤ 𝑛

▪ empty suffix included: 𝑇[𝑛 … 𝑛 − 1]

▪ The empty substring is usually denoted by Λ

antidisestablishmentarianismantidisestablishmentarianismantidisestablishmentarianism

General Idea of Algorithms

▪ Pattern matching algorithms consist of guesses and checks

▪ a guess is a position 𝑖 such that 𝑃 might start at 𝑇[𝑖]

▪ valid guesses (initially) are 0 ≤ 𝑖 ≤ 𝑛 − 𝑚

guess at 𝑖 = 0

abbbababbab

abba

guess at 𝑖 = 1
abbbababbab

 abba

guess at 𝑖 = 6

abbbababbab

 abba

guess at 𝑖 = 7

abbbababbab

 abba

check at 𝑗 = 0 check at 𝑗 = 1

▪ a check of a guess is a single position 𝑗 with 0 ≤ 𝑗 < 𝑚 where we
compare 𝑇 [𝑖 + 𝑗] to 𝑃[𝑗]

abbbababbab

 abba

▪ must perform 𝑚 checks of a single correct guess

▪ may make fewer checks of an incorrect guess

abbbababbab

 abba

…

Diagrams for Matching

▪ Diagram single run of pattern matching algorithm by matrix of checks

▪ each row represents a single guess

▪ shaded in gray

a b b b a b a b b a b
a b b a

Brute-Force Algorithm: Example
Example: 𝑇 = abbbababbab, 𝑃 = abba

a b b b a b a b b a b
a b b a

a

a

a

a b b

a

a b b a

guess 𝑖 = 1
check 𝑗 = 0guess 𝑖 = 0

check 𝑗 = 3

Brute-Force Algorithm: Running Time

a a a a a a a a a a

▪ Worst possible input

▪ 𝑃 = 𝑎 … 𝑎𝑏, 𝑇 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 … 𝑎𝑎𝑎𝑎𝑎𝑎𝑎

a a a b

▪ Perform (𝑛 − 𝑚 + 1)𝑚 checks, which is Θ(𝑛 − 𝑚 𝑚)

▪ small 𝑚, say 𝑚 = 5 runtime is Θ(𝑛)

▪ medium 𝑚, say 𝑚 = 𝑛/2: runtime is Θ(𝑛2)

▪ too slow!

▪ large 𝑚, say 𝑚 = 𝑛 − 5: runtime is Θ(𝑛)

𝑚 − 1 times 𝑛 times

a a a b

a a a b

a a a b

a a a b

a a a b

a a a b

Brute-force Algorithm

Bruteforce::PatternMatching(𝑇 [0. . 𝑛 − 1], 𝑃[0. . 𝑚 − 1])

𝑇 : String of length 𝑛 (text), 𝑃: String of length 𝑚 (pattern)

 for 𝑖 ← 0 to 𝑛 − 𝑚 do

 if strcmp(𝑇, 𝑃, 𝑖, 𝑚) = 0

 return “found at guess 𝑖”

 return FAIL

▪ Note: strcmp takes Θ(𝑚) time

strcmp(𝑇 , 𝑃, 𝑖 ← 0, 𝑚 ← 𝑃. 𝑠𝑖𝑧𝑒())

// compare 𝑚 chars of 𝑇 and 𝑃, starting at 𝑇[𝑖]

for 𝑗 ← 0 to 𝑚 − 1 do

 if 𝑇 [𝑖 + 𝑗] is before 𝑃[𝑗] in Σ then return -1

 if 𝑇 [𝑖 + 𝑗] is after 𝑃[𝑗] in Σ then return 1

return 0

▪ Checks every possible guess

Improvement via Preprocesing

▪ Preprocessing: do work on some parts of the input before pattern
matching begins, so that pattern matching goes faster

▪ Two preprocessing options for pattern matching

1. Do preprocessing on pattern 𝑃

▪ eliminate guesses based on preprocessing

▪ Karp-Rabin

▪ KMP

▪ Boyer-Moore

2. Do preprocessing on text T

▪ create a data structure to find matches easily

▪ Suffix-tree

▪ Suffix-arrays

Outline

▪ String Matching

▪ Introduction

▪ Karp-Rabin Algorithm

▪ Knuth-Morris-Pratt algorithm

▪ Boyer-Moore Algorithm

▪ Suffix Trees

▪ Suffix Arrays

▪ Conclusion

Karp-Rabin Fingerprint Algorithm: Idea
▪ Idea: use hash values (called fingerprints) to eliminate guesses

▪ function ℎ: {strings of length 𝑚} ⟶ {0, … , 𝑀 − 1}

▪ call these hash-function and table-size, but there is no dictionary here

▪ insight: if ℎ(𝑃) ≠ ℎ(𝑔𝑢𝑒𝑠𝑠) then guess cannot work

▪ if ℎ 𝑃 = ℎ(𝑔𝑢𝑒𝑠𝑠) verify with strcmp if pattern matches text

3 1 4 1 5 9 2 6 5 3 5
ℎ(31415) = 84

ℎ(14159) = 94

ℎ(41592) = 76

ℎ(15926) = 18

ℎ(59265) = 95

fingerprint 84

fingerprint 94

fingerprint 76

fingerprint 18

fingerprint 18

= 18= (9 ∙ 104 + 2 ∙ 103 + 6 ∙ 102 + 5 ∙ 101 + 3) 𝑚𝑜𝑑 97

no strcmp

no strcmp

no strcmp

do strcmp, false positive

do strcmp, found!

fingerprint 95

ℎ(9 2 6 5 3) = 18

no strcmp

▪ Example: Σ = 0 − 9 , 𝑃 = 9 2 6 5 3, 𝑇 = 3 1 4 1 5 9 2 6 5 3 5

▪ use standard hash-function for words with 𝑅 = |Σ| and 𝑀 = 97

▪ precompute ℎ 𝑃 = ℎ(9 2 6 5 3)

Karp-Rabin Fingerprint Algorithm – First Attempt

Karp-Rabin-Simple::patternMatching(𝑇, 𝑃)

 ℎ𝑃 ← ℎ(𝑃[0. . 𝑚 − 1)])

 for 𝑖 ← 0 to 𝑛 − 𝑚

 ℎ𝑇 ← ℎ(𝑇 [𝑖. . . 𝑖 + 𝑚 − 1])

 if ℎ𝑇 = ℎ𝑃

 if strcmp(𝑇 , 𝑃, 𝑖, 𝑚) = 0

 return “found at guess 𝑖”

 return FAIL

▪ Algorithm correctness: match is not missed

▪ ℎ(𝑇 [𝑖. . 𝑖 + 𝑚 − 1]) ≠ ℎ(𝑃) ⇒ guess 𝑖 is not 𝑃

▪ What about running time?

Θ(𝑚)

Karp-Rabin Fingerprint Algorithm: First Attempt

3 1 4 1 5 9 2 6 5 3 5

hash-value 84

hash-value 94

hash-value 76

hash-value 18

hash-value 95

Θ(𝑚)

Θ(𝑚)

Θ(𝑚)

Θ(𝑚)

Θ(𝑚)

▪ For each guess, Θ(𝑚) time to compute hash value

▪ since ℎ(𝑇[𝑖. . . 𝑖 + 𝑚 − 1]) depends on all 𝑚 characters

▪ worse than brute-force!
▪ it is possible for brute force matching to use less than Θ(𝑚) per

guess, as it stops at the first mismatched character

▪ 𝑛 − 𝑚 + 1 guesses in text to check

▪ Total time is Θ(𝑚𝑛) if pattern not in text

▪ how can we improve this?

Karp-Rabin Fingerprint Algorithm: Idea
3 1 4 1 5 9 2 6 5 3 5

hash-value 84

hash-value 94

hash-value 76

hash-value 18

hash-value 95

Θ(𝑚)

𝑂(1)

𝑂(1)

𝑂(1)

𝑂(1)

▪ Idea: compute next hash from previous one in 𝑂(1) time

▪ 𝑂(𝑛) guesses in text to check

▪ 𝛩(𝑚) to compute the first hash value

▪ 𝑂(1) to compute all other hash values

▪ consecutive guesses share 𝑚 − 1 characters

▪ 𝑂 𝑛 + 𝑚 + 𝑚 ∙ {#false positive} time
▪ need to check if pattern matches text when hash values of text and pattern are equal

▪ if hash function is good, whenever hash values are equal, pattern most likely matches
text

𝑂 𝑚 to do strcmp, false positive

▪ Can update fingerprint from previous one in 𝑂(1) time for some hash functions

▪ Example: T = 4 1 5 9 2 6 5 3 5

▪ Algebraically,

4 1 5 9 2

41592 − 4 · 10000 · 10 + 6 = 15926

41592
−4 · 10000

1592
× 10

15920
+6

15926

▪ Initialization of the algorithm

1. compute first fingerprint: ℎ 41592 = 41592 𝑚𝑜𝑑 97 = 76

2. also pre-compute 𝑅𝑚−1mod 𝑀 (here 10000 𝑚𝑜𝑑 97 = 9)

▪ Main loop: repeatedly compute next hash from the previous one

▪ Example: from 41592 𝑚𝑜𝑑 97 compute 15926 𝑚𝑜𝑑 97

▪ get rid of the old first digit and add new last digit

Karp-Rabin Fingerprint Algorithm – Fast Rehash

▪ Can update fingerprint from previous one in 𝑂(1) time for some hash functions

▪ Example: T = 4 1 5 9 2 6 5 3 5 4 1 5 9 2

▪ Initialization of the algorithm

1. compute first fingerprint: ℎ 41592 = 41592 𝑚𝑜𝑑 97 = 76

2. also pre-compute 𝑅𝑚−1mod 𝑀 (here 10000 𝑚𝑜𝑑 97 = 9)

▪ Main loop: repeatedly compute next hash from the previous one

▪ Example: from 41592 𝑚𝑜𝑑 97 compute 15926 𝑚𝑜𝑑 97

Karp-Rabin Fingerprint Algorithm – Fast Rehash

41592 − 4 · 10000 · 10 + 6 = 15926

15926 𝑚𝑜𝑑 97

(41592 𝑚𝑜𝑑 97 − 4 · (10000 𝑚𝑜𝑑 97) · 10 + 6) 𝑚𝑜𝑑 97 = 15926 𝑚𝑜𝑑 97

previous hash precomputed

76 − 4 · 9 · 10 + 6 𝑚𝑜𝑑 97 = 15926 𝑚𝑜𝑑 97

constant number of operations, independent of 𝑚

(41592 − 4 · 10000 · 10 + 6) 𝑚𝑜𝑑 97 =

Karp-Rabin Fingerprint Algorithm – Conclusion
Karp-Rabin-RollingHash::PatternMatching(𝑇 , 𝑃)

 𝑀 ← suitable prime number

 ℎ𝑃 ← ℎ(𝑃[0. . . 𝑚 − 1)])

 ℎ𝑇 ← ℎ(𝑇 [0. . 𝑚 − 1)])

 𝑠 ← 𝑅𝑚−1 𝑚𝑜𝑑 𝑀

 for 𝑖 ← 0 to 𝑛 − 𝑚

 if ℎ𝑇 = ℎ𝑃

 if strcmp(𝑇, 𝑃, 𝑖, 𝑚) = 0

 return “found at guess 𝑖”

 if 𝑖 < 𝑛 − 𝑚 // compute fingerprint for next guess

 ℎ𝑇 ← ℎ𝑇 − 𝑇 𝑖 · 𝑠 · 𝑅 + 𝑇 𝑖 + 𝑚 𝑚𝑜𝑑 𝑀

 return FAIL

▪ Choose “table size” 𝑀 at random to be prime in 2, … , 𝑚𝑛2

▪ Analysis specific to the hash function in this pseudo-code

▪ can show that expected running time is 𝑂(𝑚 + 𝑛)

▪ Θ(𝑚𝑛) worst-case, but this extremely is unlikely

▪ improvement: reset 𝑀 after false positive

Outline

▪ String Matching
▪ Introduction
▪ Karp-Rabin Algorithm
▪ Knuth-Morris-Pratt algorithm
▪ Boyer-Moore Algorithm
▪ Suffix Trees
▪ Suffix Arrays
▪ Conclusion

Knuth-Morris-Pratt (KMP) Overview

𝑇

▪ KMP starts out similar to Brute-Force pattern matching

𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

c a b a b a a b a b
a mismatch at the first pattern letter,

discard current guess and move on
to the next guessa

letter matches the text, move
on to the next check

b a b a c

mismatch at pattern letter which is not the
first pattern letter: do something smarter
than brute-force

Knuth-Morris-Pratt (KMP) Indexing

▪ KMP indexing

▪ indexes 𝑖 and 𝑗

▪ 𝑗 is the position in the pattern

▪ 𝑖 is text position where check happens

▪ check: 𝑇 𝑖 = 𝑃 𝑗

▪ current guess is 𝑖 − 𝑗

𝑇

𝑃 = 𝑐𝑎𝑏

d c a b a b

𝒋=𝟎
𝒊=𝟏

𝑇 d c a b a b

𝒋=𝟎

▪ Brute-force indexing

▪ indexes 𝑖 and 𝑗

▪ 𝑗 is the position in the pattern

▪ 𝑖 is current guess

▪ check: 𝑇 𝑖 + 𝑗 = 𝑃 𝑗

𝒋=𝟏 𝒋=𝟐

𝒊=1

𝒋=𝟏
𝒊=𝟐

𝒋=𝟐
𝒊=𝟑

c a b c a b

𝑇 1 + 0 = 𝑃 0

𝑇 1 + 1 = 𝑃 1

𝑇 1 + 2 = 𝑃 2

𝑇 1 = 𝑃 0
𝑇 2 = 𝑃 1

𝑇 3 = 𝑃 2

𝒊 − 𝒋 = 1

Knuth-Morris-Pratt (KMP) Derivation

▪ KMP starts similar to brute force pattern matching

▪ maintain variables 𝑖 and 𝑗

▪ 𝑗 is the position in the pattern

▪ 𝑖 is the position in the text where we do the check

▪ check is performed by determining if 𝑇 𝑖 = 𝑃 𝑗

▪ current guess is 𝑖 − 𝑗

𝑇

𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

▪ Begin matching with 𝑖 = 0, 𝑗 = 0

c a b a b a a b a b

𝒋=𝟎
𝒊=𝟎

a

▪ If 𝑇 𝑖 ≠ 𝑃 𝑗 and 𝑗 = 0, shift pattern by 1, same action as in brute-force
▪ 𝑖 = 𝑖 + 1

▪ 𝑗 is unchanged

▪ old guess: 𝑖 − 𝑗, new guess: 𝑖 + 1 − 𝑗
▪ new guess increases by 1, i.e. pattern shifts by 1

Knuth-Morris-Pratt Motivation

▪ When 𝑇[𝑖] = 𝑃[𝑗], the action is to check the next letter, as in brute-force

▪ 𝑖 = 𝑖 + 1

▪ 𝑗 = 𝑗 + 1

▪ guess was: 𝑖 − 𝑗, and it stays the same: 𝑖 + 1 − 𝑗 + 1 = 𝑖 − 𝑗

▪ pattern is not shifted

𝑇

𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

c a b a b a a b a b

a

a b a b a c

▪ Failure at text position 𝑖 = 6, pattern position 𝑗 = 5

▪ When failure is at pattern position 𝑗 > 0, do something smarter than brute force

𝒋=𝟎
𝒊=𝟏

𝒋=𝟏
𝒊=𝟐

𝒋=𝟐
𝒊=𝟑

𝒋=𝟑
𝒊=𝟒

𝒋=𝟒
𝒊=𝟓

𝒋=𝟓
𝒊=𝟔

𝒋=𝟎
𝒊=𝟎

Knuth-Morris-Pratt Motivation

𝑇

𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

c a b a b a a b a b

a

a cb a b a

▪ When failure is at pattern position 𝑗 > 0, do something smarter than brute force

▪ Prior to 𝑗 = 5, pattern and text are equal

▪ key observation: can find how to move pattern looking only at pattern

guess = 2 does not worka

a b a guess = 3 could work

▪ If failure at 𝑗 = 5, 𝑖 stays the same, new 𝑗 = 3

▪ 𝑖 stays the same because we will try to match the same text letter

▪ old guess is 𝑖 −5, new guess is 𝑖 − 3, so guess increased by 2

▪ we skipped one guess and 3 character checks

▪ can precompute the action of ‘shift by 2 and skip 3 characters’ before matching
begins, from the pattern, do not need text for this computation

𝒋=𝟎
𝒊=𝟏

𝒋=𝟏
𝒊=𝟐

𝒋=𝟐
𝒊=𝟑

𝒋=𝟑
𝒊=𝟒

𝒋=𝟒
𝒊=𝟓

𝒋=𝟓
𝒊=𝟔

𝒋=𝟎
𝒊=𝟎

new guess 3,
new check 3

old guess 1,
old check 5

Knuth-Morris-Pratt Motivation

𝑇

𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

c a b a b a a b a b

a

a cb a b a

▪ If failure at 𝑗 = 5: continue matching with the same 𝑖 and new 𝑗 = 3

▪ precomputed from pattern before matching begins

shift by 1 does not worka

a b a shift by 2 could work

prefix of 𝑃

𝑷[𝟏 … 𝒋 − 𝟏]

▪ Rule for determining new 𝑗

▪ find longest suffix of 𝑃 1 … 𝑗 − 1 which is also prefix of 𝑃

▪ call a suffix of 𝑃 valid if it is a prefix of 𝑃

▪ new 𝑗 = length of the longest valid suffix of 𝑃 1 … 𝑗 − 1

𝒋=𝟎
𝒊=𝟏

𝒋=𝟏
𝒊=𝟐

𝒋=𝟐
𝒊=𝟑

𝒋=𝟑
𝒊=𝟒

𝒋=𝟒
𝒊=𝟓

𝒋=𝟓
𝒊=𝟔

𝒋=𝟎
𝒊=𝟎

KMP Failure Array Computation: Slow
▪ Rule: if failure at pattern index 𝑗 > 0, continue matching with the same 𝑖 and

new 𝑗 = the length of the longest valid suffix of 𝑃 1 … 𝑗 − 1

▪ Computed previously for 𝑗 = 5, but need to compute for all 𝑗

▪ Store this information in array 𝐹 0. . . 𝑚 − 1 , also called failure-function

0 … 𝑗 − 1 𝑗 … 𝑚 − 1
𝐹

longest valid suffix
of 𝑃[1. . . 𝑗]

if failure at 𝑗 > 0, new 𝑗 = 𝐹[𝑗 − 1]

0 … 𝑗 − 1 𝑗 … 𝑚 − 1
𝐹

longest valid suffix
of 𝑃[1. . . 𝑗 − 1]

if failure at 𝑗 > 0, new 𝑗 = 𝐹[𝑗]

alternative indexing of 𝐹

KMP Failure Array Computation: Slow
▪ Rule: if failure at pattern index 𝑗 > 0, continue matching with the same 𝑖 and

new 𝑗 = the length of the longest valid suffix of 𝑃 1 … 𝑗 − 1

▪ Store the length of the longest valid suffix of 𝑃 1 … 𝑗 in 𝐹 𝑗

▪ If failure at pattern index 𝑗 > 0, new 𝑗 = 𝐹[𝑗 − 1]

▪ Important for efficiency: 𝐹 𝑗 ≤ 𝑗

▪ 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎
0 1 2 3 4 5 6

100
𝐹

▪ 𝐹[0] = 0 for any pattern

▪ 𝑗 = 1

▪ 𝑃[1 … 1] = 𝑏, 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎, longest valid suffix is “”

▪ 𝑗 = 2

▪ 𝑃[1 … 2] = 𝑏𝑎, 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎, longest valid suffix is 𝑎

▪ 𝑗 = 0

▪ 𝑃[1 … 0] = “”, 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎, longest valid suffix is “”

KMP Failure Array Computation: Slow

0 1 2 3 4 5 6

32100
𝐹

0 1

▪ Failure array is precomputed before matching starts

▪ straightforward computation is 𝑂(𝑚3) time

 for 𝑗 = 0 to 𝑚 − 1 // go over all positions in the failure array

 for 𝑖 = 1 to 𝑗 // go over all suffixes of 𝑃[1 … 𝑗]

 for 𝑘 = 1 to 𝑖 // compare next suffix to prefix of 𝑃

▪ 𝑗 = 5

▪ 𝑃[1 … 5] = 𝑏𝑎𝑏𝑎𝑐 , 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎, longest valid suffix is “”

▪ 𝑗 = 6

▪ 𝑃[1 … 6] = 𝑏𝑎𝑏𝑎𝑐𝑎, 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎, longest valid suffix is 𝑎

▪ Store the length of the longest valid suffix of 𝑃 1 … 𝑗 in 𝐹 𝑗

▪ 𝑗 = 4

▪ 𝑃[1 … 4] = 𝑏𝑎𝑏𝑎 , 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎, longest valid suffix is 𝑎𝑏𝑎

▪ 𝑗 = 3

▪ 𝑃[1 … 3] = 𝑏𝑎𝑏 , 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎, longest valid suffix is 𝑎𝑏

String matching with KMP: Example

▪ 𝑇 = 𝑐𝑎𝑏𝑎𝑏𝑎𝑏𝑐𝑎𝑏𝑎𝑏𝑎𝑐𝑎, 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

c a b a b a b c a b a b a c a𝑇:

𝑃:

0 1 2 3 4 5 6

32100
𝐹

0 1

if 𝑇 𝑖 ≠ 𝑃 𝑗 and 𝑗 = 0
▪ 𝑖 = 𝑖 + 1

▪ 𝑗 is unchanged

if 𝑇[𝑖] = 𝑃[𝑗]

▪ 𝑖 = 𝑖 + 1

▪ 𝑗 = 𝑗 + 1

if 𝑇 𝑖 ≠ 𝑃 𝑗 and 𝑗 > 0
▪ 𝑖 unchanged

▪ 𝑗 = 𝐹[𝑗 − 1]

𝒊=𝟎
𝒋=𝟎

rule 1 rule 2 rule 3

String matching with KMP: Example
▪ 𝑇 = 𝑐𝑎𝑏𝑎𝑏𝑎𝑏𝑐𝑎𝑏𝑎𝑏𝑎𝑐𝑎, 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

c a b a b a b c a b a b a c a𝑇:

𝑃:

0 1 2 3 4 5 6

32100
𝐹

0 1

𝒂

𝒋=𝟎
𝒊=𝟎

a b a b a c

𝒋=𝟎
𝒊=𝟏

𝒋=𝟏
𝒊=𝟐

𝒋=𝟐
𝒊=𝟑

𝒋=𝟑
𝒊=𝟒

𝒋=𝟒
𝒊=𝟓

𝒋=𝟓
𝒊=𝟔

new 𝑗 = 3

(a) (b) (a)

𝒋=𝟑

b

𝒋=𝟒
𝒊=𝟕

a new 𝑗 = 2

𝒋=𝟐

(a) (b) a

𝒋=𝟎

new 𝑗 = 0

a

𝒋=𝟎
𝒊=𝟖

a

𝒋=𝟏
𝒊=𝟗

b

𝒋=𝟐
𝒊=𝟏𝟎

a

𝒋=𝟑
𝒊=𝟏𝟏

b

𝒋=𝟒
𝒊=𝟏𝟐

a

𝒋=𝟓
𝒊=𝟏𝟑

c

𝒋=𝟔
𝒊=𝟏𝟒

a match!

if 𝑇 𝑖 ≠ 𝑃 𝑗 and 𝑗 = 0
▪ 𝑖 = 𝑖 + 1

▪ 𝑗 is unchanged

if 𝑇[𝑖] = 𝑃[𝑗]

▪ 𝑖 = 𝑖 + 1

▪ 𝑗 = 𝑗 + 1

if 𝑇 𝑖 ≠ 𝑃 𝑗 and 𝑗 > 0
▪ 𝑖 unchanged

▪ 𝑗 = 𝐹[𝑗 − 1]

Knuth-Morris-Pratt Algorithm

KMP::pattern-matching 𝑇, 𝑃
 𝐹 ← compute−failure−array 𝑃
 𝑖 ← 0 // current character of 𝑇
 𝑗 ← 0 // current character of 𝑃
 while 𝑖 < 𝑛 do
 if 𝑃[𝑗] = 𝑇[𝑖]
 if 𝑗 = 𝑚 − 1
 return “found at guess 𝑖 − 𝑚 + 1”
 // guess is equal to 𝑖 − 𝑗
 else // rule 1
 𝑖 ← 𝑖 + 1
 𝑗 ← 𝑗 + 1
 else // 𝑃[𝑗] ≠ 𝑇 [𝑖]
 if 𝑗 > 0

 𝑗 ← 𝐹[𝑗 − 1] // rule 2
 else
 𝑖 ← 𝑖 + 1 // rule 3
 return 𝐹𝐴𝐼𝐿

KMP Running Time

▪ For now, ignore the cost of computing failure array, will account for it later

▪ Have horizontal and vertical iterations

c a b a b a b c a b a b a c a𝑇:

𝑃:

if 𝑇 𝑖 ≠ 𝑃 𝑗 and 𝑗 = 0

▪ 𝑖 = 𝑖 + 1

▪ 𝑗 is unchanged

if 𝑇[𝑖] = 𝑃[𝑗]

▪ 𝑖 = 𝑖 + 1

▪ 𝑗 = 𝑗 + 1

if 𝑇 𝑖 ≠ 𝑃 𝑗 and 𝑗 > 0

▪ 𝑖 unchanged

▪ 𝑗 = 𝐹[𝑗 − 1]

𝒋=𝟎
𝒊=𝟎

𝒋=𝟎
𝒊=𝟏

𝒋=𝟏
𝒊=𝟐

𝒋=𝟐
𝒊=𝟑

𝒋=𝟑
𝒊=𝟒

𝒋=𝟒
𝒊=𝟓

𝒋=𝟓
𝒊=𝟔

𝒋=𝟑

𝒋=𝟒
𝒊=𝟕

𝒋=𝟐

𝒋=𝟎

𝒋=𝟎
𝒊=𝟖

𝒋=𝟏
𝒊=𝟗

𝒋=𝟐
𝒊=𝟏𝟎

𝒋=𝟑
𝒊=𝟏𝟏

𝒋=𝟒
𝒊=𝟏𝟐

𝒋=𝟓
𝒊=𝟏𝟑

𝒋=𝟔
𝒊=𝟏𝟒

▪ Total number of decreases of 𝑗 ≤ total number of increases of 𝑗 ≤ 𝑛

▪ At most 𝑛 vertical iterations

▪ Each iteration is 𝑂(1), at most 2𝑛 iterations, total runtime is is 𝑂(𝑛)

𝑖 increases

𝑗 decreases

▪ At most 𝑛 horizontal iterations

▪ 𝑖 can increase at most 𝑛 times → 𝑗 can increase at most 𝑛 times

0 1 2 3 4 5 6

32100 0 1
𝐹

▪ 𝑗 decreases

Fast Computation of 𝐹
▪ Failure array 𝐹

▪ 𝐹 0 = 0, no need to compute

▪ for 𝑗 > 0, 𝐹 𝑗 = length of the longest suffix of 𝑃[1. . . 𝑗] which is also prefix of 𝑃

▪ i.e. 𝐹 𝑗 = longest valid suffix of 𝑃 1 … 𝑗

▪ Crucial fact: after processing 𝑇, final value of 𝑗 is longest valid suffix of 𝑇

P = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎
c a b a

𝒂

a b a

𝑇:

𝑃:

𝒋=𝟎
𝒊=𝟎

𝒋=𝟎
𝒊=𝟏

𝒋=𝟏
𝒊=𝟐

𝒋=𝟐
𝒊=𝟑

𝒋=𝟑
𝒊=𝟒

a b a

▪ Use the crucial fact for computation of 𝐹

▪ match 𝑇 = 𝑃 1 … 1 with 𝑃, and set 𝐹[1] = final 𝑗

▪ match 𝑇 = 𝑃 1 … 2 with 𝑃, and set 𝐹[2] = final 𝑗

▪ …

▪ match 𝑇 = 𝑃 1 … 𝑚 − 1 with 𝑃, and set 𝐹[𝑚 − 1] = final 𝑗

▪ but first, let us rename variable 𝑗 as 𝑙 (only for failure array computation)

▪ since 𝑗 is already used for 𝑇 = 𝑃 1 … 𝑗

in
d

ex
ed

 b
y

𝑗
𝑗

=
1

…
𝑚

Fast Computation of 𝐹
▪ Failure array 𝐹

▪ 𝐹 0 = 0, no need to compute

▪ for 𝑗 > 0, 𝐹 𝑗 = length of the longest suffix of 𝑃[1. . . 𝑗] which is also prefix of 𝑃

▪ i.e. 𝐹 𝑗 = longest valid suffix of 𝑃 1 … 𝑗

▪ Crucial fact: after processing 𝑇, final value of 𝑙 is longest valid suffix of 𝑇

P = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎
c a b a

𝒂

a b a

𝑇:

𝑃:

𝒍=𝟎
𝒊=𝟎

𝒍=𝟎
𝒊=𝟏

𝒍=𝟏
𝒊=𝟐

𝒍=𝟐
𝒊=𝟑

𝒍=𝟑
𝒊=𝟒

a b a

▪ Use the crucial fact for computation of 𝐹

▪ match 𝑇 = 𝑃 1 … 1 with 𝑃, and set 𝐹[1] = final 𝑙

▪ match 𝑇 = 𝑃 1 … 2 with 𝑃, and set 𝐹[2] = final 𝑙

▪ …

▪ match 𝑇 = 𝑃 1 … 𝑚 − 1 with 𝑃, and set 𝐹[𝑚 − 1] = final 𝑙

Fast Computation of 𝐹
▪ P = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

▪ Big idea

KMP𝑇 = 𝑃[1 … 1]
final 𝑙

𝐹 1 = 𝑙

KMP𝑇 = 𝑃[1 … 2]
final 𝑙

𝐹 2 = 𝑙

KMP𝑇 = 𝑃[1 … 𝑚 − 1]
final 𝑙

𝐹 𝑚 − 1 = 𝑙

…

‘chicken and egg’
problem with big idea:
need 𝐹 to put text
through KMP

c a b a

𝒂

a b a

𝑇:

𝑃:

𝒍=𝟎
𝒊=𝟎

𝒍=𝟎
𝒊=𝟏

𝒍=𝟏
𝒊=𝟐

𝒍=𝟐
𝒊=𝟑

𝒍=𝟑
𝒊=𝟒

a b a
▪ Useful fact

▪ after processing 𝑇, final value of 𝑙 is
longest valid suffix of 𝑇

▪ Failure array 𝐹

▪ for 𝑗 > 0, 𝐹 𝑗 = length of the longest valid
suffix of 𝑃[1. . . 𝑗]

Fast Computation of 𝐹: Big Idea Saved

▪ 𝑗 = 1 KMP𝑇 = 𝑃[1 … 1]
final 𝑙

𝐹 1 = 𝑙

▪ 𝑗 = 2 KMP𝑇 = 𝑃[1 … 2]
final 𝑙

𝐹 2 = 𝑙

▪ start with 𝑙 = 0

▪ text has one letter, KMP can reach at most 𝑙 = 1

▪ need at most 𝐹[0], and already have it as 𝐹[0] is always 0

▪ start with 𝑙 = 0

▪ text has two letters, can reach at most 𝑙 = 2

▪ need at most 𝐹 0 , 𝐹 1 , already computed at previous iteration

▪ 𝑗 = 𝑚 − 1 KMP𝑇 = 𝑃[1 … 𝑚 − 1]
final 𝑙

𝐹 𝑚 − 1 = 𝑙

▪ start with 𝑙 = 0

▪ text has 𝑚 − 1 letters, can reach at most 𝑙 = 𝑚 − 1

▪ need at most 𝐹 0 , 𝐹 1 , … , 𝐹[𝑚 − 2], already computed at previous iterations

…

if failure at 𝑙 > 0, 𝑙 = 𝐹[𝑙 − 1]

Fast Computation of 𝐹: Big Idea Made Bigger

KMP𝑇 = 𝑃[1 … 1] final 𝑙
𝐹 1 = 𝑙

KMP𝑇 = 𝑃[1 … 2] final 𝑙
𝐹 2 = 𝑙

▪ Cost of passing 𝑃[1 … 1], 𝑃 1 … 2 , … , 𝑃[1 … 𝑚 − 1] through KMP is equal to
the cost of passing just 𝑃[1 … 𝑚 − 1] through KMP

KMP𝑇 = 𝑃[1 … 𝑚 − 1] final 𝑙
𝐹 𝑚 − 1 = 𝑙

…

do not start from scratch,

start from where 𝑃[1 … 1]

finished

do not start from scratch,

start from where

𝑃[1 … 𝑚 − 2] finished

KMP𝑇 = 𝑃[1 … 3]
final 𝑙

𝐹 3 = 𝑙
do not start from scratch,

start from where 𝑃[1 … 2]

finished

Fast Computation of 𝐹
▪ Process 𝑇 = 𝑃[1 … 𝑗], 𝐹 𝑗 = final 𝑙

▪ 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

▪ Initialize 𝐹[0] = 0

0 1 2 3 4 5 6

0
𝐹

Fast Computation of 𝐹

𝑇:

▪ Process 𝑇 = 𝑃[1 … 𝑗], 𝐹 𝑗 = final 𝑙

▪ 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

▪ 𝑗 = 1, 𝑇 = 𝑃 1 … 𝑗 = 𝑏

0 1 2 3 4 5 6

0
𝐹

𝑃:

if 𝑇 𝑖 ≠ 𝑃 𝑙 and 𝑙 = 0

▪ 𝑖 = 𝑖 + 1

▪ 𝑙 is unchanged

if 𝑇[𝑖] = 𝑃[𝑙]

▪ 𝑖 = 𝑖 + 1

▪ 𝑙 = 𝑙 + 1

if 𝑇 𝑖 ≠ 𝑃 𝑙 and 𝑙 > 0

▪ 𝑖 unchanged

▪ 𝑙 = 𝐹[𝑙 − 1]

𝒍=𝟎
𝒊=𝟎

𝒂

𝒍=𝟎
𝒊=𝟏

0

b

Fast Computation of 𝐹

𝑇:

▪ Process 𝑇 = 𝑃[1 … 𝑗], 𝐹 𝑗 = final 𝑙

▪ 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

▪ 𝑗 = 2, 𝑇 = 𝑃 1 … 𝑗 = 𝑏𝑎

0 1 2 3 4 5 6

0
𝐹

𝑃:

𝒍=𝟎
𝒊=𝟎

𝒂

𝒍=𝟎
𝒊=𝟏

0

a

𝑎

𝒍=𝟏
𝒊=𝟐

1

if 𝑇 𝑖 ≠ 𝑃 𝑙 and 𝑙 = 0

▪ 𝑖 = 𝑖 + 1

▪ 𝑙 is unchanged

if 𝑇[𝑖] = 𝑃[𝑙]

▪ 𝑖 = 𝑖 + 1

▪ 𝑙 = 𝑙 + 1

if 𝑇 𝑖 ≠ 𝑃 𝑙 and 𝑙 > 0

▪ 𝑖 unchanged

▪ 𝑙 = 𝐹[𝑙 − 1]

b

Fast Computation of 𝐹

𝑇:

▪ Process 𝑇 = 𝑃[1 … 𝑗], 𝐹 𝑗 = final 𝑙

▪ 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

▪ 𝑗 = 3, 𝑇 = 𝑃 1 … 𝑗 = 𝑏𝑎𝑏

0 1 2 3 4 5 6

0
𝐹

𝑃:

𝒍=𝟎
𝒊=𝟎

𝒂

𝒍=𝟎
𝒊=𝟏

0

a

𝑎

𝒍=𝟏
𝒊=𝟐

1

b

𝑏

𝒍=𝟐
𝒊=𝟑

2

if 𝑇 𝑖 ≠ 𝑃 𝑙 and 𝑙 = 0

▪ 𝑖 = 𝑖 + 1

▪ 𝑙 is unchanged

if 𝑇[𝑖] = 𝑃[𝑙]

▪ 𝑖 = 𝑖 + 1

▪ 𝑙 = 𝑙 + 1

if 𝑇 𝑖 ≠ 𝑃 𝑙 and 𝑙 > 0

▪ 𝑖 unchanged

▪ 𝑙 = 𝐹[𝑙 − 1]

b

Fast Computation of 𝐹

𝑇:

▪ Process 𝑇 = 𝑃[1 … 𝑗], 𝐹 𝑗 = final 𝑙

▪ 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

▪ 𝑗 = 4, 𝑇 = 𝑃 1 … 𝑗 = 𝑏𝑎𝑏𝑎

0 1 2 3 4 5 6

0
𝐹

𝑃:

𝒍=𝟎
𝒊=𝟎

𝒂

𝒍=𝟎
𝒊=𝟏

0

a

𝑎

𝒍=𝟏
𝒊=𝟐

1

b

𝑏

𝒍=𝟐
𝒊=𝟑

2

a

𝑎

𝒍=𝟑
𝒊=𝟒

3

if 𝑇 𝑖 ≠ 𝑃 𝑙 and 𝑙 = 0

▪ 𝑖 = 𝑖 + 1

▪ 𝑙 is unchanged

if 𝑇[𝑖] = 𝑃[𝑙]

▪ 𝑖 = 𝑖 + 1

▪ 𝑙 = 𝑙 + 1

if 𝑇 𝑖 ≠ 𝑃 𝑙 and 𝑙 > 0

▪ 𝑖 unchanged

▪ 𝑙 = 𝐹[𝑙 − 1]

b

Fast Computation of 𝐹

𝑇:

▪ Process 𝑇 = 𝑃[1 … 𝑗], 𝐹 𝑗 = final 𝑙

▪ 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

▪ 𝑗 = 5, 𝑇 = 𝑃 1 … 𝑗 = 𝑏𝑎𝑏𝑎𝑐

0 1 2 3 4 5 6

0
𝐹

𝑃:

𝒍=𝟎
𝒊=𝟎

𝒂

𝒍=𝟎
𝒊=𝟏

0

a

𝑎

𝒍=𝟏
𝒊=𝟐

1

b

𝑏

𝒍=𝟐
𝒊=𝟑

2

a

𝑎

𝒍=𝟑
𝒊=𝟒

3

c

b new 𝑙 = 1

𝒍=𝟏

(𝑎) 𝒃 new 𝑙 = 0

𝒍=𝟎

𝒂

𝒍=𝟎
𝒊=𝟓

0

if 𝑇 𝑖 ≠ 𝑃 𝑙 and 𝑙 = 0

▪ 𝑖 = 𝑖 + 1

▪ 𝑙 is unchanged

if 𝑇[𝑖] = 𝑃[𝑙]

▪ 𝑖 = 𝑖 + 1

▪ 𝑙 = 𝑙 + 1

if 𝑇 𝑖 ≠ 𝑃 𝑙 and 𝑙 > 0

▪ 𝑖 unchanged

▪ 𝑙 = 𝐹[𝑙 − 1]

b

𝑇:

▪ Process 𝑇 = 𝑃[1 … 𝑗], 𝐹 𝑗 = final 𝑙

▪ 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

▪ 𝑗 = 6, 𝑇 = 𝑃 1 … 𝑗 = 𝑏𝑎𝑏𝑎𝑐𝑎

0 1 2 3 4 5 6

0
𝐹

𝑃:

𝒍=𝟎
𝒊=𝟎

𝒂

𝒍=𝟎
𝒊=𝟏

0

a

𝑎

𝒍=𝟏
𝒊=𝟐

1

b

𝑏

𝒍=𝟐
𝒊=𝟑

2

a

𝑎

𝒍=𝟑
𝒊=𝟒

3

c

b new 𝑙 = 1

𝒍=𝟏

(𝑎) 𝒃 new 𝑙 = 0

𝒍=𝟎

𝒂

𝒍=𝟎
𝒊=𝟓

0

a

𝒍=𝟏
𝒊=𝟔

1

if 𝑇 𝑖 ≠ 𝑃 𝑙 and 𝑙 = 0

▪ 𝑖 = 𝑖 + 1

▪ 𝑙 is unchanged

if 𝑇[𝑖] = 𝑃[𝑙]

▪ 𝑖 = 𝑖 + 1

▪ 𝑙 = 𝑙 + 1

if 𝑇 𝑖 ≠ 𝑃 𝑙 and 𝑙 > 0

▪ 𝑖 unchanged

▪ 𝑙 = 𝐹[𝑙 − 1]

𝑎

b

Fast Computation of 𝐹

𝑇:

▪ Equivalent to matching 𝑇 = 𝑃[1 … 𝑚 − 1] with 𝑃

▪ 𝑃 = 𝑎𝑏𝑎𝑏𝑎𝑐𝑎

0 1 2 3 4 5 6

0
𝐹

𝑃:

𝒍=𝟎
𝒊=𝟎

𝒂

𝒍=𝟎
𝒊=𝟏

0

a

𝑎

𝒍=𝟏
𝒊=𝟐

1

b

𝑏

𝒍=𝟐
𝒊=𝟑

2

a

𝑎

𝒍=𝟑
𝒊=𝟒

3

c

b new 𝑙 = 1

𝒍=𝟏

(𝑎) 𝒃 new 𝑙 = 0

𝒍=𝟎

𝒂

𝒍=𝟎
𝒊=𝟓

0

a

𝒍=𝟏
𝒊=𝟔

1

if 𝑇 𝑖 ≠ 𝑃 𝑙 and 𝑙 = 0

▪ 𝑖 = 𝑖 + 1

▪ 𝑙 is unchanged

if 𝑇[𝑖] = 𝑃[𝑙]

▪ 𝑖 = 𝑖 + 1

▪ 𝑙 = 𝑙 + 1

if 𝑇 𝑖 ≠ 𝑃 𝑙 and 𝑙 > 0

▪ 𝑖 unchanged

▪ 𝑙 = 𝐹[𝑙 − 1]

𝑎

b

Fast Computation of 𝐹

𝑷:

0 1 2 3 4 5 6

0
𝐹

𝑃:

𝒍=𝟎
𝒊=𝟏

𝒂

𝒍=𝟎
𝒊=𝟐

0

a

𝑎

𝒍=𝟏
𝒊=𝟑

1

b

𝑏

𝒍=𝟐
𝒊=𝟒

2

a

𝑎

𝒍=𝟑
𝒊=𝟓

3

c

b new 𝑙 = 1

𝒍=𝟏

(𝑎) 𝒃 new 𝑙 = 0

𝒍=𝟎

𝒂

𝒍=𝟎
𝒊=𝟔

0

a

𝒍=𝟏
𝒊=𝟕

1

if 𝑷 𝑖 ≠ 𝑃 𝑙 and 𝑙 = 0

▪ 𝑖 = 𝑖 + 1

▪ 𝑙 is unchanged

if 𝑷[𝑖] = 𝑃[𝑙]

▪ 𝑖 = 𝑖 + 1

▪ 𝑙 = 𝑙 + 1

if 𝑷 𝑖 ≠ 𝑃 𝑙 and 𝑙 > 0

▪ 𝑖 unchanged

▪ 𝑙 = 𝐹[𝑙 − 1]

𝑎

b

Fast Computation of 𝐹
▪ Replace 𝑇 by 𝑃 and start 𝑖 at 1

▪ since 𝑇 = 𝑃[𝟏 … 𝑚 − 1]

▪ Update 𝐹 𝑖 = 𝑙 after letter 𝑖 is processed

𝑃:

0 1 2 3 4 5 6

0
𝐹

𝑃:

𝒍=𝟎
𝒋=𝟏

𝒂

𝒍=𝟎
𝒋=𝟐

0

a

𝑎

𝒍=𝟏
𝒋=𝟑

1

b

𝑏

𝒍=𝟐
𝒋=𝟒

2

a

𝑎

𝒍=𝟑
𝒋=𝟓

3

c

b new 𝑙 = 1

𝒍=𝟏

(𝑎) 𝒃 new 𝑙 = 0

𝒍=𝟎

𝒂

𝒍=𝟎
𝒋=𝟔

0

a

𝒍=𝟏
𝒋=𝟕

1

if 𝑃 𝑗 ≠ 𝑃 𝑙 and 𝑙 = 0

▪ 𝑗 = 𝑗 + 1

▪ 𝑙 is unchanged

if 𝑃[𝑗] = 𝑃[𝑙]

▪ 𝑗 = 𝑗 + 1

▪ 𝑙 = 𝑙 + 1

if 𝑃 𝑗 ≠ 𝑃 𝑙 and 𝑙 > 0

▪ 𝑗 unchanged

▪ 𝑙 = 𝐹[𝑙 − 1]

𝑎

Fast Computation of 𝐹

b

▪ Rename 𝑖 into 𝑗

▪ makes it clear that we match text is 𝑃 1 … 𝑗 at each iteration

KMP: Computing Failure Array

compute-failure-array(𝑃)
𝑃: string of length 𝑚 (pattern)
 𝐹[0] ← 0

 𝑗 ← 1 // matching 𝑃[1 … 𝑗]
 𝑙 ← 0
 while 𝑗 < m do
 if 𝑃[𝑗] = 𝑃[𝑙]

 𝑙 ← 𝑙 + 1
 𝐹 𝑗 ← 𝑙
 𝑗 ← 𝑗 + 1

 else if 𝑙 > 0
 𝑙 ← 𝐹[𝑙 − 1]
 else
 𝐹 [𝑗] ← 0
 𝑗 ← 𝑗 + 1

▪ Pseudocode is almost identical to
KMP 𝑇, 𝑃
▪ main difference: 𝐹[𝑗] gets both

used and updated

▪ Runtime Θ(𝑚), same analysis as
for KMP

// rule 1

// rule 2

// rule 3
// 𝑙 = 0

KMP: Main
Function Runtime

▪ KMP main function

▪ compute-failure-array is Θ(𝑚) time

▪ The rest of KMP is Θ(𝑛)

▪ Running time KMP altogether: Θ(𝑛 + 𝑚)

▪ which is the same as Θ(𝑛) as 𝑚 ≤ 𝑛

KMP::pattern-matching 𝑇, 𝑃
 𝐹 ← compute−failure−array 𝑃
 𝑖 ← 0
 𝑗 ← 0
 while 𝑖 < 𝑛 do
 if 𝑃[𝑗] = 𝑇[𝑖]
 if 𝑗 = 𝑚 − 1
 return “found at guess 𝑖 − 𝑚 + 1”
 else
 𝑖 ← 𝑖 + 1
 𝑗 ← 𝑗 + 1
 else // 𝑃[𝑗] ≠ 𝑇 [𝑖]
 if 𝑗 > 0
 𝑗 ← 𝐹[𝑗 − 1]
 else
 𝑖 ← 𝑖 + 1
 return 𝐹𝐴𝐼𝐿

Outline

▪ String Matching

▪ Introduction

▪ Karp-Rabin Algorithm

▪ Knuth-Morris-Pratt algorithm

▪ Boyer-Moore Algorithm

▪ Suffix Trees

▪ Suffix Arrays

▪ Conclusion

Boyer-Moore Algorithm Motivation

▪ Fastest pattern matching in practice on English Text

▪ Important components

▪ Reverse-order searching

▪ compare 𝑃 with a guess moving backwards

▪ When a mismatch occurs choose the better option among the two below

1. Bad character heuristic

▪ eliminate shifts based on mismatched character of 𝑇

2. Good suffix heuristic

▪ eliminate shifts based on the matched part (i.e.) suffix of 𝑃

▪ similar to the matched prefix in KMP, but now look at suffix as
matching backwards

Reverse Searching vs. Forward Searching

w h e r e i s w a l d o

𝑇= whereiswaldo, 𝑃 = aldo

a

w h e r e i s w a l d o

▪ move pattern past r

r

a l d o

a l d o

a l d o

▪ r does not occur in 𝑃 = aldo

o

▪ w does not occur in 𝑃 = aldo

w

▪ move pattern past w

odla

▪ bad character heuristic can rule out
many guesses with reverse
searching

w

▪ w does not occur in 𝑃 = aldo

▪ move pattern past w

o

a l d o

▪ shift by 1 moves pattern past w

▪ no guesses are ruled out

▪ bad character heuristic does not
rule out any guesses with forward
searching when the first character
of the pattern is mismatched

What if Mismatched Text Character Occurs in 𝑃?

a c r a n a p p l e

𝑇= acranapple, 𝑃 = aaron

no

▪ Mismatched character in the text is a

a

▪ Find last occurrence of a in 𝑃

▪ Move the pattern to the right until last a in P aligns with a in text

▪ all smaller shifts are impossible since they do not match a

▪ Precompute last occurrence of any letter before matching starts

a a r o n

a a r o n next possible guess

this guess does not work

last occurrence of
a in pattern

Bad Character Heuristic: Side Note

a c r a n a p p l e

𝑇= acranapple, 𝑃 = aaron

no
a

a a r o n

▪ If we moved until the first a in P aligns with a in text

▪ this would give a possible guess, but misses an earlier guess which is
also possible, possibly leading to a missed pattern

also a valid guess

missed valid guessa a r o n

Bad Character Heuristic: Full Version
▪ Extends to the case when mismatched text character does occur in 𝑃

a c r a n a p p l e

𝑇= acranapple, 𝑃 = aaron

no
a

[a]

▪ Mismatched character in the text is a

▪ Move the pattern to the right so that the last a in P aligns with a in text

▪ Continue matching the pattern (in reverse)

Bad Character Heuristic: Full Version
▪ Extends to the case when mismatched text character does occur in 𝑃

a c r a n a p p l e

𝑇= acranapple, 𝑃 = aaron

no
a

a a r o na a r o na a r o n[a] n

▪ Mismatched character in the text is a

▪ Move the pattern to the right so that the last a in P aligns with a in text

▪ Continue matching the pattern (in reverse)

Bad Character Heuristic: Last Occurrence Array

𝑐ℎ𝑎𝑟 a n o r all others

𝐿(𝑐) -1 -1 -1 -1 -1

▪ Compute the last occurrence array 𝐿 𝑐 of any character in the alphabet

▪ 𝐿 𝑐 = −1 if character 𝑐 does not occur in 𝑃, otherwise

▪ 𝐿 𝑐 = largest index 𝑗 such that 𝑃 𝑗 = 𝑐

▪ Example: 𝑃 = aaron

▪ initialization

a b c d e … x y z

-1 -1 -1 -1 -1 -1 -1 -1
this means:

0 1 2 3 4 5 … 24 25

-1 -1 -1 -1 -1 -1 -1 -1
in actual implementation:

Bad Character Heuristic: Last Occurrence Array

𝑐ℎ𝑎𝑟 a n o r all others

𝐿(𝑐) -1 -1 -1 -1 -1

▪ Compute the last occurrence array 𝐿 𝑐 of any character in the alphabet

▪ 𝐿 𝑐 = −1 if character 𝑐 does not occur in 𝑃, otherwise

▪ 𝐿 𝑐 = largest index 𝑗 such that 𝑃 𝑗 = 𝑐

▪ Example: 𝑃 = aaron

▪ computation

aaron
𝑖 = 0

a
0

𝐿 is valid for 𝑃 = a

Bad Character Heuristic: Last Occurrence Array

𝑐ℎ𝑎𝑟 a n o r all others

𝐿(𝑐) 0 -1 -1 -1 -1

▪ Compute the last occurrence array 𝐿 𝑐 of any character in the alphabet

▪ 𝐿 𝑐 = −1 if character 𝑐 does not occur in 𝑃, otherwise

▪ 𝐿 𝑐 = largest index 𝑗 such that 𝑃 𝑗 = 𝑐

▪ Example: 𝑃 = aaron

▪ computation

aaron
𝑖 = 1

a
1

𝐿 is valid for 𝑃 = aa

Bad Character Heuristic: Last Occurrence Array

𝑐ℎ𝑎𝑟 a n o r all others

𝐿(𝑐) 1 -1 -1 -1 -1

▪ Compute the last occurrence array 𝐿 𝑐 of any character in the alphabet

▪ 𝐿 𝑐 = −1 if character 𝑐 does not occur in 𝑃, otherwise

▪ 𝐿 𝑐 = largest index 𝑗 such that 𝑃 𝑗 = 𝑐

▪ Example: 𝑃 = aaron

▪ computation

aaron
𝑖 = 2

r
2

𝐿 is valid for 𝑃 = aar

Bad Character Heuristic: Last Occurrence Array

𝑐ℎ𝑎𝑟 a n o r all others

𝐿(𝑐) 1 -1 -1 2 -1

▪ Compute the last occurrence array 𝐿 𝑐 of any character in the alphabet

▪ 𝐿 𝑐 = −1 if character 𝑐 does not occur in 𝑃, otherwise

▪ 𝐿 𝑐 = largest index 𝑗 such that 𝑃 𝑗 = 𝑐

▪ Example: 𝑃 = aaron

▪ computation

aaron
𝑖 = 3

o
3

𝐿 is valid for 𝑃 = aaro

Bad Character Heuristic: Last Occurrence Array

𝑐ℎ𝑎𝑟 a n o r all others

𝐿(𝑐) 1 -1 3 2 -1

▪ Compute the last occurrence array 𝐿 𝑐 of any character in the alphabet

▪ 𝐿 𝑐 = −1 if character 𝑐 does not occur in 𝑃, otherwise

▪ 𝐿 𝑐 = largest index 𝑗 such that 𝑃 𝑗 = 𝑐

▪ Example: 𝑃 = aaron

▪ computation

aaron
𝑖 = 4

n
4

▪ Total time is 𝑂(𝑚 + |∑|)

𝐿 is valid for 𝑃 = aaron

Boyer-More Indexing

▪ Same as in KMP

▪ maintain variables 𝑖 and 𝑗

▪ 𝑗 is the position in the pattern

▪ 𝑖 is the position in the text where we do the next check

▪ check is performed by determining if 𝑇 𝑖 = 𝑃 𝑗

▪ current guess is 𝑖 − 𝑗

Bad Character Heuristic: Formula

a c r a n a p p l e
no

a

𝒋=𝟑
𝒊=𝟑

𝑇= acranapple, 𝑃 = aaron

𝒋=𝟒
𝒊=𝟔

▪ Let 𝐿(𝑐) be the last occurrence of character 𝑐 in 𝑃

▪ 𝐿 𝐚 = 1 in our example

▪ When mismatch occurs at text position 𝑖, pattern position 𝑗, update

▪ 𝑗 = 𝑚 − 1

▪ start matching at the end of the pattern

▪ 𝑖 = 𝑖 + 𝑚 − 1 − 𝐿(𝑐)

▪ for our example

▪ 𝑗 = 5 − 1 = 4

▪ 𝑖 = 3 + 5 − 1 − 1 = 6

[a] n

𝑐ℎ𝑎𝑟 a n o r all others

𝐿(𝑐) 1 4 3 2 -1

Bad Character Heuristic: Formula Explained

𝑖𝑜𝑙𝑑 𝑖𝑛𝑒𝑤

+𝑳(𝒄) −(𝒎 − 𝟏)

𝑖𝑛𝑒𝑤

𝑖𝑛𝑒𝑤 = 𝑖𝑜𝑙𝑑 + 𝑚 − 1 − 𝐿 𝑐

 𝑖 = 𝑖 + 𝑚 − 1 − 𝐿(𝑐)

𝑖

▪ Text character is 𝑐 at the mismatch position 𝑖 in the text

▪ 𝑖 = 𝑖 + 𝑚 − 1 − 𝐿(𝑐)

− 𝑚 − 1 +𝐿 𝑐 = 𝑖𝑜𝑙𝑑

𝑐
𝑐𝑇

𝐿(𝑐)

Bad Character Heuristic: Formula Explained

𝑖

▪ Text character is 𝑐 at the mismatch position 𝑖 in the text

▪ 𝑖 = 𝑖 + 𝑚 − 1 − 𝐿(𝑐)

𝑐𝑇

𝐿(𝑐)

▪ Also works if 𝐿 𝑐 = −1

moves pattern completely past
mismatched text character 𝑐

Bad Character Heuristic: Important Use Condition
▪ Text character is 𝑐 at the mismatch position 𝑖 in the text

▪ 𝑖 = 𝑖 + 𝑚 − 1 − 𝐿(𝑐), 𝑗 = 𝑚 − 1

▪ Old guess: 𝑖 − 𝑗

▪ New guess: 𝑖 + (𝑚 − 1) – 𝐿(𝑐) – (𝑚 − 1) = 𝑖 − 𝐿(𝑐)

▪ If 𝐿 𝑐 > 𝑗, new guess < old guess and moves 𝑃 in wrong direction, not useful

▪ we already ruled that guess out, no point to come back to it

▪ Example:

▪ bad character heuristic makes sense to use only if 𝑳 𝒄 < 𝒋

▪ note that 𝐿 𝑐 ≠ 𝑗 in case of a mismatch

c a c r w a a p a a e

ao

a

𝒋=𝟑
𝒊=𝟖

𝑇= acranapple, 𝑃 = reroa

ao

a

𝐿 𝐚 = 4 > 𝑗 = 3

 old guess: 𝑖 − 𝑗 = 8 − 3 = 5

 𝑖𝑛𝑒𝑤 = 8 + 5 − 1 − 4 = 8
𝑗𝑛𝑒𝑤 = 5 − 1 = 4

 new guess: 𝑖𝑛𝑒𝑤 − 𝑗𝑛𝑒𝑤 = 8 − 4 = 4

Bad Character Heuristic: Brute-Force Step
▪ If 𝐿 𝑐 > 𝑗

▪ pattern would move in wrong direction if used bad character heuristic

▪ therefore, do brute-force step

▪ 𝑗 = 𝑚 − 1

▪ 𝑖 = 𝑖 − 𝑗 + 𝑚
𝑖𝑜𝑙𝑑 𝑖𝑛𝑒𝑤

= 𝑖𝑛𝑒𝑤

𝑖𝑛𝑒𝑤 = 𝑖𝑜𝑙𝑑 − 𝑗 + 𝑚

 𝑖 = 𝑖 − 𝑗 + 𝑚

𝑖

−𝑗

𝑚 − 1 +1

𝑖𝑜𝑙𝑑 −𝑗 +𝑚 − 1 +1

𝑗

Bad Character Heuristic: Unified Formula

1. If 𝐿(𝑐) < 𝑗 [bad character heuristic step]

▪ 𝑗 = 𝑚 − 1

▪ 𝑖 = 𝑖 + 𝑚 − 1 − 𝐿(𝑐)

2. If 𝐿 𝑐 > 𝑗 [brute-force step]

▪ 𝑗 = 𝑚 − 1

▪ 𝑖 = 𝑖 − 𝑗 + 𝑚

▪ Unified formula for 𝑖 that works in both cases

 𝑖 = 𝑖 + 𝑚 − 1 − min{𝐿 𝑐 , 𝑗 − 1}

f e e d a l l p o o r p a r r o t s

𝑃 = paper

r

𝒋=𝟒
𝒊=𝟒

𝑇

Boyer-More Example 𝑐ℎ𝑎𝑟 a e p r others

𝐿(𝑐) 1 3 2 4 -1

▪ Unified formula for 𝑖 that works in all cases

 𝑖 = 𝑖 + 𝑚 − 1 − min 𝐿 𝑐 , 𝑗 − 1

𝒊=𝟕

[a]

𝒋=𝟒
𝒊=𝟕

r 𝒊=𝟗

𝒋=𝟒
𝒊=𝟗

[p] r 𝒊 = 𝟏 4

𝒋=𝟒
 𝒊=14

re 𝒊 = 𝟏𝟓

not found!

𝒋=𝟑
 𝒊=13

r 𝒊 = 𝟐𝟎

𝒋=𝟒
 𝒊=15

Boyer-Moore Algorithm

BoyerMoore(𝑇, 𝑃)

 𝐿 ← last occurrence array computed from 𝑃

 𝑗 ← 𝑚 − 1

 𝑖 ← 𝑚 − 1

 while 𝑖 < 𝑛 and 𝑗 ≥ 0 do //current guess begins at index 𝑖 − 𝑗

 if 𝑇 𝑖 = 𝑃[𝑗] then

 𝑖 ← 𝑖 − 1

 𝑗 ← 𝑗 − 1

 else

 𝑖 ← 𝑖 + 𝑚 − 1 − min{𝐿 𝑐 , 𝑗 − 1}

 𝑗 ← 𝑚 − 1

 if 𝑗 = −1 return “found at guess 𝑖 + 1”

 else return FAIL

0

Good Suffix Heuristic
▪ Idea is similar to KMP, but applied to the suffix, since matching backwards

o n o o o b o o o i b b o u n d a r y

𝑃 = onobobo

obob

𝒋=𝟑
𝒊=𝟑

𝑇

▪ Text has letters obo

▪ Do the smallest move so that obo fits

o n o b o b o

▪ Can precompute this from the pattern itself, before matching starts

▪ ‘if failure at 𝑗 = 3, shift pattern by 2’

▪ Continue matching from the end of the new shift

▪ Will not study the precise way to do it

o n o b o b o

Boyer-Moore Summary

▪ Boyer-Moore performs very well, even when using only bad character
heuristic

▪ Worst case run time is 𝑂(𝑛𝑚) with bad character heuristic only, but in
practice much faster

▪ On typical English text, Boyer-Moore looks only at ≈25% of text 𝑇

▪ With good suffix heuristic, can ensure 𝑂(𝑛 + 𝑚 + |Σ|) run time

▪ no details

Outline

▪ String Matching
▪ Introduction
▪ Karp-Rabin Algorithm
▪ Knuth-Morris-Pratt algorithm
▪ Boyer-Moore Algorithm
▪ Suffix Trees
▪ Suffix Arrays
▪ Conclusion

Suffix Tree: Trie of Suffixes

▪ What if we search for many patterns 𝑃 within the same fixed text 𝑇?

▪ Idea: preprocess the text 𝑇 rather than pattern 𝑃

▪ Observation: 𝑃 is a substring of 𝑇 if and only if 𝑃 is a prefix of some
suffix of 𝑇

▪ Example: 𝑃 = ish

𝑇 =establishment

▪ Naïve idea: store all suffixes of 𝑇 in a trie

▪ if |𝑇| = 𝑛, then 𝑛 + 1 suffixes together have 0 + 1 + 2 + ⋯ + 𝑛 ∈ Θ 𝑛2
characters

▪ wastes space

▪ Suffix tree saves space in multiple ways

▪ store suffixes implicitly via indices into 𝑇

▪ use compressed trie
▪ 𝑂(𝑛) space since we store 𝑛 + 1 suffixes (words)

suffix

prefix

Trie of suffixes: Example
▪ T = bananaban

 Suffixes = {bananaban, ananaban, nanaban, anaban, naban, aban, ban, an, n, Λ}

na

an$
n

$
aban$

a

ananaban$
$

$
anaban$

a nb

bananaban$
$naba

a

ban$

n

na

n$
na

nanaban$
$

$
naban$

a nba

$

not all leaf-references shown

▪ Convenient to order children alphabetically

Trie of suffixes: Example

na

an$
n

$
aban$

a

ananaban$
$

$
anaban$

a nb

bananaban$
$naba

a

ban$

n

na

n$
na

nanaban$
$

$
naban$

a nba

$

0 1 2 3 4 5 6 7 8 9

b a n a n a b a n $T = $

$T[9..9]

▪ Store suffixes via indices

Trie of suffixes: Example

na

an$
n

$
aban$

a

ananaban$
$

$
anaban$

a nb

bananaban$
$naba

a

ban$

n

na

n$
na

nanaban$
$

$
naban$

a nba

$

0 1 2 3 4 5 6 7 8 9

b a n a n a b a n $T = a b a n $

T[5..9]

$T[9..9]

▪ Store suffixes via indices

Tries of suffixes

0 1 2 3 4 5 6 7 8 9

b a n a n a b a n $T =

T[9..9]

T[5..9]
n $a

T[7..9]

T[3..9]
$na

$
T[1..9]

nab

$
T[0..9]

naba

a

T[6..9]

n

na

T[8..9]

T[4..9]
n $a

$
T[2..9]

naba

▪ In actual implementation, each
leaf 𝑙 stores the start of its
suffix in variable 𝑙. 𝑠𝑡𝑎𝑟𝑡

𝑙. 𝑠𝑡𝑎𝑟𝑡 = 9

𝑙. 𝑠𝑡𝑎𝑟𝑡 = 5

𝑙. 𝑠𝑡𝑎𝑟𝑡 = 3

𝑙. 𝑠𝑡𝑎𝑟𝑡 = 1

𝑙. 𝑠𝑡𝑎𝑟𝑡 = 7

𝑙. 𝑠𝑡𝑎𝑟𝑡 = 6

𝑙. 𝑠𝑡𝑎𝑟𝑡 = 0

𝑙. 𝑠𝑡𝑎𝑟𝑡 = 8

𝑙. 𝑠𝑡𝑎𝑟𝑡 = 4

𝑙. 𝑠𝑡𝑎𝑟𝑡 = 2

Suffix tree

0

T[9..9]

1

T[5..9]

2

T[7..9]

3

T[3..9]

T[1..9]T[6..9]

1

3

T[0..9]

T[8..9]

2

T[4..9]

T[2..9]

▪ Compress trie of suffixes to get suffix tree

0 1 2 3 4 5 6 7 8 9

b a n a n a b a n $T =

Suffix Tree Search

0

T[9..9]

1

T[5..9]

2

T[7..9]

3

T[3..9]

T[1..9]T[6..9]

1

3

T[0..9]

T[8..9]

2

T[4..9]

T[2..9]

0 1 2 3 4 5 6 7 8 9

b a n a n a b a n $T =

▪ If 𝑃 occurs in the text, it is a prefix of one (or more) strings stored in the trie

▪ To search for a pattern, use prefix search on tries

▪ Example: search for ana

b a n a n a b a n $

Compare ana to what is stored in T[1..3]

found!

Find the earliest occurrence, since leaf
reference is to the longest suffix

Suffix Tree Search

0

T[9..9]

1

T[5..9]

2

T[7..9]

3

T[3..9]

T[1..9]T[6..9]

1

3

T[0..9]

T[8..9]

2

T[4..9]

T[2..9]

0 1 2 3 4 5 6 7 8 9

b a n a n a b a n $T =

▪ If 𝑃 occurs in the text, it is a prefix of one (or more) strings stored in the trie

▪ To search for a pattern, use prefix search on tries

▪ Example: search for baa

b a n a n a b a n $

Compare baa to what is stored in T[0..2]

not found!

Building Suffix Tree
▪ Building

▪ text 𝑇 has 𝑛 characters and 𝑛 + 1 suffixes

▪ can build suffix tree by inserting each suffix of 𝑇 into compressed trie

▪ Θ |Σ|𝑛2 time

▪ there is a way to build a suffix tree of 𝑇 in Θ(|Σ|𝑛) time

▪ beyond the course scope

▪ Pattern Matching

▪ prefix-search for 𝑃 in compressed trie

▪ run-time is

▪ 𝑂 Σ 𝑚 , assuming a node stores children in a linked list

▪ 𝑂 𝑚 , assuming a node stores children in an array

▪ Summary

▪ theoretically good, but construction is slow or complicated and lots of space-
overhead

▪ rarely used in practice

Outline

▪ String Matching
▪ Introduction
▪ Karp-Rabin Algorithm
▪ Knuth-Morris-Pratt algorithm
▪ Boyer-Moore Algorithm
▪ Suffix Trees
▪ Suffix Arrays
▪ Conclusion

Suffix Arrays

▪ Relatively recent development (popularized in the 1990s)

▪ Sacrifice some performance for simplicity

▪ slightly slower (by a log-factor) than suffix trees

▪ much easier to build

▪ much simpler pattern matching

▪ very little space, only one array

▪ Idea

▪ store suffixes implicitly, by storing start indices

▪ store sorting permutation of the suffixes of 𝑇

Suffix Array Example 0 1 2 3 4 5 6 7 8 9

b a n a n a b a n $T =

i suffix 𝑇[𝑖 … 𝑛]

0 bananaban$

1 ananaban$

2 nanaban$

3 anaban$

4 naban$

5 aban$

6 ban$

7 an$

8 n$

9 $

sort lexicographically

j 𝑨𝒔[𝒋]

0 9 $

1 5 aban$

2 7 an$

3 3 anaban$

4 1 ananaban$

5 6 ban$

6 0 bananaban$

7 8 n$

8 4 naban$

9 2 nanaban$

9 5 7 3 1 6 0 8 4 2Suffix Array =

0 1 2 3 4 5 6 7 8 9

j 𝑨𝒔[𝒋]

0 9 $

1 5 aban$

2 7 an$

3 3 anaban$

4 1 ananaban$

5 6 ban$

6 0 bananaban$

7 8 n$

8 4 naban$

9 2 nanaban$

Suffix Array Construction

▪ Easy to construct using MSD-Radix-Sort (pad with any character to get the same length)

bananaban$

ananaban$*

nanaban$**

anaban$***

naban$****

aban$*****

ban$******

an$*******

n$********

$*********

$********

ananaban$

anaban$***

aban$*****

an$*******

bananaban$

ban$******

nanaban$**

naban$****

n$********

round 𝟏

$********

aban$****

ananaban$

anaban$**

an$******

bananaban$

ban$******

nanaban$**

naban$****

n$********

round 𝟐 round 𝒏

▪ Fast in practice, suffixes are unlikely to share many leading characters

▪ But worst case run-time is Θ 𝑛2

▪ recursion depth is 𝑛, Θ 𝑛 time at 𝑛/2 recursion depths, example: 𝑇 = 𝑎𝑎 … . 𝑎$

▪ Θ |Σ|𝑛2 if accounting for alphabet size

$********

aban$****

an$*******

anaban$***

ananaban$*

ban$******

bananaban$

n$********

naban$****

nanaban$**

…

0 1 2 3 4 5 6 7 8 9

b a n a n a b a n $T =

Suffix Array Construction
▪ Idea: we do not need 𝑛 rounds

▪ Θ log 𝑛 rounds enough → Θ 𝑛 log 𝑛 run time

▪ Θ (𝑛 + Σ) log 𝑛 if accounting for alphabet size

▪ Construction-algorithm

▪ MSD-radix sort plus some bookkeeping

▪ needs only one extra array

▪ easy to implement

▪ details are covered in an algorithms course

Pattern Matching in Suffix Arrays

j 𝑨𝒔[𝒋]

0 9 $

1 5 aban$

2 7 an$

3 3 anaban$

4 1 ananaban$

5 6 ban$

6 0 bananaban$

7 8 n$

8 4 naban$

9 2 nanaban$

▪ Suffix array stores suffixes (implicitly) in sorted order

▪ Idea: apply binary search

𝑙 →

P = ban

𝑟 →

𝑣 →

0 1 2 3 4 5 6 7 8 9

b a n a n a b a n $T = b a n a n a b a n $

ban > ana

j 𝑨𝒔[𝒋]

0 9 $

1 5 aban$

2 7 an$

3 3 anaban$

4 1 ananaban$

5 6 ban$

6 0 bananaban$

7 8 n$

8 4 naban$

9 2 nanaban$

b a n

Pattern Matching in Suffix Arrays

j 𝑨𝒔[𝒋]

0 9 $

1 5 aban$

2 7 an$

3 3 anaban$

4 1 ananaban$

5 6 ban$

6 0 bananaban$

7 8 n$

8 4 naban$

9 2 nanaban$

▪ Suffix array stores suffixes (implicitly) in sorted order

▪ Idea: apply binary search

𝑙 →

P = ban

𝑟 →

𝑣 →

0 1 2 3 4 5 6 7 8 9

b a n a n a b a n $T = b a n a n a b a n $

ban < n

b a n

Pattern Matching in Suffix Arrays

j 𝑨𝒔[𝒋]

0 9 $

1 5 aban$

2 7 an$

3 3 anaban$

4 1 ananaban$

5 6 ban$

6 0 bananaban$

7 8 n$

8 4 naban$

9 2 nanaban$

▪ Suffix array stores suffixes (implicitly) in sorted
order

▪ Idea: apply binary search

𝑙 →

P = ban

𝑟 →

𝑣 =

▪ Θ log 𝑛 comparisons

▪ Each comparison is strcmp (𝑃, 𝑇, 𝐴𝑠 𝑣 , 𝑚)

▪ Θ 𝑚 per comparison ⟹ run-time is
Θ 𝑚 log 𝑛

0 1 2 3 4 5 6 7 8 9

b a n a n a b a n $T = b a n a n a b a n $

found!

b a n

Pattern Matching in Suffix Arrays

SuffixArray-Search(𝑇, 𝑃, 𝐴𝑠)

𝐴𝑠: suffix array of 𝑇, 𝑃: pattern

 𝑙 ← 0, 𝑟 ←last index of 𝐴𝑠

 while 𝑙 ≤ 𝑟

 𝑣 ←
𝑙+𝑟

2

 𝑖 ← 𝐴𝑠 𝑣

 𝑠 ← strcmp(𝑇, 𝑃, 𝑖, 𝑚)

 // case 𝑖 + 𝑚 > 𝑛 handled correctly if 𝑇 ends with $

 if 𝑠 < 0 do 𝑙 ← 𝑣 + 1

 else 𝑠 > 0 do 𝑟 ← 𝑣 − 1

 else return ‘found at guess 𝑖’

 return FAIL

▪ Does not always find the leftmost occurrence

▪ Can find the leftmost occurrence and reduce runtime to 𝑂 𝑚 + log 𝑛 with
further pre-computations

Outline

▪ String Matching
▪ Introduction
▪ Karp-Rabin Algorithm
▪ Knuth-Morris-Pratt algorithm
▪ Boyer-Moore Algorithm
▪ Suffix Trees
▪ Suffix Arrays
▪ Conclusion

String Matching Conclusion

▪ Algorithms stop once they found one occurrence

▪ Most of them can be adapted to find all occurrences within the same
worst-case run-time

Brute
Force

KR BM KMP Suffix Trees Suffix Array

preproc. — 𝑂(𝑚) 𝑂(𝑚 + |∑|) 𝑂(𝑚)
𝑂(|∑|𝑛2)
→ 𝑂(|∑|𝑛)

𝑂(𝑛𝑙𝑜𝑔𝑛)
→ 𝑂(𝑛)

search
time

(preproc
excluded)

𝑂(𝑛𝑚)
𝑂(𝑛 + 𝑚)

 expected

𝑂(𝑛 + |∑|)
with good suffix

often
better

𝑂(𝑛) 𝑂(𝑚(|∑|)
𝑂(𝑚𝑙𝑜𝑔𝑛)

→ 𝑂(𝑚 + 𝑙𝑜𝑔𝑛)

extra space — 𝑂(1) 𝑂(𝑚 + |∑|) 𝑂(𝑚) 𝑂(𝑛) 𝑂(𝑛)

	Introduction
	Slide 1
	Slide 2: Outline
	Slide 3: Pattern Matching Definitions
	Slide 4: More Definitions
	Slide 5: General Idea of Algorithms
	Slide 6: Diagrams for Matching
	Slide 7: Brute-Force Algorithm: Example
	Slide 8: Brute-Force Algorithm: Running Time
	Slide 9: Brute-force Algorithm
	Slide 10: Improvement via Preprocesing

	Karp Robin
	Slide 11: Outline
	Slide 12: Karp-Rabin Fingerprint Algorithm: Idea
	Slide 13: Karp-Rabin Fingerprint Algorithm – First Attempt
	Slide 14: Karp-Rabin Fingerprint Algorithm: First Attempt
	Slide 15: Karp-Rabin Fingerprint Algorithm: Idea
	Slide 16: Karp-Rabin Fingerprint Algorithm – Fast Rehash
	Slide 17: Karp-Rabin Fingerprint Algorithm – Fast Rehash
	Slide 18: Karp-Rabin Fingerprint Algorithm – Conclusion

	KMP-Intro
	Slide 19: Outline
	Slide 20: Knuth-Morris-Pratt (KMP) Overview
	Slide 21: Knuth-Morris-Pratt (KMP) Indexing
	Slide 22: Knuth-Morris-Pratt (KMP) Derivation
	Slide 23: Knuth-Morris-Pratt Motivation
	Slide 24: Knuth-Morris-Pratt Motivation
	Slide 25: Knuth-Morris-Pratt Motivation
	Slide 26: KMP Failure Array Computation: Slow
	Slide 27: KMP Failure Array Computation: Slow
	Slide 28: KMP Failure Array Computation: Slow

	KMP-Example
	Slide 29: String matching with KMP: Example
	Slide 30: String matching with KMP: Example
	Slide 31: Knuth-Morris-Pratt Algorithm

	Untitled Section
	Slide 32: KMP Running Time

	Fast Failure Array Computation
	Slide 33: Fast Computation of cap F
	Slide 34: Fast Computation of cap F
	Slide 35: Fast Computation of cap F
	Slide 36: Fast Computation of cap F: Big Idea Saved
	Slide 37: Fast Computation of cap F: Big Idea Made Bigger
	Slide 38: Fast Computation of cap F
	Slide 39: Fast Computation of cap F
	Slide 40: Fast Computation of cap F
	Slide 41: Fast Computation of cap F
	Slide 42: Fast Computation of cap F
	Slide 43: Fast Computation of cap F
	Slide 44: Fast Computation of cap F
	Slide 45: Fast Computation of cap F
	Slide 46: Fast Computation of cap F
	Slide 47: Fast Computation of cap F
	Slide 48: KMP: Computing Failure Array
	Slide 49: KMP: Main Function Runtime

	Boyer-More
	Slide 50: Outline
	Slide 51: Boyer-Moore Algorithm Motivation
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71: Boyer-Moore Algorithm
	Slide 72
	Slide 73

	Suffix Tree
	Slide 74: Outline
	Slide 75: Suffix Tree: Trie of Suffixes
	Slide 76: Trie of suffixes: Example
	Slide 77: Trie of suffixes: Example
	Slide 78: Trie of suffixes: Example
	Slide 79: Tries of suffixes
	Slide 80: Suffix tree
	Slide 81: Suffix Tree Search
	Slide 82: Suffix Tree Search
	Slide 83: Building Suffix Tree

	Suffix Array
	Slide 84: Outline
	Slide 85: Suffix Arrays
	Slide 86: Suffix Array Example
	Slide 87: Suffix Array Construction
	Slide 88: Suffix Array Construction
	Slide 89: Pattern Matching in Suffix Arrays
	Slide 90: Pattern Matching in Suffix Arrays
	Slide 91: Pattern Matching in Suffix Arrays
	Slide 92: Pattern Matching in Suffix Arrays
	Slide 93: Outline
	Slide 94: String Matching Conclusion

