CS 240 – Data Structures and Data Management

Module 3: Sorting, Average-case and Randomization

Olga Veksler

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2025

version 2025-01-20 11:34

Outline

3 Sorting, Average-case and Randomization

- Analyzing average-case run-time
- Randomized Algorithms
- SELECTION and quick-select
- SORTING and quick-sort
- Lower Bound for Comparison-Based Sorting
- Non-Comparison-Based Sorting

Outline

3 Sorting, Average-case and Randomization

• Analyzing average-case run-time

- Randomized Algorithms
- SELECTION and quick-select
- SORTING and *quick-sort*
- Lower Bound for Comparison-Based Sorting
- Non-Comparison-Based Sorting

Average-case analysis

We will introduce (and solve) a new problem, and then analyze the *average-case run-time* of our algorithm.

Average-case analysis

We will introduce (and solve) a new problem, and then analyze the *average-case run-time* of our algorithm.

Recall definition of average-case run-time:

$$T_{\mathcal{A}}^{\text{avg}}(n) = \sum_{\text{instance } I \text{ of size } n} T_{\mathcal{A}}(I) \cdot (\text{relative frequency of } I)$$

Average-case analysis

We will introduce (and solve) a new problem, and then analyze the *average-case run-time* of our algorithm.

Recall definition of average-case run-time:

 $T_{\mathcal{A}}^{\text{avg}}(n) = \sum_{\text{instance } I \text{ of size } n} T_{\mathcal{A}}(I) \cdot (\text{relative frequency of } I)$

For this module:

- Assume that the set *I_n* of size-*n* instances is finite (or can be mapped to a finite set in a natural way)
- Assume that all instances occur equally frequently

Then we can use the following simplified formula

$$T^{\text{avg}}(n) = \frac{\sum_{I:\text{size}(I)=n} T(I)}{\#\text{instances of size } n} = \frac{1}{|\mathcal{I}_n|} \sum_{I \in \mathcal{I}_n} T(I)$$

To learn how to analyze this, we will do simpler examples first.

silly-test(π , n) π : a permutation of $\{0, \ldots, n-1\}$, stored as an array 1. **if** $\pi[0] = 0$ **then for** $j \leftarrow 1$ to n **do** print 'bad case' 2. **else** print 'good case'

$$T^{\operatorname{avg}}(n) = \frac{1}{n!} \sum_{\pi \in \Pi_n} T(\pi) = \frac{1}{n!} \Big(\sum_{\substack{\pi \in \Pi_n \\ \text{in bad case}}} T(\pi) + \sum_{\substack{\pi \in \Pi_n \\ \text{in good case}}} T(\pi) \Big)$$

silly-test(π , n) π : a permutation of $\{0, \ldots, n-1\}$, stored as an array 1. **if** $\pi[0] = 0$ **then for** $j \leftarrow 1$ to n **do** print 'bad case' 2. **else** print 'good case'

$$T^{\operatorname{avg}}(n) = \frac{1}{n!} \sum_{\pi \in \Pi_n} T(\pi) = \frac{1}{n!} \Big(\sum_{\substack{\pi \in \Pi_n \\ \text{in bad case}}} T(\pi) + \sum_{\substack{\pi \in \Pi_n \\ \text{in good case}}} T(\pi) \Big)$$

bad case ⇒ run-time ≤ c · n
good case ⇒ run-time < c

(for some constant c > 0)

O.Veksler (CS-UW)

silly-test (π, n) π : a permutation of $\{0, \ldots, n-1\}$, stored as an array 1. if $\pi[0] = 0$ then for $j \leftarrow 1$ to n do print 'bad case' 2. else print 'good case'

$$T^{\operatorname{avg}}(n) = \frac{1}{n!} \sum_{\pi \in \Pi_n} T(\pi) = \frac{1}{n!} \Big(\sum_{\substack{\pi \in \Pi_n \\ \text{in bad case}}} T(\pi) + \sum_{\substack{\pi \in \Pi_n \\ \text{in good case}}} T(\pi) \Big)$$

bad case ⇒ run-time ≤ c · n
good case ⇒ run-time < c

(for some constant c > 0)

$$T^{\operatorname{avg}}(n) \leq \frac{1}{n!} \Big(\underbrace{\#\{\pi \in \Pi_n \text{ in bad case}\}}_{\cdot cn} \cdot cn + \underbrace{\#\{\pi \in \Pi_n \text{ in good case}\}}_{\cdot c} \cdot c \Big)$$

silly-test (π, n) π : a permutation of $\{0, \ldots, n-1\}$, stored as an array 1. if $\pi[0] = 0$ then for $j \leftarrow 1$ to n do print 'bad case' 2. else print 'good case'

$$T^{\operatorname{avg}}(n) = \frac{1}{n!} \sum_{\pi \in \Pi_n} T(\pi) = \frac{1}{n!} \Big(\sum_{\substack{\pi \in \Pi_n \\ \text{in bad case}}} T(\pi) + \sum_{\substack{\pi \in \Pi_n \\ \text{in good case}}} T(\pi) \Big)$$

bad case ⇒ run-time ≤ c · n
good case ⇒ run-time < c

(for some constant c > 0)

$$T^{\operatorname{avg}}(n) \leq \frac{1}{n!} \Big(\underbrace{\#\{\pi \in \Pi_n \text{ in bad case}\}}_{(n-1)!} \cdot cn + \underbrace{\#\{\pi \in \Pi_n \text{ in good case}\}}_{\leq n!} \cdot c \Big)$$

3 / 46

silly-test(π , n) π : a permutation of $\{0, \ldots, n-1\}$, stored as an array 1. **if** $\pi[0] = 0$ **then for** $j \leftarrow 1$ to n **do** print 'bad case' 2. **else** print 'good case'

$$T^{\operatorname{avg}}(n) = \frac{1}{n!} \sum_{\pi \in \Pi_n} T(\pi) = \frac{1}{n!} \Big(\sum_{\substack{\pi \in \Pi_n \\ \text{in bad case}}} T(\pi) + \sum_{\substack{\pi \in \Pi_n \\ \text{in good case}}} T(\pi) \Big)$$

bad case ⇒ run-time ≤ c · n
good case ⇒ run-time < c

(for some constant c > 0)

$$T^{\operatorname{avg}}(n) \leq \frac{1}{n!} \left(\underbrace{\#\{\pi \in \Pi_n \text{ in bad case}\}}_{(n-1)!} \cdot cn + \underbrace{\#\{\pi \in \Pi_n \text{ in good case}\}}_{\leq n!} \cdot c \right)$$
$$\leq \frac{1}{n!} \left((n-1)! \cdot cn + n! \cdot c \right) = \frac{1}{n} cn + c = 2c \in O(1)$$

A second (not-so-contrived) recursive example

all-0-test(w, n) // test whether all entries of bitstring w[0..n-1] are 0 1. if (n = 0) return true 2. if (w[n-1] = 1) return false 3. all-0-test(w, n-1)

(In real life, you would write this non-recursive.)

Define T(w) = # bit-comparisons (i.e., line 2) on input w. This is asymptotically the same as the run-time.

Worst-case run-time: Always go into the recursion until n = 0. $T(n) = 1 + T(n-1) = 1 + 1 + \dots + T(0) = n \in \Theta(n)$.

A second (not-so-contrived) recursive example

all-0-test(w, n) // test whether all entries of bitstring w[0..n-1] are 0 1. if (n = 0) return true 2. if (w[n-1] = 1) return false 3. all-0-test(w, n-1)

(In real life, you would write this non-recursive.)

Define T(w) = # bit-comparisons (i.e., line 2) on input w. This is asymptotically the same as the run-time.

Worst-case run-time: Always go into the recursion until n = 0. $T(n) = 1 + T(n-1) = 1 + 1 + \dots + T(0) = n \in \Theta(n)$.

Best-case run-time: Return immediately. $T(n) = 1 \in \Theta(1)$.

Average-case run-time?

-1

$$T^{\operatorname{avg}}(n) = \frac{1}{|\mathcal{B}_n|} \sum_{w \in \mathcal{B}_n} T(w).$$
 $(\mathcal{B}_n = \{ \text{bitstrings of length } n \}, |\mathcal{B}_n| = 2^n)$

Recursive formula for one non-empty bitstring w:

$$T(w) = \begin{cases} 1 & \text{if } w[n-1] = 1\\ 1 + T(\underbrace{w[0..n-2]}_{\text{length } n-1}) & \text{otherwise} \end{cases}$$

$$T^{\operatorname{avg}}(n) = \frac{1}{|\mathcal{B}_n|} \sum_{w \in \mathcal{B}_n} T(w).$$
 $(\mathcal{B}_n = \{ \text{bitstrings of length } n \}, |\mathcal{B}_n| = 2^n)$

Recursive formula for one non-empty bitstring w:

$$T(w) = \begin{cases} 1 & \text{if } w[n-1] = 1\\ 1 + T(\underbrace{w[0..n-2]}_{\text{length } n-1}) & \text{otherwise} \end{cases}$$

Natural guess for the recursive formula for $T^{avg}(n)$:

$$T^{\operatorname{avg}}(n) = \underbrace{\frac{1}{2}}_{\substack{\text{half have}\\w[n-1]=1}} \cdot 1 + \underbrace{\frac{1}{2}}_{\substack{\text{half have}\\w[n-1]=0}} (1 + T^{???}(n-1))$$

$$T^{\operatorname{avg}}(n) = \frac{1}{|\mathcal{B}_n|} \sum_{w \in \mathcal{B}_n} T(w).$$
 $(\mathcal{B}_n = \{ \text{bitstrings of length } n \}, |\mathcal{B}_n| = 2^n)$

Recursive formula for one non-empty bitstring w:

$$T(w) = \begin{cases} 1 & \text{if } w[n-1] = 1\\ 1 + T(\underbrace{w[0..n-2]}_{\text{length } n-1}) & \text{otherwise} \end{cases}$$

Natural guess for the recursive formula for $T^{\text{avg}}(n)$:

$$T^{\operatorname{avg}}(n) = \underbrace{\frac{1}{2}}_{\substack{\text{half have} \\ w[n-1]=1 \ensuremath{}}} \cdot 1 + \underbrace{\frac{1}{2}}_{\substack{\text{half have} \\ w[n-1]=0 \ensuremath{}}} (1 + T^{???}(n-1))$$

- This holds with \leq (but is useless) if '???' is 'worst'.
- This is *not obvious* if '???' is 'avg'.

$$T^{\operatorname{avg}}(n) = rac{1}{|\mathcal{B}_n|} \sum_{w \in \mathcal{B}_n} T(w)$$

$$=1+rac{1}{2}T^{\mathrm{avg}}(n-1)$$

Easy induction proof: $T^{avg}(n) \leq 2 \in O(1)$.

O.Veksler (CS-UW)

CS240 – Module 3

Average-case analysis and recursions

Why can't we always write 'avg' for '???' in $T^{avg}(n) = 1 + \frac{1}{2}T^{???}(n-1)$? Consider the following (contrived) example:

silly-all-0-test(w, n)
w: array of size at least n that stores bits
1. if
$$(n = 0)$$
 then return true
2. if $(w[n-1] = 1)$ then return false
3. if $(n > 1)$ then $w[n-2] \leftarrow 0$ // this is the only change
4. silly-all-0-test(w, n-1)

Average-case analysis and recursions

Why can't we always write 'avg' for '???' in $T^{\text{avg}}(n) = 1 + \frac{1}{2}T^{???}(n-1)$? Consider the following (contrived) example:

silly-all-0-test(w, n)
w: array of size at least n that stores bits
1. if
$$(n = 0)$$
 then return true
2. if $(w[n-1] = 1)$ then return false
3. if $(n > 1)$ then $w[n-2] \leftarrow 0$ // this is the only change
4. silly-all-0-test(w, n-1)

• Only one more line of code in each recursion, so same formula applies.

• But observe that now
$$T(w) = \begin{cases} 1 & \text{if } w[n-1] = 1 \\ n & \text{if } w[n-1] = 0 \end{cases}$$
.

Average-case analysis and recursions

Why can't we always write 'avg' for '???' in $T^{avg}(n) = 1 + \frac{1}{2}T^{???}(n-1)$? Consider the following (contrived) example:

silly-all-0-test(w, n)
w: array of size at least n that stores bits
1. if
$$(n = 0)$$
 then return true
2. if $(w[n-1] = 1)$ then return false
3. if $(n > 1)$ then $w[n-2] \leftarrow 0$ // this is the only change
4. silly-all-0-test(w, n-1)

• Only one more line of code in each recursion, so same formula applies.

• But observe that now
$$T(w) = \begin{cases} 1 & \text{if } w[n-1] = 1 \\ n & \text{if } w[n-1] = 0 \end{cases}$$
.

• So $T^{\text{avg}}(n) = 1 + \frac{n}{2} \in \Theta(n)$. The "obvious" recursion did not hold.

Average-case analysis is highly non-trivial for recursive algorithms.

O.Veksler (CS-UW)

Outline

3 Sorting, Average-case and Randomization

- Analyzing average-case run-time
- Randomized Algorithms
- SELECTION and quick-select
- SORTING and *quick-sort*
- Lower Bound for Comparison-Based Sorting
- Non-Comparison-Based Sorting

Randomized algorithms

• A randomized algorithm is one which relies on some random numbers in addition to the input.

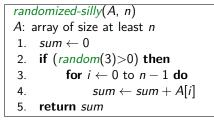
Computers cannot generate randomness. We assume that there exists a *pseudo-random number generator (PRNG)*, a deterministic program that uses an initial value or *seed* to generate a sequence of seemingly random numbers. The quality of randomized algorithms depends on the quality of the PRNG!

```
randomized-silly(A, n)A: array of size at least n1. sum \leftarrow 02. if (random(3)>0) then3. for i \leftarrow 0 to n-1 do4. sum \leftarrow sum + A[i]5. return sum
```

Randomized algorithms

• A randomized algorithm is one which relies on some random numbers in addition to the input.

Computers cannot generate randomness. We assume that there exists a *pseudo-random number generator (PRNG)*, a deterministic program that uses an initial value or *seed* to generate a sequence of seemingly random numbers. The quality of randomized algorithms depends on the quality of the PRNG!



We assume the existence of a function random(n) that returns an integer uniformly from {0, 1, 2, ..., n-1}. So Pr(random(3)=0) = ¹/₃.

Expected run-time

The run-time of the algorithm now depends on the random numbers, as well as the input.

Define $T_{\mathcal{A}}(I, R)$ to be the run-time of a randomized algorithm \mathcal{A} for an instance I and the sequence R of outcomes of random trials.

The **expected run-time** $T^{exp}(I)$ for instance *I* is the expected value:

$$T^{\exp}(I) = \mathbf{E}[T(I,R)] = \sum_{R} T(I,R) \cdot \Pr(R)$$

Expected run-time

The run-time of the algorithm now depends on the random numbers, as well as the input.

Define $T_{\mathcal{A}}(I, R)$ to be the run-time of a randomized algorithm \mathcal{A} for an instance I and the sequence R of outcomes of random trials.

The expected run-time $T^{exp}(I)$ for instance *I* is the expected value:

$$T^{\exp}(I) = \mathbf{E}[T(I,R)] = \sum_{R} T(I,R) \cdot \Pr(R)$$

Now take the *maximum* over all instances of size *n* to define the **expected run-time** (or formally: *worst-instance expected-luck run-time*) of A.

$$T^{\exp}(n) := \max_{l \in \mathcal{I}_n} T^{\exp}(l)$$

Expected run-time

The run-time of the algorithm now depends on the random numbers, as well as the input.

Define $T_{\mathcal{A}}(I, R)$ to be the run-time of a randomized algorithm \mathcal{A} for an instance I and the sequence R of outcomes of random trials.

The expected run-time $T^{exp}(I)$ for instance *I* is the expected value:

$$T^{\exp}(I) = \mathbf{E}[T(I,R)] = \sum_{R} T(I,R) \cdot \Pr(R)$$

Now take the *maximum* over all instances of size *n* to define the **expected run-time** (or formally: *worst-instance expected-luck run-time*) of A.

$$T^{\exp}(n) := \max_{l \in \mathcal{I}_n} T^{\exp}(l)$$

We can still have good luck or bad luck, so occasionally we also discuss the very worst that could happen, i.e., $\max_{I} \max_{R} T(I, R)$.

O.Veksler (CS-UW)

CS240 – Module

Expected run-time example

$$T^{\exp}(A) = \sum_{R} Pr(R) \cdot T(A, R)$$

- Here only one random outcome: $Pr(0) = Pr(1) = Pr(2) = \frac{1}{3}$
- If outcome is 0: O(1) time, say c time units (for some constant c)
- If outcome is 1 or 2: O(n) time, say *cn* time units
- $T^{\exp}(A) = \frac{1}{3}c + \frac{1}{3}cn + \frac{1}{3}cn \in \Theta(n)$
- All instances have the same expected run-time, so $\mathcal{T}^{\mathrm{exp}}(n)\in\Theta(n)$

Why Randomized Algorithms?

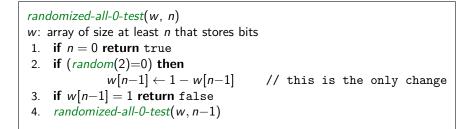
- Doing randomization is often a good idea if an algorithm has bad worst-case time but seems to perform much better on most instances.
- **Goal:** Shift the dependency of run-time from what we can't control (the input) to what we *can* control (the random numbers). *No more bad instances, just unlucky numbers.*
- Not all randomizations achieve this automatically; it must be proved.

Why Randomized Algorithms?

- Doing randomization is often a good idea if an algorithm has bad worst-case time but seems to perform much better on most instances.
- **Goal:** Shift the dependency of run-time from what we can't control (the input) to what we *can* control (the random numbers). *No more bad instances, just unlucky numbers.*
- Not all randomizations achieve this automatically; it must be proved.

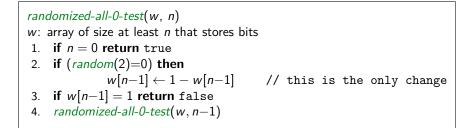
• Doing randomization can also (with restrictions) be used to bound the avg-case run-time.

Randomizations of algorithms



This is *all-0-test*, except that we flip last bit based on a coin toss.

Randomizations of algorithms



This is *all-0-test*, except that we flip last bit based on a coin toss.

In each recursion, we use the outcome $x \in \{0, 1\}$ of one coin toss. We return without recursing if x = w[n-1] (this has probability $\frac{1}{2}$).

Let T(w, R) be the # of bit-comparisons used on input w if the random outcomes are R.

- The random outcomes *R* consist of two parts $R = \langle x, R' \rangle$:
 - x: outcome of first coin toss
 - ► *R*': random outcomes (if any) for the recursions

We have $Pr(R) = Pr(x) \cdot Pr(R')$ (random choices are independent).

Let T(w, R) be the # of bit-comparisons used on input w if the random outcomes are R.

- The random outcomes *R* consist of two parts $R = \langle x, R' \rangle$:
 - x: outcome of first coin toss
 - ► R': random outcomes (if any) for the recursions

We have $Pr(R) = Pr(x) \cdot Pr(R')$ (random choices are independent).

• Recursive formula for one instance:

$$T(w,R) = T(w,\langle x,R'
angle) = \left\{egin{array}{cc} 1 & ext{if } x = w[n-1] \ 1 + T(w[0..n-2],R') & ext{otherwise} \end{array}
ight.$$

Let T(w, R) be the # of bit-comparisons used on input w if the random outcomes are R.

- The random outcomes R consist of two parts $R = \langle x, R' \rangle$:
 - x: outcome of first coin toss
 - ► R': random outcomes (if any) for the recursions

We have $Pr(R) = Pr(x) \cdot Pr(R')$ (random choices are independent).

• Recursive formula for one instance:

$$T(w,R) = T(w,\langle x,R'
angle) = \left\{egin{array}{cc} 1 & ext{if } x = w[n-1] \ 1 + T(w[0..n-2],R') & ext{otherwise} \end{array}
ight.$$

• Natural guess for the recursive formula for $T^{exp}(n)$:

$$T^{\exp}(n) = \underbrace{\frac{1}{2}}_{\Pr(x=w[n-1])} \cdot 1 + \underbrace{\frac{1}{2}}_{\Pr(x\neq w[n-1])} (1 + T^{\exp}(n-1)) = 1 + \frac{1}{2} T^{\exp}(n-1)$$

In contrast to average-case analysis, the natural guess usually is correct for the expected run-time.

Proof for randomized-all-0-test:

$$T^{\exp}(w) = \sum_{R} \Pr(R)T(w,R) =$$

In contrast to average-case analysis, the natural guess usually is correct for the expected run-time.

Proof for randomized-all-0-test:

$$T^{\exp}(w) = \sum_{R} \Pr(R)T(w,R) = \sum_{x} \sum_{R'} \Pr(x)\Pr(R')T(w,\langle x,R'\rangle)$$

=

In contrast to average-case analysis, the natural guess usually is correct for the expected run-time.

Proof for randomized-all-0-test:

$$T^{\exp}(w) = \sum_{R} \Pr(R)T(w,R) = \sum_{x} \sum_{R'} \Pr(x)\Pr(R')T(w,\langle x,R'\rangle)$$

=

Therefore
$$T^{\exp}(n) = \max_{w \in \mathcal{B}_n} T^{\exp}(w) \le 1 + \frac{1}{2}T^{\exp}(n-1)$$

O.Veksler (CS-UW)

- We had $T^{\exp}_{\textit{rand-all-0-test}}(n) \leq 1 + rac{1}{2}T^{\exp}_{\textit{rand-all-0-test}}(n-1)$
- We earlier had $T_{\textit{all-0-test}}^{\text{avg}}(n) \le 1 + \frac{1}{2} T_{\textit{all-0-test}}^{\text{avg}}(n-1)$
- Same recursion \Rightarrow same upper bound $\Rightarrow T_{rand-all-0-test}^{exp}(n) \in O(1)$.

- We had $T^{\exp}_{\textit{rand-all-0-test}}(n) \leq 1 + rac{1}{2}T^{\exp}_{\textit{rand-all-0-test}}(n-1)$
- We earlier had $T^{\text{avg}}_{\textit{all-0-test}}(n) \leq 1 + \frac{1}{2}T^{\text{avg}}_{\textit{all-0-test}}(n-1)$
- Same recursion \Rightarrow same upper bound $\Rightarrow T_{rand-all-0-test}^{exp}(n) \in O(1)$.

Recall: randomized-all-0-test was very similar to all-0-test (The only different was a random bitflip.)

Is it a coincidence that the two recursive formulas are the same?

Or does the expected time of a randomized version always have something to do with the average-case time?

- We had $T^{\mathrm{exp}}_{\mathit{rand-all-0-test}}(\mathit{n}) \leq 1 + rac{1}{2}T^{\mathrm{exp}}_{\mathit{rand-all-0-test}}(\mathit{n}{-1})$
- We earlier had $T^{\mathrm{avg}}_{\mathit{all-0-test}}(n) \leq 1 + rac{1}{2}T^{\mathrm{avg}}_{\mathit{all-0-test}}(n-1)$
- Same recursion \Rightarrow same upper bound $\Rightarrow T_{rand-all-0-test}^{exp}(n) \in O(1)$.

Recall: randomized-all-0-test was very similar to all-0-test (The only different was a random bitflip.)

Is it a coincidence that the two recursive formulas are the same?

Or does the expected time of a randomized version always have something to do with the average-case time?

- Not in general! (It depends how we randomize.)
- Yes if the randomization is a *shuffle* (choose instance randomly).

Consider the following randomization of a deterministic algorithm \mathcal{A} .

shuffle- $\mathcal{A}(n)$ 1. Among all instances \mathcal{I}_n of size n for \mathcal{A} , choose I randomly 2. $\mathcal{A}(I)$

(*shuffle-A* usually does not solve what A solves)

Consider the following randomization of a deterministic algorithm \mathcal{A} .

shuffle- $\mathcal{A}(n)$ 1. Among all instances \mathcal{I}_n of size *n* for \mathcal{A} , choose *l* randomly 2. $\mathcal{A}(l)$

(*shuffle-A* usually does not solve what A solves)

• If we do not count the time for line 1:

$$T_{\mathcal{A}}^{\mathrm{avg}}(n) = \frac{1}{|\mathcal{I}_n|} \sum_{I \in \mathcal{I}_n} T(I) = \sum_{I \in \mathcal{I}_n} Pr(I \text{ chosen}) \cdot T(I) = T_{shuffle-\mathcal{A}}^{\mathrm{exp}}(n)$$

Consider the following randomization of a deterministic algorithm \mathcal{A} .

shuffle- $\mathcal{A}(n)$ 1. Among all instances \mathcal{I}_n of size n for \mathcal{A} , choose l randomly 2. $\mathcal{A}(l)$

(*shuffle-A* usually does not solve what \overline{A} solves)

• If we do not count the time for line 1:

$$T_{\mathcal{A}}^{\mathrm{avg}}(n) = \frac{1}{|\mathcal{I}_n|} \sum_{I \in \mathcal{I}_n} T(I) = \sum_{I \in \mathcal{I}_n} \Pr(I \text{ chosen}) \cdot T(I) = T_{shuffle-\mathcal{A}}^{\mathrm{exp}}(n)$$

- So the average-case run-time of A is the same as this **run-time of** A **on randomly chosen input**.
- This gives us a different way to compute $T_{\mathcal{A}}^{\text{avg}}(n)$.

Example: *all-0-test* (rephrased with for-loops):

shuffle-all-0-test(n)
1. for
$$(i \leftarrow n-1; i \ge 0; i--)$$
 do
2. $w[i] \leftarrow random(2)$
3. for $(i \leftarrow n-1; i \ge 0; i--)$ do
4. if $(w[i] = 1)$ return false
5. return true

randomized-all-0-test(w, n)
1. for
$$(i \leftarrow n-1; i \ge 0; i--)$$
 do
2. if $(random(2)=0)$ then
 $w[i] \leftarrow 1 - w[i]$
3. if $(w[i] = 1)$ return false
4. return true

Example: *all-0-test* (rephrased with for-loops):

shuffle-all-0-test(n)		
1. for $(i \leftarrow n-1; i \ge 0; i)$ do		
2. $w[i] \leftarrow random(2)$		
3. for $(i \leftarrow n-1; i \ge 0; i)$ do		
4. if $(w[i] = 1)$ return false		
5. return true		

randomized-all-0-test
$$(w, n)$$

1. for $(i \leftarrow n-1; i \ge 0; i--)$ do
2. if $(random(2)=0)$ then
 $w[i] \leftarrow 1 - w[i]$
3. if $(w[i] = 1)$ return false
4. return true

- These algorithms are not quite the same.
 - Randomization outside respectively inside the for-loop.
- But this does not matter for the expected number of bit-comparisons.
 - Either way, at time of comparison the bit is 1 with probability $\frac{1}{2}$.

Example: *all-0-test* (rephrased with for-loops):

shuffle-all-0-test(n)		
1. for $(i \leftarrow n-1; i \ge 0; i)$ do		
2. $w[i] \leftarrow random(2)$		
3. for $(i \leftarrow n-1; i \ge 0; i)$ do		
4. if $(w[i] = 1)$ return false		
5. return true		

randomized-all-0-test
$$(w, n)$$

1. for $(i \leftarrow n-1; i \ge 0; i--)$ do
2. if $(random(2)=0)$ then
 $w[i] \leftarrow 1 - w[i]$
3. if $(w[i] = 1)$ return false
4. return true

- These algorithms are not quite the same.
 - Randomization outside respectively inside the for-loop.
- But this does not matter for the expected number of bit-comparisons.
 - Either way, at time of comparison the bit is 1 with probability ¹/₂.

• So
$$\mathcal{T}^{\mathrm{avg}}_{\mathit{all-0-test}}(n) = \mathcal{T}^{\mathrm{exp}}_{\mathit{shuffle-all-0-test}}(n) = \mathcal{T}^{\mathrm{exp}}_{\mathit{rand-all-0-test}}(n) \in O(1)$$

can be deduced without analyzing $T_{all-0-test}^{avg}(n)$ directly.

O.Veksler (CS-UW)

Summary: Average-case run-time vs. expected run-time

So: are average-case run-time and expected run-time the same?

Summary: Average-case run-time vs. expected run-time

So: are average-case run-time and expected run-time the same?

No!

average-case run-time	expected run-time
$\frac{1}{ \mathcal{I}_n }\sum_{I\in\mathcal{I}_n}T(I)$	$\max_{I \in \mathcal{I}_n} \sum_{\text{outcomes } R} \Pr(R) \cdot T(I, R)$
average over instances	weighted average over random outcomes
(usually) applied to a deterministic algorithm	applied only to a randomized algorithm

Summary: Average-case run-time vs. expected run-time

So: are average-case run-time and expected run-time the same?

No!

average-case run-time	expected run-time
$\frac{1}{ \mathcal{I}_n }\sum_{I\in\mathcal{I}_n}T(I)$	$\max_{I \in \mathcal{I}_n} \sum_{\text{outcomes } R} \Pr(R) \cdot T(I, R)$
average over instances	weighted average over random outcomes
(usually) applied to a deterministic algorithm	applied only to a randomized algorithm

There is a relationship *only* if the randomization effectively achieves "choose the input instance randomly".

O.Veksler (CS-UW)

CS240 - Module 3

Outline

3 Sorting, Average-case and Randomization

- Analyzing average-case run-time
- Randomized Algorithms

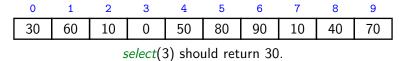
• SELECTION and quick-select

- SORTING and *quick-sort*
- Lower Bound for Comparison-Based Sorting
- Non-Comparison-Based Sorting

The $\operatorname{Selection}$ Problem

We saw SELECTION: Given an array A of n numbers, and $0 \le k < n$, find the element that would be at position k of the sorted array.

(We also call this the element of rank k.)



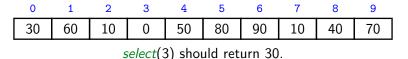
SELECTION can be done with heaps in time $\Theta(n + k \log n)$.

Special case: MEDIANFINDING = SELECTION with $k = \lfloor \frac{n}{2} \rfloor$. With previous approaches, this takes time $\Theta(n \log n)$, no better than sorting.

The $\operatorname{Selection}$ Problem

We saw SELECTION: Given an array A of n numbers, and $0 \le k < n$, find the element that would be at position k of the sorted array.

(We also call this the element of rank k.)



SELECTION can be done with heaps in time $\Theta(n + k \log n)$.

Special case: MEDIANFINDING = SELECTION with $k = \lfloor \frac{n}{2} \rfloor$. With previous approaches, this takes time $\Theta(n \log n)$, no better than sorting.

Question: Can we do selection in linear time? Yes! We will develop algorithm *quick-select* below.

The encountered sub-routines will also be useful otherwise.

quick-select and the related quick-sort rely on two subroutines:

choose-pivot(A): Return an index p in A. We will use the pivot-value v ← A[p] to rearrange the array.

quick-select and the related quick-sort rely on two subroutines:

- choose-pivot(A): Return an index p in A. We will use the pivot-value v ← A[p] to rearrange the array.
 - For now simply use p = A.size 1, so v is rightmost item
 - We will consider more sophisticated ideas later on.

quick-select and the related quick-sort rely on two subroutines:

- choose-pivot(A): Return an index p in A. We will use the pivot-value v ← A[p] to rearrange the array.
 - For now simply use p = A.size 1, so v is rightmost item
 - We will consider more sophisticated ideas later on.
- *partition*(*A*, *p*): Rearrange *A* and return **pivot-rank** *i* so that
 - the pivot-value v is in A[i],
 - ▶ all items in A[0, ..., i-1] are $\leq v$, and
 - all items in $A[i+1, \ldots, n-1]$ are $\geq v$.

$$A \qquad \leq v \qquad |v| \geq v \\ i$$

Easy to implement so that it uses at most n key-comparisons.

quick-select and the related *quick-sort* rely on two subroutines:

- choose-pivot(A): Return an index p in A. We will use the pivot-value v ← A[p] to rearrange the array.
 - For now simply use p = A.size 1, so v is rightmost item
 - We will consider more sophisticated ideas later on.
- *partition*(*A*, *p*): Rearrange *A* and return **pivot-rank** *i* so that
 - the pivot-value v is in A[i],
 - ▶ all items in A[0, ..., i-1] are $\leq v$, and
 - all items in $A[i+1, \ldots, n-1]$ are $\geq v$.

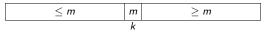
$$A \qquad \leq v \qquad |v| \geq v \\ i$$

Easy to implement so that it uses at most n key-comparisons.

- *p* = index of pivot-value before *partition* (we choose it)
 - i = index of pivot-value after *partition* (no control)

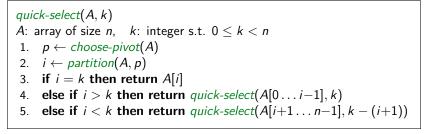
quick-select Algorithm

Goal: Find element *m* of rank *k* by rearranging *A*:



Recall: *partition* method achieves

Where is *m* if i = k? If i < k? If i > k?



Let T(A, k) be the number of key-comparisons for *quick-select*(A, k). Write A' for rearranged A after *partition*, and *i* for the pivot-rank.

$$T(A, k) = \begin{cases} n & \text{if } i = k \\ n + T(A'[0..i-1], k) & \text{if } i > k \quad (\text{sub-array has size } i) \\ n + T(A'[i+1..n-1], k-i-1) & \text{if } i < k \quad (\dots \text{size } n-i-1) \end{cases}$$

Let T(A, k) be the number of key-comparisons for quick-select(A, k). Write A' for rearranged A after *partition*, and *i* for the pivot-rank.

$$T(A, k) = \begin{cases} n & \text{if } i = k \\ n + T(A'[0..i-1], k) & \text{if } i > k \quad (\text{sub-array has size } i) \\ n + T(A'[i+1..n-1], k-i-1) & \text{if } i < k \quad (\dots \text{size } n-i-1) \end{cases}$$

Worst-case run-time:

- Sub-array always gets smaller, so $\leq n$ recursions $\Rightarrow O(n^2)$ time.
- This is tight: If pivot-rank is always n-1 and k=0 $T^{\text{worst}}(n,0) \ge n + (n-1) + (n-2) + \dots + 1 \in \Omega(n^2)$

Let T(A, k) be the number of key-comparisons for quick-select(A, k). Write A' for rearranged A after *partition*, and *i* for the pivot-rank.

$$T(A, k) = \begin{cases} n & \text{if } i = k \\ n + T(A'[0..i-1], k) & \text{if } i > k \quad (\text{sub-array has size } i) \\ n + T(A'[i+1..n-1], k-i-1) & \text{if } i < k \quad (\dots \text{size } n-i-1) \end{cases}$$

Worst-case run-time:

- Sub-array always gets smaller, so $\leq n$ recursions $\Rightarrow O(n^2)$ time.
- This is tight: If pivot-rank is always n-1 and k=0 $T^{\text{worst}}(n,0) \ge n + (n-1) + (n-2) + \dots + 1 \in \Omega(n^2)$

Best-case run-time: $\Theta(n)$ if i = k in first round.

Let T(A, k) be the number of key-comparisons for quick-select(A, k). Write A' for rearranged A after *partition*, and *i* for the pivot-rank.

$$T(A, k) = \begin{cases} n & \text{if } i = k \\ n + T(A'[0..i-1], k) & \text{if } i > k \quad (\text{sub-array has size } i) \\ n + T(A'[i+1..n-1], k-i-1) & \text{if } i < k \quad (\dots \text{size } n-i-1) \end{cases}$$

Worst-case run-time:

- Sub-array always gets smaller, so $\leq n$ recursions $\Rightarrow O(n^2)$ time.
- This is tight: If pivot-rank is always n-1 and k=0 $T^{\text{worst}}(n,0) \ge n + (n-1) + (n-2) + \dots + 1 \in \Omega(n^2)$

Best-case run-time: $\Theta(n)$ if i = k in first round.

Average case run-time? Doing this directly would be *very* complicated. Instead we will do it via a randomized version.

O.Veksler (CS-UW)

CS240 - Module 3

Winter 2025

Randomizing quick-select: Shuffling

Goal: Create a randomized version of *quick-select*.

- This will give a proof of the avg-case run-time of *quick-select*.
- This will be a better algorithm in practice.

Randomizing quick-select: Shuffling

Goal: Create a randomized version of *quick-select*.

- This will give a proof of the avg-case run-time of *quick-select*.
- This will be a better algorithm in practice.

First idea: Shuffle the input, then do quick-select.

shuffle-quick-select(A, k) 1. for $(j \leftarrow 1 \text{ to } n-1)$ do swap(A[j], A[random(j+1)]) // shuffle 2. quick-select(A, k)

• Shuffling (permuting) the input-array is (by assumption) equivalent to randomly choosing an input instance.

• So we know
$$T_{quick-select}^{avg}(n) = T_{shuffle-quick-select}^{exp}(n)$$

(Recall: $T(\cdot)$ counts key-comparisons, so shuffling is free.)

Randomizing quick-select: Random Pivot

Second idea: Do the shuffling inside the recursion. (Equivalently: Randomly choose which value is used for the pivot.)

```
randomized-quick-select(A, k)

1. swap A[n-1] with A[random(n)]

2. i \leftarrow partition(A, n-1)

3. if i = k then return A[i]

4. else if i > k then

5. return randomized-quick-select(A[0 \dots i-1], k)

6. else if i < k then

7. return randomized-quick-select(A[i+1 \dots n-1], k - (i+1))
```

Randomizing quick-select: Random Pivot

Second idea: Do the shuffling inside the recursion. (Equivalently: Randomly choose which value is used for the pivot.)

randomized-quick-select(A, k) 1. swap A[n-1] with A[random(n)]2. $i \leftarrow partition(A, n-1)$ 3. if i = k then return A[i]4. else if i > k then 5. return randomized-quick-select($A[0 \dots i-1], k$) 6. else if i < k then 7. return randomized-quick-select($A[i+1 \dots n-1], k - (i+1)$)

• $T_{rand-quick-select}^{exp}(n) = T_{shuffle-quick-select}^{exp}(n)$.

(This is not completely obvious, but believable. No proof.)

Expected run-time of randomized-quick-select

Let T(A, k, R) = # key-comparisons of *randomized-quick-select* on input $\langle A, k \rangle$ if the random outcomes are R.

- Write random outcomes R as $R = \langle i, R' \rangle$ (where 'i' stands for 'the first random number was such that the pivot-rank is i')
- Observe: $Pr(pivot-rank is i) = \frac{1}{n}$
- We recurse in an array of size *i* or n-i-1 (or not at all)

Expected run-time of randomized-quick-select

Let T(A, k, R) = # key-comparisons of *randomized-quick-select* on input $\langle A, k \rangle$ if the random outcomes are R.

• Write random outcomes R as $R = \langle i, R' \rangle$ (where 'i' stands for 'the first random number was such that the pivot-rank is i')

• Observe:
$$Pr(pivot-rank is i) = \frac{1}{n}$$

- We recurse in an array of size *i* or n-i-1 (or not at all)
- Recursive formula for one instance (and fixed $R = \langle i, R' \rangle$):

$$T(A, k, \langle i, R' \rangle) = n + \begin{cases} T(\text{size-}i \text{ array}, k, R') & \text{if } i > k \\ T(\text{size-}(n-i-1) \text{ array}, k-i-1, R') & \text{if } i < k \\ 0 & \text{otherwise} \end{cases}$$

Analysis of randomized-quick-select

Since the expected run-time uses the *worst-case instance*, the recursive formula can now be shown easily:

 $T^{\exp}(A, k) \left(= \sum_{R} P(R) \cdot T(\langle A, k \rangle, R) = \sum_{i=0}^{n-1} \sum_{R'} P(i) \cdot P(R') \cdot T(\langle A, k \rangle, \langle i, R' \rangle) \\ = \frac{1}{n} \sum_{i=0}^{k-1} \sum_{R'} P(R') \Big(n + T(\langle A'[i+1..n-1], k-i-1 \rangle, R') \Big) \\ + \frac{1}{n} \sum_{i=k+1}^{n-1} \sum_{R'} P(R') \Big(n + T(\langle A'[0..i-1, k \rangle, R') \Big) \right)$ tedious but straightforward $= n + \frac{1}{n} \sum_{i=0}^{k-1} \sum_{R'} P(R') T(\langle A'[i+1..n-1], k-i-1 \rangle, R')$ + $\frac{1}{n} \sum_{i=k+1}^{n-1} \sum_{R'} P(R') T(\langle A'[0..i-1, k \rangle, R')$ = $n + \frac{1}{n} \sum_{i=0}^{k-1} \underbrace{T^{\exp}(\langle A'[i+1..n-1], k-i-1 \rangle)}_{\leq T^{\exp}(n-i-1)} + \frac{1}{n} \sum_{i=k+1}^{n-1} \underbrace{T^{\exp}(\langle A'[0..i-1], k \rangle)}_{\leq T^{\exp}(i)}$ $\leq n + \frac{1}{n} \sum_{i=1}^{n-1} \max\{T^{\exp}(i), T^{\exp}(n-i-1)\}$ independent of A, k

O.Veksler (CS-UW)

Analysis of randomized-quick-select

In summary, the expected run-time of *randomized-quick-select* satisfies:

$$T^{\exp}(n) \le n + \frac{1}{n} \sum_{i=0}^{n-1} \max\{T^{\exp}(i), T^{\exp}(n-i-1)\}$$

Analysis of randomized-quick-select

In summary, the expected run-time of *randomized-quick-select* satisfies:

$$T^{\exp}(n) \le n + \frac{1}{n} \sum_{i=0}^{n-1} \max\{T^{\exp}(i), T^{\exp}(n-i-1)\}$$

Claim: This recursion resolves to O(n).

Summary of SELECTION

- randomized-quick-select has expected run-time $\Theta(n)$.
 - The run-time bound is tight since *partition* takes $\Omega(n)$ time
 - If we're unlucky in the random numbers then the run-time is still $\Omega(n^2)$
- So the expected run-time of *shuffle-quick-select* is $\Theta(n)$.
- So the run-time of *quick-select* on randomly chosen input is $\Theta(n)$.
- So the average-case run-time of quick-select is $\Theta(n)$.

Summary of SELECTION

- randomized-quick-select has expected run-time $\Theta(n)$.
 - The run-time bound is tight since *partition* takes $\Omega(n)$ time
 - If we're unlucky in the random numbers then the run-time is still $\Omega(n^2)$
- So the expected run-time of *shuffle-quick-select* is $\Theta(n)$.
- So the run-time of *quick-select* on randomly chosen input is $\Theta(n)$.
- So the average-case run-time of quick-select is $\Theta(n)$.
- *randomized-quick-select* is generally the fastest solution to SELECTION.
- There exists a variation that solves SELECTION with worst-case run-time $\Theta(n)$, but it uses double recursion and is slower in practice. ($\rightarrow cs341$, maybe)

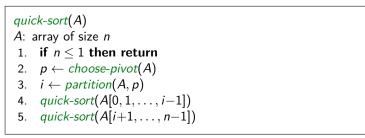
Outline

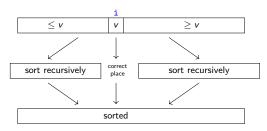
3 Sorting, Average-case and Randomization

- Analyzing average-case run-time
- Randomized Algorithms
- SELECTION and quick-select
- SORTING and *quick-sort*
- Lower Bound for Comparison-Based Sorting
- Non-Comparison-Based Sorting

quick-sort

Hoare developed *partition* and *quick-select* in 1960. He also used them to *sort* based on partitioning:





O.Veksler (CS-UW)

CS240 - Module 3

quick-sort analysis

Set T(A) := # of key-comparison for *quick-sort* in array A.

Worst-case run-time: $\Theta(n^2)$

- Sub-arrays get smaller $\Rightarrow \leq n$ levels of recursions
- On each level there are $\leq n$ items in total $\Rightarrow \leq n$ key-comparisons
- So run-time in $O(n^2)$; this is tight exactly as for *quick-select*

quick-sort analysis

Set T(A) := # of key-comparison for *quick-sort* in array A.

Worst-case run-time: $\Theta(n^2)$

- Sub-arrays get smaller $\Rightarrow \leq n$ levels of recursions
- On each level there are $\leq n$ items in total $\Rightarrow \leq n$ key-comparisons
- So run-time in $O(n^2)$; this is tight exactly as for *quick-select*

Best-case run-time: $\Theta(n)$

- If pivot-rank is always in the middle, then we recurse in two sub-arrays of size $\leq n/2$.
- $T(n) \le n + 2T(n/2) \in O(n \log n)$ exactly as for merge-sort
- This can be shown to be tight.

quick-sort analysis

Set T(A) := # of key-comparison for *quick-sort* in array A.

Worst-case run-time: $\Theta(n^2)$

- Sub-arrays get smaller $\Rightarrow \leq n$ levels of recursions
- On each level there are $\leq n$ items in total $\Rightarrow \leq n$ key-comparisons
- So run-time in $O(n^2)$; this is tight exactly as for *quick-select*

Best-case run-time: $\Theta(n)$

- If pivot-rank is always in the middle, then we recurse in two sub-arrays of size $\leq n/2$.
- $T(n) \le n + 2T(n/2) \in O(n \log n)$ exactly as for merge-sort
- This can be shown to be tight.

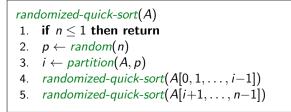
Average-case run-time? We again prove this via randomization.

Randomizing quick-sort

randomized-quick-sort(A)

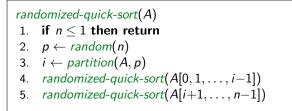
- 1. if $n \leq 1$ then return
- 2. $p \leftarrow random(n)$
- 3. $i \leftarrow partition(A, p)$
- 4. randomized-quick-sort($A[0, 1, \ldots, i-1]$)
- 5. randomized-quick-sort($A[i+1, \ldots, n-1]$)

Randomizing quick-sort



- We use *n* comparisons in *partition*.
- Pr(pivot has rank i) = $\frac{1}{n}$
- We recurse in two arrays, of size i and n-i-1

Randomizing quick-sort



- We use *n* comparisons in *partition*.
- Pr(pivot has rank i) = $\frac{1}{n}$
- We recurse in two arrays, of size i and n-i-1

This implies

$$T^{\exp}(n) = \underbrace{\dots = \dots \leq \dots}_{\text{long but straightforward}} = n + \frac{1}{n} \sum_{i=0}^{n-1} \left(T^{\exp}(i) + T^{\exp}(n-i-1) \right)$$

Expected run-time of randomized-quick-sort

$$T^{\exp}(n) \le n + \frac{1}{n} \sum_{i=0}^{n-1} \left(T^{\exp}(i) + T^{\exp}(n-i-1) \right) = n + \frac{2}{n} \sum_{i=1}^{n-1} T^{\exp}(i)$$
(since $T(0) = 0$)

Claim: $T^{\exp}(n) \in O(n \log n)$. **Proof:**

Expected run-time of randomized-quick-sort

$$T^{\exp}(n) \le n + \frac{1}{n} \sum_{i=0}^{n-1} \left(T^{\exp}(i) + T^{\exp}(n-i-1) \right) = n + \frac{2}{n} \sum_{i=1}^{n-1} T^{\exp}(i)$$
(since $T(0) = 0$)

Claim: $T^{\exp}(n) \in O(n \log n)$. **Proof:**

Summary of quick-sort

- randomized-quick-sort has expected run-time $\Theta(n \log n)$.
 - The run-time bound is tight since the best-case run-time is $\Omega(n \log n)$
 - If we're unlucky in the random numbers then the run-time is still $\Omega(n^2)$
- This implies (with the same detour through *shuffle-quick-sort*):

The average-case run-time of *quick-sort* is $\Theta(n \log n)$.

Summary of quick-sort

- randomized-quick-sort has expected run-time $\Theta(n \log n)$.
 - The run-time bound is tight since the best-case run-time is $\Omega(n \log n)$
 - If we're unlucky in the random numbers then the run-time is still $\Omega(n^2)$
- This implies (with the same detour through *shuffle-quick-sort*):

The average-case run-time of *quick-sort* is $\Theta(n \log n)$.

- Auxiliary space?
 - Each nested recursion-call requires $\Theta(1)$ space on the call stack.
 - As described, quick-sort/randomized-quick-sort use Ω(n) nested recursion-calls in the worst case.
 - So $\Theta(n)$ auxiliary space (can be improved to $\Theta(\log n)$)

Summary of quick-sort

- randomized-quick-sort has expected run-time $\Theta(n \log n)$.
 - The run-time bound is tight since the best-case run-time is $\Omega(n \log n)$
 - If we're unlucky in the random numbers then the run-time is still $\Omega(n^2)$
- This implies (with the same detour through *shuffle-quick-sort*):

The average-case run-time of quick-sort is $\Theta(n \log n)$.

- Auxiliary space?
 - Each nested recursion-call requires $\Theta(1)$ space on the call stack.
 - As described, quick-sort/randomized-quick-sort use Ω(n) nested recursion-calls in the worst case.
 - So $\Theta(n)$ auxiliary space (can be improved to $\Theta(\log n)$)
- There are numerous tricks to improve *randomized-quick-select*
- With these, this is in practice the fastest solution to SORTING (but *not* in theory).

quick-sort with tricks

randomized-quick-sort-improved(A, n)				
1. Initialize a stack S of index-pairs with $\{(0, n-1)\}$				
2. while S is not empty				
3. $(\ell, r) \leftarrow S.pop()$	<pre>// avoid recursions</pre>			
4. while $(r-\ell+1>10)$ do	<pre>// stop recursions early</pre>			
5. $p \leftarrow \ell + random(\ell - r + 1)$				
6. $i \leftarrow Hoare-partition(A, \ell, r, p)$	<pre>// use better routine</pre>			
7. if $(i-\ell > r-i)$ do	<pre>// reduce aux. space</pre>			
8. $S.push((\ell, i-1))$				
9. $\ell \leftarrow i+1$	<pre>// remove tail-recursion</pre>			
10. else				
11. $S.push((i+1, r))$				
12. $r \leftarrow i-1$				
13. insertion-sort(A)				

Outline

3 Sorting, Average-case and Randomization

- Analyzing average-case run-time
- Randomized Algorithms
- SELECTION and *quick-select*
- SORTING and *quick-sort*
- Lower Bound for Comparison-Based Sorting
- Non-Comparison-Based Sorting

Lower bounds for sorting

We have seen many sorting algorithms:

Sort	Running time	Analysis
selection-sort	$\Theta(n^2)$	worst-case
insertion-sort	$\Theta(n^2)$	worst-case
	$\Theta(n)$	best-case
merge-sort	$\Theta(n \log n)$	worst-case
heap-sort	$\Theta(n \log n)$	worst-case
quick-sort	$\Theta(n \log n)$	average-case
randomized-quick-sort	$\Theta(n \log n)$	expected

Lower bounds for sorting

We have seen many sorting algorithms:

Sort	Running time	Analysis
selection-sort	$\Theta(n^2)$	worst-case
insertion-sort	$\Theta(n^2)$	worst-case
	$\Theta(n)$	best-case
merge-sort	$\Theta(n \log n)$	worst-case
heap-sort	$\Theta(n \log n)$	worst-case
quick-sort	$\Theta(n \log n)$	average-case
randomized-quick-sort	$\Theta(n \log n)$	expected

Question: Can one do better than $\Theta(n \log n)$ running time? **Answer**: Yes and no! *It depends on what we allow*.

Lower bounds for sorting

We have seen many sorting algorithms:

Sort	Running time	Analysis
selection-sort	$\Theta(n^2)$	worst-case
insertion-sort	$\Theta(n^2)$	worst-case
	$\Theta(n)$	best-case
merge-sort	$\Theta(n \log n)$	worst-case
heap-sort	$\Theta(n \log n)$	worst-case
quick-sort	$\Theta(n \log n)$	average-case
randomized-quick-sort	$\Theta(n \log n)$	expected

Question: Can one do better than $\Theta(n \log n)$ running time? **Answer**: Yes and no! *It depends on what we allow*.

- No: Comparison-based sorting lower bound is $\Omega(n \log n)$.
- Yes: Non-comparison-based sorting can achieve O(n) (under restrictions!). (→ later)

Lower bound for sorting in the comparison model

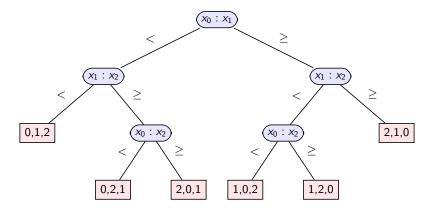
All algorithms so far are comparison-based: Data is accessed only by

- comparing two elements (a *key-comparison*)
- moving elements around (e.g. copying, swapping)

Theorem. Any *comparison-based* sorting algorithm requires in the worst case $\Omega(n \log n)$ comparisons to sort *n* distinct items.

Proof.

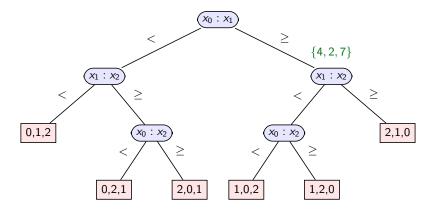
Any comparison-based algorithms can be expressed as **decision tree**. To sort $\{x_0, x_1, x_2\}$:



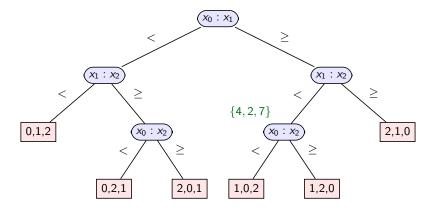
Any comparison-based algorithms can be expressed as **decision tree**. To sort $\{x_0, x_1, x_2\}$: Example: $\{x_0=4, x_1=2, x_2=7\}$



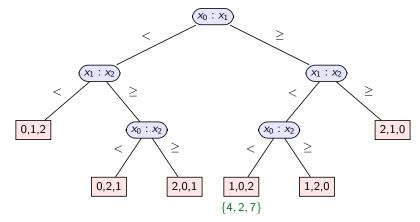
Any comparison-based algorithms can be expressed as **decision tree**. To sort $\{x_0, x_1, x_2\}$:



Any comparison-based algorithms can be expressed as **decision tree**. To sort $\{x_0, x_1, x_2\}$:



Any comparison-based algorithms can be expressed as **decision tree**. To sort $\{x_0, x_1, x_2\}$:



Output: $\{4,2,7\}$ has sorting permutation $\langle 1,0,2\rangle$

(i.e., $x_1 = 2 \le x_0 = 4 \le x_2 = 7$)

CS240 - Module 3

Outline

Sorting, Average-case and Randomization

- Analyzing average-case run-time
- Randomized Algorithms
- SELECTION and quick-select
- SORTING and quick-sort
- Lower Bound for Comparison-Based Sorting
- Non-Comparison-Based Sorting

Non-Comparison-Based Sorting

- Assume keys are numbers in base R (R: radix)
 - So all digits are in $\{0, \ldots, R-1\}$
 - R = 2, 10, 128, 256 are the most common, but R need not be constant

Example
$$(R = 4)$$
: 123 230 21 320 210 232 101

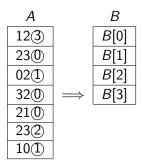
- Assume all keys have the same number w of digits.
 - Can achieve after padding with leading 0s.
 - ▶ In typical computers, w = 32 or w = 64, but w need not be constant

Example (R = 4): 123 230 021 320 210 232 101

• Can sort based on individual digits.

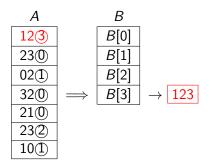
- How to sort 1-digit numbers?
- How to sort multi-digit numbers based on this?

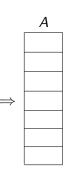
```
(Single-digit) bucket-sort
```

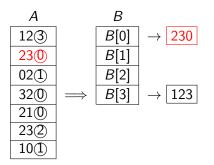


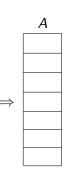


```
(Single-digit) bucket-sort
```

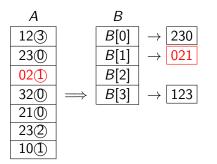


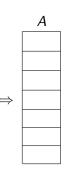




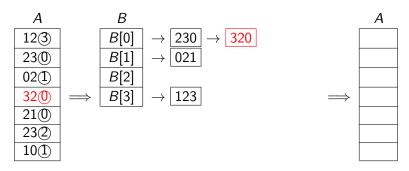


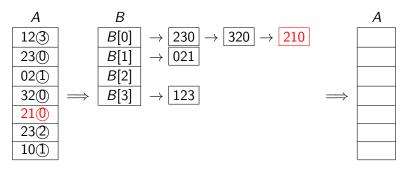
```
(Single-digit) bucket-sort
```

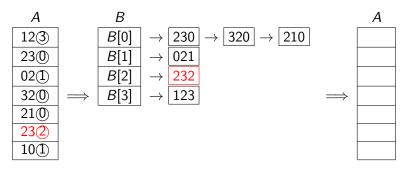


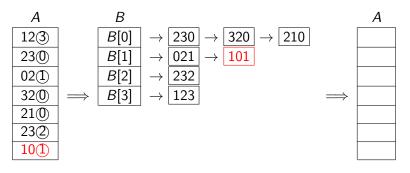


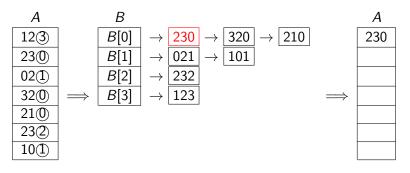
```
(Single-digit) bucket-sort
```

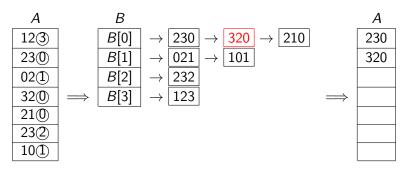


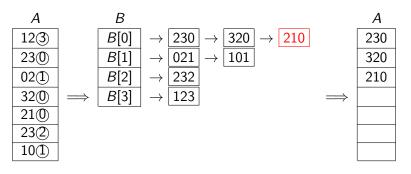


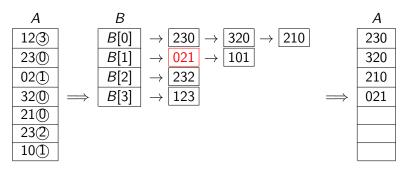


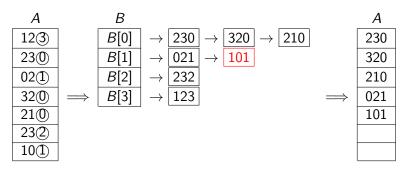


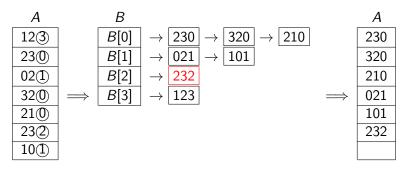


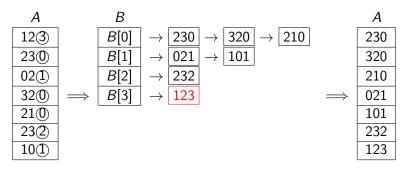












```
bucket-sort(A, n, sort-key(\cdot))

A: array of size n

sort-key(\cdot): maps items of A to {0,..., R-1}

1. Initialize an array B[0...R - 1] of empty queues (buckets)

2. for i \leftarrow 0 to n-1 do

3. Append A[i] at end of B[sort-key(A[i])]

4. i \leftarrow 0

5. for j \leftarrow 0 to R - 1 do

6. while B[j] is non-empty do

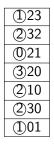
7. move front element of B[j] to A[i++]
```

• In our example *sort-key*(*A*[*i*]) returns the last digit of *A*[*i*]

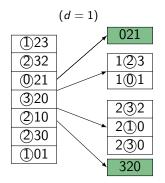
```
\begin{array}{ll} bucket-sort(A, n, sort-key(\cdot))\\ A: \mbox{ array of size }n\\ sort-key(\cdot): \mbox{ maps items of }A \mbox{ to } \{0, \ldots, R-1\}\\ 1. \mbox{ Initialize an array }B[0...R-1] \mbox{ of empty queues } (buckets)\\ 2. \mbox{ for }i \leftarrow 0 \mbox{ to } n-1 \mbox{ do}\\ 3. \mbox{ Append }A[i] \mbox{ at end of }B[sort-key(A[i])]\\ 4. \mbox{ }i \leftarrow 0\\ 5. \mbox{ for }j \leftarrow 0 \mbox{ to } R-1 \mbox{ do}\\ 6. \mbox{ while }B[j] \mbox{ is non-empty do}\\ 7. \mbox{ move front element of }B[j] \mbox{ to }A[i++]\end{array}
```

- In our example *sort-key*(A[i]) returns the last digit of A[i]
- *bucket-sort* is **stable**: equal items stay in original order.
- Run-time $\Theta(n+R)$, auxiliary space $\Theta(n+R)$
- It is possible to replace the lists by arrays \rightsquigarrow count-sort (no details).

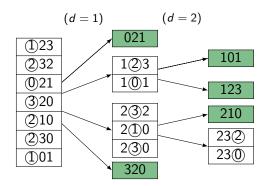
Sort array of *w*-digit radix-*R* numbers recursively: sort by 1st digit, then each group by 2nd digit, etc.



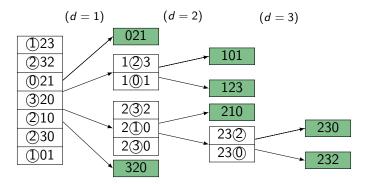
Sort array of w-digit radix-R numbers recursively: sort by 1st digit, then each group by 2nd digit, etc.



Sort array of w-digit radix-R numbers recursively: sort by 1st digit, then each group by 2nd digit, etc.



Sort array of *w*-digit radix-*R* numbers recursively: sort by 1st digit, then each group by 2nd digit, etc.

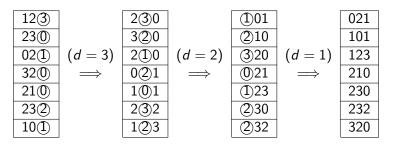


MSD-radix-sort

MSD-radix-sort $(A, n, d \leftarrow 1)$ A: array of size *n*, contains *w*-digit radix-*R* numbers 1. if $(d \leq w \text{ and } (n > 1))$ bucket-sort(A, n, 'return dth digit of A[i]') 2. 3. $\ell \leftarrow 0$ // find sub-arrays and recurse 4. for $i \leftarrow 0$ to R-1Let $r \ge \ell - 1$ be maximal s.t. $A[\ell ... r]$ have dth digit j 5. 6. MSD-radix-sort($A[\ell..r], r-\ell+1, d+1$) 7. $\ell \leftarrow r+1$

Analysis:

- $\Theta(w)$ levels of recursion in worst-case.
- $\Theta(n)$ subproblems on most levels in worst-case.
- $\Theta(R + (\text{size of sub-array}))$ time for each *bucket-sort* call.
- \Rightarrow Run-time $\Theta(wnR)$ slow. Many recursions and allocated arrays.



• Loop-invariant: A is sorted w.r.t. digits d, ..., w of each entry.

• Time cost: $\Theta(w(n+R))$ Auxiliary space: $\Theta(n+R)$

O.Veksler (CS-UW)

CS240 - Module 3

Winter 2025

Summary

- SORTING is an important and *very* well-studied problem
- Can be done in $\Theta(n \log n)$ time; faster is not possible for general input
- *heap-sort* is the only $\Theta(n \log n)$ -time algorithm we have seen with O(1) auxiliary space.
- merge-sort is also $\Theta(n \log n)$, selection & insertion sorts are $\Theta(n^2)$.
- quick-sort is worst-case $\Theta(n^2)$, but often the fastest in practice
- *bucket-sort* and *radix-sort* achieve $o(n \log n)$ if the input is special
- Randomized algorithms can eliminate "bad cases"
- Best-case, worst-case, average-case can all differ.
- Often it is easier to analyze the run-time on randomly chosen input rather than the average-case run-time.