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Pattern Matching Introduction

@ Search for a string (pattern) in a large body of text. Useful for

» Information Retrieval (text editors, search engines)
» Bioinformatics
» Data Mining

T[0..n — 1] — The text (or haystack) being searched within

Example: T = “Where is he?"

P[0..m — 1] — The pattern (or needle) being searched for
Example: P; = "he” P> = “who"

e occurrence: index i such that T[i..i+m—1] = P, i.e.,

Pjl=T[i+j for 0<j<m-1

Convention: return smallest such i (leftmost occurrence)

If P does not occur in T, return FAIL
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Pattern Matching Observation
Recall:
@ Substring T|[i..j] for 0 < i < j+1 < n: a string of length j —i+1
which consists of characters T[i],... T[j] in order.
o Prefix of T: a substring T[0..i—1] of T for some 0 </ < n.
o Suffix of T: a substring T[i..n—1] of T for some 0 < i < n.

@ The empty string A is also considered a substring, prefix and suffix.

Observe: P occursin T
< P is a substring of T.
< P is a suffix of some prefix of T.

< P is a prefix of some suffix of T.

< .................... prefix Of T .................... )
---suffix of prefix of T--%

bbb 4 |

AT A

v v L]
.- prefix of suffix of T--%
v SUfﬁX Of T G Y
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General Idea of Algorithms

Pattern matching algorithms consist of guesses and checks:

@ A guess is a position g such that P might start at T|[g].
Valid guesses (initially) are 0 < g < n— m.

@ A check of a guess is a single position j with 0 < j < m where we
compare T[g + j] to P[j].

@ We do strncmp to compare a guess to P. This uses m checks in the
worst-case, but may use (many) fewer checks if there is a mismatch.

We will diagram a single run of any pattern matching algorithm by a
matrix of checks, where each row represents a single guess (shaded gray).

a b b b a b a b b a b

......

biEs
:::g D D a
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Brute-force Algorithm

Idea: Check every possible guess.

Bruteforce::pattern-matching( T[0..n — 1], P[0..m — 1])

T: String of length n (text), P: String of length m (pattern)

1. forg<0ton—mdo // g: index of guess
2 if strncmp(T,P,g,m) =0

3. return “found at guess g”

4. return FAIL

Note: strncmp takes ©(m) time.

strncmp(T, P, g < 0, m))
// Compare m chars of T and P, starting at T[g]
1. forj<0tom—1do

2 if T[g +j] is before P[j] in £ then return -1
3. if T[g + /] is after P[j] in X then return 1
4. return 0
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Brute-Force Example

@ Example: T = abbbababbab, P = aaab

a a b a a a a a a b
a a
a a
a
- a b

aiiiad b

a & a

a a

@ What is the worst possible input?
CS240 — Module 9 Winter 2025
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Brute-Force Example

@ Example: T = abbbababbab, P = aaab

a a b a a a a a b
Al &
ail a
a
- ail b

aiiait b

Qg

aiia

@ What is the worst possible input?

P=am1p, T =2a"

e Worst case performance ©((n — m+1) - m)

@ This is too slow (quadratic if m ~ n/2).
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How to improve?

General idea of preprocessing: Do work on some parts of input
beforehand, so that the actual query (with rest of input) then goes faster.
For pattern matching, we have two options:

@ Do preprocessing on the pattern P

» We eliminate guesses based on characters we have seen.
@ Do preprocessing on the text T

» We create a data structure to find matches easily.

Pre-process P Pre-process T

[Karp—Rabin} [NFA/DFA} [Knuth—Morris—Pratt] [Boyer—Moore] [Suffix tree] Suffix array
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Karp-Rabin Fingerprint Algorithm — ldea
Idea: Use fingerprints to eliminate guesses
@ Need function h: {strings of length m} — {0,..., M—1}
(Call these ‘hash-function’ and ‘table-size’, but there is no dictionary here)
e Insight: If h(P) # h( T[g..g+m—1]) then guess g cannot work

Example: ¥ = {0-9}, P=92653, T=31415926535
@ Use standard hash-function for words, with R = |¥| and M = 97:
h(xo ... xa) = (xox1x2X3x4),, mod 97

@ Pre-compute h(P) = 92653 mod 97 = 18.
31 4 1 5 9 2 6 5 3 5

fingerprint 84 no stremp needed
ﬁngerprint 94 no strcmp needed
fingerprint 76 no strcmp needed
ﬁngerprint 18 false positive
fingerprint 95 no strcmp needed
......... {iﬂ t, i g found
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Karp-Rabin Fingerprint Algorithm — First Attempt

Karp-Rabin-Simple::pattern-matching( T, P)
1. hp + h(P[0..m-1)])

2. forg«Q0ton—m

3 hrt < h(T[g..g+m—1])  // not constant time
4. if hr = hp

5 if strncmp(T,P,g,m) =0

6 return “found at guess g”

7. return FAIL

o Never misses a match: h(T|[g..g+m—1]) # h(P) = guess g is not P

e h(T[g..g+m—1]) depends on m characters, so naive computation
takes ©(m) time per guess

@ Running time is ©(mn) if P is not in T. Can we improve this?
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Karp-Rabin Fingerprint Algorithm — Fast Update

Idea: Consecutive guesses share m—1 characters
= for suitable hash-functions, can compute next fingerprint from previous

Example: 15926 = (41592 —4-10000) - 10+ 6

15926 mod 97 = | ( 41592 mod 97 —4 - 10000 mod 97 )-10-+6) mod 97
~—_———
h(15926) previous fingerprint 9 (pre-computed)

= ((76—4-9)-10+6) mod 97 = 18

So pre-compute R™~! mod M (here 10000 mod 97 = 9)
Compute leftmost fingerprint

Use previous fingerprint to compute next fingerprint in O(1) time
Run-time: O(m + n+ m - #{false positives})
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Karp-Rabin Fingerprint Algorithm — Conclusion

Karp-Rabin::pattern-matching(T,P) // rolling hash-function
M < suitable prime number
hp < h(P[0..m—-1)])
s+ R™ ! mod M
ht < h(T[0..m-1)])
forg<0ton—m
if hr = hp
if strncmp(T, P, g, m) = 0 return “found at guess g"
if g<n—m // compute fingerprint for next guess
: hr < ((ht — T|g] -s) - R+ T[g+m]) mod M
10. return “FAIL"

LN RE N

Choose “table size” M to be random prime in {2,..., mn?}
Can show: Then P(at least one false positive) € O(1)
Expected time O(m+-n), worst-luck time O(m-n) (extremely unlikely)

Improvement: reset M after a false positive
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Skip-heuristics
We now make the brute-force algorithm smarter in a different way.

@ Exploit information gained during strncmp to rule out guesses
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Skip-heuristics
We now make the brute-force algorithm smarter in a different way.

@ Exploit information gained during strncmp to rule out guesses

e Good prefix: The matched prefix of P (here aba).
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Skip-heuristics
We now make the brute-force algorithm smarter in a different way.

@ Exploit information gained during strncmp to rule out guesses

P: a b a b a ¢ c

T: a b a ¢ *x % % % % % % % % %

sssasss;,?r&ib\ ‘ ‘ ‘

a Wanted Won’t succeed

e Good prefix: The matched prefix of P (here aba).
New guess must match aligned characters.
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Skip-heuristics
We now make the brute-force algorithm smarter in a different way.

@ Exploit information gained during strncmp to rule out guesses

P: a b a b a ¢ c

T: a b a ¢ * % x x x x x *x *x *x x

sl | | |

T T T T T T
a wanted: won’t succeed

e Good prefix: The matched prefix of P (here aba).
New guess must match aligned characters.

e Bad T-character: The mismatched character of T (here c).

O.Veksler (CS-UW) CS240 — Module 9 Winter 2025 12 / 43



Skip-heuristics
We now make the brute-force algorithm smarter in a different way.

@ Exploit information gained during strncmp to rule out guesses

1

1
1 1

T T T T T
a wanted: won’t succeed

b vyanteld: vx:zon’t: sucqeed

e Good prefix: The matched prefix of P (here aba).
New guess must match aligned characters.

e Bad T-character: The mismatched character of T (here c).
New guess must match it.
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Skip-heuristics
We now make the brute-force algorithm smarter in a different way.

@ Exploit information gained during strncmp to rule out guesses

P
T:

o'

a b a a ¢ c
a b a

O
*
*
*
*
*
*
*

1

-%-ab\ \ \ }

:
| o

[
223
T

T
a wanted: Won’t succeed

‘ b Wanted Won t succeed

e Good prefix: The matched prefix of P (here aba).
New guess must match aligned characters.
e Bad T-character: The mismatched character of T (here c).
New guess must match it.
e Bad P-character: The mismatched character of P (here b).
New guess must mismatch it. (Implied by bad- T-character heuristic.)
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Skip-heuristics

We now make the brute-force algorithm smarter in a different way.

@ Exploit information ga

ined during strncmp to rule out guesses

a b a b a c c
T: a b a c * * * * * * * * * * *
admiEad e | | ||
a wanted: vx:/on’t:succ:eed :
b v:vante:d: vx:fon’t:succleed
a v:vantéd: vx:fon’t:succ:eed .

e Good prefix: The matched prefix of P (here aba).
New guess must match aligned characters.

e Bad T-character: The mismatched character of T (here c).
New guess must match it.

e Bad P-character: Th
New guess must mism

O.Veksler (CS-UW)

e mismatched character of P (here b).
atch it. (Implied by bad- T-character heuristic.)
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Skip-heuristics

Any subset of the three heuristics gives a pattern-matching algorithm:
Do brute-force matching, except skip all guesses that can be ruled out.

Crucial: For all three heuristics, the guesses to skip depend only on
@ the pattern P,

@ the index j such that P[0..j—1] was matched (the good suffix),
@ the bad-T-character c,

@ the bad-P-character P[j].

They does not depend on text T, and therefore can be pre-computed.
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Skip-heuristics

Any subset of the three heuristics gives a pattern-matching algorithm:
Do brute-force matching, except skip all guesses that can be ruled out.

Crucial: For all three heuristics, the guesses to skip depend only on
@ the pattern P,

@ the index j such that P[0..j—1] was matched (the good suffix),
@ the bad-T-character c,

@ the bad-P-character P[j].

They does not depend on text T, and therefore can be pre-computed.

First idea: Do pattern matching with all skip-heuristics.
Presumably this will skip many guesses ~~ fast in practice?
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Skip-heuristics

Any subset of the three heuristics gives a pattern-matching algorithm:
Do brute-force matching, except skip all guesses that can be ruled out.

Crucial: For all three heuristics, the guesses to skip depend only on
@ the pattern P,

@ the index j such that P[0..j—1] was matched (the good suffix),
@ the bad-T-character c,

@ the bad-P-character P[j].
They does not depend on text T, and therefore can be pre-computed.

First idea: Do pattern matching with all skip-heuristics.
Presumably this will skip many guesses ~~ fast in practice?

No! The pre-computation is too slow. (Course notes have details.)
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Knuth-Morris-Pratt algorithm, incomplete

Surprisingly, using only the good-prefix heuristic works well enough.
This is the idea for Knuth-Morris-Pratt (KMP) pattern matching.

KMP::pattern-matching(T, P)

1. F < compute and store failure-array, using only P

2. i+ 0,j«0 // currently compare T[i] to P[j]
3. while i < ndo

4. // inv: P[0.j—1] is a suffix of T[0..i—1]

5. if P[j] = TIi]

6. if j = m — 1 then return “found at guess i — m+ 1"
7. else // check next character
8. i i+1,jj+1

9. else // bad T-character is T[i]
10. j<[.]// read from F and old j

11. i+ [...] // depends on j-update

12. return FAIL

Observe: | is always the number of matched characters of P.
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Knuth-Morris-Pratt example
Example: Search for P = ababaca. We first mismatch at j = 5.

a b a b a b b ¢ a b a b a c¢c a

RRTRRRRTR
s

bEgsiaid ... B R e

bEEEs 154 .-. PR EEES B s R HEro S

Hifvatttttet Gt HH L HHEEH L

| i i s
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Knuth-Morris-Pratt example
Example: Search for P = ababaca. We first mismatch at j = 5.

a b a b a b b ¢ a b a b a c¢c a

FiESs S48 88 ofH! Hit- B QioX
(a) | (b) | (a)

@ The good-prefix heuristic rules out one guess.
In new guess we have three matched characters. j¢V = 3, jreW = jold,
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Knuth-Morris-Pratt example
Example: Search for P = ababaca. We first mismatch at j = 5.

a b a b a b b ¢ a b a b a c¢c a

1

sigiiiihiirig QioX
(a) | (b) | (a) b X

@ The good-prefix heuristic rules out one guess.
In new guess we have three matched characters. j¢V = 3, jreW = jold,

@ We match a character, but then have a mismatch at j = 4.
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Knuth-Morris-Pratt example
Example: Search for P = ababaca. We first mismatch at j = 5.

a b a b a b b ¢ a b a b a c¢c a

i G4 S o B St R o - B ¢
(a) | (b) | () fEbEl X
() | (b)

@ The good-prefix heuristic rules out one guess.
In new guess we have three matched characters. j2¢% = 3, jrew — jold,
@ We match a character, but then have a mismatch at j = 4.

@ In new guess we have two matched characters. j2¢V =2, j"e% = jold,
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Knuth-Morris-Pratt example
Example: Search for P = ababaca. We first mismatch at j = 5.

a b a b a b b c a b a b a c a
sraninhiianibiigin X
(a) | (b) | (a) |iib
(a) | (b)

@ The good-prefix heuristic rules out one guess.

In new guess we have three matched characters. j*°V = 3, "V = |

old

@ We match a character, but then have a mismatch at j = 4.

@ In new guess we have two matched characters. j"°V =2, j"V = |

rold

But then we immediately mismatch with j = 2.

O.Veksler (CS-UW)
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Knuth-Morris-Pratt example
Example: Search for P = ababaca. We first mismatch at j = 5.

a b a b a b b ¢ a b a b a c¢c a

HEHHHT I I
s H i - b ailx

@ The good-prefix heuristic rules out one guess.
rold

In new guess we have three matched characters. ™V = 3, /"W = |
@ We match a character, but then have a mismatch at j = 4.
@ In new guess we have two matched characters. 2V = 2, "V = jold,
But then we immediately mismatch with j = 2.

@ Nothing matches the good suffix. j*°% = 0.
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Knuth-Morris-Pratt example
Example: Search for P = ababaca. We first mismatch at j = 5.

a b a b a b b ¢ a b a b a c¢c a

(a) | (b) (a)' et

() | (b)

The good-prefix heuristic rules out one guess.
In new guess we have three matched characters. j¢V = 3, jrew = jold,

We match a character, but then have a mismatch at j = 4.

In new guess we have two matched characters. j2¢W = 2, jnew — jold,
But then we immediately mismatch with j = 2.

Nothing matches the good suffix. j*°% = 0.

We still have a mismatch at j = 0. Increase i.
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Knuth-Morris-Pratt algorithm, complete

Precompute F[J] = new j to use if the current good prefix was F[0..J].

KMP::pattern-matching( T, P)

1. F + compute-failure-array(P)

2. i+ 0,j«0 // currently compare T[i] to P[j]
3. while i < ndo

4. // inv: P[0.j—1] is a suffix of T[0..i—1]

5. if P[j]= TI[i]

6. if j = m — 1 then return “found at guess i — m+ 1"
7. else // check next character
8. P il 41

9. else // bad T-character is TJi]
10. if j=0then i+ i+1

11. else j «+ F[j —1]
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String matching with KMP — Failure-function

@ To compute F, re-use as much of good prefix as possible.
0 1 2 3 4 6 0 1 2 3 4 5

5
aibialn]alc]a] p.

-----

.........

BiE:

3
bEiEEEEE s

¥

P (shifted): [GaiCBYCE) b |a|c|a]
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String matching with KMP — Failure-function

@ To compute F, re-use as much of good prefix as possible.
0 1 2 3 4 5 6 0 1 2 3 4 5 6

vvvvvvvvvvvvvvv

[<]=]

...............

@ Sometimes nothing fits. Then shift past good prefix.
0 1 2 3 4 5 6 0 1 2 3 4

oT+]

P (shifted): [a[b[a[b[a[c[a| P (shifted): [a[b[a]b]a]c]a]

P: pEiEbihanibiiaic aj

P (shifted): [a[b|a|[b|a]c[a]

e Store in F[-] how many characters are re-used in new shift.
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String matching with KMP — Failure function

@ F[J] = number of re-used characters if good prefix was P[0..J]
@ For P = ababaca, we get “0‘1‘2‘3‘4‘ ‘
FULffofoftf2]3fof?
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String matching with KMP — Failure function

@ F[J] = number of re-used characters if good prefix was P[0..J]
@ For P = ababaca, we get “0‘1‘2‘3‘4‘ ‘
FULlfofof1f2]3fof?

@ In general: We must find a long prefix of P that is a suffix of P[0..J]
(except it should not be all of P[0..J])

next guess:

next guess:

next guess: clel LTI

e Equivalently: Find longest prefix of P that is a suffix of P[1..J]
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String matching with KMP — Failure function

@ F[J] = number of re-used characters if good prefix was P[0..J]
@ For P = ababaca, we get “0‘1‘2‘3‘4‘ ‘
FULlfofof1f2]3fof?

@ In general: We must find a long prefix of P that is a suffix of P[0..J]
(except it should not be all of P[0..J])

next guess:

next guess:

next guess: clel LTI

e Equivalently: Find longest prefix of P that is a suffix of P[1..J]

Result: F[J] = length of the longest prefix of P that is a suffix of P[1..J].
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KMP Failure Array — Easy Computation
F[J] = length of the longest prefix of P that is a suffix of P[1..J].
Write down all prefixes (including empty word A).

Then for J € {0,...,m—1} and each prefix of P
check whether the prefix is a suffix of P[1..J].

J | P[1..J] Prefixes of P longest FlJ]
0 A A, a, ab, aba, abab, ababa, ... A 0
1|b A\, a, ab, aba, abab, ababa, ... A 0
2 | ba A, a, ab, aba, abab, ababa, . .. a 1
3 | bab A, a, ab, aba, abab, ababa, . .. ab 2
4 | baba A, a, ab, aba, abab, ababa, . .. aba 3
5 | babac | A, a,ab, aba, abab, ababa, ... A 0
6 | babaca | A, a,ab, aba, abab, ababa, . .. a 1

(F[m—1] is not needed for KMP algorithm, but useful elsewhere)

This can clearly be computed in O(m?) time, but we can do better!
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KMP Failure Array — Fast Computation

o Recall: “F[J] = maximal ¢: {P[0..(—1] is a suffix of P[1..J]}
e Loop invariant: “j maximal: P[0..j—1] is a suffix of T[0..i—1]."

Idea: Run KMP::pattern-matching on input P[1..m—1].
Update F whenever we enter loop.
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KMP Failure Array — Fast Computation
o Recall: “F[J] = maximal ¢: {P[0..(—1] is a suffix of P[1..J]}
@ Loop invariant: “j maximal: P[0..j—1] is a suffix of T[0..i—1]."

Idea: Run KMP::pattern-matching on input P[1..m—1].
Update F whenever we enter loop.

KMP::compute-failure-array( P)

1. |Initialize array F as all-0

2. i+1,j«0 // currently compare P[i] to P[j]
3. while i < mdo

4. // inv: P[0.j—1] is a suffix of P[l..i—1]

5. Fli — 1] < max{F[i — 1], }

6 if P[j] = Pl[i]

7 i—i+1l,j+j+1

8 else

9. if j=0then i« i+1
10. else j + F[j — 1]

Note: j < /i at all times, so needed F-entries are already computed.
O.Veksler (CS-UW) CS240 — Module 9 Winter 2025 20 / 43



KMP Runtime

Consider the main routine KMP::pattern-matching:
@ How often does the while loop execute?

» i need not increase, j can increase or decrease.
» Not even obviously finite. What is getting bigger?
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KMP Runtime

Consider the main routine KMP::pattern-matching:
@ How often does the while loop execute?

> j need not increase, j can increase or decrease.
» Not even obviously finite. What is getting bigger?

o Idea: Consider function 2/ — j. Initially this is 0.

@ In each iteration that does not exit, there are three possibilities:
© / and j both increase by 1 = 2/ — j increases
© j = 0 unchanged, i increases = 2/ — j increases
© j decreases (F[j — 1] <), i unchanged = 2/ — j increases
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KMP Runtime

Consider the main routine KMP::pattern-matching:
@ How often does the while loop execute?

> j need not increase, j can increase or decrease.
» Not even obviously finite. What is getting bigger?

o Idea: Consider function 2/ — j. Initially this is 0.

@ In each iteration that does not exit, there are three possibilities:
© / and j both increase by 1 = 2/ — j increases
© j = 0 unchanged, i increases = 2/ — j increases
© j decreases (F[j — 1] <), i unchanged = 2/ — j increases

@ i < nand j > 0 throughout, therefore 2j — j < 2n.

@ So no more than 2n iterations of the while loop.

The main routine (without compute-failure-array) takes O(n) time.

O.Veksler (CS-UW) CS240 — Module 9 Winter 2025 21 /43



KMP Runtime

Consider the main routine KMP::pattern-matching:
@ How often does the while loop execute?

> j need not increase, j can increase or decrease.
» Not even obviously finite. What is getting bigger?

o Idea: Consider function 2/ — j. Initially this is 0.

@ In each iteration that does not exit, there are three possibilities:
© / and j both increase by 1 = 2/ — j increases
© j = 0 unchanged, i increases = 2/ — j increases
© j decreases (F[j — 1] <), i unchanged = 2/ — j increases

@ i < nand j > 0 throughout, therefore 2j — j < 2n.

@ So no more than 2n iterations of the while loop.

The main routine (without compute-failure-array) takes O(n) time.

Similarly: compute-failure-array takes O(m) time.

Result: KMP pattern matching has O(n + m) worst-case run-time.

But we can do even better!
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Towards the Boyer-Moore Algorithm

Recall: KMP eliminates guesses based on good-prefix heuristic.

text:

pattern:

22 / 43
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Towards the Boyer-Moore Algorithm

Recall: KMP eliminates guesses based on good-prefix heuristic.

text:

pattern:

Boyer-Moore uses two skip-heuristics:

o Eliminate guesses based on matched characters. Now called
good suffix heuristic. Very similar to KMP.

@ Use weak version of bad- T-char heuristics called
last-occurrence heuristic—this is new.
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Towards the Boyer-Moore Algorithm

Recall: KMP eliminates guesses based on good-prefix heuristic.

text:

pattern:

Boyer-Moore uses two skip-heuristics:
o Eliminate guesses based on matched characters. Now called
good suffix heuristic. Very similar to KMP.

@ Use weak version of bad- T-char heuristics called
last-occurrence heuristic—this is new.

The second heuristic turns out to be very helpful, and leads to fastest

pattern matching on English text as long as we search backwards.
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Forward-searching vs. reverse-searching

Forward-searching: Reverse-order searching:
P:g o o d P:g o o d
T:gr adient T:gr addient
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Forward-searching vs. reverse-searching

Forward-searching: Reverse-order searching:

P:g o o d P:g o o d

T:gr adient T:gr addient
glo o [d]

@ o does not occur in P.

@ o does not occur in P. @ d cannot be matched again
= shift pattern past o. = shift pattern past d.
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Forward-searching vs. reverse-searching

Forward-searching: Reverse-order searching:

P:g o o d P:g o o d

T:gr adient T:gr addient
o o [d]

@ o does not occur in P.

@ o does not occur in P. @ d cannot be matched again
= shift pattern past o. = shift pattern past d.

At most j — 1 guesses ruled out Sometimes rule out m — 1 guesses
after j checks. even after only one check

Reverse-order searching typically eliminates more guesses.
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Last-occurrence heuristic details
P:p a p e r
T: f e e d a 1 1 p o o r p ar r o t s

sttt
5558 sveseed
o8t 550500t
RS
SSEN]
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Last-occurrence heuristic details
P:p a p e r
T: f e e d a 1 1 p o o r p ar r o t s

58 2
0358 3
RS
S

(1) Bad T-character is a.
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Last-occurrence heuristic details
P:p a p e r
T: f e e d a 1 1 p o o r p ar r o t s

r

() r

(1) Bad T-character is a. Shift the guess until a in P aligns with ain T
» All skipped guessed are impossible since they do not match a

O.Veksler (CS-UW) CS240 — Module 9 Winter 2025 24 /43



Last-occurrence heuristic details
P:p a p e r
T: f e e d a 1 1 p o o r p ar r o t s

r

() r
(p) T

(1) Bad T-character is a. Shift the guess until a in P aligns with a in T
> All skipped guessed are impossible since they do not match a

(2) Shift the guess until /ast p in P aligns with bad T-character p
» Use “last” since we cannot rule out this guess.
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Last-occurrence heuristic details

P:p a p e r
T: f e e d a 1 1 p o o r p ar r o t s

r
(a) &
(p) T
(o) e [

H

(1) Bad T-character is a. Shift the guess until a in P aligns with ain T
» All skipped guessed are impossible since they do not match a

(2) Shift the guess until /ast p in P aligns with bad T-character p
» Use “last” since we cannot rule out this guess.

(3) Shift completely past o since o is not in P.
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Last-occurrence heuristic details

P:p a p e r
T: f e e d a 1 1 p o o r p a r r o t s

T
(a) &
(p) T
(o) e [

H

(1) Bad T-character is a. Shift the guess until a in P aligns with a in T
> All skipped guessed are impossible since they do not match a

(2) Shift the guess until /ast p in P aligns with bad T-character p
» Use “last” since we cannot rule out this guess.

(3) Shift completely past o since o is not in P.

(4) The guess that aligns rightmost r of P has already been ruled out.
» Simply shift one unit to the right.
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Last-occurrence heuristic details

P:p a p e r
T: f e e d a 1 1 p o o r p ar r o0 t s

T
(a) &
(p) T
(o) e [

H

(1) Bad T-character is a. Shift the guess until a in P aligns with a in T
> All skipped guessed are impossible since they do not match a

(2) Shift the guess until /ast p in P aligns with bad T-character p
» Use “last” since we cannot rule out this guess.

(3) Shift completely past o since o is not in P.

(4) The guess that aligns rightmost r of P has already been ruled out.
» Simply shift one unit to the right.
(5) Shift completely past o — out of bounds.
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Boyer-Moore Algorithm — incomplete

© N oA

10.
11. return FAIL

Boyer-Moore::pattern-matching( T, P)
1.
2.
3.

L+ [..] // pre-computation

i< m-—1jj+< m—1 // currently compare T[i] to P[]

while j < n do
// inv: current guess begins at index i —j

if P[j] = TJi]
if j = 0 then return “found at guess i — m+ 1"
else // go backwards

i—i—1,j+j—-1
else
i< [...] // read from L and TI[i]
jem-—1 // restart from right end

Two steps missing:

@ Need to pre-compute for all characters where they are in P.

@ Need to determine how to do update i after a mismatch.
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Helper-Array for Last-Occurrence Heuristic

@ Build the helper-array L mapping X to integers
@ L[c] is the largest index i such that P[i] = ¢

Pattern: Helper-array:
0 1 2 3 4 char || p| a| e | r | all others
pla|ple]|r] L2134 ?

O.Veksler (CS-UW) CS240 — Module 9
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Helper-Array for Last-Occurrence Heuristic

@ Build the helper-array L mapping X to integers
@ L[c] is the largest index i such that P[i] = ¢

Pattern: Helper-array:
0 1 2 3 4 char || p| a all others
(plalplelr] [LI]2[3 ?
@ What value should be used if ¢ not in P?
» We want to shift past c entirely.
» Equivalently view this as ‘c is to the left of P’
» Equivalently: c is at P[—1], so set L[c] = —1
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Helper-Array for Last-Occurrence Heuristic

@ Build the helper-array L mapping X to integers
e L[c] is the largest index i such that P[i] = ¢

Pattern: Helper-array:
0 1 2 3 4 char || p | a | e | r | all others
lplafplelr] [L[I]2]1]3]4 7

@ What value should be used if ¢ not in P?
» We want to shift past c entirely.
» Equivalently view this as ‘c is to the left of P’
» Equivalently: cis at P[—1], so set L[c] = -1

e We can build this in time O(m + |X|) with simple for-loop

BoyerMoore::last-occurrence-array( P[0..m—1])
1. initialize array L indexed by ¥ with all —1
2. for j <+ 0to m—1do L[P[j]] +j

3. return L

O.Veksler (CS-UW) CS240 — Module 9
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Last-occurrence heuristic — update formula

“Good” case: L[c] < j, so cis left of P[j].

text:

pattern:

3

Want: "V = index in T that corresponds to j*°V.
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Last-occurrence heuristic — update formula

“Good” case: L[c] < j, so cis left of P[j].

text:

pattern:

bii 4

Want: "V = index in T that corresponds to j*°V.

e A; = amount that we should shift the guess = j°'9 — L[c]
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Last-occurrence heuristic — update formula

“Good” case: L[c] < j, so cis left of P[j].

text:

pattern:

BT

Want: "V = index in T that corresponds to j*°V.
e A; = amount that we should shift the guess = j°'9 — L[c]

o Ay = how much we had compared = (m—1) — j°d
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Last-occurrence heuristic — update formula

“Good” case: L[c] < j, so cis left of P[j].

text:

pattern:

Aprr b4
Hid bE4d
har it
Ahar Fiid B

Want: /"% = index in T that corresponds to j"°V.
e A; = amount that we should shift the guess = j°!4 — L[]
o Ay = how much we had compared = (m—1) — j°ld
o MW = jold L Ay + Ay =i 4 (m—1) — L[]
= 9 4 (m—1) = min{L[c], /4 -1}
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Last-occurrence heuristic — update formula

“Good” case: L[c| < j, so c is left of P[j].

,'old jnew
text: HEEEE EEEEEEEN
Ay
Lc] jo
pattern: ‘ |C| ‘ [ i jnew
HEOEEREEEEEN

Want: i"®V = index in T that corresponds to j"°V.
e A; = amount that we should shift the guess = j°!4 — L[]
o Ay = how much we had compared = (m—1) — j°ld
o "W = jold L Ay 4 Ay =i 4 (m—1) — L[]

= 9 4 (m—1) = min{L[c], /4 -1}

Can show: The same formula also holds for the other cases.
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Boyer-Moore Algorithm

Boyer-Moore::pattern-matching( T, P) // simplified version
1. L« last-occurrence-array(P)
2. i+ m—1jj+< m—1 // currently compare T[i] to P[j]
3. while i < ndo
// inv: current guess begins at index i —j

4. if P[j]= TI[i]

5. if j = 0 then return “found at guess i — m+ 1"
6. else // go backwards

7. i+—i—1j+j—1

8. else

9. i+ i+ m=1—min{L[T[]],j—1}

10. j+—m-—1 // restart from right end

11. return FAIL

For full Boyer-Moore algorithm:
@ precompuate helper-array G for good-suffix heuristic from P
e update-formula becomes i <— i + m—1 — min{L[T[i]], G[j]}
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Good Suffix Heuristic

Doing examples is easy, but computing G is complicated (no details).

P: G ¢ G ¢ T A G

C
T: G ¢ G ¢ T G G

c ¢ A G C G

T ATee] [ 1 [ T [ T ]
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Good Suffix Heuristic
Doing examples is easy, but computing G is complicated (no details).

P: ¢ ¢ ¢ T A G C
T: ¢ ¢ G T G G ¢ C A G C G C T A G C

CE A aefe] [ [ [ [ [ [ [ [ ] ]

Do smallest shift so that matched text Gc fits the new guess.

L leleol 1T T T T T T ]

C
C
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Good Suffix Heuristic
Doing examples is easy, but computing G is complicated (no details).

P: ¢ ¢ ¢ T A G C
T: ¢ ¢ G T 6 G ¢ C A G C G C T A G C

CE A aefe] [ [ [ [ [ [ [ [ ] ]

Do smallest shift so that matched text Gc fits the new guess.

| lel@|t[afe]c] [T T T T ]

Sometimes only part of matched text AGC fits.

LT T T TTTTIT T Jefel

C
C

O.Veksler (CS-UW) CS240 — Module 9 Winter 2025 29 /43



Good Suffix Heuristic

Doing examples is easy, but computing G is complicated (no details).

P. ¢ ¢c 6 ¢ T A G C
T: G ¢ G ¢ T G G CCAG C G CTAGC
C P gafefel 1 [T [ [ [T T T T]

Do smallest shift so that matched text Gc fits the new guess.

| lel@|t]ale|[c[ T T T T T]

Sometimes only part of matched text AGC fits.

LI T T T T T TITT lefe ]

Summary:

@ Boyer-Moore performs very well (even without good suffix heuristic).
e On typical English text Boyer-Moore looks at only ~ 25% of T

e Worst-case run-time for is O(mn), but in practice much faster.
[There are ways to ensure O(n) run-time. No details.]
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Tries of Suffixes and Suffix Trees

Recall: P occursin T < P is a prefix of some suffix of T.

£ prefix of T >
<--suffix of prefix of T---»

LT [ E

4
< suffix of T

o Idea: Build a data structure that stores all suffixes of T.
» So we preprocess the text T rather than the pattern P
» This is useful if we want to search for many different patterns P
within the same fixed text T.
o Naive idea: Store the suffixes in a trie.

> |T| = n = the n+1 suffixes together have ("}*) € ©(n?) characters
» This wastes space
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Tries of Suffixes and Suffix Trees

Recall: P occursin T & P is a prefix of some suffix of T.

¢ prefix of T >
<--suffix of prefix of >

suffix of T

o Idea: Build a data structure that stores all suffixes of T.
» So we preprocess the text T rather than the pattern P
» This is useful if we want to search for many different patterns P
within the same fixed text T.
@ Naive idea: Store the suffixes in a trie.
> |T| = n = the n+1 suffixes together have ("}*) € ©(n?) characters
» This wastes space
o Suffix tree saves space in multiple ways:

» Store suffixes implicitly via indices into T.
» Use a compressed trie.
» Then the space is O(n) since we store n+1 words.
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Trie of suffixes: Example
T = bananaban has suffixes

{bananaban,ananaban,nanaban,anaban,naban,aban,ban,an,n,A}

(not all leaf-references shown)

bananaban$

n

$
o——o——{nanaban$|
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Tries of suffixes
0 1 2 3 4 5 6 7 8 9

Store suffixes via indices: T=[bla|n[a[n[a[bla|[n][§]

n $

._a>._b>._a>._n>._$> T[2..9]
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Suffix tree

Suffix tree: Compressed trie of suffixes where leaves store indices.
0 1 2 3 4 5 6 7 8 9
T=[bflafnla[nfa]blafn][$]
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More on Suffix Trees

Pattern Matching:
@ prefix-search for P in compressed trie.

@ This returns longest word with prefix P, hence leftmost occurrence.
e Run-time: O(|X|m).

Building:
@ Text T has n characters and n + 1 suffixes

@ We can build the suffix tree by inserting each suffix of T into a
compressed trie. This takes time O(|Z|n?).

@ There is a way to build a suffix tree of T in ©(|X|n) time.
This is quite complicated and beyond the scope of the course.

Summary: Theoretically good, but construction is slow or complicated,
and lots of space-overhead ~~ rarely used.
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Pattern Matching in Suffix Tree: Example 1

o 1 2 3 4 5 6 7 8 9 0o 1 2

T=[bfafnfa[n[af[bfa[n[$] P=[afn[n]
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Pattern Matching in Suffix Tree: Example 1

[y

o 1 2 3 4 5 6 7 8 9 0

2

T=|bJafnlafnfafbJajn[$] P=[an|n]

=}

T[7..9]|

b
Ol

If ‘no such child’" before we reach end of P: FAIL

O.Veksler (CS-UW) CS240 — Module 9 Winter 2025
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Pattern Matching in Suffix Tree: Example 2

o 1 2 3 4 5 6 7 8 9 0 1

T=[bJafn[a[nfabfa[n[S] P=[b]e]

If we reach node z at end of P: Compare P to z.leaf.
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Pattern Matching in Suffix Tree: Example 2

o 1 2 3 4 5 6 7 8 9 0 1

T=[bJafn[a[nfabfa[n[S] P=[b]e]

If we reach node z at end of P: Compare P to z.leaf.
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Pattern Matching in Suffix Tree: Example 2

o 1 2 3 4 5 6 7 8 9 0 1

T=[bJafn[a[nfabfa[n[S] P=[b]e]

If we reach node z at end of P: Compare P to z.leaf.
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Suffix Arrays

@ Relatively recent development (popularized in the 1990s)
@ Sacrifice some performance for simplicity:

Slightly slower (by a log-factor) than suffix trees.

Much easier to build.

Much simpler pattern matching.

Very little space; only one array.

v

v VvYyy

Idea:
e Store suffixes implicitly (by storing start-indices)

@ Store sorting permutation of the suffixes of T.
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Suffix Array Example

0 1 2 3 4 5 6 7 8
Text T: [bla|nfa|n|a|b|a|n]

i | suffix T[i..n] j | AsuEx[]

0 | bananaban$ 0 9 $

1 | ananaban$ 1 5 aban$

2 | nanaban$ 2 7 an$

3 | anaban$ ) 3 3 anaban$

4 | naban$ 4 1 ananaban$
5 | aban$ sort lexicographically 5 6 ban$

6 | ban$ 6 0 bananaban$
7 | an$ 7 8 n$

8 | n$ 8 4 naban$

91 % 9 2 nanaban$
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Suffix array

>
Z
=3
2

We do not store the suffixes, but they are easy to retrieve if needed.
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Suffix Array Construction

e Easy to construct using MSD-Radix-Sort.

» Pad suffixes with trailing $ to achieve equal length.
» Fast in practice; suffixes are unlikely to share many leading characters.
» But worst-case run-time is ©(n?)

* n rounds of recursions (have n chars)
* Each round takes ©(n) time (bucket-sort)

O.Veksler (CS-UW) CS240 — Module 9 Winter 2025 40 / 43



Suffix Array Construction

e Easy to construct using MSD-Radix-Sort.

» Pad suffixes with trailing $ to achieve equal length.
» Fast in practice; suffixes are unlikely to share many leading characters.
» But worst-case run-time is ©(n?)

* n rounds of recursions (have n chars)

* Each round takes ©(n) time (bucket-sort)

@ ldea: We do not need n rounds!

» Consider sub-array after one round.

» These have same leading char. Ties are broken by rest of words.
> But rest of words are also suffixes ~ sorted elsewhere

> We can double length of sorted part every round.

» O(log n) rounds enough = O(nlog n) run-time
» You do not need to know details (~ cs482).

e Construction-algorithm: MSD-radix-sort plus some bookkeeping
» A bit complicated to explain but easy to implement
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Pattern matching in suffix arrays

e Suffix array stores suffixes (implicitly) in sorted order.

o lIdea: apply binary search!

P =ban:

1

X
OO NO| O W N O,

1

Asufﬁx [/]

T[AUE[j]..n—1]

9

$

aban$

an$

anaban$

ananaban$

ban$

bananaban$

n$

naban$

N B0 O| O W N O

O.Veksler (CS-UW) CS240 — Module 9
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Pattern matching in suffix arrays

e Suffix array stores suffixes (implicitly) in sorted order.

o ldea: apply binary search!

AU | T Asx[f].. n—1]
$

aban$

an$
anaban$
ananaban$
ban$
bananaban$
n$

naban$
nanaban$

P =ban:

! —

vV —

o|o|N|o|UA, WN R O
N HOOD = w N oo

r —
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Pattern matching in suffix arrays

e Suffix array stores suffixes (implicitly) in sorted order.

o ldea: apply binary search!

AU | T Asx[f].. n—1]
$

aban$

an$

anaban$
ananaban$
ban$ found
bananaban$
n$

naban$
nanaban$

P =ban:

v=~0 —
r —

© 0 ~NOUE WN H O
N D 0O R W~ o1
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Pattern matching in suffix arrays

e Suffix array stores suffixes (implicitly) in sorted order.

o ldea: apply binary search!

AU | T Asx[f].. n—1]
$

aban$

an$

anaban$
ananaban$
ban$ found
bananaban$
n$

naban$
nanaban$

P =ban:

v=~0 —
r—

© 0 ~NOUE WN H O
N Do COO—= W~ 01O

e O(log n) comparisons.
@ Each comparison is a strncmp of P with a suffix
e O(m) time per comparison = run-time O(mlog n)
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Pattern matching in suffix arrays

SuffixArray::pattern-matching( T, P, Asuffix)
1. £+ 0, r < last index of Asuffix
2. while (¢ <r)
3. v |5
4. g A // suffix of middle index begins at T|[g]
5. s < strncmp(T, P, g, m)
// Case g+ m > n is handled correctly if T has end-sentinel
6. if s<0)dol«+v+1
7. elseif (s>0)dor<«v—1
8. else return “found at guess g
9. return FAIL

@ Does not always return leftmost occurrence.

e Can find leftmost occurrence (and reduce run-time to O(m + log n))
with further pre-computations (no details).
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String Matching Conclusion

Preprocess P

‘ Preprocess T

Brute- | Karp- DFA Knuth- Boyer- Suffix  Suffix
Force | Rabin Morris- Moore Tree Array
Pratt
O(n*|Z|) O(nlog n)
P . — (0] o(mx|) O o
reproc (m) (mlx])  O(m) (m) oD 100
Search  O(nm)| O(n+m) O(n) O(n) O(n) or | O(m|X]) O(mlogn)
time expected better [O(m + log n)]
Extra o(1) O(m[E]) O(m)  O(m+[E]) O(n)  O(n)
space m m m n n

(Some additive |X|-terms are not shown.)

@ Our algorithms stopped once they have found one occurrence.

@ Most of them can be adapted to find all occurrences within the same
worst-case run-time.
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