CS 240 – Data Structures and Data Management

Module 9: String Matching

Olga Veksler

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2025

version 2025-03-13 06:16

Outline

String Matching

- Introduction
- Karp-Rabin Algorithm
- Skip-heuristics
- Knuth-Morris-Pratt algorithm
- Boyer-Moore Algorithm
- Suffix Trees
- Suffix Arrays

Outline

String Matching

Introduction

- Karp-Rabin Algorithm
- Skip-heuristics
- Knuth-Morris-Pratt algorithm
- Boyer-Moore Algorithm
- Suffix Trees
- Suffix Arrays

Pattern Matching Introduction

- Search for a string (pattern) in a large body of text. Useful for
 - Information Retrieval (text editors, search engines)
 - Bioinformatics
 - Data Mining
- T[0..n-1] The text (or haystack) being searched within

Example: T = "Where is he?"

• P[0..m-1] – The pattern (or needle) being searched for

Example: $P_1 =$ "he" $P_2 =$ "who"

• occurrence: index *i* such that T[i..i+m-1] = P, i.e.,

P[j] = T[i+j] for $0 \le j \le m-1$

- Convention: return smallest such *i* (leftmost occurrence)
- If *P* does not occur in *T*, return FAIL

Pattern Matching Observation

Recall:

- Substring T[i..j] for 0 ≤ i ≤ j+1 ≤ n: a string of length j − i + 1 which consists of characters T[i],...T[j] in order.
- **Prefix** of T: a substring T[0..i-1] of T for some $0 \le i \le n$.
- Suffix of T: a substring T[i..n-1] of T for some $0 \le i \le n$.
- The empty string Λ is also considered a substring, prefix and suffix.

Observe: P occurs in T

- $\Leftrightarrow P \text{ is a substring of } T.$
- \Leftrightarrow *P* is a suffix of some prefix of *T*.
- \Leftrightarrow *P* is a prefix of some suffix of *T*.

General Idea of Algorithms

Pattern matching algorithms consist of guesses and checks:

- A guess is a position g such that P might start at T[g].
 Valid guesses (initially) are 0 ≤ g ≤ n − m.
- A check of a guess is a single position j with 0 ≤ j < m where we compare T[g + j] to P[j].
- We do strncmp to compare a guess to P. This uses m checks in the worst-case, but may use (many) fewer checks if there is a mismatch.

We will diagram a single run of any pattern matching algorithm by a matrix of checks, where each row represents a single guess (shaded gray).

Brute-force Algorithm

Idea: Check every possible guess.

Note: strncmp takes $\Theta(m)$ time.

 $\begin{array}{l} strncmp(T,P,g\leftarrow 0,m))\\ // \text{ Compare }m \text{ chars of }T \text{ and }P, \text{ starting at }T[g]\\ 1. \text{ for }j\leftarrow 0 \text{ to }m-1 \text{ do}\\ 2. \text{ if }T[g+j] \text{ is before }P[j] \text{ in }\Sigma \text{ then return }-1\\ 3. \text{ if }T[g+j] \text{ is after }P[j] \text{ in }\Sigma \text{ then return }1\\ 4. \text{ return }0\end{array}$

Brute-Force Example

• Example: T = abbbababbab, P = aaab

• What is the worst possible input?

Brute-Force Example

• Example: T = abbbababbab, P = aaab

- What is the worst possible input? $P = a^{m-1}b$, $T = a^n$
- Worst case performance $\Theta((n-m+1)\cdot m)$
- This is too slow (quadratic if $m \approx n/2$).

How to improve?

General idea of **preprocessing**: Do work on some parts of input beforehand, so that the actual **query** (with rest of input) then goes faster.

For pattern matching, we have two options:

- Do preprocessing on the pattern P
 - We eliminate guesses based on characters we have seen.
- Do preprocessing on the text T
 - We create a data structure to find matches easily.

Outline

String Matching

Introduction

• Karp-Rabin Algorithm

- Skip-heuristics
- Knuth-Morris-Pratt algorithm
- Boyer-Moore Algorithm
- Suffix Trees
- Suffix Arrays

Karp-Rabin Fingerprint Algorithm – Idea

Idea: Use fingerprints to eliminate guesses

- Need function $h: \{ \text{strings of length } m \} \rightarrow \{0, \dots, M{-}1 \}$
 - (Call these 'hash-function' and 'table-size', but there is no dictionary here)
- Insight: If $h(P) \neq h(T[g..g+m-1])$ then guess g cannot work

Example: $\Sigma = \{0-9\}, P = 9 \ 2 \ 6 \ 5 \ 3, T = 3 \ 1 \ 4 \ 1 \ 5 \ 9 \ 2 \ 6 \ 5 \ 3 \ 5$

- Use standard hash-function for words, with $R = |\Sigma|$ and M = 97: $h(x_0 \dots x_4) = (x_0 x_1 x_2 x_3 x_4)_{10} \mod 97$
- Pre-compute $h(P) = 92653 \mod 97 = 18$.

O.Veksler (CS-UW)

CS240 - Module 9

Winter 2025

8 / 43

Karp-Rabin Fingerprint Algorithm – First Attempt

$$\begin{array}{ll} Karp-Rabin-Simple::pattern-matching(T,P)\\ 1. \quad h_P \leftarrow h(P[0..m-1)])\\ 2. \quad \text{for } g \leftarrow 0 \text{ to } n-m\\ 3. \quad h_T \leftarrow h(T[g..g+m-1]) \quad // \text{ not constant time}\\ 4. \quad \text{if } h_T = h_P\\ 5. \qquad \text{if } strncmp(T,P,g,m) = 0\\ 6. \qquad \text{return "found at guess } g''\\ 7. \quad \text{return FAIL} \end{array}$$

- Never misses a match: $h(T[g..g+m-1]) \neq h(P) \Rightarrow$ guess g is not P
- h(T[g..g+m-1]) depends on m characters, so naive computation takes Θ(m) time per guess
- Running time is $\Theta(mn)$ if P is not in T. Can we improve this?

Karp-Rabin Fingerprint Algorithm – Fast Update

Idea: Consecutive guesses share m-1 characters

 \Rightarrow for suitable hash-functions, can compute next fingerprint from previous

Example: $15926 = (41592 - 4 \cdot 10000) \cdot 10 + 6$

$$\underbrace{15926 \mod 97}_{h(15926)} = \left(\left(\underbrace{41592 \mod 97}_{\text{previous fingerprint}} -4 \cdot \underbrace{10000 \mod 97}_{9 \text{ (pre-computed)}} \right) \cdot 10 + 6 \right) \mod 97$$
$$= \left((76 - 4 \cdot 9) \cdot 10 + 6 \right) \mod 97 = 18$$

• So pre-compute $R^{m-1} \mod M$ (here 10000 mod 97 = 9)

- Compute leftmost fingerprint
- Use previous fingerprint to compute next fingerprint in O(1) time
- Run-time: $O(m + n + m \cdot \# \{ \text{false positives} \})$

Karp-Rabin Fingerprint Algorithm – Conclusion

 $\begin{array}{ll} \textit{Karp-Rabin::pattern-matching}(T,P) \ // \ \text{rolling hash-function} \\ 1. \ M \leftarrow \ \text{suitable prime number} \\ 2. \ h_P \leftarrow h(P[0..m-1)]) \\ 3. \ s \leftarrow R^{m-1} \ \text{mod} \ M \\ 4. \ h_T \leftarrow h(T[0..m-1)]) \\ 5. \ \text{for} \ g \leftarrow 0 \ \text{to} \ n-m \\ 6. \quad \ \text{if} \ h_T = h_P \\ 7. \qquad \ \text{if} \ strncmp(T,P,g,m) = 0 \ \text{return} \ \text{"found at guess} \ g'' \\ 8. \quad \ \text{if} \ g < n-m \ // \ \text{compute fingerprint for next guess} \\ 9. \qquad h_T \leftarrow ((h_T - T[g] \cdot s) \cdot R + T[g+m]) \ \text{mod} \ M \\ 10. \ \text{return} \ \text{"FALL"} \end{array}$

- Choose "table size" M to be random prime in $\{2, \ldots, mn^2\}$
- Can show: Then $P(\text{at least one false positive}) \in O(\frac{1}{n})$
- Expected time O(m+n), worst-luck time $O(m \cdot n)$ (extremely unlikely)
- Improvement: reset M after a false positive

O.Veksler (CS-UW)

Outline

String Matching

- Introduction
- Karp-Rabin Algorithm

Skip-heuristics

- Knuth-Morris-Pratt algorithm
- Boyer-Moore Algorithm
- Suffix Trees
- Suffix Arrays

We now make the brute-force algorithm smarter in a different way.

• Exploit information gained during strncmp to rule out guesses

We now make the brute-force algorithm smarter in a different way.

• Exploit information gained during *strncmp* to rule out guesses

• **Good prefix**: The matched prefix of *P* (here aba).

We now make the brute-force algorithm smarter in a different way.

• Exploit information gained during *strncmp* to rule out guesses

• **Good prefix**: The matched prefix of *P* (here aba). New guess must match aligned characters.

We now make the brute-force algorithm smarter in a different way.

• Exploit information gained during *strncmp* to rule out guesses

- **Good prefix**: The matched prefix of *P* (here aba). New guess must match aligned characters.
- **Bad** *T*-character: The mismatched character of *T* (here c).

We now make the brute-force algorithm smarter in a different way.

• Exploit information gained during *strncmp* to rule out guesses

- **Good prefix**: The matched prefix of *P* (here aba). New guess must match aligned characters.
- **Bad** *T*-character: The mismatched character of *T* (here c). New guess must match it.

We now make the brute-force algorithm smarter in a different way.

• Exploit information gained during *strncmp* to rule out guesses

- **Good prefix**: The matched prefix of *P* (here aba). New guess must match aligned characters.
- **Bad** *T*-character: The mismatched character of *T* (here c). New guess must match it.
- Bad P-character: The mismatched character of P (here b).
 New guess must mismatch it. (Implied by bad-T-character heuristic.)

O.Veksler (CS-UW)

CS240 - Module 9

We now make the brute-force algorithm smarter in a different way.

• Exploit information gained during *strncmp* to rule out guesses

- **Good prefix**: The matched prefix of *P* (here aba). New guess must match aligned characters.
- **Bad** *T*-character: The mismatched character of *T* (here c). New guess must match it.
- Bad P-character: The mismatched character of P (here b).
 New guess must mismatch it. (Implied by bad-T-character heuristic.)

O.Veksler (CS-UW)

CS240 - Module 9

Any subset of the three heuristics gives a pattern-matching algorithm: Do brute-force matching, except skip all guesses that can be ruled out.

Crucial: For all three heuristics, the guesses to skip depend only on

- the pattern P,
- the index j such that P[0..j-1] was matched (the good suffix),
- the bad-*T*-character *c*,
- the bad-P-character P[j].

They does *not* depend on text T, and therefore can be *pre-computed*.

Any subset of the three heuristics gives a pattern-matching algorithm: Do brute-force matching, except skip all guesses that can be ruled out.

Crucial: For all three heuristics, the guesses to skip depend only on

- the pattern P,
- the index j such that P[0..j-1] was matched (the good suffix),
- the bad-*T*-character *c*,
- the bad-P-character P[j].

They does *not* depend on text T, and therefore can be *pre-computed*.

First idea: Do pattern matching with *all* skip-heuristics. Presumably this will skip many guesses \rightsquigarrow fast in practice?

Any subset of the three heuristics gives a pattern-matching algorithm: Do brute-force matching, except skip all guesses that can be ruled out.

Crucial: For all three heuristics, the guesses to skip depend only on

- the pattern P,
- the index j such that P[0..j-1] was matched (the good suffix),
- the bad-*T*-character *c*,
- the bad-P-character P[j].

They does *not* depend on text T, and therefore can be *pre-computed*.

First idea: Do pattern matching with *all* skip-heuristics. Presumably this will skip many guesses \rightsquigarrow fast in practice?

No! The pre-computation is too slow. (Course notes have details.)

Outline

String Matching

- Introduction
- Karp-Rabin Algorithm
- Skip-heuristics

• Knuth-Morris-Pratt algorithm

- Boyer-Moore Algorithm
- Suffix Trees
- Suffix Arrays

Knuth-Morris-Pratt algorithm, incomplete

Surprisingly, using *only* the good-prefix heuristic works well enough. This is the idea for **Knuth-Morris-Pratt** (KMP) pattern matching.

KMP::pattern-matching(T, P)1. $F \leftarrow$ compute and store **failure-array**, using only P 2. $i \leftarrow 0, j \leftarrow 0$ // currently compare T[i] to P[j]3. while i < n do 4. // inv: P[0..j-1] is a suffix of T[0..i-1]5. **if** P[i] = T[i]6. **if** i = m - 1 **then return** "found at guess i - m + 1" 7. else // check next character $i \leftarrow i+1, j \leftarrow j+1$ 8. else // bad T-character is T[i]9. $j \leftarrow [\dots] / / \text{ read from } F \text{ and old } j$ 10. $i \leftarrow [...] / / depends on j-update$ 11. 12. return FAIL

Observe: *j* is always the number of matched characters of *P*.

O.Veksler (CS-UW)

CS240 - Module 9

The good-prefix heuristic rules out one guess.
 In new guess we have three matched characters. j^{new} = 3, i^{new} = i^{old}.

- The good-prefix heuristic rules out one guess. In new guess we have three matched characters. $j^{\text{new}} = 3$, $i^{\text{new}} = i^{\text{old}}$.
- We match a character, but then have a mismatch at j = 4.

- The good-prefix heuristic rules out one guess. In new guess we have three matched characters. $j^{\text{new}} = 3$, $i^{\text{new}} = i^{\text{old}}$.
- We match a character, but then have a mismatch at j = 4.
- In new guess we have two matched characters. $j^{\text{new}} = 2$, $i^{\text{new}} = i^{\text{old}}$.

- The good-prefix heuristic rules out one guess. In new guess we have three matched characters. $j^{\text{new}} = 3$, $i^{\text{new}} = i^{\text{old}}$.
- We match a character, but then have a mismatch at j = 4.
- In new guess we have two matched characters. $j^{\text{new}} = 2$, $i^{\text{new}} = i^{\text{old}}$. But then we immediately mismatch with j = 2.

- The good-prefix heuristic rules out one guess.
 In new guess we have three matched characters. j^{new} = 3, i^{new} = i^{old}.
- We match a character, but then have a mismatch at j = 4.
- In new guess we have two matched characters. $j^{\text{new}} = 2$, $i^{\text{new}} = i^{\text{old}}$. But then we immediately mismatch with j = 2.
- Nothing matches the good suffix. $j^{\text{new}} = 0$.

Knuth-Morris-Pratt example Example: Search for P = ababaca. We first mismatch at j = 5.

- The good-prefix heuristic rules out one guess.
 In new guess we have three matched characters. j^{new} = 3, i^{new} = i^{old}.
- We match a character, but then have a mismatch at j = 4.
- In new guess we have two matched characters. $j^{\text{new}} = 2$, $i^{\text{new}} = i^{\text{old}}$. But then we immediately mismatch with j = 2.
- Nothing matches the good suffix. $j^{\text{new}} = 0$.
- We still have a mismatch at j = 0. Increase *i*.

O.Veksler (CS-UW)

CS240 - Module 9

Knuth-Morris-Pratt algorithm, complete

Precompute F[J] = new j to use if the current good prefix was F[0..J].

KMP::pattern-matching(T, P)1. $F \leftarrow compute-failure-array(P)$ 2. $i \leftarrow 0, j \leftarrow 0$ // currently compare T[i] to P[j]3. while i < n do 4. // inv: P[0..j-1] is a suffix of T[0..i-1]5. if P[i] = T[i]6. **if** i = m - 1 **then return** "found at guess i - m + 1" 7. else // check next character $i \leftarrow i + 1, i \leftarrow i + 1$ 8 // bad T-character is T[i]9 else 10. **if** i = 0 then $i \leftarrow i + 1$ else $i \leftarrow F[i-1]$ 11.
String matching with KMP - Failure-function

• To compute F, re-use as much of good prefix as possible.

String matching with KMP - Failure-function

• To compute F, re-use as much of good prefix as possible.

• Store in *F*[·] how many characters are re-used in new shift.

O.Veksler (CS-UW)

String matching with KMP - Failure function

- F[J] = number of re-used characters if good prefix was P[0..J]
- For P = ababaca, we get

•							-
J	0	1	2	3	4	5	6
F[J]	0	0	1	2	3	0	?

String matching with KMP – Failure function

- In general: We must find a long prefix of P that is a suffix of P[0..J] (except it should not be all of P[0..J])

• Equivalently: Find longest prefix of P that is a suffix of P[1..J]

String matching with KMP - Failure function

- In general: We must find a long prefix of P that is a suffix of P[0..J] (except it should not be **all** of P[0..J])

• Equivalently: Find longest prefix of P that is a suffix of P[1..J]

Result: F[J] = length of the longest prefix of P that is a suffix of P[1..J].

O.Veksler (CS-UW)

KMP Failure Array – Easy Computation F[J] = length of the longest prefix of *P* that is a suffix of *P*[1...J].

Write down all prefixes (including empty word Λ). Then for $J \in \{0, ..., m-1\}$ and each prefix of Pcheck whether the prefix is a suffix of P[1..J].

J	P[1J]	Prefixes of P	longest	F[J]		
0	٨	$\Lambda, a, ab, aba, abab, ababa, \ldots$	Λ	0		
1	b	$\Lambda, \mathtt{a}, \mathtt{a}\mathtt{b}, \mathtt{a}\mathtt{b}\mathtt{a}, \mathtt{a}\mathtt{b}\mathtt{a}\mathtt{b}\mathtt{a}, \ldots$	Λ	0		
2	ba	$\Lambda, a, ab, aba, abab, ababa, \ldots$	a	1		
3	bab	$\Lambda, a, ab, aba, abab, ababa, \ldots$	ab	2		
4	baba	$\Lambda, a, ab, aba, abab, ababa, \ldots$	aba	3		
5	babac	$\Lambda, a, ab, aba, abab, ababa, \ldots$	Λ	0		
6	babaca	$\Lambda, a, ab, aba, abab, ababa, \dots$	a	1		
(F[m-1]) is not needed for KMP algorithm, but useful elsewhere)						

This can clearly be computed in $O(m^3)$ time, but we can do better!

O.Veksler (CS-UW)

KMP Failure Array – Fast Computation

• Recall: " $F[J] = \text{maximal } \ell$: { $P[0..\ell-1]$ is a suffix of P[1..J]}."

• Loop invariant: "j maximal: P[0..j-1] is a suffix of T[0..i-1]."

Idea: Run *KMP::pattern-matching* on input P[1..m-1].

Update F whenever we enter loop.

KMP Failure Array – Fast Computation

- Recall: " $F[J] = \text{maximal } \ell$: { $P[0..\ell-1]$ is a suffix of P[1..J]}."
- Loop invariant: "j maximal: P[0..j-1] is a suffix of T[0..i-1]."

Idea: Run *KMP::pattern-matching* on input P[1..m-1].

Update F whenever we enter loop.

```
KMP::compute-failure-array(P)
1. Initialize array F as all-0
2. i \leftarrow 1, j \leftarrow 0 // currently compare P[i] to P[j]
3. while i < m do
4. // inv: P[0..j-1] is a suffix of P[1..i-1]
        F[i-1] \leftarrow \max\{F[i-1], j\}
5
6. if P[i] = P[i]
            i \leftarrow i + 1, i \leftarrow i + 1
7.
8
       else
              if i = 0 then i \leftarrow i + 1
9.
             else j \leftarrow F[j-1]
10.
```

Note: j < i at all times, so needed *F*-entries are already computed.

Consider the main routine KMP::pattern-matching:

- How often does the while loop execute?
 - *i* need not increase, *j* can increase or decrease.
 - Not even obviously finite. What is getting bigger?

Consider the main routine KMP::pattern-matching:

- How often does the while loop execute?
 - ▶ *i* need not increase, *j* can increase or decrease.
 - Not even obviously finite. What is getting bigger?
- Idea: Consider function 2i j. Initially this is 0.
- In each iteration that does not exit, there are three possibilities:
 - **1** *i* and *j* both increase by $1 \Rightarrow 2i j$ increases
 - 2) j = 0 unchanged, *i* increases $\Rightarrow 2i j$ increases
 - **3** *j* decreases (F[j-1] < j), *i* unchanged $\Rightarrow 2i j$ increases

Consider the main routine KMP::pattern-matching:

- How often does the while loop execute?
 - ▶ *i* need not increase, *j* can increase or decrease.
 - Not even obviously finite. What is getting bigger?
- Idea: Consider function 2i j. Initially this is 0.
- In each iteration that does not exit, there are three possibilities:
 - **1** *i* and *j* both increase by $1 \Rightarrow 2i j$ increases
 - 2) j = 0 unchanged, *i* increases $\Rightarrow 2i j$ increases
 - **③** *j* decreases (F[j-1] < j), *i* unchanged ⇒ 2i j increases
- $i \leq n$ and $j \geq 0$ throughout, therefore $2i j \leq 2n$.
- So no more than 2n iterations of the while loop.
 The main routine (without compute-failure-array) takes O(n) time.

Consider the main routine KMP::pattern-matching:

- How often does the while loop execute?
 - ▶ *i* need not increase, *j* can increase or decrease.
 - Not even obviously finite. What is getting bigger?
- Idea: Consider function 2i j. Initially this is 0.
- In each iteration that does not exit, there are three possibilities:
 - **1** *i* and *j* both increase by $1 \Rightarrow 2i j$ increases
 - 2) j = 0 unchanged, *i* increases $\Rightarrow 2i j$ increases
 - **3** *j* decreases (F[j-1] < j), *i* unchanged $\Rightarrow 2i j$ increases
- $i \leq n$ and $j \geq 0$ throughout, therefore $2i j \leq 2n$.
- So no more than 2n iterations of the while loop.
 The main routine (without *compute-failure-array*) takes O(n) time.

Similarly: *compute-failure-array* takes O(m) time.

Result: KMP pattern matching has O(n + m) worst-case run-time.

But we can do even better!

O.Veksler (CS-UW)

Outline

String Matching

- Introduction
- Karp-Rabin Algorithm
- Skip-heuristics
- Knuth-Morris-Pratt algorithm

Boyer-Moore Algorithm

- Suffix Trees
- Suffix Arrays

Towards the Boyer-Moore Algorithm

Recall: KMP eliminates guesses based on good-prefix heuristic.

Towards the Boyer-Moore Algorithm

Recall: KMP eliminates guesses based on good-prefix heuristic.

Boyer-Moore uses *two* skip-heuristics:

- Eliminate guesses based on matched characters. Now called **good suffix heuristic**. Very similar to KMP.
- Use weak version of bad-*T*-char heuristics called last-occurrence heuristic—this is new.

Towards the Boyer-Moore Algorithm

Recall: KMP eliminates guesses based on good-prefix heuristic.

Boyer-Moore uses *two* skip-heuristics:

- Eliminate guesses based on matched characters. Now called **good suffix heuristic**. Very similar to KMP.
- Use weak version of bad-*T*-char heuristics called last-occurrence heuristic—this is new.

The second heuristic turns out to be very helpful, and leads to fastest pattern matching on English text as long as we search *backwards*.

O.Veksler (CS-UW)

CS240 - Module 9

Winter 2025

22 / 43

Forward-searching vs. reverse-searching

Forward-searching:

Reverse-order searching:

Forward-searching vs. reverse-searching

Forward-searching:

Reverse-order searching:

• o does not occur in P.

o does not occur in P.
 ⇒ shift pattern past o.

d cannot be matched again
 ⇒ shift pattern past d.

Forward-searching vs. reverse-searching

Forward-searching:

o does not occur in P.
 ⇒ shift pattern past o.

At most j - 1 guesses ruled out after j checks.

Reverse-order searching:

- o does not occur in P.
- d cannot be matched again
 ⇒ shift pattern past d.

Sometimes rule out m-1 guesses even after only one check

Reverse-order searching typically eliminates more guesses.

(1) Bad *T*-character is a.

(1) Bad *T*-character is a. Shift the guess until a in *P* aligns with a in *T* All skipped guessed are impossible since they do not match a

Bad *T*-character is a. Shift the guess until a in *P* aligns with a in *T* All skipped guessed are impossible since they do not match a
 Shift the guess until *last* p in *P* aligns with bad *T*-character p
 Use "last" since we cannot rule out this guess.

Bad *T*-character is a. Shift the guess until a in *P* aligns with a in *T*
 All skipped guessed are impossible since they do not match a
 Shift the guess until *last* p in *P* aligns with bad *T*-character p
 Use "last" since we cannot rule out this guess.

 Shift completely past o since o is not in *P*.

Bad *T*-character is a. Shift the guess until a in *P* aligns with a in *T*
 All skipped guessed are impossible since they do not match a
 Shift the guess until *last* p in *P* aligns with bad *T*-character p
 Use "last" since we cannot rule out this guess.

 Shift completely past o since o is not in *P*.

(4) The guess that aligns rightmost r of P has already been ruled out.
Simply shift one unit to the right.

Bad *T*-character is a. Shift the guess until a in *P* aligns with a in *T*
 All skipped guessed are impossible since they do not match a
 Shift the guess until *last* p in *P* aligns with bad *T*-character p
 Use "last" since we cannot rule out this guess.

 Shift completely past o since o is not in *P*.
 The guess that aligns rightmost r of *P* has already been ruled out.

- Simply shift one unit to the right.
- (5) Shift completely past $o \rightarrow out$ of bounds.

O.Veksler (CS-UW)

CS240 - Module 9

Boyer-Moore Algorithm - incomplete

Boyer-Moore::pattern-matching(T, P) 1. $L \leftarrow [...] // pre-computation$ 2. $i \leftarrow m-1, j \leftarrow m-1$ // currently compare T[i] to P[j]3. while i < n do // inv: current guess begins at index i-jif P[i] = T[i]4. if i = 0 then return "found at guess i - m + 1" 5. else 6. // go backwards $i \leftarrow i - 1, j \leftarrow j - 1$ 7. 8. else $i \leftarrow [...] // \text{ read from } L \text{ and } T[i]$ 9. $i \leftarrow m-1$ // restart from right end 10. 11. return FAIL

Two steps missing:

- Need to pre-compute for all characters where they are in *P*.
- Need to determine how to do update *i* after a mismatch.

O.Veksler (CS-UW)

CS240 - Module 9

Winter 2025

Helper-Array for Last-Occurrence Heuristic

- Build the helper-array L mapping Σ to integers
- L[c] is the largest index *i* such that P[i] = c

Helper-array:charpaerall others $L[\cdot]$ 2134?

Helper-Array for Last-Occurrence Heuristic

- Build the helper-array L mapping Σ to integers
- L[c] is the largest index *i* such that P[i] = c

- What value should be used if c not in P?
 - We want to shift past c entirely.
 - Equivalently view this as 'c is to the left of P'
 - Equivalently: c is at P[-1], so set L[c] = -1

Helper-Array for Last-Occurrence Heuristic

- Build the helper-array L mapping Σ to integers
- L[c] is the largest index *i* such that P[i] = c

- What value should be used if c not in P?
 - We want to shift past *c* entirely.
 - Equivalently view this as 'c is to the left of P'
 - Equivalently: c is at P[-1], so set L[c] = -1
- We can build this in time $O(m+|\Sigma|)$ with simple for-loop

BoyerMoore::last-occurrence-array(P[0..m-1]) 1. initialize array L indexed by Σ with all -12. for $j \leftarrow 0$ to m-1 do $L[P[j]] \leftarrow j$ 3. return L

"Good" case: L[c] < j, so c is left of P[j].

Want: $i^{\text{new}} = \text{index in } T$ that corresponds to j^{new} .

• $\Delta_1 =$ amount that we should shift the guess $= j^{\mathrm{old}} - \mathcal{L}[c]$

"Good" case: L[c] < j, so c is left of P[j].

Want: $i^{\text{new}} = \text{index in } T$ that corresponds to j^{new} .

- $\Delta_1 =$ amount that we should shift the guess $= j^{\mathrm{old}} L[c]$
- $\Delta_2 =$ how much we had compared $= (m-1) j^{
 m old}$

"Good" case: L[c] < j, so c is left of P[j].

Want: $i^{\text{new}} = \text{index in } T$ that corresponds to j^{new} .

•
$$\Delta_1$$
 = amount that we should shift the guess = $j^{\text{old}} - \mathcal{L}[c]$
• Δ_2 = how much we had compared = $(m-1) - j^{\text{old}}$
• $i^{\text{new}} = i^{\text{old}} + \Delta_2 + \Delta_1 = i^{\text{old}} + (m-1) - \mathcal{L}[c]$
= $i^{\text{old}} + (m-1) - \min\{\mathcal{L}[c], j^{\text{old}} - 1\}$

"Good" case: L[c] < j, so c is left of P[j].

Want: $i^{\text{new}} = \text{index in } T$ that corresponds to j^{new} .

•
$$\Delta_1$$
 = amount that we should shift the guess = $j^{\text{old}} - \mathcal{L}[c]$
• Δ_2 = how much we had compared = $(m-1) - j^{\text{old}}$
• $i^{\text{new}} = i^{\text{old}} + \Delta_2 + \Delta_1 = i^{\text{old}} + (m-1) - \mathcal{L}[c]$
= $i^{\text{old}} + (m-1) - \min\{\mathcal{L}[c], j^{\text{old}} - 1\}$

Can show: The same formula also holds for the other cases.

O.Veksler (CS-UW)

Boyer-Moore Algorithm

Boyer-Moore::pattern-matching(T, P) // simplified version 1. $L \leftarrow last-occurrence-array(P)$ 2. $i \leftarrow m-1, j \leftarrow m-1$ // currently compare T[i] to P[i]3. while i < n do // inv: current guess begins at index i-jif P[i] = T[i]4. if j = 0 then return "found at guess i - m + 1" 5. else 6. // go backwards $i \leftarrow i - 1, i \leftarrow i - 1$ 7. 8 else 9 $i \leftarrow i + m - 1 - \min\{L[T[i]], j - 1\}$ $i \leftarrow m-1$ // restart from right end 10. 11. return FATL

For *full* Boyer-Moore algorithm:

- precompuate helper-array G for good-suffix heuristic from P
- update-formula becomes $i \leftarrow i + m 1 \min\{L[T[i]], G[j]\}$

O.Veksler (CS-UW)
Doing examples is easy, but computing G is complicated (no details).

Doing examples is easy, but computing G is complicated (no details).

Doing examples is easy, but computing G is complicated (no details).

Doing examples is easy, but computing G is complicated (no details).

Summary:

- Boyer-Moore performs very well (even without good suffix heuristic).
- On typical *English text* Boyer-Moore looks at only pprox 25% of T
- Worst-case run-time for is O(mn), but in practice much faster. [There are ways to ensure O(n) run-time. No details.]

Outline

String Matching

- Introduction
- Karp-Rabin Algorithm
- Skip-heuristics
- Knuth-Morris-Pratt algorithm
- Boyer-Moore Algorithm
- Suffix Trees
- Suffix Arrays

Tries of Suffixes and Suffix Trees

Recall: *P* occurs in $T \Leftrightarrow P$ is a prefix of some suffix of *T*.

• Idea: Build a data structure that stores all suffixes of T.

- ► So we preprocess the text *T* rather than the pattern *P*
- ► This is useful if we want to search for many different patterns *P* within the same fixed text *T*.
- Naive idea: Store the suffixes in a trie.
 - ► $|T| = n \Rightarrow$ the n+1 suffixes together have $\binom{n+1}{2} \in \Theta(n^2)$ characters
 - This wastes space

Tries of Suffixes and Suffix Trees

Recall: *P* occurs in $T \Leftrightarrow P$ is a prefix of some suffix of *T*.

• Idea: Build a data structure that stores all suffixes of T.

- ► So we preprocess the text *T* rather than the pattern *P*
- ► This is useful if we want to search for many different patterns *P* within the same fixed text *T*.
- Naive idea: Store the suffixes in a trie.
 - ► $|T| = n \Rightarrow$ the n+1 suffixes together have $\binom{n+1}{2} \in \Theta(n^2)$ characters
 - This wastes space
- Suffix tree saves space in multiple ways:
 - Store suffixes implicitly via indices into T.
 - Use a compressed trie.
 - Then the space is O(n) since we store n+1 words.

Trie of suffixes: Example

T = bananaban has suffixes

Tries of suffixes

O.Veksler (CS-UW)

CS240 - Module 9

Suffix tree

Suffix tree: Compressed trie of suffixes where leaves store indices.

$$T = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \hline b & a & n & a & n & a & b & a & n & \$ \end{bmatrix}$$

O.Veksler (CS-UW)

CS240 - Module 9

More on Suffix Trees

Pattern Matching:

- *prefix-search* for *P* in compressed trie.
- This returns longest word with prefix P, hence leftmost occurrence.
- Run-time: $O(|\Sigma|m)$.

Building:

- Text T has n characters and n + 1 suffixes
- We can build the suffix tree by inserting each suffix of T into a compressed trie. This takes time $\Theta(|\Sigma|n^2)$.
- There is a way to build a suffix tree of T in Θ(|Σ|n) time.
 This is quite complicated and beyond the scope of the course.

Summary: Theoretically good, but construction is slow or complicated, and lots of space-overhead \rightsquigarrow rarely used.

Pattern Matching in Suffix Tree: Example 1 0 1 2 3 4 5 6 7 8 9 0 1 2 T =\$ b b P =а n n а n а а n а n T[9..9] T[5..9] T[7..9] b ፍ T[3..9] 1 Ś n b а 2 3 n T[1..9] 0 Ь T[6..9] \$ 3 a ゥ T[0..9] T[8..9] \$ T[4..9] 1 b a 2 ŋ T[2..9]

If 'no such child' before we reach end of P: FAIL

O.Veksler (CS-UW)

Pattern Matching in Suffix Tree: Example 2 0 3 5 6 7 8 9 1 2 4 0 1 \$ T =а P =b е b b а n n а n а T[9..9] T[5..9] b T[7..9] \$ Ś n T[3..9] 2 a b 3 n Ó0 T[1..9] Ь T[6..9] \$ Ζ ゥ a T[0..9] T[8..9] \$ T[4..9] b a 2 n T[2..9]

If we reach node z at end of P: Compare P to z.leaf.

O.Veksler (CS-UW)

If we reach node z at end of P: Compare P to z.leaf.

O.Veksler (CS-UW)

If we reach node z at end of P: Compare P to z.leaf.

Outline

String Matching

- Introduction
- Karp-Rabin Algorithm
- Skip-heuristics
- Knuth-Morris-Pratt algorithm
- Boyer-Moore Algorithm
- Suffix Trees
- Suffix Arrays

Suffix Arrays

- Relatively recent development (popularized in the 1990s)
- Sacrifice some performance for simplicity:
 - Slightly slower (by a log-factor) than suffix trees.
 - Much easier to build.
 - Much simpler pattern matching.
 - Very little space; only one array.

Idea:

- Store suffixes implicitly (by storing start-indices)
- Store *sorting permutation* of the suffixes of *T*.

Suffix Array Example

i	suffix <i>T</i> [<i>in</i>]
0	bananaban\$
1	ananaban\$
2	nanaban\$
3	anaban\$
4	naban\$
5	aban\$
6	ban\$
7	an\$
8	n\$
9	\$

~
$\overline{}$

sort lexicographically

j	$A^{\text{suffix}}[j]$	
0	9	\$
1	5	aban\$
2	7	an\$
3	3	anaban\$
4	1	ananaban\$
5	6	ban\$
6	0	bananaban\$
7	8	n\$
8	4	naban\$
9	2	nanaban\$

Suffix array

We do *not* store the suffixes, but they are easy to retrieve if needed.

Suffix Array Construction

- Easy to construct using MSD-Radix-Sort.
 - Pad suffixes with trailing \$ to achieve equal length.
 - ► Fast in practice; suffixes are unlikely to share many leading characters.
 - But worst-case run-time is $\Theta(n^2)$
 - ★ *n* rounds of recursions (have *n* chars)
 - ***** Each round takes $\Theta(n)$ time (bucket-sort)

Suffix Array Construction

- Easy to construct using *MSD-Radix-Sort*.
 - Pad suffixes with trailing \$ to achieve equal length.
 - Fast in practice; suffixes are unlikely to share many leading characters.
 - But worst-case run-time is $\Theta(n^2)$
 - n rounds of recursions (have n chars)
 - ***** Each round takes $\Theta(n)$ time (bucket-sort)
- Idea: We do not need *n* rounds!

 - Consider sub-array after one round.
 These have same leading char. Ties are broken by rest of words.
 But rest of words are also suffixes → sorted elsewhere
 We can double length of sorted part every round.
 - $O(\log n)$ rounds enough $\Rightarrow O(n \log n)$ run-time
 - ▶ You do not need to know details (~→ cs482).
- Construction-algorithm: MSD-radix-sort plus some bookkeeping
 - A bit complicated to explain but easy to implement

- Suffix array stores suffixes (implicitly) in sorted order.
- Idea: apply binary search!

		j	$A^{\text{suffix}}[j]$	$T[A^{\text{suffix}}[j]n-1]$
P = ban:	$\ell \to$	0	9	\$
		1	5	aban\$
		2	7	an\$
		3	3	anaban\$
	$\nu \rightarrow$	4	1	ananaban\$
		5	6	ban\$
		6	0	bananaban\$
		7	8	n\$
		8	4	naban\$
	$r \rightarrow$	9	2	nanaban\$

~

• Suffix array stores suffixes (implicitly) in sorted order.

l

• Idea: apply binary search!

	j	$A^{\text{suffix}}[j]$	$T[A^{\text{suffix}}[j]n-1]$
	0	9	\$
	1	5	aban\$
	2	7	an\$
	3	3	anaban\$
	4	1	ananaban\$
$\ell \rightarrow$	5	6	ban\$
	6	0	bananaban\$
$\nu \rightarrow$	7	8	n\$
	8	4	naban\$
r ightarrow	9	2	nanaban\$

P = ban:

- Suffix array stores suffixes (implicitly) in sorted order.
- Idea: apply binary search!

	j	$A^{\text{suffix}}[j]$	$T[A^{\text{suffix}}[j]n-1]$
	0	9	\$
	1	5	aban\$
	2	7	an\$
	3	3	anaban\$
	4	1	ananaban\$
$\nu{=}\ell \rightarrow$	5	6	ban\$ found
$r \rightarrow$	6	0	bananaban\$
	7	8	n\$
	8	4	naban\$
	9	2	nanaban\$

$$P = ban$$
:

- Suffix array stores suffixes (implicitly) in sorted order.
- Idea: apply binary search!

P = ban:

	j	$A^{\text{suffix}}[j]$	$T[A^{\text{suffix}}[j]n-1]$
	0	9	\$
	1	5	aban\$
	2	7	an\$
	3	3	anaban\$
	4	1	ananaban\$
$\nu{=}\ell \rightarrow$	5	6	ban\$ found
$r \rightarrow$	6	0	bananaban\$
	7	8	n\$
	8	4	naban\$
	9	2	nanaban\$

- O(log n) comparisons.
- Each comparison is a *strncmp* of *P* with a suffix
- O(m) time per comparison \Rightarrow run-time $O(m \log n)$

O.Veksler (CS-UW)

CS240 - Module 9

SuffixArray::pattern-matching(T, P, A^{suffix}) 1. $\ell \leftarrow 0, r \leftarrow \text{last index of } A^{\text{suffix}}$ 2. while $(\ell \leq r)$ $\nu \leftarrow \left| \frac{\ell + r}{2} \right|$ 3. 4. $g \leftarrow A^{\text{suffix}}[\nu]$ // suffix of middle index begins at T[g]5. $s \leftarrow strncmp(T, P, g, m)$ // Case g + m > n is handled correctly if T has end-sentinel if (s < 0) do $\ell \leftarrow \nu + 1$ 6. else if (s > 0) do $r \leftarrow \nu - 1$ 7. else return "found at guess g" 8. return FAIL 9

- Does not always return leftmost occurrence.
- Can find leftmost occurrence (and reduce run-time to $O(m + \log n)$) with further pre-computations (no details).

O.Veksler (CS-UW)

CS240 - Module 9

String Matching Conclusion

	Preprocess P				Preprocess T		
	Brute- Force	Karp- Rabin	DFA	Knuth- Morris- Pratt	Boyer- Moore	Suffix Tree	Suffix Array
Preproc.	_	<i>O</i> (<i>m</i>)	$O(m \Sigma)$	<i>O</i> (<i>m</i>)	<i>O</i> (<i>m</i>)	$O(n^2 \Sigma)$ $[O(n \Sigma)]$	$O(n \log n)$ [$O(n)$]
Search time	O(nm)	O(n+m) expected	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)	O(n) or better	$O(m \Sigma)$	$O(m \log n)$ [$O(m + \log n)$]
Extra space	—	<i>O</i> (1)	$O(m \Sigma)$	<i>O</i> (<i>m</i>)	$O(m+ \Sigma)$	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)

(Some additive $|\Sigma|$ -terms are not shown.)

- Our algorithms stopped once they have found one occurrence.
- Most of them can be adapted to find *all* occurrences within the same worst-case run-time.