
CS 240 – Data Structures and Data Management

Module 1: Introduction and Asymptotic Analysis

Olga Veksler
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2025

version 2025-01-07 14:02

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 1 / 44

Outline

1 Introduction and Asymptotic Analysis
CS240 Overview
Algorithm Design
Analysis of Algorithms I
Asymptotic Notation
Rules for asymptotic notation
Analysis of Algorithms Revisited
Example: Design and Analysis of merge-sort

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025

Outline

1 Introduction and Asymptotic Analysis
CS240 Overview
Algorithm Design
Analysis of Algorithms I
Asymptotic Notation
Rules for asymptotic notation
Analysis of Algorithms Revisited
Example: Design and Analysis of merge-sort

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025

Course Objectives: What is this course about?

Much of Computer Science is problem solving : Write a program that
converts the given input to the expected output.
When first learning to program, we emphasize correctness: does your
program output the expected results?

Starting with this course, we will also be concerned with efficiency : is
your program using the computer’s resources (typically processor
time) efficiently?

We will study efficient methods of storing , accessing , and organizing
large collections of data.

Motivating examples: Digital Music Collection, English Dictionary

Typical operations include: inserting new data items, deleting data
items, searching for specific data items, sorting .

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 2 / 44

Course Objectives: What is this course about?

We will consider various abstract data types (ADTs) and how to
realize them efficiently using appropriate data structures.
We will some problems in data management (sorting, pattern
matching, compression) and how to solve them with efficient
algorithms.

There is a strong emphasis on mathematical analysis in the course.
Algorithms are presented using pseudo-code and analyzed using order
notation (big-Oh, etc.).

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 3 / 44

Course Topics

1 background, big-Oh analysis
2 priority queues and heaps
3 efficient sorting, selection
4 binary search trees, AVL trees
5 skip lists
6 tries
7 hashing
8 quadtrees, kd-trees, range search
9 string matching
10 data compression
11 external memory

1 module ≈ 1 week per topic.

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 4 / 44

CS Background

Topics covered in previous courses:

arrays, linked lists
strings
stacks, queues
abstract data types
recursive algorithms
binary trees
basic sorting
binary search
binary search trees

Most are briefly reviewed in course notes, or consult any textbook
(e.g. [Sedgewick,CLRS]).

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 5 / 44

Useful Math Facts
Logarithms:

y = logb(x) means by = x . e.g. n = 2log n.
log(x) (in this course) means log2(x)
log(x · y) = log(x)+ log(y), log(xy) = y log(x), log(x) ≤ x
logb(a) = logc a

logc b = 1
loga(b) , alogb c = c logb a

ln(x) = natural log = loge(x), d
dx ln x = 1

x
Factorial:

n! := n(n − 1)(n − 2) · · · · 2 · 1 = # ways to permute n elements
log(n!) = log n + log(n − 1) + · · ·+ log 2 + log 1 ∈ Θ(n log n)

(We will define Θ soon.)

Probability:
E [X] is the expected value of X .
E [aX] = aE [X], E [X + Y] = E [X] + E [Y] (linearity of expectation)

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 6 / 44

Useful Sums

Arithmetic sequence:∑n−1
i=0 i = ???

Geometric sequence:∑n−1
i=0 2i = ???

Harmonic sequence:∑n
i=1

1
i = ???

A few more:∑n
i=1

i
2i = ???∑n

i=1 ik = ???

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 7 / 44

Useful Sums
Arithmetic sequence:∑n−1

i=0 i = (n−1)n
2

∑n−1
i=0 (a + di) = na + dn(n−1)

2 ∈ Θ(n2) if d ̸= 0.

Geometric sequence:

∑n−1
i=0 2i = 2n − 1

∑n−1
i=0 a r i =

a rn − 1

r − 1 ∈ Θ(rn−1) if r > 1
na ∈ Θ(n) if r = 1

a1− rn

1− r ∈ Θ(1) if 0 < r < 1.
Harmonic sequence:∑n

i=1
1
i = ??? Hn :=

∑n
i=1

1
i = ln n + γ + o(1) ∈ Θ(log n)

A few more:∑n
i=1

i
2i = ???

∑n
i=1

i
2i ∈ Θ(1)∑n

i=1 ik = ???
∑n

i=1 ik ∈ Θ(nk+1) for k ≥ 0

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 7 / 44

Outline

1 Introduction and Asymptotic Analysis
CS240 Overview
Algorithm Design
Analysis of Algorithms I
Asymptotic Notation
Rules for asymptotic notation
Analysis of Algorithms Revisited
Example: Design and Analysis of merge-sort

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025

Algorithms and Problems (review)
Let us clarify a few more terms:

Problem: Description of possible input and desired output. Example:
Sorting problem.

Problem Instance: One possible input for the specified problem.

Algorithm: Step-by-step process (can be described in finite length) for
carrying out a series of computations, given an arbitrary instance I.

Solving a problem: An Algorithm A solves a problem Π if, for every
instance I of Π, A computes a valid output for the instance I in finite time.

Program: A program is an implementation of an algorithm using a
specified computer language.

In this course, our emphasis is on algorithms (as opposed to programs or
programming). We do not use any particular computer language to
describe them.

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 8 / 44

Algorithms and Programs
Pseudocode: communicate an algorithm to another person.

In contrast, a program communicates an algorithm to a computer.

insertion-sort(A, n)
A: array of size n
1. for (i ← 1; i < n; i++) do
2. for (j ← i ; j > 0 and A[j−1] > A[j]; j--) do
3. swap A[j] and A[j − 1]

sometimes uses English descriptions, e.g. ‘swap’,
omits obvious details, e.g. i is usually an integer
has limited if any error detection, e.g. A is assumed initialized
should be precise about exit-conditions, e.g. in loops
should use good indentation and variable-names

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 9 / 44

Algorithms and Programs

From problem Π to program that solves it:

1 Design an algorithm A that solves Π. → Algorithm Design
A problem Π may have several algorithms. Design many!

2 Assess correctness and efficiency of each A. → Algorithm Analysis
Correctness → CS245 (here informal arguments are enough).
Efficiency → later

3 If acceptable (correct and efficient), implement algorithm(s).
For each algorithm, we can have several implementations.

4 If multiple acceptable algorithms/implementations, run experiments
to determine best solution.

CS240 focuses on the first two steps.
The main point is to avoid implementing obviously-bad algorithms.

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 10 / 44

Outline

1 Introduction and Asymptotic Analysis
CS240 Overview
Algorithm Design
Analysis of Algorithms I
Asymptotic Notation
Rules for asymptotic notation
Analysis of Algorithms Revisited
Example: Design and Analysis of merge-sort

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025

Efficiency of Algorithms/Programs (Review)

What do we mean by ‘efficiency’?

In this course, we are primarily concerned with the amount of time a
program takes to run. → Running Time

We also may be interested in the amount of additional memory the
program requires. → Auxiliary space

The amount of time and/or memory required by a program will
usually depend on the given problem instance.
So we express the time or memory requirements as a mathematical
function of the instances (e.g. T (I))
But then aggregate over all instances In of size n (e.g. T (n)).
Do we take max, min, avg? (→ later)

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 11 / 44

Measuring Efficiency of Algorithms/Programs (Review)

What do we count as running time/space usage of an algorithm?

First option: experimental studies

Write a program implementing the algorithm.
Run the program with inputs of varying size and composition and
measure time and space.
Plot/compare the results.

There are numerous shortcomings:
Implementation may be complicated/costly.
Outcomes are affected by many factors: hardware (processor,
memory), software environment (OS, compiler, programming
language), and human factors (programmer).
We cannot test all instances; what are good sample inputs?

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 12 / 44

Running Time of Algorithms/Programs

Better: theoretical analysis:
Does not require implementing the algorithm (we work on
pseudo-code).
Is independent of the hardware/software environment (we work on an
idealized computer model).
Takes into account all input instances.

This is the approach taken in CS240.

We use experimental results only if theoretical analysis yields no useful
results for deciding between multiple algorithms.

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 13 / 44

Random Access Machine (RAM) model

Central processing unit (CPU)

random access (equally fast to all cells)

. . .
memory cells – size unbounded

Each memory cell stores one (finite-length) datum, typically a
number, character, or reference.
Assumption: cells are big enough to hold the items that we store.
Any access to a memory location takes constant time.
(We will revisit this assumption late in the course.)
Any primitive operation takes constant time.
(Add, subtract, multiply, divide, follow a reference, ...)
Not primitive:

√
n, anything involving irrational numbers

These assumptions may not be valid for a “real” computer.
O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 14 / 44

Running Time and Space
With this computer model, we can now formally define:

The running time is the number of memory accesses plus the
number of primitive operations.
The space is the maximum number of memory cells ever in use.
Size(I) of instance I is the number of memory cells that I occupies.

The real-life time and space is proportional to this.

We compare algorithms by considering the growth rate: What is the
behaviour of algorithms as size n gets large?

Example 1: What is larger, 100n or 10n2?

Example 2 (Matrix multiplication, approximately): What is
larger: 4n3, 300n2.807, or 1067n2.373?

To simplify comparisons, use order notation (big-O and friends).
Informally: ignore constants and lower order terms

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 15 / 44

Running Time and Space
With this computer model, we can now formally define:

The running time is the number of memory accesses plus the
number of primitive operations.
The space is the maximum number of memory cells ever in use.
Size(I) of instance I is the number of memory cells that I occupies.

The real-life time and space is proportional to this.

We compare algorithms by considering the growth rate: What is the
behaviour of algorithms as size n gets large?

Example 1: What is larger, 100n or 10n2?
Example 2 (Matrix multiplication, approximately): What is
larger: 4n3, 300n2.807, or 1067n2.373?

To simplify comparisons, use order notation (big-O and friends).
Informally: ignore constants and lower order terms

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 15 / 44

Running Time and Space
With this computer model, we can now formally define:

The running time is the number of memory accesses plus the
number of primitive operations.
The space is the maximum number of memory cells ever in use.
Size(I) of instance I is the number of memory cells that I occupies.

The real-life time and space is proportional to this.

We compare algorithms by considering the growth rate: What is the
behaviour of algorithms as size n gets large?

Example 1: What is larger, 100n or 10n2?
Example 2 (Matrix multiplication, approximately): What is
larger: 4n3, 300n2.807, or 1067n2.373?

To simplify comparisons, use order notation (big-O and friends).
Informally: ignore constants and lower order terms

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 15 / 44

Outline

1 Introduction and Asymptotic Analysis
CS240 Overview
Algorithm Design
Analysis of Algorithms I
Asymptotic Notation
Rules for asymptotic notation
Analysis of Algorithms Revisited
Example: Design and Analysis of merge-sort

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025

Order Notation
Study relationships between functions.

Example: f (x) = 75x + 500 and g(x) = 5x2 (e.g. c = 1, n0 = 20)

x

y

1000
2000
3000

5 10 15 20 25 30n0

g(x) = 5x2

f (x) = 75x + 500

O-notation: f (x) ∈ O(g(x)) (f is asymptotically upper-bounded by g) if
there exist constants c > 0 and n0 ≥ 0 s.t. |f (x)| ≤ c |g(x)| for all x ≥ n0.

In CS240: Parameter is usually an integer (write n rather than x).
f (n), g(n) usually positive for sufficiently big n (omit absolute value signs).

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 16 / 44

Example 1: Order Notation

In order to prove that 2n2 + 3n + 11 ∈ O(n2) from first principles (i.e.,
directly from the definition), we need to find c and n0 such that the
following condition is satisfied:

2n2 + 3n + 11 ≤ c n2 for all n ≥ n0.

Many, but not all, choices of c and n0 will work.

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 17 / 44

Asymptotic Lower Bound
We have 2n2 + 3n + 11 ∈ O(n2).
But we also have 2n2 + 3n + 11 ∈ O(n10).
We want a tight asymptotic bound.

Ω-notation: f (x) ∈ Ω(g(x)) (f is asymptotically lower-bounded by g) if
there exist constants c > 0 and n0 ≥ 0 s.t. c |g(x)| ≤ |f (x)| for all x ≥ n0.
Example: Prove that f (n) = 2n2 + 3n + 11 ∈ Ω(n2) from first principles.

Example: Prove that 1
2n2 − 5n ∈ Ω(n2) from first principles.

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 18 / 44

Asymptotic Tight Bound

Θ-notation: f (x) ∈ Θ(g(x)) (f is asymptotically tightly-bounded by g) if
there exist constants c1, c2 > 0 and n0 ≥ 0 such that

c1 |g(x)| ≤ |f (x)| ≤ c2 |g(x)| for all x ≥ n0.

Equivalently: f (n) ∈ Θ(g(n))⇔ f (n) ∈ O(g(n)) and f (n) ∈ Ω(g(n))

We also say that the growth rates of f and g are the same. Typically, f (x)
may be “complicated” and g(x) is chosen to be a very simple function.

Example: Prove that logb(n) ∈ Θ(log n) for all b > 1 from first principles.

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 19 / 44

Common Growth Rates

Commonly encountered growth rates in analysis of algorithms include the
following:

Θ(1) (constant),
Θ(log n) (logarithmic),
Θ(n) (linear),
Θ(n log n) (linearithmic),
Θ(n logk n), for some constant k (quasi-linear),
Θ(n2) (quadratic),
Θ(n3) (cubic),
Θ(2n) (exponential).

These are sorted in increasing order of growth rate.

How do we define ‘increasing order of growth rate’?

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 20 / 44

Common Growth Rates

Commonly encountered growth rates in analysis of algorithms include the
following:

Θ(1) (constant),
Θ(log n) (logarithmic),
Θ(n) (linear),
Θ(n log n) (linearithmic),
Θ(n logk n), for some constant k (quasi-linear),
Θ(n2) (quadratic),
Θ(n3) (cubic),
Θ(2n) (exponential).

These are sorted in increasing order of growth rate.

How do we define ‘increasing order of growth rate’?

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 20 / 44

How Growth Rates Affect Running Time

It is interesting to see how the running time is affected when the size of
the problem instance doubles (i.e., n→ 2n).

constant complexity: T (n) = c

⇝ T (2n) = c.

logarithmic complexity: T (n) = c log n

⇝ T (2n) = T (n) + c.

linear complexity: T (n) = cn

⇝ T (2n) = 2T (n).

linearithmic Θ(n log n): T (n) = c n log n

⇝ T (2n) = 2T (n) + 2cn.

quadratic complexity: T (n) = c n2

⇝ T (2n) = 4T (n).

cubic complexity: T (n) = cn3

⇝ T (2n) = 8T (n).

exponential complexity: T (n) = c 2n

⇝ T (2n) = (T (n))2/c.

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 21 / 44

How Growth Rates Affect Running Time

It is interesting to see how the running time is affected when the size of
the problem instance doubles (i.e., n→ 2n).

constant complexity: T (n) = c ⇝ T (2n) = c.
logarithmic complexity: T (n) = c log n

⇝ T (2n) = T (n) + c.

linear complexity: T (n) = cn

⇝ T (2n) = 2T (n).

linearithmic Θ(n log n): T (n) = c n log n

⇝ T (2n) = 2T (n) + 2cn.

quadratic complexity: T (n) = c n2

⇝ T (2n) = 4T (n).

cubic complexity: T (n) = cn3

⇝ T (2n) = 8T (n).

exponential complexity: T (n) = c 2n

⇝ T (2n) = (T (n))2/c.

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 21 / 44

How Growth Rates Affect Running Time

It is interesting to see how the running time is affected when the size of
the problem instance doubles (i.e., n→ 2n).

constant complexity: T (n) = c ⇝ T (2n) = c.
logarithmic complexity: T (n) = c log n ⇝ T (2n) = T (n) + c.
linear complexity: T (n) = cn

⇝ T (2n) = 2T (n).

linearithmic Θ(n log n): T (n) = c n log n

⇝ T (2n) = 2T (n) + 2cn.

quadratic complexity: T (n) = c n2

⇝ T (2n) = 4T (n).

cubic complexity: T (n) = cn3

⇝ T (2n) = 8T (n).

exponential complexity: T (n) = c 2n

⇝ T (2n) = (T (n))2/c.

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 21 / 44

How Growth Rates Affect Running Time

It is interesting to see how the running time is affected when the size of
the problem instance doubles (i.e., n→ 2n).

constant complexity: T (n) = c ⇝ T (2n) = c.
logarithmic complexity: T (n) = c log n ⇝ T (2n) = T (n) + c.
linear complexity: T (n) = cn ⇝ T (2n) = 2T (n).
linearithmic Θ(n log n): T (n) = c n log n

⇝ T (2n) = 2T (n) + 2cn.

quadratic complexity: T (n) = c n2

⇝ T (2n) = 4T (n).

cubic complexity: T (n) = cn3

⇝ T (2n) = 8T (n).

exponential complexity: T (n) = c 2n

⇝ T (2n) = (T (n))2/c.

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 21 / 44

How Growth Rates Affect Running Time

It is interesting to see how the running time is affected when the size of
the problem instance doubles (i.e., n→ 2n).

constant complexity: T (n) = c ⇝ T (2n) = c.
logarithmic complexity: T (n) = c log n ⇝ T (2n) = T (n) + c.
linear complexity: T (n) = cn ⇝ T (2n) = 2T (n).
linearithmic Θ(n log n): T (n) = c n log n ⇝ T (2n) = 2T (n) + 2cn.
quadratic complexity: T (n) = c n2

⇝ T (2n) = 4T (n).

cubic complexity: T (n) = cn3

⇝ T (2n) = 8T (n).

exponential complexity: T (n) = c 2n

⇝ T (2n) = (T (n))2/c.

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 21 / 44

How Growth Rates Affect Running Time

It is interesting to see how the running time is affected when the size of
the problem instance doubles (i.e., n→ 2n).

constant complexity: T (n) = c ⇝ T (2n) = c.
logarithmic complexity: T (n) = c log n ⇝ T (2n) = T (n) + c.
linear complexity: T (n) = cn ⇝ T (2n) = 2T (n).
linearithmic Θ(n log n): T (n) = c n log n ⇝ T (2n) = 2T (n) + 2cn.
quadratic complexity: T (n) = c n2 ⇝ T (2n) = 4T (n).
cubic complexity: T (n) = cn3

⇝ T (2n) = 8T (n).

exponential complexity: T (n) = c 2n

⇝ T (2n) = (T (n))2/c.

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 21 / 44

How Growth Rates Affect Running Time

It is interesting to see how the running time is affected when the size of
the problem instance doubles (i.e., n→ 2n).

constant complexity: T (n) = c ⇝ T (2n) = c.
logarithmic complexity: T (n) = c log n ⇝ T (2n) = T (n) + c.
linear complexity: T (n) = cn ⇝ T (2n) = 2T (n).
linearithmic Θ(n log n): T (n) = c n log n ⇝ T (2n) = 2T (n) + 2cn.
quadratic complexity: T (n) = c n2 ⇝ T (2n) = 4T (n).
cubic complexity: T (n) = cn3 ⇝ T (2n) = 8T (n).
exponential complexity: T (n) = c 2n

⇝ T (2n) = (T (n))2/c.

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 21 / 44

How Growth Rates Affect Running Time

It is interesting to see how the running time is affected when the size of
the problem instance doubles (i.e., n→ 2n).

constant complexity: T (n) = c ⇝ T (2n) = c.
logarithmic complexity: T (n) = c log n ⇝ T (2n) = T (n) + c.
linear complexity: T (n) = cn ⇝ T (2n) = 2T (n).
linearithmic Θ(n log n): T (n) = c n log n ⇝ T (2n) = 2T (n) + 2cn.
quadratic complexity: T (n) = c n2 ⇝ T (2n) = 4T (n).
cubic complexity: T (n) = cn3 ⇝ T (2n) = 8T (n).
exponential complexity: T (n) = c 2n ⇝ T (2n) = (T (n))2/c.

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 21 / 44

Strictly smaller asymptotic bounds
We have f (n) = n ∈ Θ(n).
How to express that f (n) grows slower than n2?

x

y g(x) = x2 1
2 · g(x) 1

4 · g(x)

f (x) = x

o-notation: f (x) ∈ o(g(x)) (f is asymptotically strictly smaller than g) if
for all constants c > 0, there exists a constant n0 ≥ 0 such that
|f (x)| ≤ c |g(x)| for all x ≥ n0.

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 22 / 44

Strictly smaller/larger asymptotic bounds
Example: Prove that n ∈ o(n2) from first principles.

Main difference between o and O is the quantifier for c.
n0 will depend on c, so it is really a function n0(c).
We also say ‘the growth rate of f is less than the growth rate of g ’.
Rarely proved from first principles (instead use limit-rule ⇝ later).

ω-notation: f (x) ∈ ω(g(x)) (f is asymptotically strictly larger than g) if
for all constants c > 0, there exists a constant n0 ≥ 0 such that
|f (x)| ≥ c |g(x)| for all x ≥ n0.

Symmetric, the growth rate of f is more than the growth rate of g .

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 23 / 44

Strictly smaller/larger asymptotic bounds
Example: Prove that n ∈ o(n2) from first principles.

Main difference between o and O is the quantifier for c.
n0 will depend on c, so it is really a function n0(c).
We also say ‘the growth rate of f is less than the growth rate of g ’.
Rarely proved from first principles (instead use limit-rule ⇝ later).

ω-notation: f (x) ∈ ω(g(x)) (f is asymptotically strictly larger than g) if
for all constants c > 0, there exists a constant n0 ≥ 0 such that
|f (x)| ≥ c |g(x)| for all x ≥ n0.

Symmetric, the growth rate of f is more than the growth rate of g .
O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 23 / 44

Order Notation Summary

.

O-notation: f (x) ∈ O(g(x)) if there exist constants c > 0 and n0 ≥ 0
such that |f (x)| ≤ c |g(x)| for all x ≥ n0.

Ω-notation: f (x) ∈ Ω(g(x)) if there exist constants c > 0 and n0 ≥ 0
such that c |g(x)| ≤ |f (x)| for all x ≥ n0.

Θ-notation: f (x) ∈ Θ(g(x)) if there exist constants c1, c2 > 0 and
n0 ≥ 0 such that c1 |g(x)| ≤ |f (x)| ≤ c2 |g(x)| for all x ≥ n0.

o-notation: f (x) ∈ o(g(x)) if for all constants c > 0, there exists a
constant n0 ≥ 0 such that |f (x)| ≤ c |g(x)| for all x ≥ n0.

ω-notation: f (x) ∈ ω(g(x)) if for all constants c > 0, there exists a
constant n0 ≥ 0 such that c |g(x)| ≤ |f (x)| for all x ≥ n0.

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 24 / 44

Outline

1 Introduction and Asymptotic Analysis
CS240 Overview
Algorithm Design
Analysis of Algorithms I
Asymptotic Notation
Rules for asymptotic notation
Analysis of Algorithms Revisited
Example: Design and Analysis of merge-sort

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025

The Limit Rule

Suppose that f (n) > 0 and g(n) > 0 for all n ≥ n0. Suppose that

L = lim
n→∞

f (n)
g(n) (in particular, the limit exists).

Then

f (n) ∈
{

o(g(n)) if L = 0
Θ(g(n)) if 0 < L <∞

If the fraction tends to infinity then f (n) ∈ ω(g(n)).

The required limit can often be computed using l’Hôpital’s rule. Note that
this result gives sufficient (but not necessary) conditions for the stated
conclusion to hold.

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 25 / 44

Application 1: Logarithms vs. polynomials

Compare the growth rates of f (n) = log n and g(n) = n.

Now compare the growth rates of f (n) = (log n)c and g(n) = nd (where
c > 0 and d > 0 are arbitrary numbers).

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 26 / 44

Application 2: Polynomials
Let f (n) be a polynomial of degree d ≥ 0:

f (n) = cdnd + cd−1nd−1 + · · ·+ c1n + c0

for some cd > 0.

Then f (n) ∈ Θ(nd):

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 27 / 44

Example: Oscillating functions
Consider two oscillating functions f1, f2 for which limn→∞

fi (n)
n does not

exist. Are they in Θ(n)?

n

y f1(n) = n(1 + sin xπ/2)

2n

n

y f2(n) = n(2 + sin nπ/2)
3n

n

So no limit ⇝ must use other methods to prove asymptotic bounds.

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 28 / 44

Algebra of Order Notations
Many rules are easily proved from first principle (exercise).

Identity rule: f (n) ∈ Θ(f (n))

Transitivity:
If f (n) ∈ O(g(n)) and g(n) ∈ O(h(n)) then f (n) ∈ O(h(n)).
If f (n) ∈ Ω(g(n)) and g(n) ∈ Ω(h(n)) then f (n) ∈ Ω(h(n)).
If f (n) ∈ O(g(n)) and g(n) ∈ o(h(n)) then f (n) ∈ o(h(n)).
...

Maximum rules: Suppose that f (n) > 0 and g(n) > 0 for all n ≥ n0.
Then:

f (n) + g(n) ∈ O(max{f (n), g(n)})
f (n) + g(n) ∈ Ω(max{f (n), g(n)})

Key proof-ingredient: max{f (n), g(n)} ≤ f (n)+g(n) ≤ 2 max{f (n), g(n)}

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 29 / 44

Relationships between Order Notations

f (n) ∈ Θ(g(n))⇔ g(n) ∈ Θ(f (n))
f (n) ∈ O(g(n))⇔ g(n) ∈ Ω(f (n))
f (n) ∈ o(g(n))⇔ g(n) ∈ ω(f (n))

f (n) ∈ Θ(g(n))⇔ f (n) ∈ O(g(n)) and f (n) ∈ Ω(g(n))
f (n) ∈ o(g(n))⇒ f (n) ∈ O(g(n))
f (n) ∈ o(g(n))⇒ f (n) ̸∈ Ω(g(n))
f (n) ∈ ω(g(n))⇒ f (n) ∈ Ω(g(n))
f (n) ∈ ω(g(n))⇒ f (n) ̸∈ O(g(n))

Example: Fill the following table with TRUE or FALSE:
Is f (n) ∈ . . . (g(n))?

f (n) g(n) o O Ω ω

log n
√

n

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 30 / 44

Asymptotic Notation and Arithmetic

Normally, we say f (n) ∈ Θ(g(n)) because Θ(g(n)) is a set.

Avoid doing arithmetic with asymptotic notations.
Do not write O(n) + O(n) = O(n).

(CS136 allowed you to be sloppy here. CS240 does not,
mostly because it can go badly wrong with recursions.)

Instead, when you do arithmetic, replace ‘Θ(f (n))’ by ‘c · f (n) for
some constant c > 0’

(That’s still a bit sloppy (why?), but less dangerous.)

There are some (very limited) exceptions:

▶ f (n) = n2 + Θ(n)

means “f (n) is n2 plus a linear term”
⋆ nicer to read than “n2 + n + log n”
⋆ more precise about constants than “Θ(n2)”

▶ But use this very sparingly (typically only for stating the final result)
▶ Similarly f (n) = n2 + o(1) means “n2 plus a vanishing term.”

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 31 / 44

Asymptotic Notation and Arithmetic

Normally, we say f (n) ∈ Θ(g(n)) because Θ(g(n)) is a set.

Avoid doing arithmetic with asymptotic notations.
Do not write O(n) + O(n) = O(n).

(CS136 allowed you to be sloppy here. CS240 does not,
mostly because it can go badly wrong with recursions.)

Instead, when you do arithmetic, replace ‘Θ(f (n))’ by ‘c · f (n) for
some constant c > 0’

(That’s still a bit sloppy (why?), but less dangerous.)

There are some (very limited) exceptions:
▶ f (n) = n2 + Θ(n) means “f (n) is n2 plus a linear term”

⋆ nicer to read than “n2 + n + log n”
⋆ more precise about constants than “Θ(n2)”

▶ But use this very sparingly (typically only for stating the final result)

▶ Similarly f (n) = n2 + o(1) means “n2 plus a vanishing term.”

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 31 / 44

Asymptotic Notation and Arithmetic

Normally, we say f (n) ∈ Θ(g(n)) because Θ(g(n)) is a set.

Avoid doing arithmetic with asymptotic notations.
Do not write O(n) + O(n) = O(n).

(CS136 allowed you to be sloppy here. CS240 does not,
mostly because it can go badly wrong with recursions.)

Instead, when you do arithmetic, replace ‘Θ(f (n))’ by ‘c · f (n) for
some constant c > 0’

(That’s still a bit sloppy (why?), but less dangerous.)

There are some (very limited) exceptions:
▶ f (n) = n2 + Θ(n) means “f (n) is n2 plus a linear term”

⋆ nicer to read than “n2 + n + log n”
⋆ more precise about constants than “Θ(n2)”

▶ But use this very sparingly (typically only for stating the final result)
▶ Similarly f (n) = n2 + o(1) means “n2 plus a vanishing term.”

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 31 / 44

Outline

1 Introduction and Asymptotic Analysis
CS240 Overview
Algorithm Design
Analysis of Algorithms I
Asymptotic Notation
Rules for asymptotic notation
Analysis of Algorithms Revisited
Example: Design and Analysis of merge-sort

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025

Techniques for Run-time Analysis
Goal: Use asymptotic notation to simplify run-time analysis.
Running time of an algorithm depends on the input size n.

print-pairs(A, n)
1. for i ← 0 to n − 1 do
2. for j ← 0 to i − 1 do
3. print ‘the next pair is {A[i], A[j]}’

Identify primitive operations that require Θ(1) time.
(For doing arithmetic, assume they require c time for some c > 0.)
The complexity of a loop is expressed as the sum of the complexities
of each iteration of the loop.
Nested loops: start with the innermost loop and proceed outwards.
This gives nested summations.

For print-pairs: The run-time is
∑n−1

i=0
∑i−1

j=0 c.

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 32 / 44

Techniques for Run-time Analysis
Goal: Use asymptotic notation to simplify run-time analysis.
Running time of an algorithm depends on the input size n.

print-pairs(A, n)
1. for i ← 0 to n − 1 do
2. for j ← 0 to i − 1 do
3. print ‘the next pair is {A[i], A[j]}’

Identify primitive operations that require Θ(1) time.
(For doing arithmetic, assume they require c time for some c > 0.)
The complexity of a loop is expressed as the sum of the complexities
of each iteration of the loop.
Nested loops: start with the innermost loop and proceed outwards.
This gives nested summations.

For print-pairs: The run-time is
∑n−1

i=0
∑i−1

j=0 c.
O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 32 / 44

Techniques for Run-time Analysis
Two general strategies are as follows.

Strategy I: Use Θ-bounds throughout the analysis and obtain a Θ-bound
for the complexity of the algorithm.
For print-pairs:

Strategy II: Prove a O-bound and a matching Ω-bound separately .
Use upper bounds (for O) and lower bounds (for Ω) early and frequently.
This may be easier because upper/lower bounds are easier to sum.
For print-pairs:

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 33 / 44

Complexity of Algorithms

Algorithm can have different running times on two instances of the
same size.

insertion-sort(A, n)
A: array of size n
1. for (i ← 1; i < n; i++) do
2. for (j ← i ; j > 0 and A[j−1] > A[j]; j--) do
3. swap A[j] and A[j − 1]

Let TA(I) denote the running time of an algorithm A on instance I.

Study this value for the worst-possible, best-possible and ‘typical’
(average) instance I.

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 34 / 44

Complexity of Algorithms
Worst-case (best-case) complexity of an algorithm: The
worst-case (best-case) running time of an algorithm A is a function
T : Z+ → R mapping n (the input size) to the longest (shortest) running
time for any input instance of size n:

T worst
A (n) = max

I∈In
{TA(I)}

T best
A (n) = min

I∈In
{TA(I)}

To prove a lower bound on the worst-case run-time: Pick one especially
bad example, and bound its run-time (using Ω-notation).

Average-case complexity of an algorithm: The average-case running
time of an algorithm A is a function T : Z+ → R mapping n (the input
size) to the average running time of A over all instances of size n:

T avg
A (n) =

∑
I∈In

TA(I) ·
(
relative frequency of I

)
O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 35 / 44

O-notation and Complexity of Algorithms
Goal in cs240: For a problem, find an algorithm that solves it and whose
tight bound on the worst-case running time has the smallest growth rate.

There are various pitfalls.

Example: Suppose algorithm A1 has worst-case run-time O(n3) and
algorithm A2 has worst-case run-time O(n2), and both solve the same
problem. Is A2 more efficient?

No! O-notation is an upper bound. A1 may well have worst-case
run-time O(n). We should always give Θ-bounds.
Example: Suppose the run-times are Θ(n3) and Θ(n2), respectively.
We consider A2 to be better. But is it always more efficient?

No! The worst-case run-time of A1 may only be achieved on some
instances. Possibly A1 is better on most instances.

Also, the hidden constants may be so large that A1 is better on all
but unrealistically big n.

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 36 / 44

O-notation and Complexity of Algorithms
Goal in cs240: For a problem, find an algorithm that solves it and whose
tight bound on the worst-case running time has the smallest growth rate.

There are various pitfalls.
Example: Suppose algorithm A1 has worst-case run-time O(n3) and
algorithm A2 has worst-case run-time O(n2), and both solve the same
problem. Is A2 more efficient?

No! O-notation is an upper bound. A1 may well have worst-case
run-time O(n). We should always give Θ-bounds.
Example: Suppose the run-times are Θ(n3) and Θ(n2), respectively.
We consider A2 to be better. But is it always more efficient?

No! The worst-case run-time of A1 may only be achieved on some
instances. Possibly A1 is better on most instances.

Also, the hidden constants may be so large that A1 is better on all
but unrealistically big n.

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 36 / 44

O-notation and Complexity of Algorithms
Goal in cs240: For a problem, find an algorithm that solves it and whose
tight bound on the worst-case running time has the smallest growth rate.

There are various pitfalls.
Example: Suppose algorithm A1 has worst-case run-time O(n3) and
algorithm A2 has worst-case run-time O(n2), and both solve the same
problem. Is A2 more efficient?

No! O-notation is an upper bound. A1 may well have worst-case
run-time O(n). We should always give Θ-bounds.

Example: Suppose the run-times are Θ(n3) and Θ(n2), respectively.
We consider A2 to be better. But is it always more efficient?

No! The worst-case run-time of A1 may only be achieved on some
instances. Possibly A1 is better on most instances.

Also, the hidden constants may be so large that A1 is better on all
but unrealistically big n.

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 36 / 44

O-notation and Complexity of Algorithms
Goal in cs240: For a problem, find an algorithm that solves it and whose
tight bound on the worst-case running time has the smallest growth rate.

There are various pitfalls.
Example: Suppose algorithm A1 has worst-case run-time O(n3) and
algorithm A2 has worst-case run-time O(n2), and both solve the same
problem. Is A2 more efficient?

No! O-notation is an upper bound. A1 may well have worst-case
run-time O(n). We should always give Θ-bounds.
Example: Suppose the run-times are Θ(n3) and Θ(n2), respectively.
We consider A2 to be better. But is it always more efficient?

No! The worst-case run-time of A1 may only be achieved on some
instances. Possibly A1 is better on most instances.

Also, the hidden constants may be so large that A1 is better on all
but unrealistically big n.

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 36 / 44

O-notation and Complexity of Algorithms
Goal in cs240: For a problem, find an algorithm that solves it and whose
tight bound on the worst-case running time has the smallest growth rate.

There are various pitfalls.
Example: Suppose algorithm A1 has worst-case run-time O(n3) and
algorithm A2 has worst-case run-time O(n2), and both solve the same
problem. Is A2 more efficient?

No! O-notation is an upper bound. A1 may well have worst-case
run-time O(n). We should always give Θ-bounds.
Example: Suppose the run-times are Θ(n3) and Θ(n2), respectively.
We consider A2 to be better. But is it always more efficient?

No! The worst-case run-time of A1 may only be achieved on some
instances. Possibly A1 is better on most instances.

Also, the hidden constants may be so large that A1 is better on all
but unrealistically big n.

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 36 / 44

O-notation and Complexity of Algorithms
Goal in cs240: For a problem, find an algorithm that solves it and whose
tight bound on the worst-case running time has the smallest growth rate.

There are various pitfalls.
Example: Suppose algorithm A1 has worst-case run-time O(n3) and
algorithm A2 has worst-case run-time O(n2), and both solve the same
problem. Is A2 more efficient?

No! O-notation is an upper bound. A1 may well have worst-case
run-time O(n). We should always give Θ-bounds.
Example: Suppose the run-times are Θ(n3) and Θ(n2), respectively.
We consider A2 to be better. But is it always more efficient?

No! The worst-case run-time of A1 may only be achieved on some
instances. Possibly A1 is better on most instances.

Also, the hidden constants may be so large that A1 is better on all
but unrealistically big n.

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 36 / 44

Outline

1 Introduction and Asymptotic Analysis
CS240 Overview
Algorithm Design
Analysis of Algorithms I
Asymptotic Notation
Rules for asymptotic notation
Analysis of Algorithms Revisited
Example: Design and Analysis of merge-sort

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025

Explaining the solution of a problem

To give an algorithm that ‘solves a problem’, we usually do four steps.
We illustrate this here on merge-sort.

Step 1: Describe the overall idea

Input: Array A of n integers

1 We split A into two subarrays
AL and AR that are roughly half
as big.

2 Recursively sort AL and AR
3 After AL and AR have been

sorted, use a function merge to
merge them into a single sorted
array.

split into halves

sort recursively sort recursively

merge

sorted

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 37 / 44

Explaining the solution of a problem

Step 2: Give pseudo-code or detailed description.

merge-sort(A, n)
A: array of size n
1. if (n ≤ 1) then return
2. else
3. m = ⌊(n − 1)/2⌋
4. merge-sort(A[0..m], m + 1)
5. merge-sort(A[m + 1..n−1], r)
6. merge(A[0..m], A[m + 1..n−1])

(pseudo-code for merge to come)

Two tricks to reduce constant in the run-time and auxiliary space:

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 38 / 44

Explaining the solution of a problem
Step 2: Give pseudo-code or detailed description.

merge-sort(A, n, ℓ← 0, r ← n − 1, S ← NULL)
A: array of size n, 0 ≤ ℓ ≤ r ≤ n − 1
1. if S is NULLdo initialize it as array S[0..n − 1]
2. if (r ≤ ℓ) then
3. return
4. else
5. m = ⌊(r + ℓ)/2⌋
6. merge-sort(A, n, ℓ, m, S)
7. merge-sort(A, n, m + 1, r , S)
8. merge(A, ℓ, m, r , S)

This would be much better for an efficient implementation.
But the idea is much harder to understand.
CS240 pseudocode will often prefer clarity over improved constants.

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 39 / 44

Sub-routine merge

Idea: Always extract from each sub-array the value that is smaller and
append it to the output.

merge(A, ℓ, m, r , S)
A[0..n − 1] is an array, A[ℓ..m] is sorted, A[m + 1..r] is sorted
S[0..n − 1] is an array
1. copy A[ℓ..r] into S[ℓ..r]
2. (iL, iR)← (ℓ, m + 1); // start-indices of subarrays
3. for (k ← ℓ; k ≤ r ; k++) do // fill-index for result
4. if (iL > m) A[k]← S[iR++]
5. else if (iR > r) A[k]← S[iL++]
6. else if (S[iL] ≤ S[iR]) A[k]← S[iL++]
7. else A[k]← S[iR++]

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 40 / 44

Analysis of merge-sort
Step 3: Argue correctness.

Typically state loop-invariants, or other key-ingredients, but no need
for a formal (CS245-style) proof by induction.
Sometimes obvious enough from idea-description and comments.

Step 4: Analyze the run-time.
First analyze work done outside recursions.
If applicable, analyze subroutines separately.
If there are recursions: how big are the subproblems?
The run-time then becomes a recursive function.

Let T (n) denote the time to run merge-sort on an array of length n.
1 (initialize array) takes time Θ(n)
2 (recursively call merge-sort) takes time T

(
⌈n

2⌉
)

+ T
(
⌊n

2⌋
)

3 (call merge) takes time Θ(n)

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 41 / 44

The run-time of merge-sort
The recurrence relation for T (n) is as follows (constant factor c
replaces Θ):

T (n) =
{

T
(
⌈n

2⌉
)

+ T
(
⌊n

2⌋
)

+ c n if n > 1
c if n = 1.

The following is the corresponding sloppy recurrence
(it has floors and ceilings removed):

T (n) =
{

2 T
(n

2
)

+ cn if n > 1
c if n = 1.

When n is a power of 2, then the exact and sloppy recurrences are
identical and can easily be solved by various methods.
E.g. prove by induction that T (n) = cn log(2n) ∈ Θ(n log n).
It is possible to show that T (n) ∈ Θ(n log n) for all n
by analyzing the exact recurrence.
O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 42 / 44

Asymptotics and Arithmetic revisited
Recall: You should not intermix asymptotics and arithmetic.

Writing O(n) + O(n) = O(n) is very bad style.
It even occasionally leads to incorrect results.
Example: What is wrong with the following proof?

Claim (false!): If T (n) =
{

2 T
(n

2
)

+ cn if n > 1
c if n = 1.

then T (n) ∈ O(n).

“Proof”: Use induction on n.
In the base case (n = 1) we have T (n) = c ∈ O(1) = O(n).
Assume the claim holds for all n′ with n′ < n.
Step: We have

T (n) = 2T (n
2) + cn

IH
∈ 2O(n

2) + O(n) = O(n) + O(n) = O(n)

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 43 / 44

Asymptotics and Arithmetic revisited
Recall: You should not intermix asymptotics and arithmetic.

Writing O(n) + O(n) = O(n) is very bad style.
It even occasionally leads to incorrect results.
Example: What is wrong with the following proof?

Claim (false!): If T (n) =
{

2 T
(n

2
)

+ cn if n > 1
c if n = 1.

then T (n) ∈ O(n).

“Proof”: Use induction on n.
In the base case (n = 1) we have T (n) = c ∈ O(1) = O(n).
Assume the claim holds for all n′ with n′ < n.
Step: We have

T (n) = 2T (n
2) + cn

IH
∈ 2O(n

2) + O(n) = O(n) + O(n) = O(n)

O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 43 / 44

Some Recurrence Relations

Recursion resolves to example
T (n) ≤ T (n/2) + O(1) T (n) ∈ O(log n) binary-search
T (n) ≤ 2T (n/2) + O(n) T (n) ∈ O(n log n) merge-sort
T (n) ≤ 2T (n/2) + O(log n) T (n) ∈ O(n) heapify (*)
T (n) ≤ cT (n−1) + O(1) T (n) ∈ O(1) avg-case analysis (*)
for some c < 1
T (n) ≤ 2T (n/4) + O(1) T (n) ∈ O(

√
n) range-search (*)

T (n) ≤ T (
√

n) + O(
√

n) T (n) ∈ O(
√

n) interpol. search (*)
T (n) ≤ T (

√
n) + O(1) T (n) ∈ O(log log n) interpol. search (*)

Once you know the result, it is (usually) easy to prove by induction.
These bounds are tight if the upper bounds are tight.
Many more recursions, and some methods to find the result, in CS341.

(*) These may or may not get used later in the course.
O.Veksler (CS-UW) CS240 – Module 1 Winter 2025 44 / 44

	Introduction and Asymptotic Analysis
	CS240 Overview
	Course Objectives: What is this course about?
	Course Objectives: What is this course about?
	Course Topics
	CS Background
	Useful Math Facts
	Useful Sums

	Algorithm Design
	Algorithms and Problems (review)
	Algorithms and Programs
	Algorithms and Programs

	Analysis of Algorithms I
	Efficiency of Algorithms/Programs (Review)
	Measuring Efficiency of Algorithms/Programs (Review)
	Running Time of Algorithms/Programs
	Random Access Machine (RAM) model
	Running Time and Space

	Asymptotic Notation
	Order Notation
	Example 1: Order Notation
	Asymptotic Lower Bound
	Asymptotic Tight Bound
	Common Growth Rates
	How Growth Rates Affect Running Time
	Strictly smaller asymptotic bounds
	Strictly smaller/larger asymptotic bounds
	Order Notation Summary

	Rules for asymptotic notation
	The Limit Rule
	Application 1: Logarithms vs. polynomials
	Application 2: Polynomials
	Example: Oscillating functions
	Algebra of Order Notations
	Relationships between Order Notations
	Asymptotic Notation and Arithmetic

	Analysis of Algorithms Revisited
	Techniques for Run-time Analysis
	Techniques for Run-time Analysis
	Complexity of Algorithms
	Complexity of Algorithms
	O-notation and Complexity of Algorithms

	Example: Design and Analysis of merge-sort
	Explaining the solution of a problem
	Explaining the solution of a problem
	Explaining the solution of a problem
	Sub-routine merge
	Analysis of merge-sort
	The run-time of merge-sort
	Asymptotics and Arithmetic revisited
	Some Recurrence Relations

