CS 240 — Data Structures and Data Management

Module 10: Data Compression

O. Veksler

Based on lecture notes by many previous ¢s240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2025

Outline

= Data Compression

. Background
. Single-Character Encodings
. Huffman Codes

. Lempel-Ziv-Welch
. Combining Compression Schemes: bzip2
. Burrows-Wheeler Transform

Outline

= Data Compression
. Background

Data Compression Introduction
= The problem: How to store and transmit data efficiently?

= Source text:
= original data, string S of characters from source alphabet 3

= Coded text
= encoded data, string C of characters from coded alphabet % .

= Encoding [scheme]
= algorithm mapping source text to coded text

= Decoding [scheme]
= algorithm mapping coded text back to original source text

S encode | C transmit C decode .S

= Source “text” can be any sort of data (not always text)
= Usually the coded alphabet is binary X, = {0,1}
= Consider lossless compression: exact recovery of S from C

Judging Encoding Schemes

= Main objective: for data compression, want to minimize the
size of the coded text

= Measure the compression ratio

C] - log|Zc]
S| - log|Zs]
= Examples:
, ~7-log?2
(73)10— (1001001), compression ratio 2 Tog 10 ~ 1.05 X
(127)10= (7F)16 compression ratio g 12218 ~ 0.8 1/

= Want to achieve compression ration smaller than 1
= can always achieve compression ratio of 1 by sending S without changes

Judging Encoding Schemes

= Also measure efficiency of encoding/decoding algorithms, as for
any usual algorithm

= always need time Q(|S| + |C])
= sometimes need more time

= QOther possible goals, not studied in this course
= reliability (e.g. error-correcting codes)
= security (e.g. encryption)

Impossibility of Compressing

= Observation: No lossless encoding scheme can have
compression ratio < 1 for all input strings

* Proof: (for ¢ = X-= {0,1}, by contradiction)
Fix n, and assume all length n strings get shorter

bitstrings of length n

bitstr?ngs oflength<n —1
size is 2" sizeis 20 +21 ..+ 271 = 2" —1

= So impossible to provide good worst-case compression bounds

= However real-life data is usually far from random, it has some
strings that occur more frequently than others

= can design compression schemes that work well for frequently
occurring strings

Detour: Streams

Output:
pop N o~ . .; append
ﬂ:i) work on — t;.ﬂ:l:lj —

Input:
T

Usually texts are huge and do not fit into computer memory
Therefore usually store S and C as streams
m input stream (~std::cin)
n read one character at a time
= pop(),top(), isEmpty()
= sometimes need reset() to start processing from the start
m output stream (~std: :cout)

u write one character at a time
= append(), isEmpty()
Advantage of streams
n can start processing text while it is still being loaded
n avoids needing to hold the entire text in memory at once

Outline

= Data Compression
- Background
. Single-Character Encodings
: Huffman Codes
. Run-Length Encoding
- Lempel-Ziv-Welch
- Combining Compression Schemes: bzip2
- Burrows-Wheeler Transform

Character Encodings

= A character encoding E (or single-character encoding) maps each character
in the source alphabet to a string in code alphabet
E: ¥s—> X
= forc € X5, E(c) is called the codeword (or code) of ¢
= Two possibilities
1. Fixed-length code: all codewords have the same length

cess lu Al E| N O T
E(c) ' 000 '001' 011 | 100 | 101 | 111

2. Variable-length code: codewords may have different lengths
cess | u Al E| N O | T
E(c) '"000 ' 01 ' 101 ' 001 ' 100 ' 11

Fixed Length Character Encoding

= Example: ASCIl (American Standard Code for Information Interchange), 1963

_ start of |start of
charinX2s | null heading| text 0 1 e A B e ~ | delete
code 0 1 2 .| 48 49 |...| 65 66 .| 126 | 127
Cl:de in 0000000 0000001 | 0000010 0110000 | 0110001 1000001 1000010 1111110 1111111
inary

Each codeword E(c) has length 7 bits

Encoding/Decoding is easy: just concatenate/decode the next 7 bits
= APPLE (65,80, 80, 76, 69)«> 1000001 1010000 1010000 1001100 1000101
= here|S|=5,|C|=57,|%]| =128

Standard in all computers and often our source alphabet

Other (earlier) fixed-length codes: Baudot code, Murray code

Fixed-length codes do not compress
= et |E(c)| = b and assume binary code alphabet
IC|-log|Zc| _ b-IS]|

— =1
S| - log|Zs| |S]-log2®

Better Idea: Variable-Length Codes

= Observation: Some alphabet letters occur more often than others
= example: frequency of letters in typical English text

e 12.70% d 4.25% p 1.93%
t 9.06% I 4.03% b 1.49%
a 8.17% (o 2.78% v 0.98%
o 7.51% u 2.76% k 0.77%
I 6.97% m 241% j 0.15%
n 6.75% W 2.36% X 0.15%
s 6.33% f 2.23% g 0.10%
h 6.09% g 2.02% z 0.07%
r 5.99% Yy 1.97%

= |dea: use shorter codes for more frequent characters
= as before, map source alphabet to codewords: E : X5 — X,
= but not all codewords have the same length
= this should make the coded text shorter

Variable-Length Codes

= Example 1: Morse code

International Morse Code

= Example 2: UTF-8 encoding of Unicode
= there are roughly 150,000 Unicode characters
= 1-4 bytes to encode any Unicode character

oW IRON
Q\ \@2\ ®\ \,‘\
& W W Q
PR, R, PROQOQQQ
A 'O OO Ol NINNIRN O BISNIOBIO 0]

Encoding

= Assume we have some character encoding E:Xs — X,
= FEisadictionary with keys in Xg

singleChar::Encoding(E, S, C)
E: encoding dictionary, S : input stream with characters in Xg
C: output stream
while S is non-empty
w « E.search(S.pop())

append each bitof wto C

= Using dictionary below, encode ANLIANT - 01 001 000 0100111

cess |l u Al E I N O] T
E(c) ' 000 ' 01 | 101 | 001 | 100 | 11

Decoding e Cvem

* Thedecoding algorithm must map X to Xs Bmmeee Veoomm
= The code must be uniquely decodable g : : .- ’ \;('_-. .-_
. false for Morse code as described Ee Yo mm
te= gem
U A

= Morse code uses ‘end of character’ pause to avoid ambiguity
= this is equivalent to adding ‘S’ at the end of each word
= encoding is prefix-free if ‘S’ added
= no codeword is a prefix of another codeword
aabs
aab8**$
= prefix-free codes are uniquely decodable

C1CoC3 is a prefix of ¢y cyc3¢4C5,

. C=¥¥** 0 0,020 CeC ¥ F¥**
1%2¢3%4t5%6 contradiction

= Adding ‘S’, would mean coded alphabet is not binary, not desirable

= So we will require encoding to be prefix free
= example: codewords 000, 01, 101, 001, 100, 11 are prefix-free

Decoding

" From now on only consider prefix-free codes E
= no codeword is a prefix of another codeword
= Uniquely decodable
= Store codes in a trie with characters of Xs at the leaves
= prefix-free codes can be stored at the leafs without adding S

0 1
/ \/K
0 1\ O 1\
« A < T
0 1 0 1

Example: Prefix-free Decoding

= Decode from a trie

e

0

uf N O]

o
01\ 0

A o
1 0o 1

S N

= Decode 111000001010111 > T

Example: Prefix-free Decoding

= Decode from a trie

E=

= Decode 111000001010111->TO

Example: Prefix-free Decoding

= Decode from a trie

* Decode 111000001010111 > TOU

Example: Prefix-free Decoding

= Decode from a trie

* Decode 111000001010111 - TOLEAT
= Run-time: O(|C])

Decoding of Prefix-Free Codes

prefixFree::decoding(T, C, S)
T: trie of a prefix-free code, C: input-stream with characters in X¢
S: output-stream

while C is non-empty // iterate over all codewords

z <« T.root
while z is not a leaf // read next codeword
if C isempty or z has no child labelled C. top()
return “invalid encoding”

z « child of z that is labelled with C.pop()
S.append (character stored at z)

= Run-time: O(|C])
= Detects if the encoding is invalid

Encoding from the Trie

= Explained previously how to encode from a table

cess |l u Al E| N O T
E(c) ' 000 ' 01 | 101 | 001 | 100 | 11

= Table wastes space, codewords can be quite long

= Better idea: store codewords via links to the trie leaves

CEZS L]

E(O)

O(IT1)

o(ICl)

Encoding from the Trie —

= Can encode directly from the trie T 0
prefixfFree::encoding(T, S, C) U“\ ‘
T : prefix-free code trie, S: input-stream with characters in X
E < array of nodes in T indexed by s g —h- \A
for all leaves [in T |
E[character at [] « [S = ON
while S is non-empty i = 0 (letter O)
w <« empty bitstring; v « E[S.pop()] w =A
while v is not the root w =0
w.prepend (character from v to its parent) w = 00
v « parent(v) w =100
// now w is the encoding of S C =100
append each bit w of to C i = 1 (letter N)
» Run-time: O(|T| + |C]|) W =A
* have to visit all trie nodes, and insert leaves into E w=1
= we assume T has no nodes with one child w =01
= Hleaves —1 = #Hinternal nodes W = 001
" |%s] +2-—12Z= #internal nodes + #leaves = |T|
C =100001

= O(|Zs|+1CD

Outline

= Data Compression

= Huffman Codes

Huffman’s Algorithm: Building the Best Trie

= How to determine the best trie for a given source text S ?
" j.e.trygiving shortest |C|
" |dea: infrequent characters should be far down in the trie

Example: Huffman Tree Construction

= Example text: GREENENERGY, ¥s = {G,R,E,N,Y}
= Calculate character frequencies
G:2, R: 2, E:4, N:2, Y:1
= Put each character into its own trie (single node, height 0)
= each trie has a frequency
= jnitially, frequency is equal to its character frequency

Example: Huffman Tree Construction

= Example text: GREENENERGY, ¥s = {G,R,E,N,Y}
= Calculate character frequencies
G:2, R: 2, E:4, N:2, Y:1

= Join two least frequent tries into a new trie
= frequency of the new trie = sum of old trie frequencies

——————————
~~~~~~~~
N, N,

(0]
)
m
pd
<

~. - ~. -
..............



Example: Huffman Tree Construction

= Example text: GREENENERGY, ¥s = {G,R,E,N,Y}
= Calculate character frequencies
G:2, R: 2, E:4, N:2, Y:1

= Join two least frequent tries into a new trie
= frequency of the new trie = sum of old trie frequencies




Example: Huffman Tree Construction

= Example text: GREENENERGY, ¥s = {G,R,E,N,Y}
= Calculate character frequencies
G:2, R: 2, E:4, N:2, Y:1

= Join two least frequent tries into a new trie
= frequency of the new trie = sum of old trie frequencies

—_——— _—————
- ~ - ~

- - ~,
> ~ . e

>O
>
m
=

~, - S~ -
~ - Sm——



Example: Huffman Tree Construction

= Example text: GREENENERGY, ¥s = {G,R,E,N,Y}
= Calculate character frequencies
G:2, R: 2, E:4, N:2, Y:1

= Join two least frequent tries into a new trie
= frequency of the new trie = sum of old trie frequencies

m
o
[HEY




Example: Huffman Tree Construction

= Example text: GREENENERGY, ¥s = {G,R,E,N,Y}
= Calculate character frequencies
G:2, R: 2, E:4, N:2, Y:1

= Join two least frequent tries into a new trie
= frequency of the new trie = sum of old trie frequencies

=
e S

m
o
[HEY

N, ’
~ R
~ -
~, -
~. -

S~o e
Se-o -



Example: Huffman Tree Construction

= Example text: GREENENERGY, ¥s = {G,R,E,N,Y}
= Calculate character frequencies
G:2, R: 2, E:4, N:2, Y:1

= Join two least frequent tries into a new trie
= frequency of the new trie = sum of old trie frequencies




Example: Huffman Tree Construction

= Example text: GREENENERGY, ¥s = {G,R,E,N,Y}
= Calculate character frequencies
G:2, R: 2, E:4, N:2, Y:1

= Join two least frequent tries into a new trie
= frequency of the new trie = sum of old trie frequencies




Example: Huffman Tree Construction

Example text: GREENENERGY, Xs = {G,R,E,N,Y}
Calculate character frequencies
G:2, R: 2, E:4, N:2, Y:1

Final Huffman tree /o
\

G Y

= GREENENERGY — 000 10 01011101110110000

=  Compression ratio
25

11 -log5
= Frequencies are not skewed enough to lead to good compression

~ 97%




Huffman Algorithm Summary

= Greedy algorithm: always pair up least frequent characters
1) determine frequency of each characterc € £in S
2) for each c € %, create trie of height 0 holding only ¢

= call it c-trie /D<~""° |
3) assign weight to each trie ,:j::”o 1
.0 1
=  weight trie character 6]

4)  find and merge two tries with the minimum weight
= new interior node added
= the new weight is the sum of merged tries weights
= corresponds to adding one bit to encoding of each character

5) repeat Steps 4 until there is only 1 trie left
= thisis D, the final decoder
= Min-heap for efficient implementation: step 4 is two delete-min one insert



Heap Storing Tries during Huffman Tree Construction

= (key,value) = (trie weight, link to trie)
= step 4is two delete-mins, one insert

bi

delete-min



Heap Storing Tries during Huffman Tree Construction

= (key,value) = (trie weight, link to trie)
= step 4is two delete-mins, one insert

- Yo delete-min




Heap Storing Tries during Huffman Tree Construction

= (key,value) = (trie weight, link to trie)
= step 4is two delete-mins, one insert

Gl

S
4
2 2 PN
A 0
0 1. = O/<1 ]
E 0] L E 0

Insert



Heap Storing Tries during Huffman Tree Construction

= (key,value) = (trie weight, link to trie)
= step 4is two delete-mins, one insert

4 e




Huffman’s Algorithm Pseudocode

Huffman::encoding(S, C)
S: input-stream (length n) with characters in £s, C: output-stream, initially empty

f « array indexed by X5 initialized to O

while S is non-empty do increase f[S.pop()] by 1 // get frequencies

( < min-oriented priority queue to store tries
for all c € Xswith f[c] > 0
Q.insert(single-node trie for ¢, f[c])

while Q.size() > 1

(T4, f1) < Q.deleteMin()

(T2, f2) < Q.deleteMin()

Q.insert(trie with Ty, T as subtries, f1 + f2)
T < Q.deleteMin() // trie for decoding

reset input-stream S // read all of S, need to read again for encoding

prefixFree::encoding(T, S, C) // perform actual encoding

o)

O0(|Zs| log |Zs|)

O(|Zs|log|Zs])

O(IZs] + |C])

= Total time is O(|Zs|log|Zs| + |C |)
. n<|C|



Huffman Coding Discussion

We require |Zs| = 2
Codes are prefix-free by construction
= atrie leaf cannot be a prefix of another leaf

The constructed trie is optimal in the sense that the coded text C is shortest among
all prefix-free character encodings with 2= {0, 1}

= proof isin the course notes
Constructed trie is not unique
= 5o decoding trie must be transmitted along with the coded text
= this may make encoding bigger than source text!
Encoding must pass through stream twice
1. to compute frequencies and to encode
2. cannot use stream unless it can be reset

Encoding runtime: O(|Zs|log |Zs| + |C])
Decoding run-time: O(|C|)
Good compression if character frequencies are skewed

Many variations
= tie-breaking rules, estimate frequencies, adaptively change encoding, etc.



Outline

= Compression

- Lempel-Ziv-Welch



Longer Patterns in Input

= Huffman takes advantage of frequent or repeated single characters
= Observation: certain substrings are much more frequent than others

= Examples

= English text
» most frequent digraphs: TH, ER, ON, AN, RE, HE, IN, ED, ND, HA
= most frequent trigraphs: THE, AND, THA, ENT, ION, TIO, FOR, NDE

= HTML
=  “<ahref”, “<img src”, “<br>"
= Video

= repeated background between frames, shifted sub-image

* Could find the most frequent substrings of length up to k and store them in
a dictionary (in addition to characters, i.e. strings of length 1)

start of |start of _
null heading| text A delete er in ed the
code 0 1 2 65 127 128 129 255
Ck?_de in 00000000| 00000001 |00000010 001000001 01111111 [ 11000001 | 11000010 11111110(11111111
inary

however, each text has its own set of most frequently occurring substrings




Lempel-Ziv-Welch Compression

" Ingredient 1 for Lempel-Ziv-Welch compression
= encode characters and frequent substrings
= discover and encode frequent substring as we process text
®= no need to know frequent substrings beforehand



Single-Character vs Multi-Character Encoding

= Single character encoding: each source-text character receives one codeword

S=Db
L
0

=

n
-
11

—_

n 4
y L
11 1

—_

= Multi-character encoding: multiple source-text characters can receive one

codeword
S=b a n an a
LYJ\ Y ]\ Y J
01 11 101

= Lempel-Ziv-Welch is a multi-character encoding



Adaptive Dictionaries

= ASCIl uses a fixed dictionary
= same dictionary for any text encoded
®= no need to pass dictionary to the decoder
= Huffman’s dictionary is not fixed but it is static
= dictionary is not fixed: each text has its own dictionary
= dictionary is static: dictionary does not change for entire encoding/decoding
®" need to pass dictionary to the decoder
= |Ingredient 2 for LZW: adaptive dictionary

= dictionary constructed during encoding/decoding

start with some initial fixed dictionary Dy
= usually ASCII
= atiterationi = 0, D; is used to determine the ith output
= after ith output (iteration i), update D; to D;, ¢
" D;.1 < Di.insert(new character combination)

= decoder knows (i.e. be able to reconstruct from the coded text) how
encoder changed the dictionary

= no need to send dictionary with the encoding,



LZW Encoding: Main ldea

" |teration i of encoding
= Current D; = {a:65, b: 66, c: 67 ab:128, bb:129}

S = abbbaad C=65 66 129

* find longest substring that starts at current pointer and is in the
dictionary
= encode ‘bb’” with 129

* D;.q1 = D;.insert(‘bba’, nextAvailableCodenumber = 130)
= ‘bba’ would have been useful at iteration i, so likely useful in the future

= After iteration i
D;,1 = {a:65, b: 66, c:67, ab:128, bb: 129, bba:130}

» codenumber = codeword = code



Tries for LZW Encoding

‘ANA’, 130
‘AN’, 128
128
N
65
A ‘NA, 129

Q< N — 78 A 129
T N

S 132

‘S’ 83

Store (string, codenumber) pairs, with string being the key

Variation of tries different from what we have seen before

Trie stores codenumbers at all nodes (external and internal) except the root
= works because a string is inserted only after all its prefixes are inserted

Do not store the string key explicitly, store only the codenumber
= read the string key corresponding to each codenumber from the edges



= Start dictionary D

LZW Example

Text

ASCII characters

codes from 0 to 127

next inserted code will be 128
variable idx keeps track of next available codenumber
initialize idx = 128

A

N

A

N

A

N

65
A

o v 78
S

33

A N




LZW Example

1128
A
Dictionary D O<N —78
" dx = 129 S
33
add to dilctionary
Text AN A N A N A N N A

Encoding 65

Add to dictionary “string just encoded” + “first character of next string to be
encoded”

Inserting new item into D is O(1) since we stopped at the right node in the trie
when we searched for ‘A’



LZW Example

1128
N
65
A
= Dictionary D O<N =178 A —1129
= jdx = 130 S
83
add to dictionary
s Text AN A N A N A

" Encoding 655 /8



LZW Example , —1130

128
_~ N
/ 65
A
= Dictionary D O<N — 78 — A 129
= jdx = 131 S
83
| | add to dictionlary
= Text AANI A N A N A N N

* Encoding 655 78 | 128



LZW Example

= Dictionary D

= idx = 132

= Text

=" Encoding

65 |

CX{{N-—-78

78 |

—{130] -~ -

131

N N

A
128
N
/N 65
A 129
33
add to dictionary
N {iA N A
128 130




LZW Example {130 |-~ {131

M1 "
N
65
A
= Dictionary D O<N — 78— A —129
m jdx = 133 S N—__ 132
83
add to dictionary
= Text ACN{A N:A N A/ N|N A

= Encoding 65 78 128 | 130 . 78



LZW Example {130 |-~ {131

N/128/A
65
A
= Dictionary D O<N—'78\A 129
= idx =133 s N— 135
33
" Text AiN A N A N A N N A

= Encoding 65 78 128 | 130 78 | 129



LZW Example {130 |-~ {131

A
128
N
65
A
= Dictionary D O<N—78\A 123
] — N
idx =133 S — 13,
83
. Text AfN A N A N A N{N A
= Encoding 65 | 78 | 128 130 78 | 129
= Final output 000001000001 000001001110 000010000000 000001000010 000001001110 000010000001

= Use fixed length (12 bits) per codenumber
= 12 bit binary string representation for each code

= total of 212= 4096 codesnumbers available during encoding

= jf you run out of codenumbers, stop inserting new elements in the
dictionary



LZW encoding pseudocode

LZW::encoding(S, C)
S :input stream of characters, C: output-stream
initialize dictionary D with ASCIl in a trie
idx < 128
while S is not empty do
v « root of trie D
while S is non-empty and v has a child c labelled S. top()
VeC

5.pop()
C.append(codenumber stored at v)

if Sisnon-empty ze\fcv
create child of v labelled S. top() with code idx crionary
) entry
idx ++

trie
search

=  Runningtimeis O(|S])
= assuming can look up child labeled with ¢ in O(1) time
= j.e.trie node stores children in an array




LZW Encoder vs Decoder

=  For decoding, need a dictionary
= Construct a dictionary during decoding, imitating what encoder does
= But will be forced to be one step behind

= atiteration i of decoding can reconstruct substring which encoder

inserted into dictionary at iteration i — 1
= delay is due to not having access to the original text



LZW Decoding Example

Given encoding to decode back to the source text

65 78 128 130 78 129
initial D
Build dictionary adaptively, while decoding 65
Decoding starts with the same initial dictionary as 79 N
encoding 23

= use array instead of trie, need D that allows
efficient search by code

We will show the original text during decoding in
this example, but just for reference

= do not need original text to decode

idx = 128



LZW Decoding Example

N A N A N A N N A

i=0
Text A
Encoding 65
Decoding A '
iteri =0

65

78 N

83

idx 128

78 128 130 78 129

" Firststep:s = D(65) = A
" Encodingiterationi =0
= |ooked ahead in text, saw N, and added AN to D
= Decodingiterationi =0
=  know text starts with A, but cannot look ahead as
text is not available
= nonew word added at iterationi =0

= keep track of s, = string decoded at previous
iteration

Sprev IS also string encoder encoded at
previous iteration



LZW Decoding Example

i=0
= Text A N A N A N A N N A
" Encoding 65 | /8 128 130 78 129
= |
= Decoding A i N
iteri =1 ' " Sprey =A
65 A = string encoded/decoded at previous iteration
28 N = Firststep:s = D(78) =N
23 S =  The first letter of s is the letter the encoder
D = looked ahead at during previous iteration!
128 AN

= So at previous iteration, encoder added to the
dictionary syre, + 5[0]
?

A N

= Starting at iteration i = 1 of decoding
= add sy, + s[0] to dictionary

idx = 129



LZW Decoding Example Continued

i=1

. Text AN A N A N
* Encoding 65 78, 128 | 130
= Decoding A N AN I
iteri = 2 | |
65
o8 N Sprev:N

A N N A

78 129

= string encoded/decoded at previous iteration

_ 83 = Firststep:s = D(128) = AN
e 128 AN
= Next step: add to dictionary Sy, + 5[0]
129 NA

idx = 130

N + A = NA

= encoder added this string at previous iteration



LZW Decoding Example

= Text A
= Encoding 65 |
= Decoding A
iteri = 3
65
78 N
83
D= T"128 AN
129 NA
idx = 130

N

78 |

N

A N A N

A@N N A

128 | 130 - 78 129
AN | s =727 |
Sprev = AN

First step: s = D(130) = ??? (code 130 is not in D)
= string encoded/decoded at previous iteration
Dictionary is exactly one step behind at decoding
Encoder added (s,130) to D at previous iteration
Encoder added
known unknown  ynknown
Sprev + S[O] = S
AN +5[0] = s
s[0] = A = Sprev [0]
ANA =s
S = Sprev t Sprev [0]



LZW Decoding Example

Text A
Encoding 65 |
Decoding A
iteri =3

65

78 N

83

128 AN

129 NA

130 ANA

idx = 131

N

78 |

N

i=2

AN A N AN N

128 | 130 - 78 129
AN ANA '

General rule: if code C isnotin D
" S = Sprev t Sprev [0]
in our example, S, ¢, = AN
= s=AN+ A=ANA
Now that we recovered s, continue as usual
Add to dictionary sy, + s[0]



LZW Decoding Example

Text A
Encoding 65 |
Decoding A
iteri = 4
65
78 N
83
- 128 AN
129 NA
130 ANA
131 ANAN

idx = 132

N

78 |

N

AN A N AN

128 130 78

AN ANA N
Sprev = ANA

" |fcodeCisnotinD
S = Sprev T Sprev [0]
= Add to dictionary Sy, + s[0]

129



LZW Decoding Example

" Text AN A N IA N A:N:N
" Encoding 655 785 128 130 78 129
= Decoding AN AN | ANA N L nNA
iteri =5 | | | |
65
Sprev =N

/8 N = |fcodeCisnotinD
D 83 S S = Sprev T Sprev [0]

128 AN = Add to dictionary sy, + S[0]

129 NA

130 ANA

131 ANAN

idx =132



LZW decoding

= To save space, store new codes using its prefix code + one character

= given a codenumber, can find corresponding string s in O(|s|) time

65 A 65 A A,N,A,N
78 N 78 N
83 S 83 S
128 AN 128 65, N 65, N,A,N

129 | WA 129 | 78,A
/z( ANA 130 128, A >128, AN

131 ANA 131 130, N

wasteful storage



LZW decoding, Another Example

Encoding: 98 97 114 128 114 97 131 134 129 101 135
code (hst::;nagn) (implesr:;rr]iation)
97 A
98 B
101 E
D=1"110 N
114 R

next
available| 128
code




LZW decoding, Another Example

Encoding: 98 97 114 128 114 97 131 134 129 101 135
Decoding: B
string string s=B

code (human) (implementation)

97 A nothing added to dictionary at iteration 0

98 B

101 E
—| 110 N

114 R

128




LZW decoding, Another Example

Encoding: 98 97 114 128 114 97 131 134 129 101 135
Decoding: B A
string string =B, d = 98
code (human) (implementation) Sprev COGCprev
s=A
97 A
add to dictionary sy, + s[0] = BA

98 B

101 E
—| 110 N

114 R

128 BA 98, A




LZW decoding, Another Example

Encoding: 98 97 114 128 114 97 131 134 129 101 135
Decoding: B A R
code (hst::Lnagn) (implesr:;rr]iation) Sprev = A COdeprev =97
97 A s =R
add to dictionary sy, + s[0] = AR
98 B
101 E
—| 110 N
114 R
128 BA 98, A

129 AR 97,R




LZW decoding, Another Example

Encoding: 98 97 114 128 114 97 131 134 129 101 135
Decoding: B A R BA
string string S =R, code = 114
code (human) (implementation) prev prev
s = BA
97 A
add to dictionary sy e, + s[0] = RB

98 B

101 E
—| 110 N

114 R

128 BA 98, A

129 AR 97,R

130 RB 114, B




LZW decoding, Another Example

Encoding: 98 97 114 128 114 97 131 134 129 101 135
Decoding: B A R BA R

code string . string . Sprev = BA, COdeprev = 128

(human) (implementation) s =R
97 A
add to dictionary s,e, + s[0] = BAR

98 B

101 E
—| 110 N

114 R

128 BA 98, A

129 AR 97,R

130 RB 114,B

131 BAR 128, R




LZW decoding, Another Example

Encoding: 98 97 114 128 114 97 131 134 129 101 135
Decoding: B A R BA R A
string string S =R, code =114
code (human) (implementation) prev prev
s=A
97 A
add to dictionary sye, + s[0] = RA

98 B

101 E
—| 110 N

114 R

128 BA 98, A

129 AR 97,R

130 RB 114,B

131 BAR 128,R

132 RA 114, A




LZW decoding, Another Example

Encoding: 98 97 114 128 114 97 131 134 129 101 135
Decoding: B A R BA R A BAR

code (hsl:::wnagn) (implesrfnrg;iation)

Sprev = A, codepye, = 97

il A s = BAR

98 B

” - add to dictionary s,e, + s[0] = AB
=| 110 N

114 R

128 BA 98, A

129 AR 97,R

130 RB 114,B

131 BAR 128,R

132 RA 114,A

133 AB 97, B




LZW decoding, Another Example

Encoding: 98 97 114 128 114 97 131 134 129 101 135
code (hstring | o strini on)
uman Impiementation Sprev — BAR, COdeprev — 131
97 A s=7
98 B . . . . .
if code is not in dictionary
101 E
_ 110 N S = Sprev t Sprev [0]
112 " s = BAR + B = BARB
128 BA 98, A
129 AR 97 R add to dictionary s,e, + s[0] = BARB
130 RB 114,B
131 BAR 128,R
132 RA 114,A
133 AB 97,8
134 BARB 131, B




LZW decoding, Another Example

Encoding: 98 97 114 128 114 97 131 134 129 101 135
Decoding: B A R BA R A BAR BARB AR

code (hsl:::wnagn) (implesrfnrg;iation)

Sprev = BARB, codey e, = 134

d A s = AR

98 B

o1 - add to dictionary s,,., + s[0] = BARBA
—=| 110 N

114 R

128 BA 98, A

129 AR 97,R

130 RB 114,B

131 BAR 128,R

132 RA 114,A

133 AB 97,8

134 BARB 131,B

135 BARBA 134, A




LZW decoding, Another Example

Encoding: 98 97 114 128 114 97 131 134 129 101 135
Decoding: B A R BA R A BAR BARB AR E

code (hsl:::wnagn) (implesrfnrg;iation)

Sprev = AR, codeyye, = 129

97 A S=F

98 B

o - add to dictionary s,.., + s[0] = ARE
=| 110 N

114 R

128 BA 98, A

129 AR 97,R

130 RB 114,B

131 BAR 128,R

132 RA 114,A

133 AB 97,B

134 BARB 131,B

135 BARBA 134,A

136 ARE 129, E




LZW decoding, Another Example

Encoding: 98 97 114 128 114 97 131 134 129 101 135
Decoding: B A R BA R A BAR BARB AR E BARBA

code (hsl:::wnagn) (implesrfnrg;iation) s —E

prev

il A s = BARBA

98 B

101 E
— 110 N

114 R

128 BA 98, A

129 AR 97,R

130 RB 114,B

131 BAR 128,R

132 RA 114,A

133 AB 97,B

134 BARB 131,B

135 BARBA 134,A

136 ARE 129,E




LZW Decoding Pseudocode

LZW::decoding(C,S)
C : input-stream of integers, S: output-stream
D « dictionary that maps {0,..., 127} to ASCII
idx « 128 // next available code
code < C.pop(); s « D.search(code); S.append(s)
while there are more codes in C do
Sprev < S; code « C.pop()
if code < idx then
s « D.search(code) //code in D, look up string s
if code = idx // code notin D yet, reconstruct string
S < Sprev + Sprev [ 0]
else Fail // invalid encoding
append each characterof sto S
D.insert(idx , Sprev + s[0])
idx ++

=  Runningtimeis O(|S|)



LZW Discussion

= Encodingis O(]S]) time, uses a trie of encoded substrings to store the
dictionary

= Decodingis O(]S]|) time, uses an array indexed by code numbers to
store the dictionary

=  Encoding and decoding need to go through the string only one time and
do not need to see the whole string
= can do compression while streaming the text

=  Works badly if no repeated substrings
= dictionary gets bigger, but no new useful substrings inserted
" |n practice, compression rate is around 45% on English text



Lempel-Ziv Family

=  Lempel-Ziv is a family of adaptive compression algorithms
= | Z77 Original version (“sliding window”)

= Derivatives: LZSS, LZFG, LZRW, LZP, DEFLATE, . . .
= DEFLATE used in (pk)zip, gzip, PNG

= |Z78 Second (slightly improved) version
= Derivatives LZW, LZMW, LZAP, LZY, . ..
= LZW used in compress, GIF

= patent issues



Outline

= Data Compression

. Combining Compression Schemes: bzip2



Overview of bzip2

= |dea: Combine multiple compression schemes and text transforms

= text transform: change input text into a different text
= ouputis not shorter, but likely to compresses better

To=alfeatsalfalfa

Burrows-Wheeler transform l if To has repeated longer substrings, then T1has long runs of characters

T. =affsSeflllaaata

Move-to-front transform if T1has long runs of characters, then T; has long runs of 0 and skewed
frequencies

text 7, = 13053435006006

0-runs encoding l if T, has long runs of zeroes, then Tz is shorter; skewed frequencies remain
text Ts
Huffman encodingv compresses well since frequencies are skewed
text T4




Move-to-Front transform

= Recall the MTF heuristic
= after an element is accessed, move it to array front

A B C D E

@ search D

D A B C E

= Use this idea for MTF (move to front) text transformation

= transformed text is likely to have text with repeated
zeros and skewed frequencies



MTF Encoding Example

= Source alphabet Xs with size [Z5] = m
= Putalphabetin array L, initially in sorted order, but allow L to get unsorted

0123 456 7 89 101112 1314151617 1819 202122 2324 25
AB|ICIDIEIF|IGIH[I|J|KI|LMIN|OIP |Q|RIS|T|U|VW|X]Y |Z

This gives encoding dictionary L
= single character encoding E

Code of any character = index of array where character stored in dictionary L
« E(B) =1
« E(H) =7

= After each encoding, update L with Move-To-Front heuristic

= Coded alphabetisX, ={0,1...,m — 1}

= Change dictionary D dynamically (like LZW)

=  unlike LZW

" no new items added to dictionary
= codeword for one or more letters can change at each iteration



MTF Encoding Example

8 9 101112 1314 1516 17 18 19 20 21 22 23 24 25

m |

7
Hil|J |[K|L MIN|OIP|Q|R|[S|T |U|V|WIXIY |Z

6
G

O |Ww

OIN

> |O
|-

S =MISSISSIPPI

C =



MTF Encoding Example

0 123456 7 89 1011121314 151617 1819 202122 23 24 25
ABICIDIE|F|GIH[I]J [K|L |MIN|O|P QRS |T |U|V[W[X]Y|Z
S = MISSISSIPPI

C =12



MTF Encoding Example

0123 456 7 89 1011121314151617 1819 202122 2324 25

M|/ A|B|C|D|E|F|G|H| I|J|K|LIN|[O|P|Q/R|S|T|UIVIW|X|Y|Z

S =MISSISSIPPI

c=129



MTF Encoding Example

0123 456 7 89 1011121314151617 1819 202122 2324 25

| M{A|B|C|D|/E|F|G|H|J|K|L|N|O|P|Q|R|S|T|U|V|W|X|Y|Z

S =MHISSISSIPPI

C =12918



MTF Encoding Example

0123 456 7 89 101112 1314151617 1819 202122 23 24 25

S|I|/MA/B|C|D|/E|F|G/H|J|K|L|N|O|P|Q|R|T|U|V|W|X|Y|Z

S =MISSISSIPPI

C=129180



MTF Encoding Example

0123 456 7 89 1011121314151617 1819 202122 2324 25

S| I/MA|B|C|D/E|F|G|H|J|K|L/N[O|PIQ|R|T|U|VIW|X|Y|Z

S =MISSISSIPPI

C=1291801



MTF Encoding Example

012 3 456 7 89 101112 1314151617 1819 202122 23 24 25

|| SIM|A|B|C|D|E|F|G|H|J|K|L|N[O/P|Q|R|T|U|VIW|X|Y|Z

S =IMHSSISSIPPI

C=12918011



MTF Encoding Example

0 123456 7 89 1011121314151617 1819202122 232425

S| I/MA|B|C|D E|F|G|H|J|K|L/N[O|PIQ|R|T|U|VIW|X|Y|Z

S =IMHSSISSIPPI

C=129180110



MTF Encoding Example

0123 456 7 89 101112 1314151617 1819 202122 2324 25

| |P|SIM{A|B|C|D|E|F|G|G|J|K|L|N|OJQ|R|T|U|V|W|X|Y|Z

S =MISSISSIPPE

C=12918011011601

= What does arunin C mean about the source §?

m  zeros tell us about consecutive character runs



MTF Decoding Example

7 8 9 101112 1314151617 18 19 202122 23 24 25
H{I{J [K|[L MIN|O|P |Q|R|S|T [U|V|WX|Y |Z

6
G

m |

oW

OIN

> |O
|-

S =
C=12918011011601

= Decoding is similar

= Start with the same dictionary D as encoding

=  Apply the same MTF transformation at each iteration
= dictionary D undergoes exactly the transformations when decoding
= no delays, identical dictionary at encoding and decoding iteration i

= can always decode original letter




MTF Decoding Example

7 8 9 101112 1314151617 18 19 202122 23 24 25
H{I{J [K|[L MIN|O|P |Q|R|S|T [U|V|WX|Y |Z

6
G

m |

oW

OIN

> |O
|-

M
12918011011601

O O
T




MTF Decoding Example

0123 456 7 89 1011121314151617 1819 202122 2324 25
M A/ B|C|D/E|FIG|H|I|J|K|L|N|O|P|QIR|S|T|U|VIWX|Y|Z

0
I

M |
12918011011601

O
I




MTF Decoding Example

0123 456 7 89 101112 1314151617 1819 202122 2324 25
| M/A|B|C/D|/E|F|G|H|/J|K|L|{N|O|P|Q|R|S|IT|UVIW|X|Y|Z

0
I

M | S
C=12918011011601




Move-to-Front Transform: Properties

s =affs$eflllaaata MTF €= 13053435006006

>

Transformation

= |facharacterin S repeats k times, then C has a run of k — 1 zeros
= ( contains a lot of small numbers and a few big ones

= skewed frequencies
=  ( hasthe same length as S, but better properties for encoding



O-runs Encoding

Input consists of ‘characters’ in {0, ..., 127} with long runs of zeros

Replace k consecutive zeros by (k), (takes approximately log k
bits) bits using two new characters A,B

Example
= 65,0,0,0,067,0,0, 72 becomes 65, AB,67,B 72

=  actually use bijective binary encoding to save
some space



Outline

= Data Compression

m Burrows-Wheeler Transform



Burrows-Wheeler Transform

= Transformation (not compression) algorithm
= transforms source text to coded text with same letters but in different order
= source and coded alphabets are the same

= jf original text had frequently occurring substrings, transformed text should
have many runs of the same character

=  more suitable for MTF transformation

S—alfeatsalfalfa Burrows-Wheeler C =affsSeflllaaata
> Transform

= Required: the source text S ends with end-of-word character S
= S occurs nowhere else in S
= count S towards length of S
= Based on cyclic shifts for a string [ ] R [ ]
= example string

v

cyclic shift
abcde cdeab
=  Formal definition

= 3 cyclic shift of string X of length n is the concatenation of
X[i +1...n — 1]and X [0...i], for0 <i<n



BWT Algorithm and Example

alfeatsalfalfas

S =alfeatsalfalfas$ lfeatsalfalfa$a
' _ o featsalfalfas$Sal

=  Write all consecutive cyclic shifts eatsalfalfaSalf
= forms an array of shifts atsalfalfaSalfe

= J|ast letter in any row is the tsalfalfa$Salfea
first letter of the previous row salfalfa$Salfeat

alfalfaSalfeats
lfalfaSalfeatsa
falfaSalfeatsal
alfaSalfeatsalf
l1faSalfeatsalfa
faSalfeatsalfal
asSalfeatsalfalf
Salfeatsalfalfa



BWT Algorithm and Example

alfeatsalfalfas$
lfeatsalfalfas$Sa
featsalfalfasSal
eatsalfalfasalf

S =alfeatsalfalfas

= Array of cyclic shifts atsalfalfaSalfe
= first column is the original S tsalfalfa$Salfea
=  each column has same letters as S salfalfaSalfeat

alfalfasalfeats
lfalfasalfeatsa
falfasalfeatsal
alfaSalfeatsalf
lfasSalfeatsalfa
fasalfeatsalfal
aSalfeatsalfalf
Salfeatsalfalfa



BWT Algorithm and Example

.S=ahfeats4lf4lfa$

Array of cyclic shifts

S has alf repeated 3 times

3 different shifts start with If
and end with a

alfeatsalfalfas$
lfeatsalfalfas$a
featsalfalfas$al
eatsalfalfasalf
atsalfalfasalfe
tsalfalfaSalfea
salfalfaS$Salfeat
alfalfaSalfeats
l1falfasSalfeatsa
falfaSalfeatsal
alfaSalfeatsalf
lfasalfeatsalfa
faSalfeatsalfal
aSalfeatsalfalf
Salfeatsalfalfa



BWT Algorithm and Example |
sorted shifts array

.S=ahfeats4lf4lfa$ Salfeatsalfalfa
aSalfeatsalfalf

= Array of cyclic shifts alfa$Salfeatsalf

= Sort (lexographically) cyclic shifts alfalfaSalfeats
= strict sorting order due to $ alfeatsalfalfas

" First column (of course) has many atsalfalfa$Salfe
consecutive character runs eatsalfalfaSalf

= But also the last column has many faSalfeatsalfal
consecutive character runs falfaSalfeatsal

= 3 different shifts start with If and end featsalfalfasSal

with a lfasSalfeatsalfa

= sort groups If lines together,and theyall 1falfa$alfeatsa

end with a lfeatsalfalfa$a

salfalfaSalfeat
tsalfalfaSalfea



BWT Algorithm and Example |
sorted shifts array

.S=ahfeats4lf4lfa$ Salfeatsalfalfa
aSalfeatsalfalf

= Array of cyclic shifts alfa$Salfeatsalf

= Sort (lexographically) cyclic shifts alfalfaSalfeats
= strict sorting order due to ‘$’ alfeatsalfalfas

" First column (of course) has many atsalfalfa$Salfe
consecutive character runs eatsalfalfaSalf

= But also the last column has many faSalfeatsalfal
consecutive character runs falfaSalfeatsal

= 3 different shifts start with If and end featsalfalfasSal

with a lfasSalfeatsalfa

= sort groups If lines together,and theyall 1falfa$alfeatsa

end with a 1fd ... h

= could happen that another pattern will l1featsalfalfaSa
interfere salfalfasalfeat

= hl|fd broken into h and Ifd

= chance of interference is small

tsalfalfaSalfea



BWT Algorithm and Example

S =alfeatsalfalfas

Sorted array of cyclic shifts

First column is useless for encoding
= cannot decode it
Last column can be decoded

BWT Encoding
= |ast characters from sorted shifts
= j.e.thelast column

C=affs$eflllaaata

sorted shifts array

Salfeatsalfalfa
asalfeatsalfalf
alfaSalfeatsalf
alfalfaSalfeats
alfeatsalfalfa$
atsalfalfasalfe
eatsalfalfasalf
faSalfeatsalfal
falfaSalfeatsal
featsalfalfasal
l1faSalfeatsalfa
lfalfaSalfeatsa
lfeatsalfalfas$a
salfalfasalfeat
tsalfalfasSalfea



BWT Fast Encoding: Efficient Sorting

S =alfeatsalfalfas

i cyclic shift

0 alfeatsalfalfa$
1 lfeatsalfalfa$a
2 featsalfalfa$al
3 eatsalfalfa$alf
4 atsalfalfa$Salfe
5 tsalfalfa$alfea
6 salfalfa$alfeat
7 alfalfa$alfeats
8 lfalfa$alfeatsa
9 falfa$alfeatsal
10 alfa$alfeatsalf
11 lfa$alfeatsalfa
12 fa$Salfeatsalfal
13 aSalfeatsalfalf
14 Salfeatsalfalfa

Refer to a cyclic shift by the start index in
the text, no need to write it out explicitly

For sorting, letters after S do not matter

alfalfa$Salfeats

<

lfa$Salfeatsalfa



BWT Fast Encoding: Efficient Sorting

S =alfeatsalfalfas

i cyclic shift

0 alfeatsalfalfa$
1 lfeatsalfalfa$a
2 featsalfalfa$al
3 eatsalfalfa$alf
4 atsalfalfa$Salfe
5 tsalfalfa$alfea
6 salfalfa$alfeat
7 alfalfa$alfeats
8 lfalfa$alfeatsa
9 falfa$alfeatsal
10 alfa$alfeatsalf
11 lfa$alfeatsalfa
12 fa$Salfeatsalfal
13 aSalfeatsalfalf
14 Salfeatsalfalfa

Refer to a cyclic shift by the start index in
the text, no need to write it out explicitly

For sorting, letters after S do not matter

lfaSalfeatsalfa

<

lfalfaSalfeatsa



BWT Fast Encoding: Efficient Sorting

S =alfeatsalfalfas

i cyclic shift

0 alfeatsalfalfa$
1 lfeatsalfalfa$
2 featsalfalfa$
3 eatsalfalfas$

4 atsalfalfas$

5 tsalfalfa$

6 salfalfa$

7 alfalfas$

8 lfalfa$

9 falfas$

10 alfas$

11 1fas$

12 fas

13 as

14 | $

Refer to a cyclic shift by the start index in
the text, no need to write it out explicitly

For sorting, letters after S do not matter

This is the same as sorting suffixes of S
We already know how to do it

= exactly as for suffix arrays, with
MSD-Radix-Sort

= (O(nlogn) running time



BWT Fast Encoding: Efficient Sorting

S =alfeatsalfalfas

i cyclic shift

0 alfeatsalfalfa$
1 lfeatsalfalfa$
2 featsalfalfa$
3 eatsalfalfas$

4 atsalfalfas$

5 tsalfalfa$

6 salfalfa$

7 alfalfas$

8 lfalfa$

9 falfas$

10 alfas$

11 1fas$

12 fas

13 as

14 | $

i | A°] sorted cyclic shifts
0 14 | $

1 13 | a$

2 10 |alfas$

3 7 alfalfas$

4 0 alfeatsalfalfa$
5 4 atsalfalfa$

6 3 eatsalfalfas$

7 12 fas$

8 9 falfas$

9 2 featsalfalfas$
10 11 1fas$

11 8 l1falfas$

12 1 lfeatsalfalfa$
13 6 salfalfa$

14 5 tsalfalfas$




BWT Fast Encoding: Efficient Sorting

= Can read BWT encoding from suffix array in O(n) time

0 1 2 7 10(11 11213 |14
S=1al|l|f a all | flals
A5 = 0 1 2 7 10(11 11213 |14
14 |1 13 | 10 12 11| 8 1 6 5

T

cyclic shift starts at S[14]
need last letter of that cyclic shift, it is at S[13]

d




BWT Fast Encoding: Efficient Sorting

= Can read BWT encoding from suffix array in O(n) time

0 1 2 7 10(11 11213 |14
S=1al|l|f a all | flals
A5 = 0 1 2 7 10(11 11213 |14
14 |1 13 | 10 12 11| 8 1 6 5

cyclic shift starts at S[13]
need last letter of that cyclic shift, it is at S[12]

T

af




BWT Fast Encoding: Efficient Sorting

= Can read BWT encoding from suffix array in O(n) time

0 1 2 7 10(11 11213 |14
S=1al|l|f a all | flals
A5 = 0 1 2 7 10(11 11213 |14
14 |1 13 | 10 12 11| 8 1 6 5

cyclic shift starts at S[10]
need last letter of that cyclic shift, it is at S[9]

aff

T




BWT Fast Encoding: Efficient Sorting

= Can read BWT encoding from suffix array in O(n) time

0 1 2 7 10(11 11213 |14
S=1al|l|f a all | flals
A5 = 0 1 2 7 10(11 11213 |14
14 |1 13 | 10 12 11| 8 1 6 5

af fsSeflllaaata




BWT Fast Encoding: Efficient fartina

i | A%[]
0 14 | $ a
= Canread BWT encoding from suffixarray in J__ 1 13 |as £
2 10 |alfa$ £
3 7 alfalfas$ s
0 1 2 3 4 > 6 / 8 9 4 0 alfeatsalfalfa$
S=]al|l|fle|lal|t|s|lal|lll|f]| s 4 |atsalfalfa$ e
6 3 eatsalfalfas$ £
o112 3|4 |5|6|7|[8|9]| 7 | 12 |fa$ 1
14|13(10| 7|0 |4 |3 |12|9 |2 | 8 9 |falfas 1
9 2 featsalfalfa$ 1
10 11 [1fa$ a
11 8 l1falfa$ a
12 1 lfeatsalfalfa$a
13 6 salfalfa$
14 5 tsalfalfa$ a

af fsSeflll aaata




BWT Fast Encoding: Efficient Sorting

= Can read BWT encoding from suffix array in O(n) time

O 1] 2 7181911011112 |13 |14
S=1]al|l|f a flall | f]als
A5 = Ol 1] 2 7181911011112 |13 |14
14 | 13| 10 121912 (11| 8 | 1|6 |5
affsSefl Il |l aaata
* Formula: C[i] = S[A°[i] — 1]
= arrayis circular, i.e. S[—1] = S[n — 1]




BWT Decoding

C =affsSeflllaaata

In unsorted shifts array, first columnis S

So decoding = determining the first letter
of each row in unsorted shifts array

= when decoding, do not have

unsorted shifts array

unsorted shifts array

alfeatsalfalfas
lfeatsalfalfa$Sa
featsalfalfasSal
eatsalfalfasSalf
atsalfalfaSalfe
tsalfalfasalfea
salfalfaSalfeat
alfalfasalfeats
lfalfasalfeatsa
falfasalfeatsal
alfasSalfeatsalf
lfasalfeatsalfa
fasSalfeatsalfal
aSalfeatsalfalf
Salfeatsalfalfa



BWT Decoding sorted shifts array

........ a
C =affs$Seflllaaata .00 f
........ f

= Given C, last column of sorted shiftsarray . . . . . . .. S
= (Canreconstruct the first column of sorted . . .« . . . .. $
shifts array by sorting . . .00 .. e

= first column has exactly thesame . . . . . . .. f
characters as the last column . . o o o0 1

= gndthey mustbesorted . . oo oo 1
........ 1

........ a

........ a

........ a

........ T



BWT Decoding sorted shifts array

S ... ... a

C =affsSeflllaaata a . . ... £

Now have first and last columns of sorted A e e e e e e f

shifts array 3 .. s

Need the first column of unsorted shifts array = I S

unsorted shifts array R e

S[0] alfeatsalfalfas S f

S[1] 1featsalfalfas$a oo 1

S[2] featsalfalfasal £ooo .. 1

S[3] eatsalfalfa$alf f....0.0.0. 1

.. 000 .. a

- : .. 000 .. a
Where in sorted shifts array are rows

0,1,...,n — 1 of unsorted shifts array? ;L """" i

Where is row 0 of unsorted shifts array?



BWT Decoding sorted shifts array

S ... ... a

C=affsSeflllaaata a .. £
Now have first and last columns of sorted = f
shifts array Ao oe e e e . S
Need the first column of unsorted shifts array = $
unsorted shifts array d . ... .. e

S[0] alfeatsalfalfas$ SRR £
S[1] 1featsalfalfas$a oo 1
S[2] featsalfalfa$al £ ... 1
S[3] eatsalfalfa$alf f....0.0.0. 1
... ... a

Where in sorted shifts array are rows Lo 2
0,1,..,n — 1 of unsorted shifts array? Lovooon a
Where is row 0 of unsorted shifts array? i ;

* mustend with$



BWT Decoding

C=affsSeflllaaata
S=a
=  Row O of unsorted shifts starts with a
= Therefore string S starts with a
= Where is row 1 of unsorted shifts array?
unsorted shifts array

alfeatsalfalfas
@Wmﬁwm lfeatsalfalfaSa
firstletterof g0 tsalfalfasal
previous row

eatsalfalfasalf

= Row 1 ends with the first letter of row 0
= with a inourexample

sorted shifts array



BWT Decoding

= Row 1 of unsorted shifts array ends with a

sorted shifts array



BWT Decoding

= Row 1 of unsorted shifts array ends with a

=  Multiple rows end with a, which one is
row 1 of unsorted shifts?
= row 1is a cyclic shift by one of row 0

sorted shifts array



BWT Algorithm and Example sorted shifts array
Salfeatsalfalfa

=  Multiple rows end with a, which one is aSalfeatsalfalf
row 1 of unsorted shifts? alfa$alfeatsalf
= row 1 is a cyclic shift by one of row 0 alfalfaSalfeats

= Rows that end with a are cyclic shifts alfeatsalfalfaSrowo
by one of rows that start with a atsalfalfa$Salfe
= Rows that start with a appear in exactly eatsalfalfasalf
the same order as their cyclic shifts by faSalfeatsalfal
1 (i.e. rows that end with a) falfasSalfeatsal

featsalfalfasal
l1faSalfeatsalfa
lfalfaSalfeatsa
lfeatsalfalfaSa
salfalfasalfeat
tsalfalfasSalfea



BWT Algorithm and Example

= for both group of patterns, sorting does not depend on a,
and all other letters are the same between these two groups

rows starting with a their cyclic shifts by 1
L$alfeatsalfalf Salfeatsalfalf
alfaSalfeatsalf lfaSalfeatsalf
alfalfaSalfeats lfalfaSalfeats
alfeatsalfalfas$ lfeatsalfalfas$
Ttsalfalfa$alfe tsalfalfa$Salfe

row O of unsorted shifts is #4 its cyclic shift by one is also #4



BWT Algorithm and Example

Multiple rows end with a, which one is
row 1 of unsorted shifts?

= row 1is a cyclic shift by one of row 0
Rows that end with a are cyclic shifts
by one of rows that start with a

Rows that start with a appear in exactly
the same order as their cyclic shifts by
1 (i.e. rows that end with a)

Direct ‘counting’ to find row 1 is 0(n)
time

A W N =

sorted shifts array

Salfeatsalfalfal
aSalfeatsalfalf
alfaS$Salfeatsalf
alfalfaSalfeats
alfeatsalfalfaS$Srowo
atsalfalfaS$alfe
eatsalfalfasalf
faSalfeatsalfal
falfaSalfeatsal
featsalfalfasal
lfasSalfeatsalfa?
lfalfaSalfeatsas3
lfeatsalfalfaSadrowl
salfalfasalfeat
tsalfalfasSalfea



BWT Algorithm and Example

Form KVP=(letter, row) in the last
column, and sort KVPs using stable sort
"  bucket sort, O(n + |Zg|)

sorted shifts array

o J oy O ddx W DN P O

R P R BP o
S W N RO



BWT Algorithm and Example sorted shifts array

_ S,4....... a,o0
Form KVP=(letter, row) in the last 2. 0 £ 1
column, and sort KVPs using stable sort R ’ 1 0 °°°°° - ’ 5
= bucket sort, O(n + |Z oo ’
i f ucelslor (n |-5|)h a,11...... s 3
ow§ or equal letters stay in the same a,12...... S 4 row0
relative order because we used stable sort
a,1l4...... e, 5
Row number read in constant time! e, 5. ... ... f, 6
£f,1. ... ... 1, 7
f,2....... 1, 8
#4 I tarting with Erbeees L9
among all rows starting wi d l ] 7 ....... a , 1 0
#4 among all rows ending with a ., 1,8 ... a,1l1
1,9....... a,l2rowl
S, 3 ¢ v v v v .. t, 13
t,13...... a,ld4



BWT Decoding Continued sorted shifts array

C=affsseflllaaata ! 2
S=al )
. . . ;3
= Multiple rows end with a, which 4 row0
one is row 1 of unsorted shifts? ’ .
, 0
,
, 8
, 9
, 10
, 11
S[1] , 12 row1l

.13
L, 14




BWT Decoding Continued sorted shifts array

C=affs$Seflllaaata Sod o a, 0
_ a, 0. ... ... £, 1
=alf a,10...... £, 2
a,11. .. ... s, 3
a,l12...... S, 4 rowo
a, 14 .. .... e, D
e, 5. ... ... f, o
£, 1. ... ... 1,7
£, 2 .. ... .. 1, 8
S[2]=f< £,6...... 1,9 row2
1 a, 10
1 a,1ll1
...... a, 1l2 rowl

S, 3 ¢ v v e e t, 13
t,13...... a, 14



BWT Decoding Continued sorted shifts array

C=affsSeflllaaata sS4 a, 0
_ a, 0. ... ... £f,1
S=alfe a,10...... £, 2
a,11. .. ... s, 3
a,l2...... $, 4 row0
a, 14 .. .... e, D
S[3]=e«<e, 5. ... .. f, 6 row3
f .1, 7
f .1, 8
...... 1,9 row2
1,7 .. ... .. a, 10
1,8. ... ... a, 1l1
1, 9....... a, 12 rowl
S, 3 ¢ v v e e t, 13
t,13...... a, 14



BWT Decoding Continued

C=affsSeflllaaata
S=alfea

sorted shifts array

H P P P P O 0 J o0 Ul b W DN - O

= Ww NN RO

row 0
row 4

row 3

row 2

row 1



BWT Decoding Continued sorted shifts array

C=affs$Seflllaaata Sr4 oo a, 0 rowil4
_ a, 0. ... ... f,1 row 13
> =alfeatsalfalfas a, 10...... £, 2 row 10
a, 11...... s, 3 row7

a, 12 ...... S, 4 row 0

a,l4. ... .. e, 5 rowd

e, 5. ... f, 6 row3

£f,1....... 1,7 rowl2

£f,2....... 1,8 row9

f,6....... 1,9 row2

1, 7....... a, 10 rowll

1,8....... a, 1l1 row8

1,9....... a, 12 rowl

S, 3 ¢ 0 0o t, 13 rowb

t,13...... a, 14 row5



BWT Decoding Pseudocode

BWT::decoding(C, S)
C: string of characters over alphabet 2, one of whichis $
S: output stream

initialize array A // leftmost column

for all indices i of C
Ali] « (C[i],i) // store character and index

stably sort A by character (the first aspect)
for all indices j of C // find S
if C[j] = S break
do
S.append (character stored in A[j])
j < index stored in A[j]
while appended character is not $




BWT and bzip2 Discussion

BWT

encoding cost

= (O(nlogn) with special sorting algorithm

= read encoding from the suffix array
decoding cost

= O(n+ %))

= faster than encoding

encoding and decoding both use O (n) space
they need all of the text (no streaming possible)
can use on blocks of text (block compression method)

encoding cost: O(n [logn + |X]|]) with a big multiplicative constant
decoding cost: O (n|X|) with a big multiplicative constant
tends to be slower than other methods but gives better compression



Compression Summary

Huffman

Lempel-Ziv-Welch

bzip2 (uses
Burrows-Wheeler)

variable-length
single-character

2-pass, must send dictio-

nary
optimal 01-prefix-code

requires uneven frequencies

rarely used directly

part of pkzip, JPEG, MP3

fixed-width
multi-character
1-pass

good on English text
requires repeated substrings

frequently used

GIF, some variants of PDF,
compress

multi-step
multi-step
not streamable

better on English text
requires repeated substrings

used but slow

bzip2 and variants




	intro
	Slide 1
	Slide 2: Outline
	Slide 3: Outline
	Slide 4: Data Compression Introduction
	Slide 5: Judging Encoding Schemes
	Slide 6: Judging Encoding Schemes
	Slide 7: Impossibility of Compressing
	Slide 8: Detour: Streams 
	Slide 9: Outline
	Slide 10: Character Encodings
	Slide 11: Fixed Length Character Encoding
	Slide 12: Better Idea: Variable-Length Codes
	Slide 13: Variable-Length Codes
	Slide 14: Encoding
	Slide 15: Decoding
	Slide 16: Decoding
	Slide 17: Example: Prefix-free Decoding
	Slide 18: Example: Prefix-free Decoding
	Slide 19: Example: Prefix-free Decoding
	Slide 20: Example: Prefix-free Decoding
	Slide 21: Decoding of Prefix-Free Codes
	Slide 22: Encoding from the Trie
	Slide 23: Encoding from the Trie

	Huffman
	Slide 24: Outline
	Slide 25: Huffman’s Algorithm: Building the Best Trie
	Slide 26: Example: Huffman Tree Construction
	Slide 27: Example: Huffman Tree Construction
	Slide 28: Example: Huffman Tree Construction
	Slide 29: Example: Huffman Tree Construction
	Slide 30: Example: Huffman Tree Construction
	Slide 31: Example: Huffman Tree Construction
	Slide 32: Example: Huffman Tree Construction
	Slide 33: Example: Huffman Tree Construction
	Slide 34: Example: Huffman Tree Construction
	Slide 35: Huffman Algorithm Summary
	Slide 36: Heap Storing Tries during Huffman Tree Construction
	Slide 37: Heap Storing Tries during Huffman Tree Construction
	Slide 38: Heap Storing Tries during Huffman Tree Construction
	Slide 39: Heap Storing Tries during Huffman Tree Construction
	Slide 40: Huffman’s Algorithm Pseudocode
	Slide 41: Huffman Coding Discussion

	LZW
	Slide 42: Outline
	Slide 43: Longer Patterns in Input
	Slide 44: Lempel-Ziv-Welch Compression
	Slide 45: Single-Character vs Multi-Character Encoding
	Slide 46: Adaptive Dictionaries
	Slide 47: LZW Encoding: Main Idea
	Slide 48: Tries for LZW Encoding
	Slide 49: LZW Example
	Slide 50: LZW Example
	Slide 51: LZW Example
	Slide 52: LZW Example
	Slide 53: LZW Example
	Slide 54: LZW Example
	Slide 55: LZW Example
	Slide 56: LZW Example
	Slide 57: LZW encoding pseudocode

	LZWDecoding
	Slide 58: LZW Encoder vs Decoder 
	Slide 59: LZW Decoding Example
	Slide 60: LZW Decoding Example
	Slide 61
	Slide 62: LZW Decoding Example Continued
	Slide 63: LZW Decoding Example
	Slide 64: LZW Decoding Example
	Slide 65: LZW Decoding Example
	Slide 66: LZW Decoding Example 
	Slide 67: LZW decoding
	Slide 68: LZW decoding, Another Example
	Slide 69: LZW decoding, Another Example
	Slide 70: LZW decoding, Another Example
	Slide 71: LZW decoding, Another Example
	Slide 72: LZW decoding, Another Example
	Slide 73: LZW decoding, Another Example
	Slide 74: LZW decoding, Another Example
	Slide 75: LZW decoding, Another Example
	Slide 76: LZW decoding, Another Example
	Slide 77: LZW decoding, Another Example
	Slide 78: LZW decoding, Another Example
	Slide 79: LZW decoding, Another Example
	Slide 80: LZW Decoding Pseudocode
	Slide 81: LZW Discussion
	Slide 82: Lempel-Ziv Family

	MTF
	Slide 83: Outline
	Slide 84: Overview of bzip2
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101

	BWTEncoding
	Slide 102: Outline
	Slide 103: Burrows-Wheeler Transform
	Slide 104: BWT Algorithm and Example
	Slide 105: BWT Algorithm and Example
	Slide 106: BWT Algorithm and Example
	Slide 107: BWT Algorithm and Example
	Slide 108: BWT Algorithm and Example
	Slide 109: BWT Algorithm and Example
	Slide 110: BWT Fast Encoding: Efficient Sorting
	Slide 111: BWT Fast Encoding: Efficient Sorting
	Slide 112: BWT Fast Encoding: Efficient Sorting
	Slide 113: BWT Fast Encoding: Efficient Sorting
	Slide 114: BWT Fast Encoding: Efficient Sorting
	Slide 115: BWT Fast Encoding: Efficient Sorting
	Slide 116: BWT Fast Encoding: Efficient Sorting
	Slide 117: BWT Fast Encoding: Efficient Sorting
	Slide 118: BWT Fast Encoding: Efficient Sorting
	Slide 119: BWT Fast Encoding: Efficient Sorting

	BWTDecoding
	Slide 120: BWT Decoding
	Slide 121: BWT Decoding
	Slide 122: BWT Decoding
	Slide 123: BWT Decoding
	Slide 124: BWT Decoding
	Slide 125: BWT Decoding
	Slide 126: BWT Decoding
	Slide 127: BWT Algorithm and Example
	Slide 128: BWT Algorithm and Example
	Slide 129: BWT Algorithm and Example
	Slide 130
	Slide 131
	Slide 132: BWT Decoding Continued
	Slide 133: BWT Decoding Continued
	Slide 134: BWT Decoding Continued
	Slide 135: BWT Decoding Continued
	Slide 136: BWT Decoding Continued
	Slide 137: BWT Decoding Pseudocode
	Slide 138: BWT and bzip2 Discussion
	Slide 139: Compression Summary


