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Different levels of memory
▪ RAM model: access to any memory location takes constant time

▪ not realistic

▪ Current architectures

▪ registers:  super fast, very small  

▪ cache L1, L2:  very fast, less small  

▪ main memory: fast, large  

▪ disk or cloud: slow,  very large

▪ How to adapt algorithms to take memory hierarchy into consideration?

▪ desirable to minimize transfer between slow/fast memory

▪ Define computer model that models hierarchy across which must transfer

▪ focus on 2 levels of hierarchy: main (internal) memory and disk or cloud 
(external) memory

▪ main memory: fast, large  

▪ disk or cloud: slow,  very large

▪ accessing a single location in external memory automatically loads a whole 
block (or “page”)

▪ one block access can take as much time as executing 100,000 CPU 
instructions

▪ need to care about the number of block accesses



External-Memory Model (EMM)

CPU

transfer in blocks of 𝐵 cells (slow)

▪ New cost of computation: number of blocks transferred (or ‘probes’, ‘disk transfers’, ‘page 
loads’) between internal and external memory 

▪ We will revisit ADTs/problems with the objective of  minimizing block transfers

internal memory – size M

. . .

external memory – size unbounded. Store input (size 𝑛) here 

fast random access

𝐵 is typically from 1024 to 8192

▪ Algorithm 1

      1,000 CPU instructions + 1,000 block transfers

▪ Algorithm 2

      10,000 CPU instructions + 10 block transfers

dominating 
factors

= 1,000+1,000⋅100,000 = 103 + 108 

= 10,000+10⋅100,000 = 104 + 106 

Suppose time for one block 
transfer = time for 100,000 CPU 
instructions
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Stream Based Algorithms in Internal Memory
▪ Studied algorithms that handle input/output with streams

▪ access only top item in input stream,  append only to tail of output stream

* * * * *input output
top tail

▪ Repeat

1. take item off top of the input

2. process item

3. put the result of processing at the tail of output

CPU
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Stream Based Algorithms in Internal Memory

*input output *****
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▪ Studied algorithms that handle input/output with streams
▪ access only top item in input stream,  append only to tail of output stream

▪ Repeat

1. take item off top of the input

2. process item

3. put the result of processing at the tail of output



Stream Based Algorithms in External Memory

* * * * * * * * * *

External Memory

input outputtop tail

Internal Memory

CPU

input block output block

▪ Data in external memory has to be  placed in internal memory before it can be processed

▪ Idea: perform the same algorithm as before, but in “block-wise” manner
▪ have one block for input, one block for output in internal memory

block

▪ transfer a block (size 𝐵) to internal memory, process it as before, store result in output block

▪ when output stream is of size 𝐵 (full block), transfer it to external memory

▪ when current block is in internal memory is fully processed, transfer next unprocessed block 
from external memory
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Stream Based Algorithms in External Memory

* * * * * * * * * * * * * * *

External Memory

input output

Internal Memory

CPU

input block output block

first block

*

input block is empty, 
transfer new input block 
from external memory
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Stream Based Algorithms in External Memory

* * * * * * * * * * * * * * * * * * * *

External Memory

input output

Internal Memory

CPU

input block output block

next block

*

▪ Running time (recall that we only count the block transfers now)

▪ input stream:
𝑛

𝐵
 block transfers to read input of size 𝑛 

▪ output stream:
𝑠

𝐵
 block transfers to write output of size 𝑠

▪ Running time is automatically as efficient as possible for external memory

▪ any algorithm needs at least
𝑛

𝐵
 block transfers to read input of size 𝑛 and 

𝑠

𝐵
 block 

transfers to write output of size 𝑠



Stream Based Algorithms in External Memory

▪ Methods below use stream input/output model, therefore need  Θ
𝑛

𝐵
 block 

transfers, assuming output size is 𝑂(𝑛)
▪ Pattern matching: Karp-Rabin, Knuth-Morris-Pratt, Boyer-Moore

▪ assuming pattern 𝑃 fits into internal memory 

▪ Text compression: Huffman, run-length encoding, Lempel-Ziv-Welch

▪ Sorting: merge-sort can be implemented with 𝑂
𝑛

𝐵
log 𝑛  block transfers

▪ Bzip2 cannot be streamed as we described
▪ can compress in ‘blocks’

▪ not as good as the whole text compression, but better than 
nothing
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Dictionaries in External Memory: Motivation

▪ AVL tree based dictionary implementations 
have poor memory locality

▪ ‘nearby’ tree nodes are unlikely to be 
in the same block

7

2

4

9

3

1

5

8 10

AVL tree
block 1

block 10

block 7

block 5

▪ In an AVL tree Θ(log 𝑛) blocks are loaded in the worst case

▪ Idea: allow trees that have many children per node

▪ Many children per node ⟹ smaller height ⟹ fewer block transfers

▪ suppose store 𝑛 = 250 items total, and 𝐵 = 215 children per node

▪ tree height is log𝐵 𝑛 =
50

15
=

log2 𝑛

log2 𝐵

▪ 15 times less block transfers

▪ First consider a special case: 2-4 trees

▪ 2-4 trees also used for dictionaries  in internal memory

▪ may be even faster than AVL-trees
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2-4 Trees Motivation

▪ Binary Search Tree supports efficient 
search with special key ordering

key 𝑘1 key 𝑘2 key 𝑘3

keys <  𝑘1 𝑘1 < keys < 𝑘2 𝑘2 < keys <  𝑘3 keys >  𝑘3

key 𝑘

keys <  𝑘

𝑇0

keys >  𝑘

𝑇1

▪ Need nodes that store more than one key

▪ how to support efficient search?

▪ Need additional properties to ensure tree is balanced and therefore insert, 
delete are efficient



2-4 Trees

▪ Structural properties

▪ Every node is either
▪ 1-node: one KVP and two subtrees (possibly empty), or

▪ 2-node: two KVPs and three subtrees (possibly empty), or

▪ 3-node: three KVPs and four subtrees (possibly empty)

𝑇0 𝑇1 𝑇2 𝑇3

5 10 12

∅ ∅ ∅

11

∅  ∅ ∅ ∅   ∅  ∅

3 4 13 14 156 8

∅ ∅ ∅

1-node

3-node

3-node2-node 2-node

empty subtrees 

▪ allowing 3 types of nodes simplifies insertion/deletion

▪ All empty subtrees are at the same level

▪ necessary for ensuring height is logarithmic in the number of KVP stored

▪ Order property: keys at any node are between the keys in the subtrees

subtree 
immediately to the 

right of 𝑘2 

subtree 
immediately to 

the left of 𝑘2 

key 𝑘1 key 𝑘2 key 𝑘3

keys <  𝑘1 𝑘1 < keys < 𝑘2 𝑘2 < keys <  𝑘3 keys >  𝑘3

key-subtree list of the node
 < 𝑇0, 𝑘1, 𝑇1, 𝑘2, 𝑇2, 𝑘3, 𝑇3 >



2-4 Tree Example

▪ Often do not even show empty subtrees
5 10 12

113 4 13 14 156 8

▪ Empty subtrees are not part of height 
computation

▪ Will prove height is O(log 𝑛) later, when we talk about (a,b)-trees

▪ 2-4 tree is a special type of (a,b)-tree

5 10 12

∅ ∅ ∅

11

∅  ∅ ∅ ∅   ∅  ∅

3 4 13 14 156 8

∅ ∅ ∅

tree of height 1



2-4 Tree: Search Example

5 10 12

∅ ∅ ∅

11

∅  ∅ ∅ ∅  ∅ ∅

3 4 13 14 166 8

∅ ∅ ∅

▪ Search 

▪ similar to search in BST

▪ search(𝑘) compares key 𝑘 to 𝑘1, 𝑘2 , 𝑘3, and either finds 𝑘 among 𝑘1, 𝑘2 , 
𝑘3 or figures out which subtree to recurse into

▪ if key is not in tree, search returns parent of empty tree where search stops

▪ key can be inserted at that node

▪ search(15)

not found

returned node



2-4 Tree operations

24Tree::search(𝑘, 𝑣 ←root, 𝑝 ←empty subtree)

𝑘: key to search, 𝑣: node where we search; 𝑝: parent of 𝑣

 if 𝑣 represents empty subtree

              return “not found, would be in 𝑝”

   let < 𝑇0, 𝑘1, . . . , 𝑘𝑑 , 𝑇𝑑 > be key-subtrees list at 𝑣

                  if 𝑘 ≥  𝑘1

                    𝑖 ← maximal index such that 𝑘𝑖 ≤  𝑘

                if 𝑘𝑖 =  𝑘

                       return “at 𝑖th key in 𝑣 ”

                      else 24Tree::search(𝑘, 𝑇𝑖 , 𝑣 )

                           else 24Tree::search(𝑘, 𝑇0, 𝑣 )



Example: 2-4 tree Insert

▪ Example: 24TreeInsert(9)

5 10

∅ ∅ ∅

11

∅  ∅

3 4 6 8

∅ ∅ ∅

node can hold one more item, 
so it’s tempting to insert 9 in it

5 9 10

∅ ∅ ∅

11

∅  ∅

3 4 6 8

∅ ∅ ∅

however, need 1 more subtree, 
since node has 3 keys now!

∅

adding an empty subtree as the 4th 
subtree does not work, as all empty 
subtrees must be at the same level



Example: 2-4 tree Insert

▪ Example: 24TreeInsert(9)

▪ first step:  24Tree::search(9)

5 10

∅ ∅ ∅

11

∅  ∅

3 4

∅ ∅ ∅

6 86 8



Example: 2-4 tree Insert

▪ Example: 24TreeInsert(9)

▪ first step:  24Tree::search(9)

▪ second step: insert at the leaf node returned by search

5 10

∅ ∅ ∅

11

∅  ∅

3 4

∅ ∅ ∅

6 8 9

∅

note new subtree 
inserted

▪ adding an empty subtree at the last level causes no problems

▪ order properties are preserved

▪ node stays valid, it now has 3 KVPs, which is allowed



13 14 16

Example: 2-4 tree Insert
▪ Example: 24TreeInsert(17)

▪ first step is 24Tree::search(17)

5 10 12

∅ ∅ ∅

11

∅  ∅ ∅ ∅ ∅ ∅

3 4 13 14 166 8

∅ ∅ ∅

▪ insert at the leaf node returned by search



13 14 16 17

Example: 2-4 tree Insert
▪ Example: 24TreeInsert(17)

5 10 12

∅ ∅ ∅

11

∅  ∅ ∅ ∅ ∅       ∅

3 4 6 8

∅ ∅ ∅

overflow, split

∅

▪ now leaf has 4 KVPs, not allowed, have to fix this



Example: 2-4 tree Insert
▪ Example: 24TreeInsert(17)

5 10 12

∅ ∅ ∅

11

∅  ∅ ∅ ∅ ∅       ∅                                  ∅

3 4 6 8

∅ ∅ ∅

13 14 16 17

▪ now leaf has 4 KVPs, not allowed, have to fix this



Example: 2-4 tree Insert
▪ Example: 24TreeInsert(17)

5 10 12 15

∅ ∅ ∅

11

∅  ∅

3 4 6 8

∅ ∅ ∅

17

∅  ∅

13 14

∅ ∅ ∅

5 10 12 16 overflow, split5 10 12 16

▪ splitting is possible because we allow variable node size

▪ split 3-node into 1-node and 2-node

▪ order property is preserved after a split

▪ overflow can propagate to the parent of split node



Example: 2-4 tree Insert
▪ Example: 24TreeInsert(17)

5 10 12 15

∅ ∅ ∅

11

∅  ∅

3 4 6 8

∅ ∅ ∅

17

∅  ∅

13 14

∅ ∅ ∅

5 10 12 16

▪ when splitting the root node, need to create new root

split



Example: 2-4 tree Insert
▪ Example: 24TreeInsert(17)

∅ ∅ ∅

11

∅  ∅

3 4 6 8

∅ ∅ ∅

17

∅  ∅

13 14

∅ ∅ ∅

12

5 10 16



2-4 Tree Insert Pseudocode
24Tree::insert(𝑘)

 𝑣 ← 24Tree::search(𝑘) //leaf where k should be

 add 𝑘 and an empty subtree in key-subtree-list of 𝑣

 while 𝑣 has 4 keys (overflow → node split)

 let < 𝑇0, 𝑘1, . . . , 𝑘4, 𝑇4 > be key-subtrees list at 𝑣 

 if 𝑣 has no parent 

               create an empty parent of 𝑣

 𝑝 ← parent of 𝑣

 𝑣′ ← new node with keys 𝑘1, 𝑘2 and subtrees 𝑇0, 𝑇1, 𝑇2

 𝑣 ′′ ← new node with key 𝑘4 and subtrees 𝑇3, 𝑇4

 replace < 𝑣 > by < 𝑣′, 𝑘3, 𝑣 ′′ > in key-subtree-list of 𝑝

 𝑣 ← 𝑝 //continue checking for overflow upwards

𝑘’ 𝑘’’

𝑘1 𝑘2 𝑘3 𝑘4

𝑇0 𝑇1 𝑇2 𝑇3 𝑇4

𝑘’ 𝑘3 𝑘’’

𝑘1 𝑘2

𝑇0 𝑇1 𝑇2 𝑇3 𝑇4

node split 𝑘4

𝑣′ 𝑣′′



2-4 Tree: Immediate Sibling

▪ A node can have an immediate left sibling, immediate right sibling, or both

13 14 16

5 10 12

∅ ∅ ∅

11

∅  ∅ ∅ ∅ ∅ ∅

3 4 6 8

∅ ∅ ∅

immediate sibling immediate sibling

▪ Any node except the root must have  
an immediate sibling

illegal 0-node 

6



2-4 Tree: Inorder Successor
▪ Inorder successor of key 𝑘 is the smallest key in the subtree immediately 

to the right of 𝑘

∅ ∅ ∅

11

∅  ∅

3 4 6 8

∅ ∅ ∅

17

∅  ∅

13 14

∅ ∅ ∅

12

5 10 16

inorder successor 
of key 5

5 10

▪ Inorder successor is guaranteed to be at a leaf node

▪ otherwise would have something smaller in the leftmost subtree



2-4 Tree Delete 36

25

18 21

12 19

31

28 33

43

41

39 42

51

48 56 62

▪ Example: delete(21)

▪ Search for key to delete

∅           ∅            ∅∅             ∅∅             ∅ ∅             ∅∅             ∅ ∅             ∅∅             ∅ ∅                  ∅                ∅ ∅             ∅

▪ if a node found has more than 1 key, it is tempting to delete it directly

22 24



2-4 Tree Delete 36

25

18

12 19

31

28 33

43

41

39 42

51

48 56 62

▪ Example: delete(21)

▪ Search for key to delete

∅             ∅∅             ∅ ∅             ∅∅             ∅ ∅             ∅∅             ∅ ∅                  ∅                ∅ ∅             ∅

▪ if a node found has more than 1 key, it is tempting to delete it directly

illegal, 1 key but 3 
subtrees

▪ however, can delete the key directly only if a node is a leaf
▪ when we delete a key, we need to delete 1 subtree, easy only at a leaf

∅           ∅            ∅

22 24



2-4 Tree Delete 36

25

18 21

12 19

31

28 33

43

41

39 42

51

48 56 62

▪ Example: delete(21)

▪ Search for key to delete

∅             ∅∅             ∅ ∅             ∅∅             ∅ ∅             ∅∅             ∅ ∅                  ∅                ∅ ∅             ∅

▪ can delete keys only from a leaf node, as need to delete a subtree as well

▪ if the key is in a node which is not a leaf, replace key with its inorder successor 

∅           ∅            ∅

22 2422



2-4 Tree Delete 36

25

18 22

12 19

31

28 33

43

41

39 42

51

48 56 62

▪ Example: delete(21)

▪ Search for key to delete

∅             ∅∅             ∅ ∅             ∅∅             ∅ ∅             ∅∅             ∅ ∅                  ∅                ∅ ∅             ∅

▪ can delete keys only from a leaf node, as need to delete a subtree as well

▪ if the key is in a node which is not a leaf, replace key with its inorder successor 

∅           ∅            ∅

21 24



2-4 Tree Delete 36

25

18 22

12 19

31

28 33

43

41

39 42

51

48 56 62

▪ Example: delete(21)

▪ Search for key to delete

∅             ∅∅             ∅ ∅             ∅∅             ∅ ∅             ∅∅             ∅ ∅                  ∅                ∅ ∅             ∅

▪ can delete keys only from a leaf node, as need to delete a subtree as well

▪ if the key is in a node which is not a leaf, replace key with its inorder successor 

∅           ∅            ∅

21 24

▪ delete key 21 and an empty subtree



2-4 Tree Delete 36

25

18 22

12 19

31

28 33

43

41

39 42

51

48 56 62

▪ Example: delete(21)

▪ Search for key to delete

∅             ∅∅             ∅ ∅             ∅∅             ∅ ∅             ∅∅             ∅ ∅                  ∅                ∅ ∅             ∅

▪ can delete keys only from a leaf node, as need to delete a subtree as well

▪ if the key is in a node which is not a leaf, replace key with its inorder successor 

∅            ∅

▪ delete key 21 and an empty subtree

▪ order property is preserved and we are done

24



2-4 Tree Delete 36

25

18 21

12 19 24

31

28 33

43

41

39 42

51

48 56 62

▪ Example: delete(43)

▪ Search for key to delete

∅             ∅∅             ∅∅             ∅ ∅             ∅∅             ∅ ∅             ∅∅             ∅ ∅                  ∅                ∅ ∅             ∅

▪ can delete keys only from a leaf node

▪ replace key with in-order successor



2-4 Tree Delete 36

25

18 21

12 19 24

31

28 33

48

41

39 42

51

43 56 62

▪ Example: delete(43)

▪ Search for key to delete

∅             ∅∅             ∅∅             ∅ ∅             ∅∅             ∅ ∅             ∅∅             ∅ ∅                  ∅                ∅ ∅             ∅

▪ can delete keys only from a leaf node

▪ replace key with in-order successor 
▪ delete key 43 and a subtree



36

25

18 21

12 19 24

31

28 33

48

41

39 42

51

56 62

2-4 Tree Delete

▪ Example: delete(43)

underflow

▪ rich immediate sibling, transfer key from sibling, with help from the parent
▪ sibling is rich if it is a 2-node or 3-node

▪ adjacent subtree from sibling is also transferred

∅             ∅∅             ∅∅             ∅ ∅             ∅∅             ∅ ∅             ∅∅             ∅ ∅  ∅                ∅ ∅             ∅



25

18 21

12 19 24

31

28 33

48

41

39 42

56

51 62

2-4 Tree Delete

key order is 
preserved

∅             ∅∅             ∅∅             ∅ ∅             ∅∅             ∅ ∅             ∅∅             ∅  ∅                ∅ ∅             ∅

36

▪ Example: delete(43)
▪ rich immediate sibling, transfer key from sibling, with help from the parent

▪ sibling is rich if it is a 2-node or 3-node

▪ adjacent subtree from sibling is also transferred

▪ order property is preserved



36

25

18 21

12 19 24

31

28 33

48

41

39 42

56

51 62

2-4 Tree Delete

▪ Example: delete(19)
▪ first search(19)

∅             ∅ ∅             ∅ ∅             ∅ ∅             ∅ ∅             ∅ ∅             ∅ ∅             ∅ ∅             ∅ ∅             ∅



36

25

18 21

12 24

31

28 33

48

41

39 42

56

51 62

2-4 Tree Delete

▪ Example: delete(19)

underflow

▪ first search(19)

▪ then delete key 19 (and an empty subtree)  from the node

▪ immediate siblings exist, but not rich, cannot transfer

∅             ∅ ∅ ∅             ∅ ∅             ∅ ∅             ∅ ∅             ∅ ∅             ∅ ∅             ∅ ∅             ∅



36

25

18 21

12 24

31

28 33

48

41

39 42

56

51 62

2-4 Tree Delete

▪ Example: delete(19)

▪ immediate siblings exist, but not rich, cannot transfer
▪ merge with right immediate sibling with help from parent

∅             ∅ ∅ ∅             ∅ ∅             ∅ ∅             ∅ ∅             ∅ ∅             ∅ ∅             ∅ ∅             ∅



36

25

12 21 24

31

28 33

48

41

39 42

56

51 62

2-4 Tree Delete

18

▪ Example: delete(19)

▪ immediate siblings exist, but not rich, cannot transfer
▪ merge with right immediate sibling with help from parent

▪ all subtrees merged together as well

▪ structural and order properties are preserved

∅             ∅ ∅ ∅             ∅ ∅             ∅ ∅             ∅ ∅             ∅ ∅             ∅ ∅             ∅ ∅             ∅



36

25

18

12 21 24

31

28 33

48

41

39 42

56

51 62

2-4 Tree Delete

▪ Example: delete(42)

▪ first search(42)

∅             ∅ ∅             ∅ ∅             ∅ ∅             ∅ ∅             ∅ ∅             ∅ ∅             ∅∅                  ∅                ∅ 

▪ delete key 42 with one empty subtree



36

25

18

12 21 24

31

28 33

48

41

39

56

51 62

2-4 Tree Delete

▪ Example: delete(42)

▪ first search(42)

▪ the only immediate sibling is not rich, perform merge

underflow

∅             ∅ ∅             ∅ ∅             ∅ ∅             ∅ ∅ ∅             ∅ ∅             ∅∅                  ∅                ∅ 
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2-4 Tree Delete

▪ Example: delete(42)

▪ first search(42)

▪ the only immediate sibling is not rich, perform merge
▪ all subtrees merged together as well

underflow

∅             ∅ ∅             ∅ ∅             ∅ ∅             ∅ ∅ ∅             ∅ ∅             ∅∅                  ∅                ∅ 



36

25

18

12 21 24

31

28 33

48

39 41

56

51 62

2-4 Tree Delete

▪ Example: delete(42)

▪ merge operation can cause underflow at the parent node

underflow

∅             ∅ ∅             ∅ ∅             ∅ ∅             ∅ ∅ ∅             ∅ ∅             ∅∅                  ∅                ∅ 

▪ while needed, continue fixing the tree upwards
▪ possibly all the way to the root
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2-4 Tree Delete

▪ Example: delete(42)

▪ the only sibling is not rich, perform a merge

underflow

∅             ∅ ∅             ∅ ∅             ∅ ∅             ∅ ∅ ∅             ∅ ∅             ∅∅                  ∅                ∅ 
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2-4 Tree Delete

▪ Example: delete(42)

underflow

▪ the only sibling is not rich, perform a merge

∅             ∅ ∅             ∅ ∅             ∅ ∅             ∅ ∅ ∅             ∅ ∅             ∅∅                  ∅                ∅ 

▪ subtrees are merged as well
▪ continue fixing the tree upwards
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2-4 Tree Delete

▪ Example: delete(42)
▪ the only sibling is not rich, perform a merge

∅             ∅ ∅             ∅ ∅             ∅ ∅             ∅ ∅ ∅             ∅ ∅             ∅∅                  ∅                ∅ 
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2-4 Tree Delete

▪ Example: delete(42)

▪ the only sibling is not rich, perform merge

▪ underflow at parent node

underflow

▪ it is the root, delete root

∅             ∅ ∅             ∅ ∅             ∅ ∅             ∅ ∅ ∅             ∅ ∅             ∅∅                  ∅                ∅ 
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∅             ∅ ∅             ∅ ∅             ∅ ∅             ∅ ∅ ∅             ∅ ∅             ∅∅                  ∅                ∅ 

▪ Example: delete(42)

▪ the only sibling is not rich, perform merge

▪ underflow at parent node

▪ it is the root, delete root
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2-4 Tree Delete

▪ Example: delete(28)

▪ first search(28)

∅             ∅ ∅             ∅ ∅             ∅ ∅             ∅ ∅             ∅ ∅             ∅ ∅             ∅∅                  ∅

▪ delete key 28 with one empty subtree

18 20

19 24

∅             ∅
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2-4 Tree Delete

▪ Example: delete(28)

▪ first search(28)

∅             ∅ ∅ ∅             ∅ ∅             ∅ ∅             ∅ ∅             ∅ ∅             ∅∅                  ∅

▪ delete key 28 with one empty subtree

18 20

19 24

∅             ∅

underflow
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2-4 Tree Delete

▪ Example: delete(28)

▪ first search(28)

∅             ∅ ∅ ∅             ∅ ∅             ∅ ∅             ∅ ∅             ∅ ∅             ∅∅                  ∅

▪ delete key 28 with one empty subtree

▪ merge with the only immediate sibling, who is not rich

18 20

19 24

∅             ∅

underflow
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2-4 Tree Delete

▪ Example: delete(28)

▪ first search(28)

∅             ∅ ∅ ∅             ∅ ∅             ∅ ∅             ∅ ∅             ∅ ∅             ∅∅                  ∅

▪ delete key 28 with one empty subtree

▪ merge with the only immediate sibling, who is not rich

18 20

19 24

∅             ∅

31 33

underflow
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2-4 Tree Delete

▪ Example: delete(28)

▪ transfer from a rich immediate sibling

∅             ∅ ∅ ∅             ∅ ∅             ∅ ∅             ∅ ∅             ∅ ∅             ∅∅                  ∅

18 20

19 24

∅             ∅

31 33
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2-4 Tree Delete

▪ Example: delete(28)

▪ transfer from a rich immediate sibling

▪ together with a subtree

∅             ∅ ∅ ∅             ∅ ∅             ∅ ∅             ∅ ∅             ∅ ∅             ∅∅                  ∅

19 24

∅             ∅

31 33

2518



2-4 Tree Delete Summary

▪ If key not at a leaf node, swap with inorder successor (guaranteed at leaf node)

▪ Delete key and one empty subtree from the leaf node involved in swap

▪ If underflow

▪ If there is an immediate sibling with more than one key, transfer

▪ no further underflows caused 

▪ do not forget to transfer a subtree as well

▪ convention: if two siblings have more than one key, transfer with the right 
sibling

▪ If all immediate siblings have only one key, merge

▪ there must be at least one sibling, unless root

▪ if root, delete

▪ convention: if two immediate siblings with one key, merge with the right one

▪ merge may cause underflow at the parent node, continue to the parent and fix 
it, if necessary



Deletion from a 2-4 Tree
24Tree::delete(𝑘)

 𝑣 ← 24Tree::search(𝑘)  //node containing k

 if 𝑣 is not a leaf

   swap 𝑘 with its inorder successor 𝑘′

  swap 𝑣 with leaf that contained 𝑘′
 

 delete 𝑘 and one empty subtree in key-subtree-list of 𝑣

 while 𝑣 has 0 keys // underflow

 if 𝑣 is the root, delete 𝑣 and break

 if 𝑣 has immediate sibling 𝑢 with 2 or more KVPs  // transfer, then done!

          transfer the key of 𝑢 that is nearest to 𝑣 to 𝑝

          transfer the key of 𝑝 between 𝑢 and 𝑣 to 𝑣

          transfer the subtree of 𝑢 that is nearest to  𝑣 to 𝑣

          break 

             else // merge and repeat

   𝑢 ← immediate sibling of 𝑣

   transfer the key of 𝑝 between 𝑢 and 𝑣 to 𝑢

   transfer the subtree of 𝑣 to 𝑢

   delete node 𝑣 

   𝑣 ← 𝑝



2-4 Tree Summary

▪ 2-4 tree has height O(log 𝑛)

▪ in internal memory, all operations have run-time O(log 𝑛)

▪ this is no better than AVL-trees in theory

▪ but 2-4 trees are faster than AVL-trees in practice, especially when 
converted to binary search trees called red-black trees

▪ 2-4 tree has height Ω (log 𝑛)

▪ 𝑛 is  the number of KVPs

▪ for a tree of height ℎ 

▪ 𝑛 ≤ 3(40 + 41 … + 4ℎ)

▪ 𝑛 ≤ 4ℎ+1 − 1

▪ log4 𝑛 + 1 − 1 ≤ ℎ

▪ thus ℎ is  Ω (log 𝑛)

▪ So 2-4 tree is not significantly better than AVL-tree wrt block transfers

▪ But can generalize the concept to decrease the height
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Problem with 2-4 trees

▪ Have 3 kinds of nodes

▪ 1-node, 2-node, 3-node

▪ need to store up to 7 items at each node

▪ 3 keys and 4 subtree references

▪ How should we store keys and subtrees?

▪ array of length 7

▪ wastes space

▪ linked list

▪ overhead for list-nodes, also wastes space

▪ theoretical bound not affected, but matters in practice

▪ Better idea

▪ design a class of binary search trees that mirrors 2-4 tree

5 10 12

113 4 158



2-4 tree to red-black tree

12

5
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2-4 tree to red-black tree
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2-4 tree to red-black tree
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2-4 tree to red-black tree

▪ Binary search tree that mirrors 2-4 tree

▪ 𝑑-node becomes a black node with 𝑑 − 1 red children

▪ assembled so that they form a BST of height at most 1

▪ Overhead: red/black ‘color’ is stored with just 1 extra bit per node

▪ Resulting properties
▪ any red node has a black parent

▪ any empty subtree of 𝑇 has the same black-depth

▪ number of black nodes on path form root to 𝑇

black depth: 2



Red-Black tree to 2-4 tree

▪ Lemma: Any red-black tree can be converted to a 2-4 tree

▪ Proof: 
▪ black node with 0 ≤ 𝑑 ≤ 2 red children becomes a (𝑑 + 1) node

▪ this covers all nodes 

▪ no red node has a red child

▪ empty subtrees on the same level due to the same blackdepth



Red-Black tree to 2-4 tree

▪ Red-black trees have height O(log 𝑛)
▪ each level of 2-4 tree creates at most 2 levels in red-black tree

▪ Insert/delete can be done in O(log 𝑛) time

▪ convert relevant part to 2-4 tree

▪ do insert/delete as in 2-4 tree

▪ convert relevant parts back to red-black tree

▪ Insert/delete can be done in O(log 𝑛) without conversion
▪ no details

▪ Red/black trees are very popular balanced search trees (std::map)
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(𝑎, 𝑏)-Trees

▪ 2-4 Tree is a specific type of (𝑎, 𝑏)-tree

▪ (𝑎, 𝑏)-tree satisfies

▪ each node has at least 𝑎 subtrees, unless it is the root  

▪ root must have at least 2 subtrees

▪ each node has at most 𝑏 subtrees

▪ if node has 𝑑 subtrees, then it stores 𝑑 − 1 key-value pairs (KVPs)

▪ all empty subtrees are at the same level

▪ keys in the node are between keys in the corresponding  subtrees

▪ requirement: 2 ≤ 𝑎 ≤
𝑏

2

▪ lower bound on 𝑎 is needed to bound height

▪ upper bound on 𝑎 is needed during operations

▪ 𝑏 ≥ 3 follows from 2 ≤ 𝑎 ≤
𝑏

2

∅ ∅ ∅

35

14 20 26 38 44 50 56

10 12 16 18 22 24 28 30 32 52 54 58 6046 4840 4234 36

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅∅ ∅ ∅ ∅  

(3, 5)-tree, also a valid (3, 6)-tree



(𝑎, 𝑏)-Trees: Root

▪ Why special condition for the root?

▪ Needed for (a,b)-tree storing very few KVP

▪ (3,5) tree storing only 1 KVP

35

∅ ∅

▪ Could not build it if forced the root to have at least 3 children

▪ number of keys at any node is one less than number of subtrees



(𝑎, 𝑏)-Trees: Condition on 𝑎 Explained
▪ Because 𝑎 ≤

𝑏

2
 search, insert, delete work just like for 2-4 trees

▪ straightforward redefinition of underflow and overflow

▪ For example, for (3,5)-tree

▪ at least 3 children, at most 5 

▪ allowed:  2-node, 3-node, 4-node

▪ during insert, overflow if get a 5-node

38 44 50 55 60 38 44 38 44

2 node 2 node

▪ 2-node is smallest allowed node

▪ If  𝑎 >
𝑏

2
, no valid split exists for overflowed node

▪ like requiring to split a pie in 2 parts, and each part is bigger than half!

▪ for example if allow (4,5)-tree

▪ allowed: 3-node, 4-node

▪ overflow when get 5-node

▪ equal (best possible) split of 5-node results in two 2-node

▪ 2-node is not allowed for (4,5)-tree

⇒



(𝑎, 𝑏)-Trees: Condition on 𝑎 Explained

▪ Require 𝑎 ≤
𝑏

2

▪ Overflow means node has 𝑏 + 1 subtrees

….
…. ….

( Τ𝑏 + 1) 2 ( Τ𝑏 + 1) 2

𝑏 + 1 subtrees

at least 𝑎

𝑏

2
=



(𝑎, 𝑏)-Trees Delete
▪ For example, for (3,5)-tree

▪ at least 3 children, at most 5 

▪ each node is at least a 2-node, at most a 4-node

▪ during delete, underflow if get a 1-node

▪ if we have an immediate sibling which is rich (3 or 4-node), do transfer

▪ otherwise, do merge

▪ guaranteed to have at least one sibling which is a 2-node



Height of (𝑎, 𝑏)-tree

▪ Height = number of levels not counting  empty subtrees

13 14 16

∅ ∅ ∅

11

∅  ∅ ∅ ∅ ∅ ∅

3 4 6 8

∅ ∅ ∅

5 10 12 height = 1



Height of  (𝑎, 𝑏)-tree

11

2𝑎0

2𝑎1

2𝑎2

# of nodes

0

1

2

h

level

3
………….

2𝑎ℎ−1

▪ Consider (a,b)-tree with the smallest number of KVP and of height ℎ

▪ Let 𝑛 the number of KVP in any (𝑎, 𝑏)-tree of height ℎ

= 2𝑎ℎ − 1+ ෍
𝑖=0

ℎ−1

 2𝑎𝑖
= 𝟏 + 2(𝑎 − 1) ෍

𝑖=0

ℎ−1

𝑎𝑖

𝒂𝒉 − 𝟏

𝒂 − 𝟏

▪ Height of tree with 𝑛  KVPs is 𝑂 log𝑎 𝑛 = 𝑂 Τlog 𝑛 log 𝑎

(𝑎 − 1)𝟏

𝑛 ≥ 2𝑎ℎ − 1

▪ red node (the root)  has 1 KVP, blue nodes have (𝑎 − 1) KVP

, therefore, log𝑎
𝑛+1

2
≥ ℎ

 

# of KVPs =



(𝑎, 𝑏)-Tree Analysis in Internal/External Memory

▪ Internal memory

▪ search, insert, delete each require visiting Θ ℎ𝑒𝑖𝑔ℎ𝑡  nodes

▪ height is 𝑂 Τlog 𝑛 log 𝑎

▪ recall that 𝑎 ≤
𝑏

2
 is required for insert and delete to work correctly

▪ therefore, chose 𝑎 =
𝑏

2
 to minimize the height

▪ store from 𝑎 to 𝑏 items at a node: work at a node can be done in 𝑂 log 𝑏  time

▪ total cost

▪ this is not better than AVL-trees in internal memory

▪ External memory

▪ we count just block transfers

▪ running time is 𝑂 Τlog 𝑛 log 𝑎 , assuming each node fits into one block

▪ makes sense to make 𝑎 as large as possible so that a node still fits into one block 

= 𝑂
log 𝑏

log 𝑏 − 1
⋅ log 𝑛 = 𝑂 log 𝑛𝑂

log 𝑛

log 𝑎
⋅ log 𝑏 = 𝑂

log 𝑛

log
𝑏
2

⋅ log 𝑏
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B-trees: Motivation
▪ B-tree is a type of (𝑎, 𝑏)-tree  tailored to the external memory model

▪ Each block in external memory stores one tree node

parent

𝑻𝟎
𝒗𝟏 𝑻𝟏

𝒌𝟏
𝒌𝟐

𝑻𝟐

𝒌𝟑

𝒗𝟑 𝑻𝟑

space for 𝒌𝟒, 𝒗𝟒, 𝑻𝟒

𝒗𝟐

▪ Choose 𝑏 so that the largest node (𝑏 subtrees) fits into one block

▪ store 𝑏 − 1  keys directly (not through reference)

▪ 𝑏 − 1 value references, 𝑏 subtree references, reference to parent

▪ values can be stored in the block directly if they do not take much space

𝐵 = 14
𝑏 = 5

external memory 

▪ Typically, 𝑏 ∈ Θ 𝐵

▪ 𝐵 = 𝑏 ∙ 𝑐𝑜𝑛𝑠𝑡



B-trees: Motivation

▪ How to chose 𝑎? 

▪ Height is 𝑂 Τlog 𝑛 log 𝑎 , so small 𝑎 leads to large height
▪ therefore, more block transfers

▪ In addition, allowing small 𝑎 wastes block space
▪ example:  𝑎 = 1 and 𝐵 = 40

p 𝑻𝟎 𝒌𝟏 𝒗𝟏 𝑻𝟏

▪ Therefore, make 𝑎 as large as possible

▪ Largest allowed 𝑎 = 𝑏/2



B-trees: Definition
▪ 𝐵-tree is (𝑎, 𝑏)-tree s.t.

▪ 𝑎 = 𝑏/2

▪ Usually specify 𝐵-tree by just giving 𝑏 

▪ 𝑏 is called the order of 𝐵-tree

▪ 𝐵-tree or order 𝑏 is a ( 𝑏/2 , 𝑏)-tree

▪ For external memory 

▪ chose 𝑏 s.t. the largest possible node (i.e. 𝑏 subtrees) fits into a block

▪ each block will be at least half full

▪ Example: node for B-tree of order 5

parent

𝑻𝟎
𝒗𝟏 𝑻𝟏

𝒌𝟏
𝒌𝟐

𝑻𝟐

𝒌𝟑

𝒗𝟑 𝑻𝟑

space for 𝒌𝟒, 𝒗𝟒, 𝑻𝟒

𝒗𝟐

𝐵 = 14
𝑏 = 5



B-tree Analysis in External Memory
▪ Search, insert, and delete each requires visiting Θ(ℎ𝑒𝑖𝑔ℎ𝑡) nodes

▪ Θ(ℎ𝑒𝑖𝑔ℎ𝑡) block transfers

▪ Work within a node is done in internal memory, no block transfers

▪ The height is  Θ log𝑏 𝑛  which is Θ log𝐵 𝑛

▪ since 𝑏 ∈ Θ 𝐵

▪ Proof (assuming 𝑏 ≥ 𝐵/3 and 𝐵 ≥ 9): 

▪ So all operations require Θ log𝐵 𝑛  block transfers

▪ can show that this is asymptotically optimal

▪ There are variants that are even better in practice

▪ B-trees are hugely important for storing databases (cs448)

log𝑏 𝑛 =
log 𝑛

log 𝑏
≤

log 𝑛

log 𝐵/3
≤

log 𝑛

log 𝐵
= 2 log𝐵 𝑛
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Useful Fact about (𝑎, 𝑏)-trees

Proof: Put one stone on each empty subtree and pass the stones up the tree. Each node keeps 1 stone per 

KVP, and passes the rest to its parent. Since for each node, #KVP = # children – 1, each node will pass 
only 1 stone to its parent.  This process stops at the root, and the root will pass 1 stone outside the tree. 
At the end, each KVP has 1 stone, and 1 stone is outside the tree.

▪ number of of KVP = number of empty subtrees – 1 in any (𝑎, 𝑏)-tree 
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11    24

2   6   8   10 12   13  15 27    32   33

Useful Fact about (𝑎, 𝑏)-trees



Example of B-tree usage

▪ 𝐵-tree of order 200

……………

…………………………………

200 nodes

2002 
nodes

2003 
empty subtrees

▪ if we store root in internal memory, then only 2 block reads 
are needed to retrieve any item

▪ compare: AVL tree of height at least 23 to store as many KVPs

1 node (root)

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅  

▪ 𝐵-tree of order 200 and height 2 can store up to 2003 − 1 KVPs
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