CS 240 – Data Structures and Data Management

Module 5: Other Dictionary Implementations

Olga Veksler

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2025

version 2025-01-30 14:26

Outline

Dictionaries with Lists revisited

- Dictionary ADT: Implementations thus far
- Skip Lists
- Biased Search Requests
- Optimal Static Ordering
- Dynamic Ordering: MTF

Outline

Dictionaries with Lists revisited

• Dictionary ADT: Implementations thus far

- Skip Lists
- Biased Search Requests
- Optimal Static Ordering
- Dynamic Ordering: MTF

Dictionary ADT: Implementations thus far

A *dictionary* is a collection of key-value pairs (KVPs), supporting operations *search*, *insert*, and *delete*.

Realizations we have seen so far:

- Unordered array or list: $\Theta(1)$ insert, $\Theta(n)$ search and delete
- Ordered array: $\Theta(\log n)$ search, $\Theta(n)$ insert and delete
- Binary search trees: $\Theta(height)$ search, insert and delete
- Balanced Binary Search trees (AVL trees):

 $\Theta(\log n)$ search, insert, and delete

Dictionary ADT: Implementations thus far

A *dictionary* is a collection of key-value pairs (KVPs), supporting operations *search*, *insert*, and *delete*.

Realizations we have seen so far:

- Unordered array or list: $\Theta(1)$ insert, $\Theta(n)$ search and delete
- Ordered array: $\Theta(\log n)$ search, $\Theta(n)$ insert and delete
- Binary search trees: $\Theta(height)$ search, insert and delete
- Balanced Binary Search trees (AVL trees):

 $\Theta(\log n)$ search, insert, and delete

Improvements/Simplifications?

- **Can show:** If the KVPs were inserted in random order, then the expected height of the binary search tree would be $O(\log n)$.
- How can we use randomization within the data structure to mirror what would happen on random input?

Outline

Dictionaries with Lists revisited

- Dictionary ADT: Implementations thus far
- Skip Lists
- Biased Search Requests
- Optimal Static Ordering
- Dynamic Ordering: MTF

Towards Skip Lists

We did not consider an ordered list as realization of ADT Dictionary. Why?

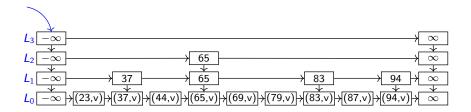
- insert and delete take $\Theta(1)$ time in an ordered lists, once we know the place where to do them.
- The bottleneck is *search*:
 - In an ordered array, we can do binary search to achieve O(log n) run-time.
 - In an ordered list, we cannot 'skip to the middle' and so cannot do binary search.
 - Therefore search takes $\Theta(n)$ time in an ordered list—too slow.

Idea: To speed up search in an ordered list, add more links to help us skip forward quicker. Choose randomly when to add such links.

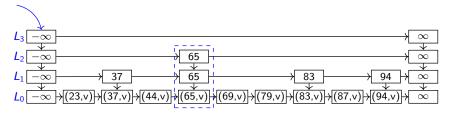
Skip Lists

A hierarchy of ordered linked lists (*levels*) L_0, L_1, \cdots, L_h :

- Each list L_i contains the special keys $-\infty$ and $+\infty$ (sentinels)
- List L₀ contains the KVPs of S in non-decreasing order. (The other lists store only keys and references.)
- Each list is a subsequence of the previous one, i.e., $L_0 \supseteq L_1 \supseteq \cdots \supseteq L_h$
- List *L_h* contains only the sentinels



Skip Lists



A few more definitions:

- *node* = entry in one list vs. KVP = one non-sentinel entry in L_0
- There are (usually) more *nodes* than *KVPs* Here # (non-sentinel) nodes = 14 vs. *n* ← # KVPs = 9.
- *root* = topmost left sentinel is the only field of the skip list.
- Each node *p* has references *p.after* and *p.below*
- Each key k belongs to a **tower** of nodes
 - Height of tower of k: maximal index i such that $k \in L_i$
 - Height of skip list: maximal index h such that L_h exists

CS240 - Module 5

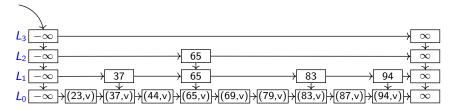
Search in Skip Lists

For each list, find **predecessor** (node before where k would be). This will also be useful for *insert/delete*.

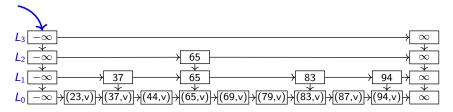
```
get-predecessors (k)1. p \leftarrow root2. P \leftarrow stack of nodes, initially containing p3. while p.below \neq NULL do4. p \leftarrow p.below5. while p.after.key < k do p \leftarrow p.after6. P.push(p)7. return P
```

skipList::search (k) 1. $P \leftarrow get-predecessors(k)$ 2. $p_0 \leftarrow P.top() // predecessor of k in L_0$ 3. if $p_{0.after.key} = k$ return KVP at $p_{0.after}$ 4. else return "not found, but would be after p_0 "

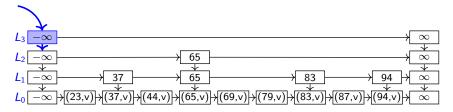
Example: *search*(87)



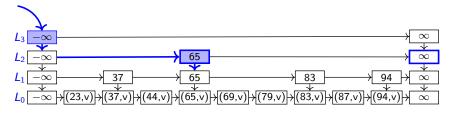
Example: *search*(87)



Example: *search*(87)



Example: *search*(87)

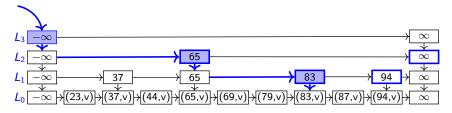




added to P

path taken by p

Example: search(87)



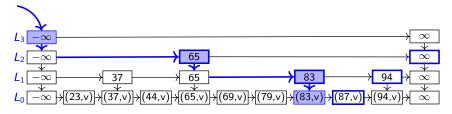
key compared with k

added to P

• path taken by p

Final stack returned:

Example: search(87)



key compared with k

added to P

path taken by p

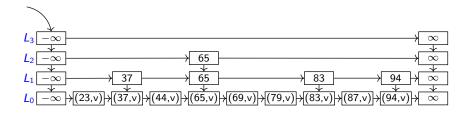
Final stack returned:

Delete in Skip Lists

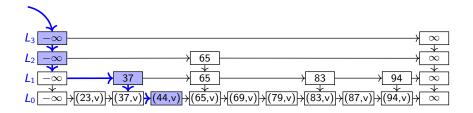
It is easy to remove a key since we can find all predecessors. Then eliminate lists if there are multiple ones with only sentinels.

```
skipList::delete(k)
1. P \leftarrow get-predecessors(k)
   while P is non-empty
2
3.
   p \leftarrow P.pop() // predecessor of k in some list
   if p.after.kev = k
4.
              p.after \leftarrow p.after.after
5
       else break // no more copies of k
6
   p \leftarrow left sentinel of the root-list
7.
    while p.below.after is the \infty-sentinel
8.
         // top two lists have only sentinels, remove one
         p.below \leftarrow p.below.below
9.
         p.after.below \leftarrow p.after.below.below
10.
```

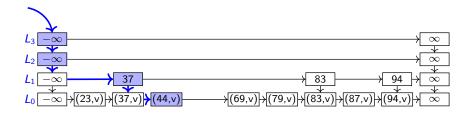
Example: *skipList::delete*(65)



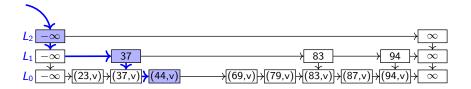
Example: *skipList::delete*(65) *get-predecessors*(65)



Example: *skipList::delete*(65) *get-predecessors*(65)



Example: *skipList::delete*(65) *get-predecessors*(65) *Height decrease*



skipList::insert(k, v)

- There is no choice as to where to put the tower of k.
- Only choice: how tall should we make the tower of k?
 - Choose randomly! Repeatedly toss a coin until you get tails
 - Let i the number of times the coin came up heads
 - We want key k to be in lists L_0, \ldots, L_i , so $i \rightarrow height$ of tower of k

 $Pr(\text{tower of key } k \text{ has height } \geq i) = \left(\frac{1}{2}\right)^i$

skipList::insert(k, v)

- There is no choice as to where to put the tower of k.
- Only choice: how tall should we make the tower of k?
 - Choose randomly! Repeatedly toss a coin until you get tails
 - Let i the number of times the coin came up heads
 - We want key k to be in lists L_0, \ldots, L_i , so $i \rightarrow height$ of tower of k

 $Pr(\text{tower of key } k \text{ has height } \geq i) = \left(\frac{1}{2}\right)^i$

- Before we can insert, we must check that these lists exist.
 - Add sentinel-only lists, if needed, until height h satisfies h > i.

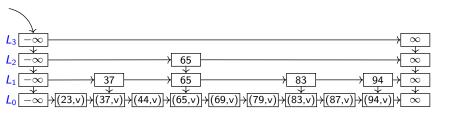
skipList::insert(k, v)

- There is no choice as to where to put the tower of k.
- Only choice: how tall should we make the tower of k?
 - Choose randomly! Repeatedly toss a coin until you get tails
 - Let i the number of times the coin came up heads
 - We want key k to be in lists L_0, \ldots, L_i , so $i \rightarrow height$ of tower of k

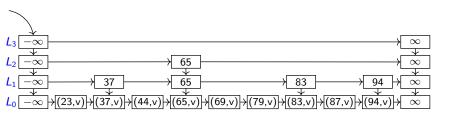
 $Pr(\text{tower of key } k \text{ has height } \geq i) = \left(\frac{1}{2}\right)^i$

- Before we can insert, we must check that these lists exist.
 - Add sentinel-only lists, if needed, until height h satisfies h > i.
- Then do the actual insertion.
 - ▶ Use *get-predecessors*(*k*) to get stack *P*.
 - ► The top *i* items of *P* are the predecessors p₀, p₁, · · · , p_i of where k should be in each list L₀, L₁, · · · , L_i
 - ▶ Insert (k, v) after p_0 in L_0 , and k after p_j in L_j for $1 \le j \le i$

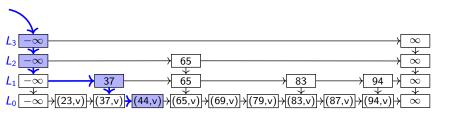
Example: skipList::insert(52, v)Coin tosses: $H,T \Rightarrow i = 1$



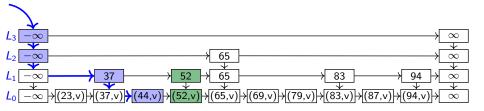
Example: skipList::insert(52, v)Coin tosses: $H,T \Rightarrow i = 1$ Have $h = 3 > i \Rightarrow$ no need to add lists



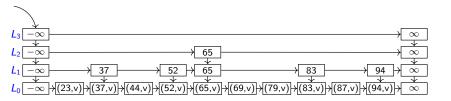
Example: skipList::insert(52, v)Coin tosses: $H,T \Rightarrow i = 1$ Have $h = 3 > i \Rightarrow$ no need to add lists get-predecessors(52)



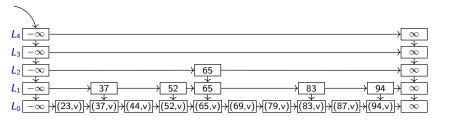
Example: skipList::insert(52, v)Coin tosses: $H,T \Rightarrow i = 1$ Have $h = 3 > i \Rightarrow$ no need to add lists get-predecessors(52) Insert 52 in lists L_0, \ldots, L_i



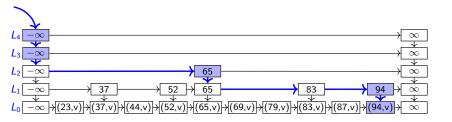
Example: skipList::insert(100, v)Coin tosses: H,H,H,T $\Rightarrow i = 3$



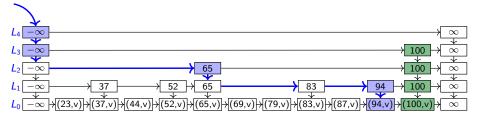
Example: skipList::insert(100, v)Coin tosses: H,H,H,T $\Rightarrow i = 3$ *Height increase*



Example: skipList::insert(100, v)Coin tosses: H,H,H,T $\Rightarrow i = 3$ Height increase get-predecessors(100)



Example: skipList::insert(100, v)Coin tosses: H,H,H,T $\Rightarrow i = 3$ *Height increase* get-predecessors(100)Insert 100 in lists L_0, \ldots, L_i



skipList::insert(k, v)1. for $(i \leftarrow 0; random(2) = 1; i++)$ {} // random tower height for $(h \leftarrow 0, p \leftarrow root.below; p \neq \text{NULL}; p \leftarrow p.below, h++)$ {} 2. while i > h// increase skip-list height? 3. create new sentinel-only list; link it in below topmost list 4. 5. h++ 6. $P \leftarrow get-predecessors(k)$ 7. $p \leftarrow P.pop()$ // insert (k, v) in L_0 8. $z_{below} \leftarrow$ new node with (k, v); z_{below} .after $\leftarrow p$.after, p.after $\leftarrow z_{below}$ 9 // insert k in L_1, \ldots, L_i 10. while i > 011. $p \leftarrow P.pop()$ 12. $z \leftarrow$ new node with k 13. $z.after \leftarrow p.after; p.after \leftarrow z; z.below \leftarrow z_{below}; z_{below} \leftarrow z$ 14. $i \leftarrow i - 1$

Skip Lists Analysis

• Expected *space*: O(# non-sentinels + height).

Skip Lists Analysis

- Expected *space*: O(# non-sentinels + height).
 - Expected number of *non-sentinels*?

Skip Lists Analysis

• Expected *space*: O(#non-sentinels + height).

Expected number of *non-sentinels*? O(n)

- Expected *space*: O(#non-sentinels + height).
 - Expected number of *non-sentinels*? O(n)
 - Expected height?

• Expected *space*: O(#non-sentinels + height).

- Expected number of *non-sentinels*? O(n)
- Expected height? O(log n)

So expected space is O(n).

- Expected *space*: O(#non-sentinels + height).
 - Expected number of *non-sentinels*? O(n)
 - Expected height? O(log n)

So expected space is O(n).

• Run-time of operations is dominated by *get-predecessors*:

- ► How often do we *drop down* (execute $p \leftarrow p.below$)? height.
- How often do we *step forward* (execute $p \leftarrow p.after$)?

- Expected *space*: O(#non-sentinels + height).
 - Expected number of *non-sentinels*? O(n)
 - Expected height? O(log n)

So expected space is O(n).

• Run-time of operations is dominated by get-predecessors:

- ► How often do we *drop down* (execute $p \leftarrow p.below$)? height.
- ► How often do we step forward (execute p ← p.after)? Expect O(1) forward-steps per list

- Expected *space*: O(#non-sentinels + height).
 - Expected number of *non-sentinels*? O(n)
 - Expected height? O(log n)

So expected space is O(n).

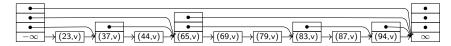
• Run-time of operations is dominated by get-predecessors:

- ► How often do we *drop down* (execute $p \leftarrow p.below$)? height.
- ► How often do we step forward (execute p ← p.after)? Expect O(1) forward-steps per list

So search, insert, delete have $O(\log n)$ expected run-time.

Summary of Skip Lists

- O(n) expected space, all operations take $O(\log n)$ expected time.
- Lists make it easy to implement. We can also easily add more operations (e.g. *successor*, *merge*,...)
- As described they are no better than randomized binary search trees.
- But there are numerous improvements on the space:
 - Can save links (hence space) by implementing towers as array.



- Biased coin-flips to determine tower-heights give smaller expected space
- With both ideas, expected space is < 2n (less than for a BST).

Outline

5 Dictionaries with Lists revisited

- Dictionary ADT: Implementations thus far
- Skip Lists
- Biased Search Requests
- Optimal Static Ordering
- Dynamic Ordering: MTF

Improving unsorted lists/arrays

Recall unsorted array realization:

0	1	2	3	4
90	30	60	20	50

- search: $\Theta(n)$, insert: $\Theta(1)$, delete: $\Theta(1)$ (after a search)
- Very simple and popular. Can we do something to make search more effective in practice?

Improving unsorted lists/arrays

Recall unsorted array realization:

0	1	2	3	4
90	30	60	20	50

- search: $\Theta(n)$, insert: $\Theta(1)$, delete: $\Theta(1)$ (after a search)
- Very simple and popular. Can we do something to make search more effective in practice?
- No: if items are accessed equally likely.
 We can show that the average-case cost for *search* is then Θ(n).
- Yes: if the search requests are **biased**: some items are accessed much more frequently than others.
 - ▶ 80/20 rule: 80% of outcomes result from 20% of causes.
 - access: insertion or successful search
 - Intuition: Frequently accessed items should be in the front.
 - Two scenarios: Do we know the access distribution beforehand or not?

Outline

5 Dictionaries with Lists revisited

- Dictionary ADT: Implementations thus far
- Skip Lists
- Biased Search Requests
- Optimal Static Ordering
- Dynamic Ordering: MTF

Example:

Scenario: We know access distribution, and want the best order of a list.

keyABCDEfrequency of access281105

Scenario: We know access distribution, and want the best order of a list. **Example:**

key	A	В	C	D	E
frequency of access	2	8	1	10	5
access-probability	$\frac{2}{26}$	$\frac{8}{26}$	$\frac{1}{26}$	$\frac{10}{26}$	$\frac{5}{26}$

Recall:
$$T^{avg}(n) = \sum_{l \in \mathcal{I}_n} T(l) \cdot (\text{relative frequency of } l)$$

= expected run-time on randomly chosen input
= $\sum_{l \in \mathcal{I}_n} T(l) \cdot \Pr(\text{randomly chosen instance is } l)$

Count cost *i* if search-key (= instance *I*) is at *i*th position (*i* ≥ 1).
So we analyze

expected access
$$cost = \sum_{i \ge 1} i \cdot \underbrace{\Pr(\text{search for key at position } i)}_{access-probability of that key}$$

- Order \overrightarrow{D} \overrightarrow{B} \overrightarrow{E} \overrightarrow{A} \overrightarrow{C} is better! $\frac{10}{26} \cdot 1 + \frac{8}{26} \cdot 2 + \frac{5}{26} \cdot 3 + \frac{2}{26} \cdot 4 + \frac{1}{26} \cdot 5 = \frac{66}{26} \approx 2.54$

Claim: Over all possible static orderings, we minimize the expected access cost by sorting by non-increasing access-probability.

Proof:

• Consider any other ordering. How can we improve its access cost?

Outline

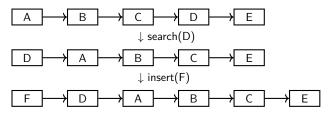
5 Dictionaries with Lists revisited

- Dictionary ADT: Implementations thus far
- Skip Lists
- Biased Search Requests
- Optimal Static Ordering
- Dynamic Ordering: MTF

Dynamic Ordering: MTF

Scenario: We do not know the access probabilities ahead of time.

- Idea: modify the order dynamically, i.e., while we are accessing.
- Rule of thumb (temporal locality): A recently accessed item is likely to be used soon again.
- Move-To-Front heuristic (MTF): Upon a successful search, move the accessed item to the front of the list



• We can also do MTF on an array, but should then insert and search from the *back* so that we have room to grow.

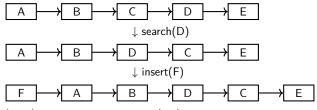
O.Veksler (CS-UW)

CS240 - Module 5

Dynamic Ordering: other ideas

There are other heuristics we could use:

• **Transpose heuristic**: Upon a successful search, swap the accessed item with the item immediately preceding it

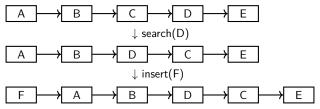


Here the changes are more gradual.

Dynamic Ordering: other ideas

There are other heuristics we could use:

• **Transpose heuristic**: Upon a successful search, swap the accessed item with the item immediately preceding it



Here the changes are more gradual.

• Frequency-count heuristic: Keep counters how often items were accessed, and sort in non-decreasing order. Works well in practice, but requires auxiliary space.

Summary of biased search requests

- We are unlikely to know the access-probabilities of items, so optimal static order is mostly of theoretical interest.
- For any dynamic reordering heuristic, some sequence will defeat it (have Θ(n) access-cost for each item).
- MTF and Frequency-count work well in practice.

Summary of biased search requests

- We are unlikely to know the access-probabilities of items, so optimal static order is mostly of theoretical interest.
- For any dynamic reordering heuristic, some sequence will defeat it (have $\Theta(n)$ access-cost for each item).
- MTF and Frequency-count work well in practice.
- For MTF, can also prove theoretical guarantees.
 - MTF is an online algorithm: Decide based on incomplete information.

 - Compare it to the best offline algorithm (has complete information).
 Here, best offline-algorithm builds optimal static ordering.
 Can show: MTF is "2-competitive": cost(MTF) ≤ 2 · cost(OPT).

Summary of biased search requests

- We are unlikely to know the access-probabilities of items, so optimal static order is mostly of theoretical interest.
- For any dynamic reordering heuristic, some sequence will defeat it (have $\Theta(n)$ access-cost for each item).
- MTF and Frequency-count work well in practice.
- For MTF, can also prove theoretical guarantees.
 - MTF is an *online* algorithm: Decide based on incomplete information.
 Compare it to the best *offline* algorithm (has complete information).
 Here, best offline-algorithm builds optimal static ordering.
 Can show: MTF is "2-competitive": cost(MTF) ≤ 2 · cost(OPT).
- There is very little overhead for MTF and other strategies; they should be applied whenever unordered lists or arrays are used $(\rightarrow$ Hashing, text compression).