CS 240 – Data Structures and Data Management

Module 10: Data Compression

O. Veksler

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2025

Outline

- Data Compression
 - Background
 - Single-Character Encodings
 - Huffman Codes
 - Lempel-Ziv-Welch
 - Combining Compression Schemes: bzip2
 - Burrows-Wheeler Transform

Outline

- Data Compression
 - Background
 - Single-Character Encodings
 - Huffman Codes
 - Lempel-Ziv-Welch
 - Combining Compression Schemes: bzip2
 - Burrows-Wheeler Transform

Data Compression Introduction

- The problem: How to store and transmit data efficiently?
- Source text:
 - original data, string S of characters from source alphabet Σ_S
- Coded text
 - encoded data, string C of characters from **coded alphabet** Σ_C
- Encoding [scheme]
 - algorithm mapping source text to coded text
- Decoding [scheme]
 - algorithm mapping coded text back to original source text

$$S \xrightarrow{\text{encode}} C \xrightarrow{\text{transmit}} C \xrightarrow{\text{decode}} S$$

- Source "text" can be any sort of data (not always text)
- Usually the coded alphabet is binary $\Sigma_C = \{0,1\}$
- Consider lossless compression: exact recovery of S from C

Judging Encoding Schemes

- Main objective: for data compression, want to minimize the size of the coded text
- Measure the compression ratio

$$\frac{|C| \cdot \log|\Sigma_C|}{|S| \cdot \log|\Sigma_S|}$$

Examples:

$$(73)_{10} \rightarrow (1001001)_2$$
 compression ratio $\frac{7 \cdot \log 2}{2 \cdot \log 10} \approx 1.05$ X
 $(127)_{10} \rightarrow (7F)_{16}$ compression ratio $\frac{2 \cdot \log 16}{3 \cdot \log 10} \approx 0.8$ \checkmark

- Want to achieve compression ration smaller than 1
 - lacktriangledown can always achieve compression ratio of 1 by sending S without changes

Judging Encoding Schemes

- Also measure efficiency of encoding/decoding algorithms, as for any usual algorithm
 - always need time $\Omega(|S| + |C|)$
 - sometimes need more time
- Other possible goals, not studied in this course
 - reliability (e.g. error-correcting codes)
 - security (e.g. encryption)

Impossibility of Compressing

- Observation: No lossless encoding scheme can have compression ratio < 1 for all input strings
- Proof: (for $\Sigma_S = \Sigma_C = \{0,1\}$, by contradiction) Fix n, and assume all length n strings get shorter

- So impossible to provide good worst-case compression bounds
- However real-life data is usually far from random, it has some strings that occur more frequently than others
 - can design compression schemes that work well for frequently occurring strings

Detour: Streams

- Usually texts are huge and do not fit into computer memory
- Therefore usually store S and C as streams
 - input stream (~std::cin)
 - read one character at a time
 - pop(), top(), isEmpty()
 - sometimes need reset() to start processing from the start
 - output stream (~std::cout)
 - write one character at a time
 - append(), isEmpty()
- Advantage of streams
 - can start processing text while it is still being loaded
 - avoids needing to hold the entire text in memory at once

Outline

- Data Compression
 - Background
 - Single-Character Encodings
 - Huffman Codes
 - Run-Length Encoding
 - Lempel-Ziv-Welch
 - Combining Compression Schemes: bzip2
 - Burrows-Wheeler Transform

Character Encodings

• A character encoding E (or single-character encoding) maps each character in the source alphabet to a string in code alphabet

$$E: \Sigma_S \to \Sigma_C^*$$

- for $c \in \Sigma_S$, E(c) is called the *codeword* (or *code*) of c
- Two possibilities
 - 1. Fixed-length code: all codewords have the same length

$$c \in \Sigma_{S}$$
 \sqcup A E N O T
 $E(c)$ 000 001 011 100 101 111

2. Variable-length code: codewords may have different lengths

$c \in \Sigma_S$	Ш	Α	E	N	0	Т
E(c)	000	01	101	001	100	11

Fixed Length Character Encoding

Example: ASCII (American Standard Code for Information Interchange), 1963

$charin\Sigma_{\mathcal{S}}$	null	start of heading		• • •	0	1	•••	А	В	•••	~	delete
code	0	1	2		48	49	•••	65	66		126	127
code in binary	0000000	0000001	0000010		0110000	0110001		1000001	1000010		1111110	1111111

- Each codeword E(c) has length 7 bits
- Encoding/Decoding is easy: just concatenate/decode the next 7 bits
 - A P P L E \leftrightarrow (65, 80, 80, 76, 69) \leftrightarrow 1000001 1010000 1010000 1001100 1000101
 - here |S| = 5, $|C| = 5 \cdot 7$, $|\Sigma_S| = 128$
- Standard in all computers and often our source alphabet
- Other (earlier) fixed-length codes: Baudot code, Murray code
- Fixed-length codes do not compress
 - let |E(c)| = b and assume binary code alphabet

$$\frac{|C| \cdot \log|\Sigma_C|}{|S| \cdot \log|\Sigma_S|} = \frac{b \cdot |S|}{|S| \cdot \log 2^b} = 1$$

Better Idea: Variable-Length Codes

- Observation: Some alphabet letters occur more often than others
 - example: frequency of letters in typical English text

е	12.70%	d	4.25%	p	1.93%
t	9.06%	1	4.03%	b	1.49%
a	8.17%	C	2.78%	V	0.98%
0	7.51%	u	2.76%	k	0.77%
i	6.97%	m	2.41%	j	0.15%
n	6.75%	W	2.36%	X	0.15%
S	6.33%	f	2.23%	q	0.10%
h	6.09%	g	2.02%	Z	0.07%
r	5.99%	У	1.97%		

- Idea: use shorter codes for more frequent characters
 - as before, map source alphabet to codewords: $E: \Sigma_S \to \Sigma_C^*$
 - but not all codewords have the same length
 - this should make the coded text shorter

Variable-Length Codes

Example 1: Morse code

- Example 2: UTF-8 encoding of Unicode
 - there are roughly 150,000 Unicode characters
 - 1-4 bytes to encode any Unicode character

Encoding

- Assume we have some character encoding $E: \Sigma_S \to \Sigma_C^*$
- E is a dictionary with keys in Σ_S

```
singleChar::Encoding(E,S,C)
E: encoding dictionary, S: input stream with characters in \Sigma_S
C: output stream

while S is non-empty
w \leftarrow E.search(S.pop())
append each bit of w to C
```

$c \in \Sigma_S$	Ш	Α	E	N	0	T
E(c)	000	01	101	001	100	11

Decoding

- The decoding algorithm must map Σ_C^* to Σ_S
- The code must be uniquely decodable
 - false for Morse code as described

- Morse code uses 'end of character' pause to avoid ambiguity
- this is equivalent to adding '\$' at the end of each word
- encoding is prefix-free if '\$' added
 - no codeword is a prefix of another codeword aab\$**\$
- prefix-free codes are uniquely decodable

- Adding '\$', would mean coded alphabet is not binary, not desirable
- So we will require encoding to be prefix free
 - example: codewords 000, 01, 101, 001, 100, 11 are prefix-free

Decoding

- From now on only consider prefix-free codes E
 - no codeword is a prefix of another codeword
 - Uniquely decodable
- Store codes in a *trie* with characters of Σ_S at the leaves
 - prefix-free codes can be stored at the leafs without adding \$

Decode from a trie

■ Decode $1110000010101111 \rightarrow T$

Decode from a trie

■ Decode $111000001010111 \rightarrow \top 0$

Decode from a trie

■ Decode $111000001010111 \rightarrow TO \sqcup$

Decode from a trie

- Decode $111000001010111 \rightarrow TO \sqcup EAT$
- Run-time: O(|C|)

Decoding of Prefix-Free Codes

```
prefixFree::decoding(T, C, S)
T: trie of a prefix-free code, C: input-stream with characters in \Sigma_C
S: output-stream
    while C is non-empty // iterate over all codewords
       z \leftarrow T.root
       while z is not a leaf // read next codeword
              if C is empty or z has no child labelled C.top()
                      return "invalid encoding"
              z \leftarrow \text{child of } z \text{ that is labelled with } C.pop()
        S. append (character stored at z)
```

- Run-time: O(|C|)
- Detects if the encoding is invalid

Encoding from the Trie

Explained previously how to encode from a table

$c \in \Sigma_S$	Ш	Α	E	N	0	T
E(c)	000	01	101	001	100	11

- Table wastes space, codewords can be quite long
- Better idea: store codewords via links to the trie leaves

Encoding from the Trie

Can encode directly from the trie *T*

```
prefixFree::encoding(T, S, C)
T: prefix-free code trie, S: input-stream with characters in \Sigma_S
          E \leftarrow \text{array of nodes in } T \text{ indexed by } \Sigma_S
          for all leaves l in T
                 E[\text{character at } l] \leftarrow l
          while S is non-empty
                  w \leftarrow \text{empty bitstring}; v \leftarrow E[S.pop()]
                  while v is not the root
                         w.prepend (character from v to its parent)
                         v \leftarrow \mathsf{parent}(v)
```

// now w is the encoding of S

- append each bit w of to C Run-time: O(|T| + |C|)
 - have to visit all trie nodes, and insert leaves into E
 - we assume T has no nodes with one child
 - $\#leaves -1 \geq \#leaves$
 - - $O(|\Sigma_S| + |C|)$
- $|\Sigma_S|$ ·2 -1 \geq #internal nodes + #leaves = |T| $C = 100\ 001$

i = 0 (letter O)

C = 100

 $w = \Lambda$

w = 0

w = 00

w = 100

i = 1 (letter N)

 $w = \Lambda$

w = 1

w = 01

w = 001

Outline

- Data Compression
 - Background
 - Single-Character Encodings
 - Huffman Codes
 - Lempel-Ziv-Welch
 - Combining Compression Schemes: bzip2
 - Burrows-Wheeler Transform

Huffman's Algorithm: Building the Best Trie

- How to determine the best trie for a given source text S?
 - i.e. try giving shortest |C|
- Idea: infrequent characters should be far down in the trie

- Example text: GREENENERGY, $\Sigma_S = \{G, R, E, N, Y\}$
- Calculate character frequencies

- Put each character into its own trie (single node, height 0)
 - each trie has a frequency
 - initially, frequency is equal to its character frequency

2 2 4 E

2 N

- Example text: GREENENERGY, $\Sigma_S = \{G, R, E, N, Y\}$
- Calculate character frequencies

- Join two least frequent tries into a new trie
 - frequency of the new trie = sum of old trie frequencies

- Example text: GREENENERGY, $\Sigma_S = \{G, R, E, N, Y\}$
- Calculate character frequencies

- Join two least frequent tries into a new trie
 - frequency of the new trie = sum of old trie frequencies

- Example text: GREENENERGY, $\Sigma_S = \{G, R, E, N, Y\}$
- Calculate character frequencies

- Join two least frequent tries into a new trie
 - frequency of the new trie = sum of old trie frequencies

- Example text: GREENENERGY, $\Sigma_S = \{G, R, E, N, Y\}$
- Calculate character frequencies

- Join two least frequent tries into a new trie
 - frequency of the new trie = sum of old trie frequencies

- Example text: GREENENERGY, $\Sigma_S = \{G, R, E, N, Y\}$
- Calculate character frequencies

- Join two least frequent tries into a new trie
 - frequency of the new trie = sum of old trie frequencies

- Example text: GREENENERGY, $\Sigma_S = \{G, R, E, N, Y\}$
- Calculate character frequencies

- Join two least frequent tries into a new trie
 - frequency of the new trie = sum of old trie frequencies

- Example text: GREENENERGY, $\Sigma_S = \{G, R, E, N, Y\}$
- Calculate character frequencies

- Join two least frequent tries into a new trie
 - frequency of the new trie = sum of old trie frequencies

- Example text: GREENENERGY, $\Sigma_S = \{G, R, E, N, Y\}$
- Calculate character frequencies

Final Huffman tree

- GREENENERGY \rightarrow 000 10 01 01 11 01 10 000 001
- Compression ratio

$$\frac{25}{11 \cdot \log 5} \approx 97\%$$

Frequencies are not skewed enough to lead to good compression

Huffman Algorithm Summary

- Greedy algorithm: always pair up least frequent characters
 - 1) determine frequency of each character $c \in \Sigma$ in S
 - 2) for each $c \in \Sigma$, create trie of height 0 holding only c
 - call it c-trie
 - 3) assign weight to each trie
 - weight trie character
 - 4) find and merge two tries with the minimum weight
 - new interior node added
 - the new weight is the sum of merged tries weights
 - corresponds to adding one bit to encoding of each character
 - 5) repeat Steps 4 until there is only 1 trie left
 - this is D, the final decoder
- Min-heap for efficient implementation: step 4 is two delete-min one insert

Heap Storing Tries during Huffman Tree Construction

- (key,value) = (trie weight, link to trie)
- step 4 is two delete-mins, one insert

delete-min

Heap Storing Tries during Huffman Tree Construction

- (key,value) = (trie weight, link to trie)
- step 4 is two delete-mins, one insert

Heap Storing Tries during Huffman Tree Construction

- (key,value) = (trie weight, link to trie)
- step 4 is two delete-mins, one insert

Heap Storing Tries during Huffman Tree Construction

- (key,value) = (trie weight, link to trie)
- step 4 is two delete-mins, one insert

Huffman's Algorithm Pseudocode

```
Huffman::encoding(S,C)
S: input-stream (length n) with characters in \Sigma_S, C: output-stream, initially empty
        f \leftarrow \text{array indexed by } \Sigma_{S} initialized to 0
        while S is non-empty do increase f[S.pop()] by 1 // get frequencies
                                                                                             O(n)
        Q \leftarrow \text{min-oriented priority queue to store tries}
        for all c \in \Sigma_S with f[c] > 0
                                                                                             O(|\Sigma_S|\log|\Sigma_S|)
                  Q.insert(single-node trie for c, f[c])
        while Q.size() > 1
             (T_1, f_1) \leftarrow Q. deleteMin()
                                                                                             O(|\Sigma_S|\log|\Sigma_S|)
             (T_2, f_2) \leftarrow Q. deleteMin()
             Q.insert(trie with T_1, T_2 as subtries, f_1 + f_2)
        T \leftarrow Q.deleteMin() // trie for decoding
        reset input-stream S // read all of S, need to read again for encoding
       prefixFree::encoding(T, S, C) // perform actual encoding
```

■ Total time is $O(|\Sigma_S| \log |\Sigma_S| + |C|)$ ■ n < |C|

Huffman Coding Discussion

- We require $|\Sigma_S| \ge 2$
- Codes are prefix-free by construction
 - a trie leaf cannot be a prefix of another leaf
- The constructed trie is *optimal* in the sense that the coded text C is shortest among all prefix-free character encodings with $\Sigma_C = \{0, 1\}$
 - proof is in the course notes
- Constructed trie is not unique
 - so decoding trie must be transmitted along with the coded text
 - this may make encoding bigger than source text!
- Encoding must pass through stream twice
 - 1. to compute frequencies and to encode
 - 2. cannot use stream unless it can be reset
- Encoding runtime: $O(|\Sigma_S| \log |\Sigma_S| + |C|)$
- Decoding run-time: O(|C|)
- Good compression if character frequencies are skewed
- Many variations
 - tie-breaking rules, estimate frequencies, adaptively change encoding, etc.

Outline

- Compression
 - Encoding Basics
 - Huffman Codes
 - Lempel-Ziv-Welch
 - bzip2
 - Burrows-Wheeler Transform

Longer Patterns in Input

- Huffman takes advantage of frequent or repeated single characters
- Observation: certain substrings are much more frequent than others
- Examples
 - English text
 - most frequent digraphs: TH, ER, ON, AN, RE, HE, IN, ED, ND, HA
 - most frequent trigraphs: THE, AND, THA, ENT, ION, TIO, FOR, NDE
 - HTML
 - "<a href", "<img src", "
"
 - Video
 - repeated background between frames, shifted sub-image
 - Could find the most frequent substrings of length up to k and store them in a dictionary (in addition to characters, i.e. strings of length 1)

	null	start of heading	start of text	 А	 delete	er	in		ed	the
code	0	1	2	 65	 127	128	129	•••		255
code in binary	00000000	0000001	00000010	001000001	01111111	11000001	11000010		11111110	11111111

however, each text has its own set of most frequently occurring substrings

Lempel-Ziv-Welch Compression

- Ingredient 1 for Lempel-Ziv-Welch compression
 - encode characters and frequent substrings
 - discover and encode frequent substring as we process text
 - no need to know frequent substrings beforehand

Single-Character vs Multi-Character Encoding

Single character encoding: each source-text character receives one codeword

$$S = b$$
 a n a n a 01 1 11 1 11 1

Multi-character encoding: multiple source-text characters can receive one codeword

$$S = b \quad a \quad n \quad a \quad n \quad a$$

$$01 \quad 11 \quad 101$$

Lempel-Ziv-Welch is a multi-character encoding

Adaptive Dictionaries

- ASCII uses a *fixed* dictionary
 - same dictionary for any text encoded
 - no need to pass dictionary to the decoder
- Huffman's dictionary is not fixed but it is static
 - dictionary is not fixed: each text has its own dictionary
 - dictionary is static: dictionary does not change for entire encoding/decoding
 - need to pass dictionary to the decoder
- Ingredient 2 for LZW: adaptive dictionary
 - dictionary constructed during encoding/decoding
 - start with some initial fixed dictionary D_0
 - usually ASCII
 - \blacksquare at iteration $i \ge 0$, D_i is used to determine the *i*th output
 - after ith output (iteration i), update D_i to D_{i+1}
 - $D_{i+1} \leftarrow D_i.insert$ (new character combination)
 - decoder knows (i.e. be able to reconstruct from the coded text) how encoder changed the dictionary
 - no need to send dictionary with the encoding,

LZW Encoding: Main Idea

- Iteration i of encoding
- Current $D_i = \{a:65, b:66, c:67 ab:128, bb:129\}$

$$S = abbaad$$
 $C = 65 66 129$

- find longest substring that starts at current pointer and is in the dictionary
- encode 'bb' with 129
- $D_{i+1} = D_i .insert('bba', nextAvailableCodenumber = 130)$
- 'bba' would have been useful at iteration i, so likely useful in the future
- After iteration i

$$D_{i+1} = \{a:65, b: 66, c:67, ab:128, bb: 129, bba:130\}$$

codenumber = codeword = code

Tries for LZW Encoding

- Store (string, codenumber) pairs, with string being the key
- Variation of tries different from what we have seen before
- Trie stores codenumbers at all nodes (external and internal) except the root
 - works because a string is inserted only after all its prefixes are inserted
- Do not store the string key explicitly, store only the codenumber
 - read the string key corresponding to each codenumber from the edges

- Start dictionary D
 - ASCII characters
 - codes from 0 to 127
 - next inserted code will be 128
 - variable idx keeps track of next available codenumber
 - initialize idx = 128

65

83

•
$$idx = 129$$

65

Encoding

Text

- Add to dictionary "string just encoded" + "first character of next string to be encoded"
- Inserting new item into D is O(1) since we stopped at the right node in the trie when we searched for 'A'

- Dictionary D
 - idx = 130

Text

Α

Α

N

Encoding

65

78

Α

Ν

• idx = 131

■ Text A N A N A N A N A

add to dictionary

65

83

128

■ Encoding 65 78 128

- Dictionary D
 - idx = 132

Text

- Α
- N
- Α
- N
- A
- A
- 1
- N
- 1

- Encoding
- 65
- 5 !
 - 78
- 128
- 130

- Dictionary D
 - idx = 133

Text

- A
- N A
 - N N
- Α
- Ν
- A
- N

add to dictionary

130

131

N

Α

- Encoding
- 65
 - 5
- 78 128
- 3

130

78

•
$$idx = 133$$

•
$$idx = 133$$

- Use fixed length (12 bits) per codenumber
 - 12 bit binary string representation for each code
 - total of 2^{12} = 4096 codesnumbers available during encoding
 - if you run out of codenumbers, stop inserting new elements in the dictionary

LZW encoding pseudocode

```
LZW::encoding(S,C)
S: input stream of characters, C: output-stream
       initialize dictionary D with ASCII in a trie
       idx \leftarrow 128
       while S is not empty do
           v \leftarrow \text{root of trie } D
           while S is non-empty and v has a child c labelled S. top()
                                                                                trie
                  v \leftarrow c
                                                                               search
                  S.pop()
           C. append (codenumber stored at v)
                                                                             new
          if S is non-empty
                                                                             dictionary
                  create child of v labelled S.top() with code idx
                                                                             entry
                  idx + +
```

- Running time is O(|S|)
 - assuming can look up child labeled with c in O(1) time
 - i.e. trie node stores children in an array

LZW Encoder vs Decoder

- For decoding, need a dictionary
- Construct a dictionary during decoding, imitating what encoder does
- But will be forced to be one step behind
 - at iteration i of decoding can reconstruct substring which encoder inserted into dictionary at iteration i-1
 - delay is due to not having access to the original text

Given encoding to decode back to the source text

65

78

128

130

78

129

- Build dictionary adaptively, while decoding
- Decoding starts with the same initial dictionary as encoding
 - use array instead of trie, need D that allows efficient search by code
- We will show the original text during decoding in this example, but just for reference
 - do not need original text to decode

initial <i>D</i>				
65	А			
78	N			
83	S			

idx = 128

Α

128

Α

Ν

L

Ν

F

Encoding

Α

78

3

130

78

129

Decoding

iter
$$i = 0$$

65	Α
78	N
83	S
	78

$$idx = 128$$

- First step: s = D(65) = A
- Encoding iteration i = 0

Ν

- looked ahead in text, saw N, and added AN to D
- Decoding iteration i = 0
 - know text starts with A, but cannot look ahead as text is not available
 - no new word added at iteration i = 0
 - keep track of s_{prev} = string decoded at previous iteration
 - s_{prev} is also string encoder encoded at previous iteration

Text

- A N
- Encoding
- Decoding iter i = 1

А	IN
65	78 i=1
Α	N

	65	А
	78	N
$D = \frac{1}{2}$	83	S
	128	AN

$$idx = 129$$

- A N A N A N N
 - 128 130 78 129

$$s_{prev} = A$$

- string encoded/decoded at previous iteration
- First step: s = D(78) = N
- The first letter of s is the letter the encoder looked ahead at during previous iteration!
- So at previous iteration, encoder added to the dictionary $s_{prev} + s[0]$

- Starting at iteration i = 1 of decoding
 - add $s_{prev} + s[0]$ to dictionary

LZW Decoding Example Continued

		<u>, I−⊥</u>							
Text	Α	N	A N	Α	N	Α	N	N	Α
Encoding	65	78	_{i=2} 128	 	130		78	129	
Decoding	Α	N	AN						

D =	65	Α
	78	N
	83	S
	128	AN
	129	NA

iter i = 2

idx = 130

•
$$s_{prev} = N$$

- string encoded/decoded at previous iteration
- First step: s = D(128) = AN
- Next step: add to dictionary $s_{prev} + s[0]$

$$N + A = NA$$

encoder added this string at previous iteration

iter
$$i = 3$$

	65	Α			
	78	Ν			
	83	S			
=	128	AN			
	129	NA			
idx = 130					

•
$$s_{prev} = AN$$

- First step: s = D(130) = ??? (code 130 is not in D)
 - string encoded/decoded at previous iteration
- Dictionary is exactly one step behind at decoding
- Encoder added (s,130) to D at previous iteration
 - Encoder added

$$s_{prev}^{\mathsf{known}} + s[0] = s$$
 $\mathsf{AN} + s[0] = s$
 $s[0] = \mathsf{A} = s_{prev}[0]$
 $\mathsf{ANA} = s$

$$s = s_{prev} + s_{prev} [0]$$

Text	Α
------------------------	---

N

Ν

■ Decoding A iter
$$i = 3$$

$$D = \begin{array}{|c|c|c|c|c|} \hline 65 & A \\ \hline 78 & N \\ \hline 83 & S \\ \hline 128 & AN \\ \hline 129 & NA \\ \hline 130 & ANA \\ \hline \end{array}$$

$$idx = 131$$

General rule: if code C is not in D

•
$$s = s_{prev} + s_{prev} [0]$$

in our example, $s_{prev} = AN$

•
$$s = AN + A = ANA$$

- Now that we recovered s, continue as usual
- Add to dictionary $s_{prev} + s[0]$

	Text	Α	N	A N	Α	N	Α	N	N	Α
	Encoding	65	78	128		130		78	129	
•	Decoding iter $i = 4$	Α	N	AN		ANA		N	1 1 1 1 1	

6

D =	65	A
	78	N
	83	S
	128	AN
	129	NA
	130	ANA
	131	ANAN

$$idx = 132$$

•
$$s_{prev} = ANA$$

■ If code *C* is not in *D*

$$s = s_{prev} + s_{prev} [0]$$

• Add to dictionary $s_{prev} + s[0]$

•	Text	Α	N	A N	A N A	N	N A	
•	Encoding	65	78	128	130	78	129	
	Decoding	Α	N	AN	ANA	N	NA	

iter i = 5

	65	Α
	78	Ν
.	83	S
$D = \int_{0}^{\infty}$	128	AN
	129	NA
	130	ANA
	131	ANAN

$$idx = 132$$

•
$$s_{prev} = N$$

■ If code *C* is not in *D*

$$s = s_{prev} + s_{prev} [0]$$

• Add to dictionary $s_{prev} + s[0]$

LZW decoding

- To save space, store new codes using its prefix code + one character
 - given a codenumber, can find corresponding string s in O(|s|) time

	65	А
$D = \frac{1}{2}$	78	N
	83	S
	128	AN
	129	NA
	130	ANA
	131	ANAN

wasteful s	storage
------------	---------

Encoding: 98 97 114 128 114 97 131 134 129 101 135

	code	string (human)	string (implementation)
	97	Α	
	98	В	
	101	E	
D =	110	N	
next ivailable code	114	R	
	128		

Encoding: 98 97 114 128 114 97 131 134 129 101 135

Decoding: B

1			1
	code	string (human)	string (implementation)
	97	Α	
	98	В	
	101	E	
•	110	Ζ	
	114	R	
	128		

$$s = B$$

nothing added to dictionary at iteration 0

Encoding: 98 97 114 128 114 97 131 134 129 101 135

Decoding: B A

	code	string (human)	string (implementation)
	97	Α	
	98	В	
	101	E	
$D = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	110	N	
	114	R	
	128	BA	98, A

$$s_{prev} = {\rm B,} \ code_{prev} = 98$$

$$s = {\rm A}$$
 add to dictionary $s_{prev} + \ s[0] = {\rm BA}$

Encoding: 98 97 114 128 114 97 131 134 129 101 135

Decoding: B A R

	code	string (human)	string (implementation)
	97	А	
	98	В	
	101	E	
D =	110	N	
	114	R	
	128	BA	98, A
	129	AR	97, R

$$s_{prev} = \text{A, } code_{prev} = 97$$

$$s = \text{R}$$
 add to dictionary
$$s_{prev} + s[0] = \text{AR}$$

Encoding: 98 97 114 128 114 97 131 134 129 101 135

Decoding: B A R BA

	code	string (human)	string (implementation)
	97	Α	
	98	В	
	101	E	
) =	110	N	
	114	R	
	128	BA	98, A
	129	AR	97,R
	130	RB	114, B

$$s_{prev} = {\rm R,} \ code_{prev} = 114$$

$$s = {\rm BA}$$
 add to dictionary $s_{prev} + \ s[0] = {\rm RB}$

Encoding: 98 97 114 128 114 97 131 134 129 101 135

Decoding: B A R BA R

code	string (human)	string (implementation)
97	А	
98	В	
101	E	
= 110	N	
114	R	
128	BA	98, A
129	AR	97,R
130	RB	114,B
131	BAR	128, R

$$s_{prev} = {\rm BA} \ , \ code_{prev} = 128$$

$$s = {\rm R}$$
 add to dictionary $s_{prev} + \ s[0] = {\rm BAR}$

Encoding: 98 97 114 128 114 97 131 134 129 101 135

Decoding: B A R BA R A

	code	string (human)	string (implementation)
	97	Α	
	98	В	
	101	E	
D = 0	110	Ν	
	114	R	
	128	ВА	98, A
	129	AR	97,R
	130	RB	114,B
	131	BAR	128,R
	132	RA	114, A

$$s_{prev} = {\rm R,} \ code_{prev} = 114$$

$$s = {\rm A}$$
 add to dictionary $s_{prev} + \ s[0] = {\rm RA}$

LZ	zvv ae	ecoair	1g, <i>F</i>	4001	iner	Exa	mk	ле							
End	oding:	98	97	114	128	114	97	131	134	129	101	135			
Deg	oding:	В	Α	R	BA	R	Α	BAR							
	code	string (human)	(impl	string lementa	ation)			S		= A. <i>c</i> .	ode_{m}	= 97			
	97	Α				$s_{prev} = A, code_{prev} = 97$ s = BAR									
	98	В				244	+0 d	liction				— Λ D			
	101	E				auu	to u	iction	ary s_p	rev +	S[U]	— AD			
D =	110	N													
	114	R													
	128	ВА		98, A											
	129	AR		97,R											
	130	RB		114,B											
	131	BAR		128,R											
	132	RA		114,A											
	133	AB		97, B											

			· (O															
Enc	oding:	98	97	114	128	114	97	131	134	129	101	135						
Dec	coding:	В	Α	R	BA	R	Α	BAR	BARB	3								
	code	string (human)	(impl	string lementa	ation)			S	=	= BAR	. code	$e_{prev} = 131$						
	97	А						J	L	= ?	, 0000	oprev 101						
	98	В				:t oc	مام :		_	-								
	101	Е				if code is not in dictionary $s = s_{prev} + s_{prev} [0]$												
D = 0	110	N							-									
	114	R		s = BAR + B = BARB														
	128	ВА		98, A		add to dictionary $s_{prev} + s[0] = BARB$												
	129	AR		97,R														
	130	RB		114,B														
	131	BAR		128,R														
	132	RA		114,A														
	133	AB		97,B														
	134	BARB		131, B														
]												

Enc	oding:	98	97	114	128	114	97	131	134	129	101	135
Deg	coding:	В	Α	R	BA	R	Α	BAR	BARB	AR		
	code	string (human)	(impl	string lementa	ition)			Sn	=	BARB	. code	eprev =
	97	Α						Jp	s =		,	prev
	98	В					اد ما:	 .			د اماء	— DAD
	101	E				add	to an	ctiona	ary S_{p_I}	rev +	S[U]	= BAF
$O = \begin{bmatrix} 1 & 1 \end{bmatrix}$	110	N										
	114	R										
	128	ВА		98, A								
	129	AR		97,R								
	130	RB		114,B								
	131	BAR		128,R								
	132	RA		114,A								
	133	AB		97,B								
	134	BARB		131,B								
	135	BARBA		134, A								

 $s_{prev} = BARB$, $code_{prev} = 134$ s = ARadd to dictionary $s_{prev} + s[0] = BARBA$

Enc	oding:	98	97	114	128	114	97	131	134	129	101	135
Deg	coding:	В	Α	R	BA	R	Α	BAR	BARB	AR	Ε	
	code	string (human)	(impl	string ementa	ation)			S		= AR.	$code_{r}$	orev =
	97	Α						_	rprev S =		μ	nev
	98	В					اء ما	: -4:	_	_	ر اماء اماء	_ ^ D [
	101	E				add	το α	iction	iary s_p	rev +	S[0]	= ARE
D = 0	110	N										
	114	R										
	128	ВА		98, A								
	129	AR		97,R								
	130	RB		114,B								
	131	BAR		128,R								
	132	RA		114,A								
	133	AB		97,B								
	134	BARB		131,B								
	135	BARBA		134,A								
	136	ARE		129, E								

 $s_{prev} = AR$, $code_{prev} = 129$ s = EId to dictionary $s_{prev} + s[0] = ARE$

Enc	oding:	98	97	114	128	114	97 131 134 129 101 135
Deg	coding:	В	Α	R	BA	R	A BAR BARB AR E BARBA
	code	string (human)	(imp	string ementa	ition)		$s_{prev} = E$
	97	А					s = BARBA
	98	В					
	101	E					
D =	110	N					
	114	R					
	128	ВА		98, A			
	129	AR		97,R			
	130	RB		114,B			
	131	BAR		128,R			
	132	RA		114,A			
	133	AB		97,B			
	134	BARB		131,B			
	135	BARBA		134,A			
	136	ARE		129,E			

LZW Decoding Pseudocode

```
LZW::decoding(C,S)
C: input-stream of integers, S: output-stream
       D \leftarrow \text{dictionary that maps } \{0, \dots, 127\} \text{ to ASCII}
       idx \leftarrow 128 // next available code
       code \leftarrow C.pop(); s \leftarrow D.search(code); S.append(s)
       while there are more codes in C do
            s_{prev} \leftarrow s; code \leftarrow C.pop()
            if code < idx then
                s \leftarrow D.search(code) //code in D, look up string s
            if code = idx // code not in D yet, reconstruct string
                 s \leftarrow s_{prev} + s_{prev} [0]
            else Fail // invalid encoding
            append each character of s to S
             D.insert(idx, s_{prev} + s[0])
             idx ++
```

• Running time is O(|S|)

LZW Discussion

- Encoding is O(|S|) time, uses a trie of encoded substrings to store the dictionary
- Decoding is O(|S|) time, uses an array indexed by code numbers to store the dictionary
- Encoding and decoding need to go through the string only one time and do not need to see the whole string
 - can do compression while streaming the text
- Works badly if no repeated substrings
 - dictionary gets bigger, but no new useful substrings inserted
- In practice, compression rate is around 45% on English text

Lempel-Ziv Family

- Lempel-Ziv is a family of adaptive compression algorithms
 - LZ77 Original version ("sliding window")
 - Derivatives: LZSS, LZFG, LZRW, LZP, DEFLATE, . . .
 - DEFLATE used in (pk)zip, gzip, PNG
 - LZ78 Second (slightly improved) version
 - Derivatives LZW, LZMW, LZAP, LZY, . . .
 - LZW used in compress, GIF
 - patent issues

Outline

- Data Compression
 - Background
 - Single-Character Encodings
 - Huffman Codes
 - Lempel-Ziv-Welch
 - Combining Compression Schemes: bzip2
 - Burrows-Wheeler Transform

Overview of bzip2

- Idea: Combine multiple compression schemes and text transforms
 - text transform: change input text into a different text
 - ouput is not shorter, but likely to compresses better

Move-to-Front transform

- Recall the MTF heuristic
 - after an element is accessed, move it to array front

- Use this idea for MTF (move to front) text transformation
 - transformed text is likely to have text with repeated zeros and skewed frequencies

- Source alphabet Σ_S with size $|\Sigma_S| = m$
- Put alphabet in array L, initially in sorted order, but allow L to get unsorted

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Α	В	С	D	Ε	F	G	Н		J	K	L	M	N	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z

- This gives encoding dictionary L
 - single character encoding E
- Code of any character = index of array where character stored in dictionary L
 - E('B') = 1
 - E('H') = 7
- After each encoding, update *L* with Move-To-Front heuristic
- Coded alphabet is $\Sigma_C = \{0, 1, \dots, m-1\}$
- Change dictionary D dynamically (like LZW)
 - unlike LZW
 - no new items added to dictionary
 - codeword for one or more letters can change at each iteration

$$S = MISSISSIPPI$$

$$C =$$

$$S = MISSISSIPPI$$

$$C = 12$$

$$S = MISSISSIPPI$$

$$C = 129$$

$$S = MISSISSIPPI$$

$$C = 12918$$

$$S = MISSISSIPPI$$

$$C = 129180$$

$$S = MISSISSIPPI$$

$$C = 1291801$$

$$C = 1291801$$

$$C = 129180110$$

$$C = 12 \ 9 \ 18 \ 0 \ 1 \ 1 \ 0 \ 1 \ 16 \ 0 \ 1$$

- What does a run in C mean about the source S?
 - zeros tell us about consecutive character runs

$$S = C = 12 9 18 0 1 1 0 1 16 0 1$$

- Decoding is similar
- Start with the same dictionary D as encoding
- Apply the same MTF transformation at each iteration
 - dictionary D undergoes exactly the transformations when decoding
 - lacktriangle no delays, identical dictionary at encoding and decoding iteration i
 - can always decode original letter

$$S = M$$

 $C = 12 9 18 0 1 1 0 1 16 0 1$

$$S = M \mid S$$

 $C = 12918011011601$

Move-to-Front Transform: Properties

```
S = affs \$efIIIaaata

MTF

Transformation

C = 13053435006006
```

- If a character in S repeats k times, then C has a run of k-1 zeros
- C contains a lot of small numbers and a few big ones
 - skewed frequencies
- lacktriangle C has the same length as S, but better properties for encoding

O-runs Encoding

- Input consists of 'characters' in $\{0, ..., 127\}$ with long runs of zeros
- Replace k consecutive zeros by $(k)_2$ (takes approximately $\log k$ bits) bits using two new characters A,B
- Example
 - 65, 0, 0, 0, 0 67, 0, 0, 72 becomes 65, A B, 67, B 72
 - actually use bijective binary encoding to save some space

Outline

- Data Compression
 - Background
 - Single-Character Encodings
 - Huffman Codes
 - Lempel-Ziv-Welch
 - Combining Compression Schemes: bzip2
 - Burrows-Wheeler Transform

Burrows-Wheeler Transform

- Transformation (not compression) algorithm
 - transforms source text to coded text with same letters but in different order
 - source and coded alphabets are the same
 - if original text had frequently occurring substrings, transformed text should have many runs of the same character
 - more suitable for MTF transformation

- Required: the source text S ends with end-of-word character \$
 - \$ occurs nowhere else in S
 - count \$ towards length of \$
- Based on cyclic shifts for a string
 - example stringabcde

- Formal definition
 - a cyclic shift of string X of length n is the concatenation of X[i+1...n-1] and X[0...i], for $0 \le i < n$

```
S = alfeatsalfalfa$
```

- Write all consecutive cyclic shifts
 - forms an array of shifts
 - last letter in any row is the first letter of the previous row

alfeatsalfalfa\$ lfeatsalfalfa\$a featsalfalfa\$al eatsalfalfa\$alf atsalfalfa\$alfe tsalfalfa\$alfea salfalfa\$alfeat alfalfa\$alfeats lfalfa\$alfeatsa falfa\$alfeatsal alfa\$alfeatsalf lfa\$alfeatsalfa fa\$alfeatsalfal a\$alfeatsalfalf \$alfeatsalfalfa

```
S = alfeatsalfalfa$
```

- Array of cyclic shifts
 - first column is the original S
 - each column has same letters as S

```
alfeatsalfalfa$
1 featsalfalfa$a
featsalfalfa$al
eatsalfalfa$alf
atsalfalfa$alfe
tsalfalfa$alfea
salfalfa$alfeat
alfalfa$alfeats
1 falfa$alfeatsa
falfa$alfeatsal
alfa$alfeatsalf
1 fa$alfeatsalfa
fa$alfeatsalfal
a $ a l f e a t s a l f a l f
$alfeatsalfalfa
```

$$S = a | 1 f e a t s a | 1 f a | 1 f a$$

- Array of cyclic shifts
- S has alf repeated 3 times
 - 3 different shifts start with If and end with a

```
alfeatsalfalfa$
lfeatsalfalfa$a
featsalfalfa$al
eatsalfalfa$alf
atsalfalfa$alfe
tsalfalfa$alfea
salfalfa$alfeat
alfalfa$alfeats
lfalfa$alfeatsa
falfa$alfeatsal
alfa$alfeatsalf
lfa$alfeatsalfa
fa$alfeatsalfal
a$alfeatsalfalf
$alfeatsalfalfa
```

$$S = a | featsa | fa | fa |$$

- Array of cyclic shifts
- Sort (lexographically) cyclic shifts
 - strict sorting order due to \$
- First column (of course) has many consecutive character runs
- But also the last column has many consecutive character runs
 - 3 different shifts start with If and end with a
 - sort groups If lines together, and they all end with a

sorted shifts array

\$alfeatsalfalfa a\$alfeatsalfalf alfa\$alfeatsalf alfalfa\$alfeats alfeatsalfalfa\$ atsalfalfa\$alfe eatsalfalfa\$alf fa\$alfeatsalfal falfa\$alfeatsal featsalfalfa\$al 1fa\$alfeatsalfa 1falfa\$alfeatsa lfeatsalfalfa\$a salfalfa\$alfeat tsalfalfa\$alfea

$$S = a | featsa | fa | fa |$$

- Array of cyclic shifts
- Sort (lexographically) cyclic shifts
 - strict sorting order due to '\$'
- First column (of course) has many consecutive character runs
- But also the last column has many consecutive character runs
 - 3 different shifts start with If and end with a
 - sort groups If lines together, and they all end with a
 - could happen that another pattern will interfere
 - hlfd broken into h and lfd
 - chance of interference is small

sorted shifts array

\$alfeatsalfalfa a\$alfeatsalfalf alfa\$alfeatsalf alfalfa\$alfeats alfeatsalfalfa\$ atsalfalfa\$alfe eatsalfalfa\$alf fa\$alfeatsalfal falfa\$alfeatsal featsalfalfa\$al 1fa\$alfeatsalfa 1falfa\$alfeatsa lfd lfeatsalfalfa\$a salfalfa\$alfeat tsalfalfa\$alfea

S = alfeatsalfalfa\$

- Sorted array of cyclic shifts
- First column is useless for encoding
 - cannot decode it
- Last column can be decoded
- BWT Encoding
 - last characters from sorted shifts
 - i.e. the last column

C = affs = flllaaata

```
$alfeatsalfalfa
a$alfeatsalfalf
alfa$alfeatsalf
alfalfa$alfeats
alfeatsalfalfa$
atsalfalfa$alfe
eatsalfalfa$alf
fa$alfeatsalfa1
falfa$alfeatsa1
featsalfalfa$a1
lfa$alfeatsalfa
lfalfa$alfeatsa
lfeatsalfalfa$a
salfalfa$alfeat
tsalfalfa$alfea
```

S = alfeatsalfalfa

i	cyclic shift
0	alfeatsalfalfa\$
1	lfeatsalfalfa\$a
2	featsalfalfa\$al
3	eatsalfalfa\$alf
4	atsalfalfa\$alfe
5	tsalfalfa\$alfea
6	salfalfa\$alfeat
7	alfalfa\$alfeats
8	lfalfa\$alfeatsa
9	falfa\$alfeatsal
10	alfa\$alfeatsalf
11	lfa\$alfeatsalfa
12	fa\$alfeatsalfal
13	a\$alfeatsalfalf
14	\$alfeatsalfalfa

- Refer to a cyclic shift by the start index in the text, no need to write it out explicitly
- For sorting, letters after \$ do not matter

S = alfeatsalfalfa

i	cyclic shift
0	alfeatsalfalfa\$
1	lfeatsalfalfa\$a
2	featsalfalfa\$al
3	eatsalfalfa\$alf
4	atsalfalfa\$alfe
5	tsalfalfa\$alfea
6	salfalfa\$alfeat
7	alfalfa\$alfeats
8	lfalfa\$alfeatsa
9	falfa\$alfeatsal
10	alfa\$alfeatsalf
11	lfa\$alfeatsalfa
12	fa\$alfeatsalfal
13	a\$alfeatsalfalf
14	\$alfeatsalfalfa

- Refer to a cyclic shift by the start index in the text, no need to write it out explicitly
- For sorting, letters after \$ do not matter

lfa\$alfeatsalfa

lfalfa\$alfeatsa

S = alfeatsalfalfa

i	cyclic shift
0	alfeatsalfalfa\$
1	lfeatsalfalfa\$a
2	featsalfalfa\$al
3	eatsalfalfa\$alf
4	atsalfalfa\$alfe
5	tsalfalfa\$alfea
6	salfalfa\$alfeat
7	alfalfa\$alfeats
8	lfalfa\$alfeatsa
9	falfa\$alfeatsal
10	alfa\$alfeatsalf
11	lfa\$alfeatsalfa
12	fa\$alfeatsalfal
13	a\$alfeatsalfalf
14	\$alfeatsalfalfa

- Refer to a cyclic shift by the start index in the text, no need to write it out explicitly
- For sorting, letters after \$ do not matter
- This is the same as sorting suffixes of S
- We already know how to do it
 - exactly as for suffix arrays, with MSD-Radix-Sort
 - $O(n \log n)$ running time

S = alfeatsalfalfa\$

i	cyclic shift
0	alfeatsalfalfa\$
1	lfeatsalfalfa\$a
2	featsalfalfa\$al
3	eatsalfalfa\$alf
4	atsalfalfa\$alfe
5	tsalfalfa\$alfea
6	salfalfa\$alfeat
7	alfalfa\$alfeats
8	lfalfa\$alfeatsa
9	falfa\$alfeatsal
10	alfa\$alfeatsalf
11	lfa\$alfeatsalfa
12	fa\$alfeatsalfal
13	a\$alfeatsalfalf
14	\$alfeatsalfalfa

j	$A^s[j]$	sorted cyclic shifts
0	14	\$alfeatsalfalfa
1	13	a\$alfeatsalfalf
2	10	alfa\$alfeatsalf
3	7	alfalfa\$alfeats
4	0	alfeatsalfalfa\$
5	4	atsalfalfa\$alfe
6	3	eatsalfalfa\$alf
7	12	fa\$alfeatsalfal
8	9	falfa\$alfeatsal
9	2	featsalfalfa\$al
10	11	lfa\$alfeatsalfa
11	8	lfalfa\$alfeatsa
12	1	lfeatsalfalfa\$a
13	6	salfalfa\$alfeat
14	5	tsalfalfa\$alfea

• Can read BWT encoding from suffix array in O(n) time

cyclic shift starts at S[14] need last letter of that cyclic shift, it is at S[13]

a

• Can read BWT encoding from suffix array in O(n) time

$$S = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\ a & I & f & e & a & t & s & a & I & f & a & I & f & a & ξ \end{bmatrix}$$

cyclic shift starts at S[13]

need last letter of that cyclic shift, it is at S[12]

a f

• Can read BWT encoding from suffix array in O(n) time

$$S = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\ a & I & f & e & a & t & s & a & I & f & a & I & f & a & $\$ \end{bmatrix}$$

cyclic shift starts at S[10] need last letter of that cyclic shift, it is at S[9]

a f f

• Can read BWT encoding from suffix array in O(n) time

$$S = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\ a & I & f & e & a & t & s & a & I & f & a & I & f & a & $$$

affs\$eflllaaata

Can read BWT encoding from suffix array in		Can read BWT	encoding from	suffix array	/ in	0
--	--	--------------	---------------	--------------	------	---

$$S = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ a & I & f & e & a & t & s & a & I & f \end{bmatrix}$$

5	4	atsalfalfa\$alfe
6	3	eatsalfalfa\$alf
7	12	fa\$alfeatsalfa1
8	9	falfa\$alfeatsal
9	2	featsalfalfa\$al
10	11	lfa\$alfeatsalfa
11	8	lfalfa\$alfeatsa
12	1	lfeatsalfalfa\$a
13	6	salfalfa\$alfeat
14	5	tsalfalfa\$alfea
		t 2

\$alfeatsalfalfa

a\$alfeatsalfalf

alfa\$alfeatsalf

alfalfa\$alfeats

alfeatsalfalfa\$

0

2

3

4

14

13

10

0

affs\$efIIIaaat

• Can read BWT encoding from suffix array in O(n) time

affs\$eflllaaata

- Formula: $C[i] = S[A^s[i] 1]$
 - array is circular, i.e. S[-1] = S[n-1]

```
C = affs = flllaaata
```

- In unsorted shifts array, first column is S
- So decoding = determining the first letter of each row in unsorted shifts array
 - when decoding, do not have unsorted shifts array

```
alfeatsalfalfa$
1 featsalfalfa$a
featsalfalfa$al
eatsalfalfa$alf
atsalfalfa$alfe
tsalfalfa$alfea
salfalfa$alfeat
alfalfa$alfeats
1 falfa$alfeatsa
falfa$alfeatsal
alfa$alfeatsalf
1 fa$alfeatsalfa
fa$alfeatsalfal
a$alfeatsalfalf
$alfeatsalfalfa
```

$$C = affs = flllaaata$$

- Given C, last column of sorted shifts array
- Can reconstruct the first column of sorted shifts array by sorting
 - first column has exactly the same characters as the last column
 - and they must be sorted

•	•	•	•	•	•	•	•	а
•	•	•	•	•	•	•	•	f
•	•	•	•	•	•	•	•	f
•	•	•	•	•	•	•	•	S
•	•	•	•	•	•	•	•	\$
•	•	•	•	•	•	•	•	е
•	•	•	•	•	•	•	•	f
•	•	•	•	•	•	•	•	1
•	•	•	•	•	•	•	•	1
•	•	•	•	•	•	•	•	1
•	•	•	•	•	•	•	•	a
•	•	•	•	•	•	•	•	a
•	•	•	•	•	•	•	•	a
•	•	•	•	•	•	•	•	t
•	•	•	•	•	•	•	•	a

C = affs = flllaaata

- Now have first and last columns of sorted shifts array
- Need the first column of unsorted shifts array

unsorted shifts array

```
S[0] alfeatsalfalfa$
S[1] lfeatsalfalfa$a
S[2] featsalfalfa$al
S[3] eatsalfalfa$alf
```

- Where in sorted shifts array are rows 0, 1, ..., n-1 of unsorted shifts array?
- Where is row 0 of unsorted shifts array?

\$	•	•	•	•	•	•	•	а
а	•	•	•	•	•	•	•	f
а	•	•	•	•	•	•	•	f
а	•	•	•	•	•	•	•	S
а	•	•	•	•	•	•	•	\$
а	•	•	•	•	•	•	•	е
е	•	•	•	•	•	•	•	f
f	•	•	•	•	•	•	•	1
f	•	•	•	•	•	•	•	1
f	•	•	•	•	•	•	•	1
1	•	•	•	•	•	•	•	а
1	•	•	•	•	•	•	•	а
1	•	•	•	•	•	•	•	а
S	•	•	•	•	•	•	•	t
t	•	•	•	•	•	•	•	а

```
C = affs$eflllaaata
```

- Now have first and last columns of sorted shifts array
- Need the first column of unsorted shifts array

unsorted shifts array

```
S[0] alfeatsalfalfa$
S[1] lfeatsalfalfa$a
S[2] featsalfalfa$al
S[3] eatsalfalfa$alfa
```

- Where in sorted shifts array are rows 0, 1, ..., n-1 of unsorted shifts array?
- Where is row 0 of unsorted shifts array?
 - must end with \$

\$	•	•	•	•	•	•	•	а	
а	•	•	•	•	•	•	•	f	
а	•	•	•	•	•	•	•	f	
а	•	•	•	•	•	•	•	S	
a	•	•	•	•	•	•	•	\$	row 0
а	•	•	•	•	•	•	•	е	
е	•	•	•	•	•	•	•	f	
f	•	•	•	•	•	•	•	1	
f	•	•	•	•	•	•	•	1	
f	•	•	•	•	•	•	•	1	
1	•	•	•	•	•	•	•	a	
1	•	•	•	•	•	•	•	а	
1	•	•	•	•	•	•	•	а	
S	•	•	•	•	•	•	•	t	
t	•	•	•	•	•	•	•	а	

$$C = affs$$
\$eflllaaata $S = a$

- Row 0 of unsorted shifts starts with a
- Therefore string S starts with a
- Where is row 1 of unsorted shifts array?

unsorted shifts array

```
row ends with first letter of previous row eatsa
```

```
alfeatsalfalfa$
lfeatsalfalfa$a
featsalfalfa$al
eatsalfalfa$al
```

- Row 1 ends with the first letter of row 0
 - with a in our example

\$	•	•	•	•	•	•	•	a	
a	•	•	•	•	•	•	•	f	
а	•	•	•	•	•	•	•	f	
а	•	•	•	•	•	•	•	S	
a	•	•	•	•	•	•	•	\$	row 0
а	•	•	•	•	•	•	•	е	
е	•	•	•	•	•	•	•	f	
f	•	•	•	•	•	•	•	1	
f	•	•	•	•	•	•	•	1	
f	•	•	•	•	•	•	•	1	
1	•	•	•	•	•	•	•	a	
1	•	•	•	•	•	•	•	a	
1	•	•	•	•	•	•	•	а	
S	•	•	•	•	•	•	•	t	
t	•	•	•	•	•	•	•	а	

Row 1 of unsorted shifts array ends with a

~									
\$	•	•	•	•	•	•	•	a	
а	•	•	•	•	•	•	•	f	
а	•	•	•	•	•	•	•	f	
а	•	•	•	•	•	•	•	S	
a	•	•	•	•	•	•	•	\$	row 0
а	•	•	•	•	•	•	•	е	
е	•	•	•	•	•	•	•	f	
f	•	•	•	•	•	•	•	1	
f	•	•	•	•	•	•	•	1	
f	•	•	•	•	•	•	•	1	
1	•	•	•	•	•	•	•	a	
1	•	•	•	•	•	•	•	а	
1	•	•	•	•	•	•	•	а	
S	•	•	•	•	•	•	•	t	
t	•	•	•	•	•	•	•	а	

- Row 1 of unsorted shifts array ends with a
- Multiple rows end with a, which one is row 1 of unsorted shifts?
 - row 1 is a cyclic shift by one of row 0

```
$ . . . . . . a ?
a....f
a....f
a . . . . . . s
a . . . . . . . $ row 0
a . . . . . e
e....f
f . . . . . . 1
f.....
f.....
l.....a ?
l . . . . . . a
1 . . . . . . a
s....t
t....a ?
```

- Multiple rows end with a, which one is row 1 of unsorted shifts?
 - row 1 is a cyclic shift by one of row 0
- Rows that end with a are cyclic shifts by one of rows that start with a
- Rows that start with a appear in exactly the same order as their cyclic shifts by 1 (i.e. rows that end with a)

```
$alfeatsalfalfa
a$alfeatsalfalf
alfa$alfeatsalf
alfalfa$alfeats
alfeatsalfalfa$row0
atsalfalfa$alfe
eatsalfalfa$alf
fa$alfeatsalfal
falfa$alfeatsal
featsalfalfa$al
lfa$alfeatsalfa
lfalfa$alfeatsa
lfeatsalfalfa$a
salfalfa$alfeat
tsalfalfa$alfea
```

for both group of patterns, sorting does not depend on a, and all other letters are the same between these two groups

```
rows starting with a
 a$alfeatsalfalf
 alfa$alfeatsalf
 alfalfa$alfeats
 alfeatsalfalfa$ lfeatsalfalfa$
 atsalfalfa$alfe
row 0 of unsorted shifts is #4
```

```
their cyclic shifts by 1
```

```
$alfeatsalfalfa
  lfa$alfeatsalfa
 lfalfa$alfeatsa
  tsalfalfa$alfe
```

its cyclic shift by one is also #4

- Multiple rows end with a, which one is row 1 of unsorted shifts?
 - row 1 is a cyclic shift by one of row 0
- Rows that end with a are cyclic shifts by one of rows that start with a
- Rows that start with a appear in exactly the same order as their cyclic shifts by 1 (i.e. rows that end with a)
- Direct 'counting' to find row 1 is O(n) time

```
$alfeatsalfalfa 1
1 a$alfeatsalfalf
2 alfa$alfeatsalf
3 alfalfa$alfeats
4 alfeatsalfalfa$ row 0
 atsalfalfa$alfe
 eatsalfalfa$alf
 fa$alfeatsalfal
 falfa$alfeatsal
 featsalfalfa$al
 lfa$alfeatsalfa2
 lfalfa$alfeatsa3
 lfeatsalfalfa$a 4 row 1
 salfalfa$alfeat
 tsalfalfa$alfea
```

- Form KVP=(letter, row) in the last column, and sort KVPs using stable sort
 - bucket sort, $O(n + |\Sigma_S|)$

```
. . . . . . . . . . a , 0
. . . . . . . . . . f , 1
. . . . . . . . . . f , 2
. . . . . . . . . . . . . . . . 3
. . . . . . . . . . . . . . . . 4
. . . . . . . . . . e , 5
. . . . . . . . . . f , 6
. . . . . . . . . . a , 10
. . . . . . . . . . . a , 11
....a,12
. . . . . . . . . . . t , 13
. . . . . . . . . . . a , 1 4
```

sorted shifts array

- Form KVP=(letter, row) in the last column, and sort KVPs using stable sort
 - bucket sort, $O(n + |\Sigma_S|)$
- Rows for equal letters stay in the same relative order because we used stable sort
- Row number read in constant time!

#4 among all rows starting with a

#4 among all rows ending with a

	\$,	4	•	•	•	•	•	•	•	a	,	0	
	a	,	0	•	•	•	•	•	•	•	f	,	1	
	a	,	1	0	•	•	•	•	•	•	f	,	2	
	a	,	1	1	•	•	•	•	•	•	S	,	3	
1	a	,	1	2	•	•	•	•	•	•	\$,	4	row 0
	a	,	1	4	•	•	•	•	•	•	е	,	5	
	е	,	5	•	•	•	•	•	•	•	f	,	6	
	f	,	1	•	•	•	•	•	•	•	1	,	7	
	f	,	2	•	•	•	•	•	•	•	1	,	8	
	f	,	6	•	•	•	•	•	•	•	1	,	9	
	1	,	7	•	•	•	•	•	•	•	a	"	1	0
	1	,	8	•	•	•	•	•	•	•	a	,	1	1
	1	,	9	•	•	•	•	•	•	•	a	"	1	2 row 1
	s	,	3	•	•	•	•	•	•	•	t	,	1	3
	t	,	1	3	•	•	•	•	•	•	a	"	1	4

sorted shifts array

```
C = affs$eflllaaataS = a
```

Multiple rows end with a, which one is row 1 of unsorted shifts?

```
$,4....a,0
      a, 0....f, 1
      a, 10....f, 2
      a, 11....s, 3
     a,12)....$,4
                    row 0
      e,5...f,6
      f, 2...\....8
      1,7.....a,10
     1,8...\a,11
S[1] = 1 \leftarrow 1, 9 . . . . . . . . . a , 1 2 row 1
      s, 3....t, 13
     t,13....a,14
```

```
$,4....a,0
C = affs$eflllaaata
                      a, 0....f, 1
S = a 1 f
                      a, 10....f, 2
                      a, 11....s, 3
                                        row 0
                      a, 12....$, 4
                      a, 14...e, 5
                      e,5....f,6
                      S[2] = \mathbf{f} \leftarrow \mathbf{f} , 6 \dots \dots , \mathbf{1} , 9
                                        row 2
                      1,7.....a,10
                      1,8....a,11
                             . . . . . a , 1 2 row 1
                      s,3....t,13
                      t, 13....a, 14
```

```
$,4....a,0
C = affs$eflllaaata
                    a, 0....f, 1
S = alf e
                    a, 10....f, 2
                    a, 11....s, 3
                                   row 0
                    a, 12....$, 4
                    a, 14...e, 5
                                   row 3
              S[3] = e \leftarrow e, 5...., f, 6
                    f, 1..., 7
                   row 2
                    1,7....a,10
                    1,8....a,11
                    1,9....a,12 row 1
                    s,3....t,13
                    t, 13....a, 14
```

```
$,4....a,0
C = affs$eflllaaata
                     a, 0....f, 1
S = alfea
                    a,10...f,2
                    a, 11....s, 3
                                     row 0
                    a,12...$,4
                                     row 4
             S[4] = \mathbf{a} \leftarrow \mathbf{a}, 14 \dots \mathbf{e}, 5
                    e,5....f,6
                                     row 3
                     row 2
                     f, 6..........9
                     1,7....a,10
                     1,8....a,11
                     1,9....a,12 row 1
                     s,3....t,13
                     t, 13....a, 14
```

$\mathcal{C}=$ affs\$eflllaaata $\mathcal{S}=$ alfeatsalfalfa\$

```
$,4....a,0
              row 14
a, 0....f, 1
              row 13
              row 10
a, 10....f, 2
              row 7
a, 11....s, 3
              row 0
a, 12....$, 4
              row 4
a, 14...e, 5
              row 3
e,5....f,6
              row 12
row 9
row 2
row 11
1,7....a,10
              row 8
1,8....a,11
              row 1
1,9....a,12
s, 3....t, 13
t, 13....a, 14 row 5
```

BWT Decoding Pseudocode

```
BWT::decoding(C,S)
\mathit{C}: string of characters over alphabet \Sigma_{C}, one of which is $
S: output stream
     initialize array A // leftmost column
     for all indices i of C
           A[i] \leftarrow (C[i], i) // store character and index
     stably sort A by character (the first aspect)
     for all indices j of C // find $
         if C[j] = $ break
     do
          S. append (character stored in A[j])
          j \leftarrow \text{index stored in } A[j]
     while appended character is not $
```

BWT and bzip2 Discussion

BWT

- encoding cost
 - $O(n \log n)$ with special sorting algorithm
 - read encoding from the suffix array
- decoding cost
 - $O(n + |\Sigma_S|)$
 - faster than encoding
- encoding and decoding both use O(n) space
- they need all of the text (no streaming possible)
- can use on blocks of text (block compression method)

bzip2

- encoding cost: $O(n [\log n + |\Sigma|])$ with a big multiplicative constant
- decoding cost: $O(n|\Sigma|)$ with a big multiplicative constant
- tends to be slower than other methods but gives better compression

Compression Summary

Huffman	Lempel-Ziv-Welch	bzip2 (uses Burrows-Wheeler)
variable-length	fixed-width	multi-step
single-character	multi-character	multi-step
2-pass, must send dictio- nary	1-pass	not streamable
optimal 01-prefix-code	good on English text	better on English text
requires uneven frequencies	requires repeated substrings	requires repeated substrings
rarely used directly	frequently used	used but slow
part of pkzip, JPEG, MP3	GIF, some variants of PDF, compress	bzip2 and variants