CS 240 — Data Structures and Data Management

Module 8: Range-Searching in Dictionaries for Points

Olga Veksler

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2025

version 2025-03-03 12:03

O.Veksler (CS-UW) CS240 — Module 8 Winter 2025 1/36

Outline

© Range-Searching in Dictionaries for Points
@ Range Searches
@ Multi-Dimensional Data
@ Quadtrees
@ kd-Trees
@ Range Trees

O.Veksler (CS-UW) CS240 — Module 8

Winter 2025

Outline

© Range-Searching in Dictionaries for Points
@ Range Searches

O.Veksler (CS-UW) CS240 — Module 8

Range searches

@ So far: search(k) looks for one specific item.
@ New operation range-search: look for all items that fall within a
given range.
» Input: A range, i.e., an interval Q = (x, x’)
It may be open or closed at the ends.
» Want: Report all KVPs in the dictionary whose key k satisfies k € Q

Example: [5] 10] 11] 17 | 19 | 33 | 45 | 51 | 55 | 50 |
range-search((18,45]) should return {19, 33,45}

O.Veksler (CS-UW) CS240 — Module 8 Winter 2025 2 /36

Range searches

@ So far: search(k) looks for one specific item.
@ New operation range-search: look for all items that fall within a
given range.
» Input: A range, i.e., an interval Q = (x, x’)
It may be open or closed at the ends.
» Want: Report all KVPs in the dictionary whose key k satisfies k € Q

Example: [5[10 | 11 [17 [19 [33 |45 [51 |55 | 59 |
range-search((18,45]) should return {19, 33,45}

@ As usual n denotes the number of input-items.
@ Let s be the output-size, i.e., the number of items in the range.
@ We need €(s) time simply to report the items.

@ Note that sometimes s = 0 and sometimes s = n; we therefore keep it
as a separate parameter when analyzing the run-time.

Typical run-time: O(logn + s).

O.Veksler (CS-UW) CS240 — Module 8 Winter 2025 2 /36

Range searches in existing dictionary realizations

Unsorted list/array/hash table: Range search requires Q(n) time:
We have to check for each item explicitly whether it is in the range.

Sorted array: Range search in A can be done in O(log n + s) time:

range-search((18,45]) | 5 [10 [11 [17 [19 | 33 [45 [51 | 55 | 59 |

i i

@ Using binary search, find i such that x is at (or would be at) A[i].
@ Using binary search, find i’ such that x’ is at (or would be at) A[/’]
@ Report all items A[i+1.../"—1]

@ Report A[i] and A[/’] if they are in range

BST: Range searches can similarly be done in time O(height+s) time.
We will see this in detail later.

O.Veksler (CS-UW) CS240 — Module 8 Winter 2025 3 /36

Outline

© Range-Searching in Dictionaries for Points

@ Multi-Dimensional Data

O.Veksler (CS-UW) CS240 — Module 8

Multi-Dimensional Data

Range searches are of special interest for multi-dimensional data.
Example: flights that leave between 9am and noon, and cost $400-$600

price . .

$700t
$650 .

$600r . Q
$550r
$500f o .
$4501
$400f
$350t

$300—5:ho 8:00 10000 1200 1400 16io0 ~ departure time

e Each item has d aspects (coordinates): (xo, X1, , X4—1)
so corresponds to a point in d-dimensional space

@ We concentrate on d = 2, i.e., points in Euclidean plane

@ (Orthogonal) d-dimensional range search: Given a query rectangle
Q = [x1,x{] X -+ X [xq,x}], find all points that lie within Q.

O.Veksler (CS-UW) CS240 — Module 8 Winter 2025 4 /36

Multi-dimensional Range Search

The time for range searches depends on how the points are stored.

e Could store a 1-dimensional dictionary (where the key is some
combination of the aspects.)
Problem: Range search on one aspect is not straightforward

@ Could use one dictionary for each aspect
Problem: inefficient, wastes space

o Better idea: Design new data structures specifically for points.

» Quadtrees
> kd-trees
> range-trees
@ Assumption: Points are in general position:
» No two points on a horizontal line.
» No two points on a vertical line.

This simplifies presentation; data structures can be generalized.

O.Veksler (CS-UW) CS240 — Module 8 Winter 2025

5/ 36

Outline

© Range-Searching in Dictionaries for Points

@ Quadtrees

O.Veksler (CS-UW) CS240 — Module 8

Quadtrees

We have n points P = {(x0, ¥0), (x1,¥1), "+ , (Xn—1, ¥n—1)} in the plane.
Find a bounding box R = [0, 2) x [0,2K): a square containing all points.
@ Assume (after translation) that all coordinates are non-negative.

e Find max-coordinate in P, use the smallest k such that it is < 2*.

Structure (and also how to build the quadtree that stores P):
@ Root r of the quadtree is associated with region R
@ If R contains 0 or 1 points, then root r is a leaf that stores point.

e Else split: Partition R into four equal subsquares (quadrants)

Rne, Rnw s Rsw, Rse

Partition P into sets Png, Pyw, Psw, Pse of points in these regions.
» Convention: Points on split lines belong to right/top side

Recursively build tree T; for points P; in region R; and make them
children of the root.

O.Veksler (CS-UW) CS240 — Module 8 Winter 2025 6 /36

Quadtree example

Po
P3 . o P4
P1 e P8
P P ps
p2 ° pr [0, 16)x[0, 16)

O.Veksler (CS-UW) CS240 — Module 8

Quadtree example

Po
P3 . o P4
P eps
Po F:G ps
P2 " py

O.Veksler (CS-UW)

[0, 8)x 8, 16)

CS240 — Module 8

[

0, 16)x [0, 16)

[0,8)x[0, 8)

Winter 2025

7/36

Quadtree example

pP3 V.g o P4
P epo
Po F:G Ps
p2 ‘>p7 [0, 16)x[0, 16)

[0,8) x[8, 16) [0,8)x[0, 8)

O.Veksler (CS-UW) CS240 — Module 8 Winter 2025 7 /36

Quadtree example

e\3 Vag o P4
L e
Po F:G Ps
p2 ‘>p7 [0, 16)x[0, 16)

[0,8) x[8, 16) [0,8)x[0, 8)

O.Veksler (CS-UW) CS240 — Module 8 Winter 2025 7 /36

Quadtree Dictionary Operations

@ search: Analogous to binary search trees and tries
@ insert:
» Search for the point
» Split the leaf while there are two points in one region
o delete:
» Search for the point
» Remove the point
» If its parent has only one point left: delete parent
(and recursively all ancestors that have only one point left)

O.Veksler (CS-UW) CS240 — Module 8 Winter 2025 8 /36

Quadtree Insert example

[0, 16)x [0, 16)

9 o P4
p3| °
P eps
. P10
Po pPs ° ps
et
insert(p1o)

O.Veksler (CS-UW)

[0,8) x[8, 16)

CS240 — Module 8

[0,8)x[0, 8)

Winter 2025

9/ 36

Quadtree Insert example

9 o P4
p3| °

L eps

. P10

Po 1%3) Ps

Pt

[0, 16)x [0, 16)

insert(p1o)

[0,8)%[8, 16)

O.Veksler (CS-UW) CS240 — Module 8 Winter 2025 9 /36

Quadtree Range Search

QTree::range-search(r « root, Q)

r: The root of a quadtree, Q: Query-rectangle

1. R < region associated with node r

2. if (R C Q) then // inside node, stop searching
report all points below r and return

3. else if (RN Q is empty) then return // outside node, stop searching

// boundary node, recurse

4. if (ris a leaf) then

5 p < point stored at r

6. if p is not NULL and in @ then report it and return

7 else return

8. for each child v of r do QTree::range-search(v, Q)

Note: We assume here that each node of the quadtree stores the
associated square. Alternatively, these could be re-computed during the
search (space-time tradeoff).

O.Veksler (CS-UW) CS240 — Module 8 Winter 2025 10 / 36

Quadtree range search example

7 -
1 * Ps
R P10
Po ’:0 Ps
P21 0, 16)x [0, 16)
Pa 0, 8)x[, 16)

O.Veksler (CS-UW) CS240 — Module 8 Winter 2025 11 / 36

Quadtree range search example

9 o P4

| @ Green: Search stopped due to R C Q.
p1 * Pe @ Red: Search stopped due to RN Q = 0.
. (P @ Blue: Must continue search in children
po | [P6

. i / evaluate.
p2 p7 [0, 16) x [0, 16)
pa 0,8) %[, 16)

O.Veksler (CS-UW) CS240 — Module 8 Winter 2025 11 / 36

Quadtree Analysis
Crucial for analysis: what is the height of a quadtree?
@ Can have very large height for bad distributions of points.

@ Even with n = 3 points, the height could P1
be arbitrarily large. ;P2'.
(0,0)
@ There exists a (weaker) bound that depends on the spread factor of
points P:

sidelength of R
minimum distance between points in P

@ Can show: height h of quadtree is in ©(log(spread factor))

e Complexity to build initial tree: ©(nh) worst-case

e Complexity of range search: ©(nh) worst-case even if the answer is ()
O.Veksler (CS-UW) CS240 — Module 8 Winter 2025 12 / 36

Quadtrees in other dimensions

@ Quad-tree of 1-dimensional points:
“Points:” 0 9 12 14 24 26 28

O.Veksler (CS-UW) CS240 — Module 8

Quadtrees in other dimensions
@ Quad-tree of 1-dimensional points:

“Points:” 0 9 12 14 24 26 28
(in base-2) 00000 01001 0110001110 1100011010 11100

O.Veksler (CS-UW) CS240 — Module 8 Winter 2025 13 / 36

Quadtrees in other dimensions
@ Quad-tree of 1-dimensional points:
“Points:" 0 9 12 14 24 26 28

(in base-2) 00000 01001 0110001110 1100011010 11100

f0.32)

O.Veksler (CS-UW) CS240 — Module 8 Winter 2025 13 / 36

Quadtrees in other dimensions

@ Quad-tree of 1-dimensional points:

“Points:” 0 9 12 14 24 26 28
(in base-2) 00000 01001 0110001110 1100011010 11100

O.Veksler (CS-UW) CS240 — Module 8 Winter 2025 13 / 36

Quadtrees in other dimensions

@ Quad-tree of 1-dimensional points:

“Points:” 0 9 12 14 24 26 28
(in base-2) 00000 01001 0110001110 1100011010 11100

Same as a pruned trie

O.Veksler (CS-UW) CS240 — Module 8 Winter 2025 13 / 36

Quadtrees in other dimensions

@ Quad-tree of 1-dimensional points:

“Points:” 0 9 12 14 24 26 28
(in base-2) 00000 01001 0110001110 1100011010 11100

Same as a pruned trie

e Quadtrees also easily generalize to higher dimensions (split into
octants — octrees, etc.) but are rarely used beyond dimension 3.

O.Veksler (CS-UW) CS240 — Module 8 Winter 2025 13 / 36

Quadtree summary

@ Very easy to compute and handle

No complicated arithmetic, only divisions by 2 (bit-shift!) if the
width/height of bounding box R is a power of 2

Space potentially wasteful, but good if points are well-distributed

Variation: We could stop splitting earlier and allow up to K points in
a leaf (for some fixed bound K).

o Variation: Use quad-tree to store pixelated images.

O.Veksler (CS-UW) CS240 — Module 8

Outline

© Range-Searching in Dictionaries for Points

@ kd-Trees

O.Veksler (CS-UW) CS240 — Module 8

kd-trees

We have n points P = {(X07y0)7 (Xl7yl)7 T 7(Xn717yn71)}
Quadtrees split square into quadrants regardless of where points are

(Point-based) kd-tree idea: Split the region at upper median of
coordinates (~ roughly half of the point are in each subtree)

Each node of the kd-tree keeps track of a splitting line in one
dimension (2D: either vertical or horizontal)

Convention: Points on split lines belong to right/top side

e Continue splitting, switching between vertical and horizontal lines,
until every point is in a separate region

(There are alternatives, e.g., split by the dimension that has better aspect
ratios for the resulting regions.)

O.Veksler (CS-UW) CS240 — Module 8 Winter 2025 15 / 36

kd-tree example

P R
*P3 Ps
pr °
o Po
P2 * ps
p7

O.Veksler (CS-UW) CS240 — Module 8

kd-tree example

.PQ
*P3 Ps
pr [
o Po
p2
[] .p7

O.Veksler (CS-UW)

P4

CS240 — Module 8

kd-tree example

.PQ
*P3 Ps
pr [
o Po
p2
[] .p7

O.Veksler (CS-UW)

P4

Ps

{06 y) s x<ps.x}

y<pi.y?

CS240 — Module 8

2

{0 y) : x2ps-x}

y<pe-y?

Winter 2025

16 / 36

kd-tree example

Po .P4
*P3 ps
pr [
N Pe
P2 Ps < >
P {(x,y) : x<ps-x} {(x,y) : x>ps.x}
< > < >
(=00, ps.X)x(—00,pry)) (- ([(-~
X<po.x? J Lx<pg.x?) Lx<p5.x?J Lx<p5.x?J

For ease of drawing, we will usually not show the associated regions.

O.Veksler (CS-UW) CS240 — Module 8 Winter 2025 16 / 36

kd-tree example

Po ‘P4
*P3 ps
pr [
N Pe
P2 Ps < >
P {(x,y) : x<ps-x} {(x,y) : x>ps.x}
< > < >
(=00, ps.x)x(—00, p1.y)] (-
v] Geerr) Lx<ps 7

6 b Fep8 beE
& o &

For ease of drawing, we will usually not show the associated regions.

O.Veksler (CS-UW) CS240 — Module 8 Winter 2025 16 / 36

Constructing kd-trees

Build kd-tree with initial split by x on points P:
@ If |P| <1 create a leaf and return.
e Else X := randomized-quick-select(P, |5 |) (select by x-coordinate)

e Partition P by x-coordinate into P, x and P,>x

» | 5] points on one side and [7] points on the other.
(Recall: Points in general position.)

Create left subtree recursively (splitting by y) for points Py x.

Create right subtree recursively (splitting by y) for points Py>x.

Building with initial y-split symmetric.

O.Veksler (CS-UW) CS240 — Module 8 Winter 2025 17 / 36

Constructing kd-trees
Run-time:
e Find X and partition P in ©(n) expected time using
randomized-quick-select.
@ Both subtrees have ~ n/2 points.

TP(n) =2T%P(n/2) 4+ O(n) (sloppy recurrence)

This resolves to ©(nlog n) expected time.
@ This can be reduced to ©(nlog n) worst-case time by pre-sorting (no
details).

Height: h(1) =0, h(n) < h([n/2]) + 1.
@ This resolves to O(log n) (specifically [log n]).
e This is tight (binary tree with n leaves)

Space: All interior nodes have exactly two children.
@ Therefore have n — 1 interior nodes.
@ Space is ©(n).

O.Veksler (CS-UW) CS240 — Module 8 Winter 2025 18 / 36

kd-tree Dictionary Operations

@ search (for single point): as in binary search tree using indicated
coordinate

@ insert: search, insert as new leaf.

@ delete: search, remove leaf.

Problem: After insert or delete, the split might no longer be at exact
median and the height is no longer guaranteed to be [log, n].

We can maintain O(log n) height by occasionally re-building entire
subtrees. (No details.) But range-search will be slower.

kd-trees do not handle insertion/deletion well.

O.Veksler (CS-UW) CS240 — Module 8 Winter 2025 19 / 36

kd-tree Range Search

@ Range search is exactly as for quad-trees, except that there are only
two children and leaves always store points.

kdTree::range-search(r < root, Q)

r: The root of a kd-tree, @: Query-rectangle

1. R < region associated with node r

2. if (R C Q) then report all points below r; return
3. if (RN Q is empty) then return

4. if (ris a leaf) then

5. p < point stored at r

6 if pisin Q return p

7 else return

8. for each child v of r do kdTree::range-search(v, Q)

o We assume again that each node stores its associated region.

@ To save space, we could instead pass the region as a parameter and
compute the region for each child using the splitting line.

O.Veksler (CS-UW) CS240 — Module 8 Winter 2025 20 / 36

kd-tree: Range Search Example

Po el

o p3

P2

O.Veksler (CS-UW) CS240 — Module 8 Winter 2025 21/ 36

kd-tree: Range Search Example

o p3

P2

Red: Search stopped due to RN Q = (). Green: Search stopped due to R C Q.

O.Veksler (CS-UW) CS240 — Module 8 Winter 2025 21/ 36

kd-tree: Range Search Complexity

@ We spend O(1) time at each visited node, except in line 2.
@ All calls to line 2 together take O(s) time (recall: s is the output-size)
e Observe: # visited nodes is O(3(n))

where (3(n) is the number of “boundary” nodes (blue):

> kdTree::range-search was called.
» Neither RC Qnor RN Q=10

Can show: [(n) satisfies the following recurrence relation:
B(n) <26(n/4) + O(1)

This implies 5(n) € O(y/n)
Therefore, the complexity of range search in kd-trees is O(s + /n)

O.Veksler (CS-UW) CS240 — Module 8 Winter 2025 22 / 36

kd-tree: Higher Dimensions

@ kd-trees for d-dimensional space:

> At the root the point set is partitioned based on the first coordinate

> At the subtrees of the root the partition is based on the second
coordinate

> At depth d — 1 the partition is based on the last coordinate

» At depth d we start all over again, partitioning on first coordinate

Storage: O(n)
Height: O(log n)
Construction time: O(nlog n)

o Range search time: O(s 4 n'~%/9)

This assumes that d is a constant.

O.Veksler (CS-UW) CS240 — Module 8 Winter 2025 23 /36

Outline

© Range-Searching in Dictionaries for Points

@ Range Trees

O.Veksler (CS-UW) CS240 — Module 8

Towards Range Trees

@ Both Quadtrees and kd-trees are intuitive and simple.
@ But: both may be very slow for range searches.

@ Quadtrees are also potentially wasteful in space.

New idea: Range trees
e Tree of trees (a multi-level data structure)

» So far, nodes in our trees stored a key-value pair and references to
children and (maybe) the parent

» But we can store much more in a node!

» Here: Each node stores in another binary search tree (!)

@ They are wasteful in space, but permit much faster range search.

O.Veksler (CS-UW) CS240 — Module 8 Winter 2025 24 / 36

2-dimensional Range Trees
Primary structure:

Balanced binary search tree

T that stores P and uses
x-coordinates as keys.

Every node z of T stores an associate structure T,s(z):
@ Let P(z) be all points in subtree of z in T (including point at z)
@ T,ss(z) stores P(z) in a balanced binary search tree, using the
y-coordinates as key
e Note: Point of z is not necessarily the root of T,s(2z)

O.Veksler (CS-UW) CS240 — Module 8 Winter 2025 25/ 36

Bigger example

O.Veksler (CS-UW)

(15,16)
(6.15)
(12,14)
(5.13) ®
(10,12)
(7.11)
(8.10)
s (14,9)
(11,8)
(2.7)
(9.6)
(1,5) °
L]
(4,4)
(16,
(13,2)

(3.1)
[]

CS240 — Module 8

Bigger example

O.Veksler (CS-UW)

w0 primary tree T

(1,5)
°

(4.4)
®

(3,1)
L]

(9,6)

(11,8)
J

(14,9)
®

(13,2)
[}

(16,

CS240 — Module 8

Bigger example

w0 primary tree T

1
,/Tass(w) (drawn

reversed)

associate

trees are shown.

7’
’
I
|
\
\ 15
\ (12,14) \
12
Tass(2) 3413 (5.13) \
(10412) 1
1
3 (7.11)]
(8,10) !
(14,9)
)
(11,8)
8
2.7
°
(9,6)
6 ®
(1,5)
[]
(4.4)
[]
(16/3)
(13,2)
2
(3,1)
[)
Not all
O.Veksler (CS-UW) CS240 — Module 8 Winter 2025

26 / 36

Range Tree Space Analysis

@ Primary tree T uses O(n) space.

@ How many nodes do all associate trees together have?

> point of a is only in associate tree T,s(a)

Tass(a)

> point of b is in associate trees T,ss(a), Tass(b)

» point of ¢ is in associate trees
Tass(a); Tass(b)7 Tass(c)

» Key insight: point of z is in associate tree T,ss(u)
if and only if u is an ancestor of zin T

> So every point belongs to O(log n) associate trees.

> So all associate trees together use O(nlog n) space.

@ A range-tree with n points uses O(nlog n) space.

This is tight for some primary trees.

O.Veksler (CS-UW) CS240 — Module 8 Winter 2025 27 / 36

Range Trees Operations

@ search: search by x-coordinate in T

@ insert: First, insert point by x-coordinate into T.
Then, walk back up to the root and insert the point by y-coordinate
in all associate trees T,ss(z) of nodes z on path to the root.

@ delete: analogous to insertion

o Problem: We want the binary search trees to be balanced.

» This makes insert/delete very slow if we use AVL-trees.
(A rotation at v changes P(v) and hence requires a re-build of
Tass(v).)
» Solution: Completely rebuild highly unbalanced subtrees (no details)
» Run-time for insert/delete becomes O(log? n) amortized.

O.Veksler (CS-UW) CS240 — Module 8 Winter 2025 28 / 36

Range Trees Operations

search: search by x-coordinate in T

insert: First, insert point by x-coordinate into T.
Then, walk back up to the root and insert the point by y-coordinate
in all associate trees T,ss(z) of nodes z on path to the root.

delete: analogous to insertion

Problem: We want the binary search trees to be balanced.

» This makes insert/delete very slow if we use AVL-trees.
(A rotation at v changes P(v) and hence requires a re-build of
Tass(v).)
» Solution: Completely rebuild highly unbalanced subtrees (no details)
» Run-time for insert/delete becomes O(log? n) amortized.

@ range-search: search by x-range in T.
Among found points, search by y-range in some associated trees.

@ Must understand first: How to do (1-dimensional) range search in
binary search tree?

O.Veksler (CS-UW) CS240 — Module 8 Winter 2025 28 / 36

BST Range Search

@ Search for left boundary x;: this gives path P;

@ Search for right boundary x,: this gives path P
@ Three types of nodes: outside, on, or between the paths.

@ This classification will be crucial later!

O.Veksler (CS-UW) CS240 — Module 8 Winter 2025 29 / 36

BST Range Search re-phrased

@ boundary nodes: nodes in P; or P,
» For each boundary node, test whether it is in the range.
@ outside nodes: nodes that are left of P; or right of P,
» These are not in the range, we do not visit them.
@ inside nodes: nodes that are right of P; and left of P,

» We keep a list of the topmost inside nodes.
» All descendants of such a node are in the range.
For a 1d range search, report them.

O.Veksler (CS-UW) CS240 — Module 8 Winter 2025

30 / 36

BST Range Search analysis

Assume that the binary search tree is balanced:
e Search for path P;: O(log n)
@ Search for path P,: O(log n)

@ O(log n) boundary nodes
e We spend O(1) time on each.

O.Veksler (CS-UW) CS240 — Module 8 Winter 2025 31/ 36

BST Range Search analysis

Assume that the binary search tree is balanced:
e Search for path P;: O(log n)

Search for path P>: O(log n)

]
@ O(log n) boundary nodes
]

We spend O(1) time per topmost inside node v.
» They are children of boundary nodes, so this takes O(log n) time.
@ For 1d range search, also report the descendants of v.

> We have 3, topmost inside #{descendants of z} <'s since subtrees of
topmost inside nodes are disjoint. So this takes time O(s) overall.

Run-time for 1d range search: O(log n+ s). This is no faster overall, but
topmost inside nodes will be important for 2d range search.

O.Veksler (CS-UW) CS240 — Module 8 Winter 2025 31/ 36

Range Trees: Range Search

Range search for Q = [x1, x2] X [y1, 2] is a two stage process:

@ Perform a range search (on the x-coordinates) for the interval [x1, x2]
in primary tree T (BST::range-search(T,xi,x2))

@ Get boundary and topmost inside nodes as before.

@ For every boundary node, test to see if the corresponding point is
within the region Q.

@ For every topmost inside node v:

Let P(z) be the points in the subtree of z in T.

We know that all x-coordinates of points in P(z) are within range.
Recall: P(z) is stored in T,ss(2).

To find points in P(z) where the y-cordinates are within range as well,
perform a range search in Toss(z): BST::range-search(Toss(2), y1,¥2)

v

vV vVvYyy

O.Veksler (CS-UW) CS240 — Module 8 Winter 2025 32 /36

Range tree range search example

O.Veksler (CS-UW)

2,7)
[]

(1,5)
[

(15,16)
[)
(12,14)
[]

(10,12)
[)

(14,9)
[]

(9,6)

(4,4)
(16
(13,2)
[]

(3.1)

CS240 — Module 8

Range tree range search example

w0 primary tree T

O.Veksler (CS-UW)

(12)14)

(10J12)

14,9
“()

(4,4)

(3.1)
J

(13,2)
[]

(16

CS240 — Module 8

Range tree range search example

1) primary tree T

O.Veksler (CS-UW)

(5,13)
(10,

12)

14,9
.‘()

(4,4)
®

(3,1)
°

(13,2)
[]

(16

CS240 — Module 8

Winter 2025

33 /36

Range tree range search example

O.Veksler (CS-UW)

CS240 — Module 8

116)

(16

Range tree range search example

O.Veksler (CS-UW) CS240 — Module 8

Range tree range search example

primary tree T

1
,/ Tass(w) (drawn
reversed)

8

O.Veksler (CS-UW) CS240 — Module 8

Range Trees: Range Search Run-time

@ O(log n) time to find boundary and topmost inside nodes in primary
tree.

@ There are O(log n) such nodes.

@ O(logn+ s;) time for each topmost inside node z,
where s, is the number of points in T,ss(z) that are reported

@ Two topmost inside nodes have no common point in their trees
= every point is reported in at most one associate structure

= Zz topmost inside sz <s
Time for range search in range-tree is proportional to

> (logn+s;) € O(log”n+s)

z topmost inside

(There are ways to make this even faster. No details.)

O.Veksler (CS-UW) CS240 — Module 8 Winter 2025 34 /36

Range Trees: Higher Dimensions

@ Range trees can be generalized to d-dimensional space.

Space O(n (log n)9=1)
Construction time O(n (log n)9)
Range search time O(s + (log n)9)

(Note: d is considered to be a constant.)

O.Veksler (CS-UW) CS240 — Module 8 Winter 2025 35/ 36

Range Trees: Higher Dimensions
@ Range trees can be generalized to d-dimensional space.

Space O(n(logn)¥=1) kd-trees: O(n)
Construction time O(n (log n)9) kd-trees: O(nlog n)
Range search time O(s + (log n)?) kd-trees: O(s + n'~1/9)

(Note: d is considered to be a constant.)

@ Space/time trade-off compared to kd-trees.

O.Veksler (CS-UW) CS240 — Module 8 Winter 2025 35/ 36

Range search data structures summary

o Quadtrees T - P
T
» simple (also for dynamic set of points) -
» work well only if points evenly distributed p | 7 P
» wastes space for higher dimensions ol
o kd-trees

> linear space

» range search time O(y/n + s)

» inserts/deletes destroy balance and range
search time (no simple fix)

@ range-trees

> range search time O(log? n + s)

> wastes some space
> inserts/deletes destroy balance (can
fix this with occasional rebuild)

Convention: Points on split lines belong to right/top side.
O.Veksler (CS-UW) CS240 — Module 8 Winter 2025 36 / 36

	Range-Searching in Dictionaries for Points
	Range Searches
	Range searches
	Range searches in existing dictionary realizations

	Multi-Dimensional Data
	Multi-Dimensional Data
	Multi-dimensional Range Search

	Quadtrees
	Quadtrees
	Quadtree example
	Quadtree Dictionary Operations
	Quadtree Insert example
	Quadtree Range Search
	Quadtree range search example
	Quadtree Analysis
	Quadtrees in other dimensions
	Quadtree summary

	kd-Trees
	kd-trees
	kd-tree example
	Constructing kd-trees
	Constructing kd-trees
	kd-tree Dictionary Operations
	kd-tree Range Search
	kd-tree: Range Search Example
	kd-tree: Range Search Complexity
	kd-tree: Higher Dimensions

	Range Trees
	Towards Range Trees
	2-dimensional Range Trees
	Bigger example
	Range Tree Space Analysis
	Range Trees Operations
	BST Range Search
	BST Range Search re-phrased
	BST Range Search analysis
	Range Trees: Range Search
	Range tree range search example
	Range Trees: Range Search Run-time
	Range Trees: Higher Dimensions
	Range search data structures summary

