
CS 240 – Data Structures and Data Management

Module 2: Priority Queues

Olga Veksler
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2025

version 2025-01-09 15:48

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 1 / 27



Outline

2 Priority Queues
Abstract Data Types
ADT Priority Queue
Binary Heaps as PQ realization
PQ-sort and heap-sort
Towards the Selection Problem

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025



Outline

2 Priority Queues
Abstract Data Types
ADT Priority Queue
Binary Heaps as PQ realization
PQ-sort and heap-sort
Towards the Selection Problem

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025



Abstract Data Types (review)

Abstract Data Type (ADT): A description of information and a
collection of operations on that information.

The information is accessed only through the operations.

We can have various realizations of an ADT, which specify:
How the information is stored (data structure)
How the operations are performed (algorithms)

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 2 / 27



ADT Stack (review)

Stack: an ADT consisting of a collection of items with operations:

push: Add an item to the stack.
pop: Remove and return the most recently added item.

Items are removed in LIFO (last-in first-out) order.

We can have extra operations: size, is-empty, and top

ADT Stack can easily be realized using arrays or linked lists such that
operations taking constant time (exercise).

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 3 / 27



ADT Queue (review)

Queue: an ADT consisting of a collection of items with operations:

enqueue (or append or add-back): Add an item
to the queue.
dequeue (or remove-front): Remove and return
the least recently inserted item.

Items are removed in FIFO (first-in first-out) order.

We can have extra operations: size, is-empty, and peek/front

ADT Queue can easily be realized using (circular) arrays or linked lists
such that operations taking constant time (exercise).

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 4 / 27



Outline

2 Priority Queues
Abstract Data Types
ADT Priority Queue
Binary Heaps as PQ realization
PQ-sort and heap-sort
Towards the Selection Problem

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025



ADT Priority Queue
Priority Queue generalizes both ADT Stack and ADT Queue.

It is a collection of items (each having a priority or key) with operations
insert: inserting an item tagged with a priority
delete-max: removing and returning an item of highest priority.

We can have extra operations: size, is-empty, and get-max

This is a maximum-oriented priority queue. A minimum-oriented
priority queue replaces operation delete-max by delete-min.

Applications:
How would you simulate a stack with a priority queue?

How would you simulate a queue with a priority queue?

Other applications: typical todo-list, simulation systems, sorting

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 5 / 27



Using a Priority Queue to Sort

PQ-Sort(A[0..n − 1])
1. initialize PQ to an empty priority queue
2. for i ← 0 to n − 1 do
3. PQ.insert(an item with priority A[i ])
4. for i ← n − 1 down to 0 do
5. A[i ]← priority of PQ.delete-max()

Note: Run-time depends on how we implement the priority queue.
Sometimes written as: O(initialization + n · insert + n · delete-max)

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 6 / 27



Example Binary Tree and Heap

Binary tree with
1 structural property and

2 heap-order property.

Recall: 15 represents
priority = 15, <other info>•

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 7 / 27



Example Binary Tree and Heap

50

29

27

23 26

15

47

8 20

Binary tree with
1 structural property and
2 heap-order property.

Recall: 15 represents
priority = 15, <other info>•

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 7 / 27



Heaps – Definition

A heap is a binary tree with the following two properties:

1 Structural Property: All the levels of a heap are completely filled,
except (possibly) for the last level. The filled items in the last level
are left-justified .

2 Heap-order Property: For any node i , the key of the parent of i is
larger than or equal to key of i .

The full name for this is max-oriented binary heap.

Lemma: The height of a heap with n nodes is Θ(log n).

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 8 / 27



Heaps – Definition

A heap is a binary tree with the following two properties:

1 Structural Property: All the levels of a heap are completely filled,
except (possibly) for the last level. The filled items in the last level
are left-justified .

2 Heap-order Property: For any node i , the key of the parent of i is
larger than or equal to key of i .

The full name for this is max-oriented binary heap.

Lemma: The height of a heap with n nodes is Θ(log n).

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 8 / 27



Heaps – Definition

A heap is a binary tree with the following two properties:

1 Structural Property: All the levels of a heap are completely filled,
except (possibly) for the last level. The filled items in the last level
are left-justified .

2 Heap-order Property: For any node i , the key of the parent of i is
larger than or equal to key of i .

The full name for this is max-oriented binary heap.

Lemma: The height of a heap with n nodes is Θ(log n).

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 8 / 27



Storing Heaps in Arrays

Heaps should not be stored as binary trees!

Let H be a heap of n items and let A be an array of size n. Store root in
A[0] and continue with elements level-by-level from top to bottom, in each
level left-to-right.

50A[0]

29A[1]

27A[3]

23A[7] 26 A[8]

15 A[4]

47 A[2]

8A[5] 20 A[6]

0 1 2 3 4 5 6 7 8
A: 50 29 47 27 15 8 20 23 26

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 9 / 27



Storing Heaps in Arrays

Heaps should not be stored as binary trees!

Let H be a heap of n items and let A be an array of size n. Store root in
A[0] and continue with elements level-by-level from top to bottom, in each
level left-to-right.

50A[0]

29A[1]

27A[3]

23A[7] 26 A[8]

15 A[4]

47 A[2]

8A[5] 20 A[6]

0 1 2 3 4 5 6 7 8
A: 50 29 47 27 15 8 20 23 26

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 9 / 27



Heaps in Arrays – Navigation

It is easy to navigate the heap using this array representation:
the root node is at index 0 (We use “node” and “index”
interchangeably in this implementation.)
the last node is n − 1 (where n is the size)
the left child of node i (if it exists) is node 2i + 1
the right child of node i (if it exists) is node 2i + 2
the parent of node i (if it exists) is node ⌊ i−1

2 ⌋
these nodes exist if the index falls in the range {0, . . . , n−1}

We should hide implementation details using helper-functions!
functions root(), last(), parent(i), etc.

Some of these helper-functions need to know the size n. We assume that
the data structure stores this explicitly.

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 10 / 27



Heaps in Arrays – Navigation

It is easy to navigate the heap using this array representation:
the root node is at index 0 (We use “node” and “index”
interchangeably in this implementation.)
the last node is n − 1 (where n is the size)
the left child of node i (if it exists) is node 2i + 1
the right child of node i (if it exists) is node 2i + 2
the parent of node i (if it exists) is node ⌊ i−1

2 ⌋
these nodes exist if the index falls in the range {0, . . . , n−1}

We should hide implementation details using helper-functions!
functions root(), last(), parent(i), etc.

Some of these helper-functions need to know the size n. We assume that
the data structure stores this explicitly.

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 10 / 27



Outline

2 Priority Queues
Abstract Data Types
ADT Priority Queue
Binary Heaps as PQ realization
PQ-sort and heap-sort
Towards the Selection Problem

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025



insert in Heaps
insert(35):

50

29

27

23 26

15

47

8 20

By structural property: no choice where the new node can go.

This may or may not lead to heap-order violations.
Fix violations by “bubbling up” in the tree.

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 11 / 27



insert in Heaps
insert(35):

50

29

27

23 26

15

35

47

8 20

By structural property: no choice where the new node can go.
This may or may not lead to heap-order violations.

Fix violations by “bubbling up” in the tree.

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 11 / 27



insert in Heaps
insert(35):

50

29

27

23 26

35

15

47

8 20

By structural property: no choice where the new node can go.
This may or may not lead to heap-order violations.
Fix violations by “bubbling up” in the tree.
O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 11 / 27



insert in Heaps
insert(35):

50

35

27

23 26

29

15

47

8 20

By structural property: no choice where the new node can go.
This may or may not lead to heap-order violations.
Fix violations by “bubbling up” in the tree.
O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 11 / 27



insert in Heaps
Place the new key at the first free leaf
Use fix-up to restore heap-order.

insert(x)
1. ℓ← last()+1
2. A[ℓ]← x // assume dynamic array used
3. increase size // size: stored by PQ
4. fix-up(A, ℓ)

fix-up(A, i)
i : an index corresponding to a node of the heap
1. while parent(i) exists and A[parent(i)].key < A[i ].key do
2. swap A[i ] and A[parent(i)]
3. i ← parent(i)

Time: O(height of heap) = O(log n) (and this is tight).
(Correctness may seem obvious, but is actually non-trivial.)

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 12 / 27



insert in Heaps
Place the new key at the first free leaf
Use fix-up to restore heap-order.

insert(x)
1. ℓ← last()+1
2. A[ℓ]← x // assume dynamic array used
3. increase size // size: stored by PQ
4. fix-up(A, ℓ)

fix-up(A, i)
i : an index corresponding to a node of the heap
1. while parent(i) exists and A[parent(i)].key < A[i ].key do
2. swap A[i ] and A[parent(i)]
3. i ← parent(i)

Time: O(height of heap) = O(log n) (and this is tight).
(Correctness may seem obvious, but is actually non-trivial.)

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 12 / 27



insert in Heaps
Place the new key at the first free leaf
Use fix-up to restore heap-order.

insert(x)
1. ℓ← last()+1
2. A[ℓ]← x // assume dynamic array used
3. increase size // size: stored by PQ
4. fix-up(A, ℓ)

fix-up(A, i)
i : an index corresponding to a node of the heap
1. while parent(i) exists and A[parent(i)].key < A[i ].key do
2. swap A[i ] and A[parent(i)]
3. i ← parent(i)

Time: O(height of heap) = O(log n) (and this is tight).
(Correctness may seem obvious, but is actually non-trivial.)

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 12 / 27



delete-max in Heaps

50

35

27

23 26

29

15

47

8 20

The maximum item of a heap is just the root node.
We replace root by the last leaf (last leaf is taken out).
The heap-order property might be violated: perform a fix-down:

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 13 / 27



delete-max in Heaps

15

35

27

23 26

29

47

8 20

The maximum item of a heap is just the root node.
We replace root by the last leaf (last leaf is taken out).
The heap-order property might be violated: perform a fix-down:

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 13 / 27



delete-max in Heaps

47

35

27

23 26

29

15

8 20

The maximum item of a heap is just the root node.
We replace root by the last leaf (last leaf is taken out).
The heap-order property might be violated: perform a fix-down:

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 13 / 27



delete-max in Heaps

47

35

27

23 26

29

20

8 15

The maximum item of a heap is just the root node.
We replace root by the last leaf (last leaf is taken out).
The heap-order property might be violated: perform a fix-down:

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 13 / 27



delete-max in Heaps

fix-down(A, i)
A: an array that stores a heap of size n
i: an index corresponding to a node of the heap
1. while i is not a leaf do
2. j ← left child of i // find child with larger key
3. if (i has right child and A[right child of i ].key > A[j].key)
4. j ← right child of i
5. if A[i ].key ≥ A[j].key break
6. swap A[j] and A[i ]
7. i ← j

Time: O(height of heap) = O(log n) (and this is tight).

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 14 / 27



delete-max in Heaps

fix-down(A, i)
A: an array that stores a heap of size n
i: an index corresponding to a node of the heap
1. while i is not a leaf do
2. j ← left child of i // find child with larger key
3. if (i has right child and A[right child of i ].key > A[j].key)
4. j ← right child of i
5. if A[i ].key ≥ A[j].key break
6. swap A[j] and A[i ]
7. i ← j

Time: O(height of heap) = O(log n) (and this is tight).

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 14 / 27



Priority Queue Realization Using Heaps

delete-max()
1. ℓ← last()
2. swap A[root()] and A[ℓ]
3. decrease size
4. fix-down(A, root(), size)
5. return A[ℓ]

Time: O(height of heap) = O(log n) (and this is tight).

Binary heap are a realization of priority queues where the operations insert
and delete-max take Θ(log n) time.

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 15 / 27



Priority Queue Realization Using Heaps

delete-max()
1. ℓ← last()
2. swap A[root()] and A[ℓ]
3. decrease size
4. fix-down(A, root(), size)
5. return A[ℓ]

Time: O(height of heap) = O(log n) (and this is tight).

Binary heap are a realization of priority queues where the operations insert
and delete-max take Θ(log n) time.

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 15 / 27



Outline

2 Priority Queues
Abstract Data Types
ADT Priority Queue
Binary Heaps as PQ realization
PQ-sort and heap-sort
Towards the Selection Problem

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025



Sorting using heaps
Recall: Any priority queue can be used to sort in time

O(initialization + n · insert + n · delete-max)

Using the binary-heaps implementation of PQs, we obtain:
PQ-sort-with-heaps(A)
1. initialize H to an empty heap
2. for i ← 0 to n − 1 do
3. H.insert(A[i ])
4. for i ← n − 1 down to 0 do
5. A[i ]← H.delete-max()

both operations run in O(log n) time for heaps
⇝ PQ-sort using heaps takes O(n log n) time (and this is tight).

Can improve this with two simple tricks → heap-sort
1 Can use the same array for input and heap. ⇝ O(1) auxiliary space!
2 Heaps can be built faster if we know all input in advance.

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 16 / 27



Sorting using heaps
Recall: Any priority queue can be used to sort in time

O(initialization + n · insert + n · delete-max)

Using the binary-heaps implementation of PQs, we obtain:
PQ-sort-with-heaps(A)
1. initialize H to an empty heap
2. for i ← 0 to n − 1 do
3. H.insert(A[i ])
4. for i ← n − 1 down to 0 do
5. A[i ]← H.delete-max()

both operations run in O(log n) time for heaps
⇝ PQ-sort using heaps takes O(n log n) time (and this is tight).

Can improve this with two simple tricks → heap-sort
1 Can use the same array for input and heap. ⇝ O(1) auxiliary space!
2 Heaps can be built faster if we know all input in advance.

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 16 / 27



Sorting using heaps
Recall: Any priority queue can be used to sort in time

O(initialization + n · insert + n · delete-max)

Using the binary-heaps implementation of PQs, we obtain:
PQ-sort-with-heaps(A)
1. initialize H to an empty heap
2. for i ← 0 to n − 1 do
3. H.insert(A[i ])
4. for i ← n − 1 down to 0 do
5. A[i ]← H.delete-max()

both operations run in O(log n) time for heaps
⇝ PQ-sort using heaps takes O(n log n) time (and this is tight).

Can improve this with two simple tricks → heap-sort
1 Can use the same array for input and heap. ⇝ O(1) auxiliary space!
2 Heaps can be built faster if we know all input in advance.

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 16 / 27



Building Heaps with fix-up
Problem: Given n items all at once (in A[0 · · · n − 1]) build a heap
containing all of them.

Solution 1: Start with an empty heap and insert items one at a time:

simple-heap-building(A)
A: an array
1. initialize H as an empty heap
2. for i ← 0 to A.size()− 1 do
3. H.insert(A[i ])

This corresponds to doing fix-ups
Worst-case running time: O(n log n) (and this is tight).

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 17 / 27



Building Heaps with fix-up
Problem: Given n items all at once (in A[0 · · · n − 1]) build a heap
containing all of them.

Solution 1: Start with an empty heap and insert items one at a time:

simple-heap-building(A)
A: an array
1. initialize H as an empty heap
2. for i ← 0 to A.size()− 1 do
3. H.insert(A[i ])

This corresponds to doing fix-ups
Worst-case running time: O(n log n) (and this is tight).

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 17 / 27



Building Heaps with fix-up
Problem: Given n items all at once (in A[0 · · · n − 1]) build a heap
containing all of them.

Solution 1: Start with an empty heap and insert items one at a time:

simple-heap-building(A)
A: an array
1. initialize H as an empty heap
2. for i ← 0 to A.size()− 1 do
3. H.insert(A[i ])

This corresponds to doing fix-ups
Worst-case running time: O(n log n) (and this is tight).

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 17 / 27



Building Heaps with fix-down
Problem: Given n items all at once (in A[0 · · · n − 1]) build a heap
containing all of them.

Solution 2: Using fix-downs instead:

heapify(A)
A: an array
1. n← A.size()
2. for i ← parent(last()) downto root() do
3. fix-down(A, i , n)

A careful analysis yields a worst-case complexity of Θ(n).
A heap can be built in linear time.

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 18 / 27



Building Heaps with fix-down
Problem: Given n items all at once (in A[0 · · · n − 1]) build a heap
containing all of them.

Solution 2: Using fix-downs instead:

heapify(A)
A: an array
1. n← A.size()
2. for i ← parent(last()) downto root() do
3. fix-down(A, i , n)

A careful analysis yields a worst-case complexity of Θ(n).
A heap can be built in linear time.

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 18 / 27



Building Heaps with fix-down
Problem: Given n items all at once (in A[0 · · · n − 1]) build a heap
containing all of them.

Solution 2: Using fix-downs instead:

heapify(A)
A: an array
1. n← A.size()
2. for i ← parent(last()) downto root() do
3. fix-down(A, i , n)

A careful analysis yields a worst-case complexity of Θ(n).
A heap can be built in linear time.

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 18 / 27



heapify example

A : 10
0

80
1

50
2

30
3

20
4

60
5

10
6

40
7

70
8

Corresponding tree:
10

80

30

40 70

20

50

60 10

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 19 / 27



heapify example

A : 10
0

80
1

50
2

30
3

20
4

60
5

10
6

40
7

70
8

Corresponding tree:
10

80

30
i = 3

40 70

20

50

60 10

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 19 / 27



heapify example

A : 10
0

80
1

50
2

70
3

20
4

60
5

10
6

40
7

30
8

Corresponding tree:
10

80

70
i = 3

40 30

20

50

60 10

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 19 / 27



heapify example

A : 10
0

80
1

50
2

70
3

20
4

60
5

10
6

40
7

30
8

Corresponding tree:
10

80

70

40 30

20

50
i = 2

60 10

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 19 / 27



heapify example

A : 10
0

80
1

60
2

70
3

20
4

50
5

10
6

40
7

30
8

Corresponding tree:
10

80

70

40 30

20

60
i = 2

50 10

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 19 / 27



heapify example

A : 10
0

80
1

60
2

70
3

20
4

10
6

40
7

30
8

Corresponding tree:
10

80
i = 1

70

40 30

20

60

50 10

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 19 / 27



heapify example

A : 10
0

80
1

60
2

70
3

20
4

10
6

40
7

30
8

Corresponding tree:
10

i = 0

80

70

40 30

20

60

50 10

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 19 / 27



heapify example

A : 80
0

10
1

60
2

70
3

20
4

10
6

40
7

30
8

Corresponding tree:
80

i = 0

10

70

40 30

20

60

50 10

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 19 / 27



heapify example

A : 80
0

70
1

60
2

10
3

20
4

10
6

40
7

30
8

Corresponding tree:
80

i = 0

70

10

40 30

20

60

50 10

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 19 / 27



heapify example

A : 80
0

60
2

40
3

20
4

10
6

10
7

30
8

Corresponding tree:
80

i = 0

70

40

10 30

20

60

50 10

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 19 / 27



Efficient sorting with heaps

Idea: PQ-sort with heaps.
O(1) auxiliary space: Use same input-array A for storing heap.

heap-sort(A)
1. // heapify
2. n← A.size()
3. for i ← parent(last()) downto 0 do
4. fix-down(A, i , n)

5. // repeatedly find maximum
6. while n > 1
7. // ‘delete’ maximum by moving to end and decreasing n
8. swap items at A[root()] and A[last()]
9. decrease n
10. fix-down(A, root(), n)

The for-loop takes Θ(n) time and the while-loop takes Θ(n log n) time.

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 24 / 27



heap-sort example

Continue with the example from heapify:

80

70

40

10 30

20

60

50 10

The array (i.e., the heap in level-by-level order) is now in sorted order.

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 25 / 27



heap-sort example

Continue with the example from heapify:

30

70

40

10 80

20

60

50 10

The array (i.e., the heap in level-by-level order) is now in sorted order.

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 25 / 27



heap-sort example

Continue with the example from heapify:

70

40

30

10 80

20

60

50 10

The array (i.e., the heap in level-by-level order) is now in sorted order.

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 25 / 27



heap-sort example

Continue with the example from heapify:

10

40

30

70 80

20

60

50 10

The array (i.e., the heap in level-by-level order) is now in sorted order.

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 25 / 27



heap-sort example

Continue with the example from heapify:

60

40

30

70 80

20

50

10 10

The array (i.e., the heap in level-by-level order) is now in sorted order.

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 25 / 27



heap-sort example

Continue with the example from heapify:

10

40

30

70 80

20

50

10 60

The array (i.e., the heap in level-by-level order) is now in sorted order.

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 25 / 27



heap-sort example

Continue with the example from heapify:

50

40

30

70 80

20

10

10 60

The array (i.e., the heap in level-by-level order) is now in sorted order.

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 25 / 27



heap-sort example

Continue with the example from heapify:

10

40

30

70 80

20

10

50 60

The array (i.e., the heap in level-by-level order) is now in sorted order.

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 25 / 27



heap-sort example

Continue with the example from heapify:

40

30

10

70 80

20

10

50 60

The array (i.e., the heap in level-by-level order) is now in sorted order.

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 25 / 27



heap-sort example

Continue with the example from heapify:

20

30

10

70 80

40

10

50 60

The array (i.e., the heap in level-by-level order) is now in sorted order.

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 25 / 27



heap-sort example

Continue with the example from heapify:

30

20

10

70 80

40

10

50 60

The array (i.e., the heap in level-by-level order) is now in sorted order.

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 25 / 27



heap-sort example

Continue with the example from heapify:

10

20

30

70 80

40

10

50 60

The array (i.e., the heap in level-by-level order) is now in sorted order.

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 25 / 27



heap-sort example

Continue with the example from heapify:

20

10

30

70 80

40

10

50 60

The array (i.e., the heap in level-by-level order) is now in sorted order.

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 25 / 27



heap-sort example

Continue with the example from heapify:

10

10

30

70 80

40

20

50 60

The array (i.e., the heap in level-by-level order) is now in sorted order.

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 25 / 27



heap-sort example

Continue with the example from heapify:

10

10

30

70 80

40

20

50 60

The array (i.e., the heap in level-by-level order) is now in sorted order.

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 25 / 27



Heap summary

Binary heap: A binary tree that satisfies structural property and
heap-order property.
Heaps are one possible realization of ADT PriorityQueue:

▶ insert takes time O(log n)
▶ delete-max takes time O(log n)
▶ Also supports findMax in time O(1)

A binary heap can be built in linear time.
PQ-sort with binary heaps leads to a sorting algorithm with O(n log n)
worst-case run-time (⇝ heap-sort)
We have seen here the max-oriented version of heaps (the maximum
priority is at the root).
There exists a symmetric min-oriented version that supports insert
and delete-min with the same run-times.

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 26 / 27



Outline

2 Priority Queues
Abstract Data Types
ADT Priority Queue
Binary Heaps as PQ realization
PQ-sort and heap-sort
Towards the Selection Problem

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025



Finding the smallest items

Problem: Find the kth smallest item in an array A of n numbers.

(Formally: kth smallest = the item that would be at A[k] if sorted.)

Solution 1: Make k passes through the array, deleting the minimum
number each time.
Complexity: Θ(kn).

Solution 2: Sort A, then return A[k].
Complexity: Θ(n log n).

Solution 3: Create a min-heap with heapify(A). Call delete-min(A) k+1
times.
Complexity: Θ(n + k log n).

We can achieve Θ(n log n) worst-case time easily, but can we do better?

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 27 / 27



Finding the smallest items

Problem: Find the kth smallest item in an array A of n numbers.

(Formally: kth smallest = the item that would be at A[k] if sorted.)

Solution 1: Make k (?) passes through the array, deleting the minimum
number each time.
Complexity: Θ(kn).

Solution 2: Sort A, then return A[k].
Complexity: Θ(n log n).

Solution 3: Create a min-heap with heapify(A). Call delete-min(A) k+1
times.
Complexity: Θ(n + k log n).

We can achieve Θ(n log n) worst-case time easily, but can we do better?

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 27 / 27



Finding the smallest items

Problem: Find the kth smallest item in an array A of n numbers.
(Formally: kth smallest = the item that would be at A[k] if sorted.)

Solution 1: Make k+1 passes through the array, deleting the minimum
number each time.
Complexity: Θ(kn).

Solution 2: Sort A, then return A[k].
Complexity: Θ(n log n).

Solution 3: Create a min-heap with heapify(A). Call delete-min(A) k+1
times.
Complexity: Θ(n + k log n).

We can achieve Θ(n log n) worst-case time easily, but can we do better?

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 27 / 27



Finding the smallest items

Problem: Find the kth smallest item in an array A of n numbers.
(Formally: kth smallest = the item that would be at A[k] if sorted.)

Solution 1: Make k+1 passes through the array, deleting the minimum
number each time.
Complexity: Θ(kn).

Solution 2: Sort A, then return A[k].
Complexity: Θ(n log n).

Solution 3: Create a min-heap with heapify(A). Call delete-min(A) k+1
times.
Complexity: Θ(n + k log n).

We can achieve Θ(n log n) worst-case time easily, but can we do better?

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 27 / 27



Finding the smallest items

Problem: Find the kth smallest item in an array A of n numbers.
(Formally: kth smallest = the item that would be at A[k] if sorted.)

Solution 1: Make k+1 passes through the array, deleting the minimum
number each time.
Complexity: Θ(kn).

Solution 2: Sort A, then return A[k].
Complexity: Θ(n log n).

Solution 3: Create a min-heap with heapify(A). Call delete-min(A) k+1
times.
Complexity: Θ(n + k log n).

We can achieve Θ(n log n) worst-case time easily, but can we do better?

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 27 / 27



Finding the smallest items

Problem: Find the kth smallest item in an array A of n numbers.
(Formally: kth smallest = the item that would be at A[k] if sorted.)

Solution 1: Make k+1 passes through the array, deleting the minimum
number each time.
Complexity: Θ(kn).

Solution 2: Sort A, then return A[k].
Complexity: Θ(n log n).

Solution 3: Create a min-heap with heapify(A). Call delete-min(A) k+1
times.
Complexity: Θ(n + k log n).

We can achieve Θ(n log n) worst-case time easily, but can we do better?

O.Veksler (CS-UW) CS240 – Module 2 Winter 2025 27 / 27


	Priority Queues
	Abstract Data Types
	Abstract Data Types (review)
	ADT Stack (review)
	ADT Queue (review)

	ADT Priority Queue
	ADT Priority Queue
	Using a Priority Queue to Sort
	Example Binary Tree and Heap
	Heaps – Definition
	Storing Heaps in Arrays
	Heaps in Arrays – Navigation

	Binary Heaps as PQ realization
	insert in Heaps
	insert in Heaps
	delete-max in Heaps
	delete-max in Heaps
	Priority Queue Realization Using Heaps

	PQ-sort and heap-sort
	Sorting using heaps
	Building Heaps with fix-up 
	Building Heaps with fix-down 
	heapify example
	Heapify-proof
	Proof continued...
	Proof continued...
	Proof continued...
	Efficient sorting with heaps
	heap-sort example
	Heap summary

	Towards the Selection Problem
	Finding the smallest items



