CS 240 – Data Structures and Data Management

Module 10: Data Compression

Olga Veksler

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2025

version 2025-03-19 15:00

Outline

10 Data Compression

- Background
- Single-Character Encodings
- Huffman's Encoding Trie
- Lempel-Ziv-Welch
- Combining Compression Schemes: bzip2
- Burrows-Wheeler Transform

Outline

10 Data Compression

Background

- Single-Character Encodings
- Huffman's Encoding Trie
- Lempel-Ziv-Welch
- Combining Compression Schemes: bzip2
- Burrows-Wheeler Transform

Data Compression Introduction

The problem: How to store and transmit data efficiently?

Source text The original data, string *S* of characters from the **source alphabet** Σ_S

Coded text The encoded data, string *C* of characters from the **code alphabet** Σ_C

Encoding An algorithm mapping source texts to coded texts

Decoding An algorithm mapping coded texts back to their original source text

 $S \xrightarrow{\text{encode}} C \xrightarrow{\text{transmit}} C \xrightarrow{\text{decode}} S$

- Source "text" can be any sort of data (not always text!)
- The code alphabet Σ_C is usually $\{0,1\}$.
- We consider here only **lossless** compression: Can recover *S* from *C* without error.

O.Veksler (CS-UW)

Judging Encoding Schemes

Main objective: For data compression, we want to minimize the size of the coded text. We will measure the **compression ratio**:

$$\frac{|C| \cdot \log |\Sigma_C|}{|S| \cdot \log |\Sigma_S|}$$

Examples:

 $73 = (73)_{10} \rightarrow (1001001)_2$ has compression ratio $\frac{7 \cdot \log 2}{2 \cdot \log 10} \approx 1.05$ $127 = (127)_{10} \rightarrow (7F)_{16}$ has compression ratio $\frac{2 \cdot \log 16}{3 \cdot \log 10} \approx 0.8$

Judging Encoding Schemes

Main objective: For data compression, we want to minimize the size of the coded text. We will measure the **compression ratio**:

$$\frac{|C| \cdot \log |\Sigma_C|}{|S| \cdot \log |\Sigma_S|}$$

Examples:

 $\begin{array}{rcl} 73 = (73)_{10} & \rightarrow & (1001001)_2 & \text{has compression ratio} & \frac{7 \cdot \log 2}{2 \cdot \log 10} \approx 1.05 \\ 127 = (127)_{10} & \rightarrow & (7F)_{16} & \text{has compression ratio} & \frac{2 \cdot \log 16}{3 \cdot \log 10} \approx 0.8 \end{array}$

We also consider the efficiency of the encoding/decoding algorithms.

• We always need time $\Omega(|S| + |C|)$, but sometimes need more

Other possible goals (not studied here \rightarrow CS489):

- Reliability (e.g. error-correcting codes)
- Security (e.g. encryption)

Impossibility of compressing

Observation: No lossless encoding scheme can have compression ratio < 1 for *all* input strings.

Proof (only for $\Sigma_S = \Sigma_C = \{0, 1\}$): Fix one size *n*. Assume for contradiction that all length-*n* strings get shorter.

How big are these sets?

Impossibility of compressing

Observation: No lossless encoding scheme can have compression ratio < 1 for *all* input strings.

Proof (only for $\Sigma_S = \Sigma_C = \{0, 1\}$): Fix one size *n*. Assume for contradiction that all length-*n* strings get shorter.

How big are these sets?

- So we cannot hope to prove good worst-case compression bounds.
- But real-life data can (usually) be compressed well due to patterns.

Detour: Streams (Review)

The texts are often *huge* and will not fit onto the computer's memory. Therefore we usually use streams to store S and C.

- Input-stream (~ std::cin): Read one character at a time. (We use a stack-like interface: top/pop/is-empty.)
- Output-stream (~ std::cout): Write one character at a time. (We use queue-like interface: *append*.)
- Advantage: can start processing text while loading.
- Some algorithm will need to *reset* the input-stream.

Outline

10 Data Compression

Background

• Single-Character Encodings

- Huffman's Encoding Trie
- Lempel-Ziv-Welch
- Combining Compression Schemes: bzip2
- Burrows-Wheeler Transform

Character Encodings

A **character encoding** (or **single-character encoding**) maps each character in the source alphabet to a string in code alphabet.

$$E: \Sigma_S \to \Sigma_C^*$$

Example: ASCII	NULL	 ļ	 0	 A	
	0	 21	 30	 65	
	0000000	 0010101	 0011110	 1000001	

- ASCII is a (width-7) **fixed-width code**: Each **codeword** *E*(*c*) has the same length.
- Encoding/Decoding is easy: just concatenate/decode the next 7 bits.

 $\textit{APPLE} \leftrightarrow (65, 80, 80, 76, 69) \leftrightarrow \texttt{1000001_1010000_101100_1001100_1000101}$

- Other (earlier) examples of fixed-width codes: Caesar shift, Baudot code, Murray code
- Fixed-width codes do not compress.

O.Veksler (CS-UW)

CS240 - Module 10

Variable-Length Codes

Better idea: Variable-length codes

- **Motivation**: Some letters in Σ_S occur more often than others.
 - For example, consider the frequency of letters in typical English text:

е	12.70%	d	4.25%	р	1.93%
t	9.06%	1	4.03%	b	1.49%
а	8.17%	с	2.78%	v	0.98%
0	7.51%	u	2.76%	k	0.77%
i	6.97%	m	2.41%	j	0.15%
n	6.75%	W	2.36%	х	0.15%
s	6.33%	f	2.23%	q	0.10%
h	6.09%	g	2.02%	z	0.07%
r	5.99%	у	1.97%		

Variable-Length Codes

Better idea: Variable-length codes

- **Motivation**: Some letters in Σ_S occur more often than others.
 - For example, consider the frequency of letters in typical English text:

е	12.70%	d	4.25%	р	1.93%
t	9.06%	1	4.03%	b	1.49%
а	8.17%	с	2.78%	v	0.98%
0	7.51%	u	2.76%	k	0.77%
i	6.97%	m	2.41%	j	0.15%
n	6.75%	w	2.36%	х	0.15%
s	6.33%	f	2.23%	q	0.10%
h	6.09%	g	2.02%	z	0.07%
r	5.99%	У	1.97%		

• Idea: Let's use shorter codes for more frequent characters.

So as before, map source alphabet to codewords $E: \Sigma_S o \Sigma_C^*$

- But not all codewords must have the same length.
- This ought to make the code text shorter.

Variable-Length Codes

Example 1: Morse code.

Example 2: UTF-8 encoding of Unicode (\sim 150,000 characters):

• Encodes any Unicode character using 1-4 bytes

Encoding

Assume that we have some character encoding $E: \Sigma_S \to \Sigma_C^*$.

• Note that *E* is a dictionary with keys in Σ_S .

$$\begin{array}{l} singleChar::encoding(E, S, C)\\ E: the encoding dictionary\\ S: input-stream with characters in Σ_S , C: output-stream of bits
1. while S is non-empty
2. $w \leftarrow E.search(S.pop())$
3. append each bit of w to C$$

Example: Encode AN_LANT with the following code:

 $\texttt{AN}_{\sqcup}\texttt{ANT} \rightarrow$

Encoding

Assume that we have some character encoding $E: \Sigma_S \to \Sigma_C^*$.

• Note that *E* is a dictionary with keys in Σ_S .

$$\begin{array}{l} singleChar::encoding(E, S, C)\\ E: the encoding dictionary\\ S: input-stream with characters in Σ_S , C: output-stream of bits
1. while S is non-empty
2. $w \leftarrow E.search(S.pop())$
3. append each bit of w to C$$

Example: Encode AN_LANT with the following code:

 $\texttt{AN}_{\sqcup}\texttt{ANT} \rightarrow \texttt{O10010000100111}$

Decoding

The **decoding algorithm** must map Σ_C^* to Σ_S^* .

- The code must be lossless, i.e., *uniquely decodable*.
- From now on only consider **prefix-free** codes *E*: no codeword is a prefix of another
- This corresponds to a *trie* with characters of Σ_S only at the leaves.

• The codewords need no end-sentinel \$ if codes are prefix-free.

Decoding of Prefix-Free Codes

Any prefix-free code is uniquely decodable.

```
prefixFree::decoding(C, S, T)
C: input-stream with characters in \Sigma_C, S: output-stream, T : encoding-trie
     while C is non-empty
 1.
          z \leftarrow T.root
2.
3.
          while z is not a leaf
                if C is empty or z has no child labelled C.top()
4.
5.
                     return "invalid encoding"
6.
                z \leftarrow \text{child of } z \text{ that is labelled with } C.pop()
7.
          S.append(character stored at z)
```

Run-time: O(|C|).

Example: Decode 111000001010111

Decoding of Prefix-Free Codes

Any prefix-free code is uniquely decodable.

```
prefixFree::decoding(C, S, T)
C: input-stream with characters in \Sigma_C, S: output-stream, T : encoding-trie
     while C is non-empty
 1.
          z \leftarrow T.root
2.
3.
          while z is not a leaf
                if C is empty or z has no child labelled C.top()
4.
5.
                     return "invalid encoding"
                z \leftarrow \text{child of } z \text{ that is labelled with } C.pop()
6.
7.
          S.append(character stored at z)
```

Run-time: O(|C|).

Example: Decode 111000001010111 \rightarrow TO_{LI}EAT

Encoding from the Trie

We already explained encoding if code is stored in table:

$c \in \Sigma_S$	u	A	E	Ν	0	Т
<i>E</i> (<i>c</i>)	000	01	101	001	100	11

Example: Encode $AN_{\sqcup}ANT \rightarrow 010010000100111$

Encoding from the Trie

We already explained encoding if code is stored in table:

$c\in \Sigma_S$						
<i>E</i> (<i>c</i>)	000	01	101	001	100	11

Example: Encode $AN_{\sqcup}ANT \rightarrow 010010000100111$

- The table wastes space: Codewords may be quite long.
- Better idea: Store codewords via links to leaves in trie.

CS240 - Module 10

Encoding from trie

prefixFree::encoding(S, C, T) S: input-stream with characters in Σ_S , C: output-stream, T: encoding trie 1. $E \leftarrow$ array of trie-nodes indexed by Σ_S					
2. for all leaves ℓ in T do E [character at ℓ] $\leftarrow \ell$					
3. while <i>S</i> is non-empty					
4. $w \leftarrow empty list of bits$ // codeword					
5. $z \leftarrow E[S.pop()]$					
6. while <i>z</i> is not the root					
<i>w.add-to-front</i> (character on link from <i>z</i> to its parent)					
8. $z \leftarrow z.parent$					
9. append each bit of <i>w</i> to <i>C</i>					

- Run-time: O(|T| + |C|)
- We assume that all interior nodes of *T* have two children, otherwise encoding scheme can be improved (how?)
- Therefore $|\mathcal{T}| \leq 2|\Sigma_{\mathcal{S}}| 1$ and run-time is $\mathit{O}(|\Sigma_{\mathcal{S}}| + |\mathcal{C}|)$

Outline

10 Data Compression

- Background
- Single-Character Encodings

• Huffman's Encoding Trie

- Lempel-Ziv-Welch
- Combining Compression Schemes: bzip2
- Burrows-Wheeler Transform

Huffman's Algorithm: Building the best trie

How to determine the "best" trie (for a given source text S)?Idea: Frequent characters should have short codewords.Equivalently: Infrequent characters should be 'far down' in trie.

Huffman's Algorithm: Building the best trie

How to determine the "best" trie (for a given source text S)?Idea: Frequent characters should have short codewords.Equivalently: Infrequent characters should be 'far down' in trie.

Greedy-algorithm: Always pair up most infrequent characters.

- We store a set of encoding-tries. Initially each $c \in \Sigma_S$ adds "c" (height-0 trie holding c).
- Our tries have a *weight*: sum of frequencies of all letters in trie. (We assume character-frequencies are pre-computed.)
- Find the two tries with the minimum weight and merge them.
 (Corresponds to adding one bit to the encoding of each character.)
- Repeat Step 3 until there is only one trie left

How should we store the tries to make this efficient? A min-ordered heap! Step 3 needs two *delete-mins* and one *insert*

Example text: GREENENERGY, $\Sigma_S = \{G, R, E, N, Y\}$ Character frequencies: G : 2, R : 2, E : 4, N : 2 Y : 1

Example text: GREENENERGY, $\Sigma_{S} = \{G, R, E, N, Y\}$ Character frequencies: G : 2, R : 2, E : 4, N : 2 Y : 1

Example text: GREENENERGY, $\Sigma_S = \{G, R, E, N, Y\}$ Character frequencies: G : 2, R : 2, E : 4, N : 2 Y : 1

Example text: GREENENERGY, $\Sigma_S = \{G, R, E, N, Y\}$ Character frequencies: G : 2, R : 2, E : 4, N : 2 Y : 1

Example text: GREENENERGY, $\Sigma_S = \{G, R, E, N, Y\}$ Character frequencies: G : 2, R : 2, E : 4, N : 2 Y : 1

List of tries:

 $\texttt{GREENENERGY} \rightarrow$

Example text: GREENENERGY, $\Sigma_S = \{G, R, E, N, Y\}$ Character frequencies: G : 2, R : 2, E : 4, N : 2 Y : 1

List of tries:

 $\texttt{GREENERGY} \rightarrow \texttt{000_10_01_01_11_01_11_01_10_000_001}$

Compression ratio: $\frac{25}{11 \cdot \log 5} \approx 97\%$

Huffman's Algorithm: Pseudocode

This assumes that S has at least two distinct characters.

Huffman Coding Discussion

Can show: The constructed trie is *optimal* in the sense that *C* is shortest (among prefix-free single-character encodings with $\Sigma_C = \{0, 1\}$).

But:

- Constructed trie is *not unique* (unless we give tie-breaking rules).
- Decoder does not know the trie:
 - Either send decoding trie along (how to convert to bitstring?)
 - Or send character-frequencies and tie-breaking rules.
 - Either way, this adds to length of encoded text.
- *encoding* must pass through text twice (to compute frequencies and to encode). Cannot use a stream unless it can be re-set.

Run-time:

- Encoding: $O(|\Sigma_S| \log |\Sigma_S| + |C|)$
- Decoding: O(|C|)

Many variations (what to do with unused characters, estimate frequencies, adaptively change encoding, $\ldots)$

O.Veksler (CS-UW)

CS240 - Module 10

Outline

10 Data Compression

- Background
- Single-Character Encodings
- Huffman's Encoding Trie
- Lempel-Ziv-Welch
- Combining Compression Schemes: bzip2
- Burrows-Wheeler Transform

Longer Patterns in Input

Huffman take advantage of frequent *single characters*.

Observation: Certain *substrings* are much more frequent than others.

• English text:

Most frequent digraphs: TH, ER, ON, AN, RE, HE, IN, ED, ND, HA Most frequent trigraphs: THE, AND, THA, ENT, ION, TIO, FOR, NDE

- HTML: "<a href", "<img src", "

- Video: repeated background between frames, shifted sub-image

We now cover *Lempel-Ziv-Welch compression*, a **multi-character encoding**, i.e., multiple characters are encoded with one code-word.

Ingredient 1 for Lempel-Ziv-Welch compression: take advantage of frequent substrings *without* needing to know beforehand what they are.

Adaptive Dictionaries

ASCII, and UTF-8 use *fixed* dictionaries.

In Huffman, the dictionary is not fixed, but it is *static*: the dictionary is the same for the entire encoding/decoding.

Ingredient 2 for LZW: adaptive encoding:

- There is a fixed initial dictionary D_0 . (Usually ASCII.)
- For $i \ge 0$, D_i is used to determine the *i*th output character
- After writing the *i*th character to output, encoder updates D_i to D_{i+1}

Challenge: Decoder must know (or reconstruct from coded text) how encoder changed the dictionary.
Lempel-Ziv-Welch Overview

For now: convert source-text S into a list of code-numbers in \mathbb{N}_0 .

- Start with dictionary D_0 that stores ASCII (code-numbers $0, \ldots, 127$).
- Every step adds to dictionary a multi-character string, using code-numbers 128, 129,
- Encoding alternates two steps:
 - Find longest string w (among remaining characters) that is already in D_i. So all of w can be encoded with one number.
 - Add the substring that would have been useful to dictionary: add wc where c is the character that follows w in S.

Lempel-Ziv-Welch Overview

For now: convert source-text S into a list of code-numbers in \mathbb{N}_0 .

- Start with dictionary D_0 that stores ASCII (code-numbers $0, \ldots, 127$).
- Every step adds to dictionary a multi-character string, using code-numbers 128, 129,
- Encoding alternates two steps:
 - Find longest string w (among remaining characters) that is already in D_i. So all of w can be encoded with one number.
 - Add the substring that would have been useful to dictionary: add wc where c is the character that follows w in S.

What data structure should the dictionary use?

Lempel-Ziv-Welch Overview

For now: convert source-text S into a list of code-numbers in \mathbb{N}_0 .

- Start with dictionary D_0 that stores ASCII (code-numbers $0, \ldots, 127$).
- Every step adds to dictionary a multi-character string, using code-numbers 128, 129,
- Encoding alternates two steps:
 - Find longest string w (among remaining characters) that is already in D_i. So all of w can be encoded with one number.
 - Add the substring that would have been useful to dictionary: add wc where c is the character that follows w in S.

What data structure should the dictionary use?

- Need to match characters \rightarrow use a trie
- To find w: parse in trie until we hit 'no such child'
- To add to D_i: add suitable child at that node

(Parts of dictionary not shown)

O.Veksler (CS-UW)

LZW encoding pseudocode

LZW::encoding(S, C)S: input-stream of characters, C: output-stream of integers 1. Initialize dictionary D with ASCII in a trie 2. $idx \leftarrow 128$ 3. **while** *S* is non-empty **do** 4. $z \leftarrow \text{root of trie } D$ // find longest string 5. while (S is non-empty and z has a child c labelled S.top()) 6. $z \leftarrow c; S.pop()$ 7. C.append(code-number stored at z)8. **if** S is non-empty // add to dictionary create child of z labelled S.top() with code-number idx 9. idx++ 10.

Run-time: O(|S|), assuming we can look up child in O(1) time.

- Build dictionary while reading string by imitating encoder.
- We are one step behind.

67 65 78 32 66 129 133 83

• Example:

B

Ň

S

32

65

66

67

78

83

- Build dictionary while reading string by imitating encoder.
- We are one step behind.

67 65 78 32 66 129 133 83

• Example: C

- Build dictionary while reading string by imitating encoder.
- We are one step behind.

67 <mark>65</mark> 78 32 66 129 133 83

• Example: C A

- Build dictionary while reading string by imitating encoder.
- We are one step behind.

 67
 65
 78
 32
 66
 129
 133
 83

• Example: C A N

- Build dictionary while reading string by imitating encoder.
- We are one step behind.
- 67 65 78 32 66 129 133 83 • Example: C A N L

- Build dictionary while reading string by imitating encoder.
- We are one step behind.
- 67 65 78 32 66 129 133 83 ● Example: C A N ⊔ B

- Build dictionary while reading string by imitating encoder.
- We are one step behind.

67 65 78 32 66 129 133 83 ● Example: C A N ⊔ B AN

- Build dictionary while reading string by imitating encoder.
- We are one step behind.

	67	65	78	32	66	129	133	83
• Example:	С	А	Ν	Ц	В	AN	???	

LZW decoding pseudocode - incomplete

```
LZW::decoding(C,S)
C: input-stream of integers, S: output-stream
     D \leftarrow dictionary that maps \{0, \ldots, 127\} to ASCII
1.
    idx \leftarrow 128
2
    k \leftarrow C.pop(); s \leftarrow D.search(k); S.append(s)
3.
     while there are more codes in C do
4
          s_{prev} \leftarrow s; k \leftarrow C.pop()
5.
6
          if k < idx do s \leftarrow D.search(k)
          else ???
7
8
9
           append each character of s to S
           D.insert(idx, s_{prev} ] s[0])
10.
11.
           idx++
```

• In this example: Want to decode 133, but not yet in dictionary!

- In this example: Want to decode 133, but not yet in dictionary!
- What happened during the corresponding encoding?

- In this example: Want to decode 133, but not yet in dictionary!
- What happened during the corresponding encoding?

• We know: 133 encodes ANx₁

- In this example: Want to decode 133, but not yet in dictionary!
- What happened during the corresponding encoding?

- We know: 133 encodes ANx₁
- We know: Next step uses $133 = ANx_1$

- In this example: Want to decode 133, but not yet in dictionary!
- What happened during the corresponding encoding?

- We know: 133 encodes ANx₁
- We know: Next step uses $133 = ANx_1$
- So x₁ = A and 133 encodes ANA

- In this example: Want to decode 133, but not yet in dictionary!
- What happened during the corresponding encoding?

- We know: 133 encodes ANx₁
- We know: Next step uses $133 = ANx_1$
- So $x_1 = A$ and 133 encodes ANA

Generally: If code number is about to be added to D, then it encodes

"previous string \bigcirc first character of previous string"

LZW decoding pseudocode

LZW::decoding(C, S)C: input-stream of integers, S: output-stream 1. $D \leftarrow$ dictionary that maps $\{0, \ldots, 127\}$ to ASCII 2. $idx \leftarrow 128$ 3. $k \leftarrow C.pop(); s \leftarrow D.search(k); S.append(s)$ while there are more codes in C do 4 5. $s_{prev} \leftarrow s; k \leftarrow C.pop()$ 6. if k < idx do $s \leftarrow D.search(k)$ 7. else if k = idx do $s \leftarrow s_{prev}] s_{prev}[0] // special situation$ else return FAIL // invalid encoding! 8. 9. append each character of s to S10 $D.insert(idx, s_{prev}] s[0])$ idx++11.

LZW decoding example revisited

67 65 78 32 66 129 133 C A N L B AN ANA

LZW decoding example revisited

98	97	114	128	114	97	131	134	129	101	110
b	a	r	ba	r	а					

		Dictionary	/ D continued
input	decodes to	Code #	String
98	b		
97	a	128	ba
114	r	129	ar
128	ba	130	rb
114	r	131	bar
97	a	132	ra
		133	
		134	
		135	
		136	
		137	

98	97	114	128	114	97	131	134	129	101	110
b	a	r	ba	r	a	bar				

		Dictionary	D continued
input	decodes to	Code #	String
98	b		
97	a	128	ba
114	r	129	ar
128	ba	130	rb
114	r	131	bar
97	a	132	ra
131	bar	133	ab
		134	
		135	
		136	
		137	

98	97	114	128	114	97	131	134	129	101	110
b	a	r	ba	r	a	bar	barb			

		Dictionary	/ D continued
input	decodes to	Code #	String
98	b		
97	a	128	ba
114	r	129	ar
128	ba	130	rb
114	r	131	bar
97	a	132	ra
131	bar	133	ab
134	barb	134	barb
		135	
		136	
		137	

98	97	114	128	114	97	131	134	129	101	110
b	a	r	ba	r	a	bar	barb	ar		

		Dictionary	D continued
input	decodes to	Code #	String
98	b		
97	a	128	ba
114	r	129	ar
128	ba	130	rb
114	r	131	bar
97	a	132	ra
131	bar	133	ab
134	barb	134	barb
129	ar	135	barba
		136	
		137	

98	97	114	128	114	97	131	134	129	101	110
b	a	r	ba	r	a	bar	barb	ar	е	

		Dictionary	/ D continued
input	decodes to	Code #	String
98	b		
97	a	128	ba
114	r	129	ar
128	ba	130	rb
114	r	131	bar
97	a	132	ra
131	bar	133	ab
134	barb	134	barb
129	ar	135	barba
101	e	136	are
		137	

98	97	114	128	114	97	131	134	129	101	110
Ъ	a	r	ba	r	a	bar	barb	ar	е	n

		Dictionary D continued	
input	decodes to	Code #	String
98	b		
97	a	128	ba
114	r	129	ar
128	ba	130	rb
114	r	131	bar
97	a	132	ra
131	bar	133	ab
134	barb	134	barb
129	ar	135	barba
101	e	136	are
110	n	137	en
Lempel-Ziv-Welch decoding details

- Dictionary *D* maps consecutive integers to words. Use an array!
- Run-time: O(|S|).
 - $\Theta(|s|)$ each round to append s to output.
 - Everything else takes no longer
- Dictionary wastes space: words may get long
 - ► To save space, store string as code of prefix + one character.
 - Can still look up s in O(|s|) time.
 - So run-time remains O(|S|)

LZW::dictionary-lookup(D, k)

- 1. $s \leftarrow empty word$
- 2. while k > 127 do $(k, c) \leftarrow D[k]$, s.prepend(c)
- 3. s.prepend(D[k])

LZW decoding - second example revisited

98 97 114 128 114 97 131 134 129 101 110 b bar barb а r ba r а ar е n

			Dictionary <i>D</i> continued		
)	input	decodes to	Code #	String (human)	String (computer)
-	98	b			
	97	a	128	ba	98, a
	114	r	129	ar	97, r
	128	ba	130	rb	114, b
	114	r	131	bar	128, r
	97	a	132	ra	114, a
	131	bar	133	ab	97, b
	134	barb	134	barb	131, b
	129	ar	135	barba	134, a
	101	е	136	are	129, e
	110	n	137	en	101, n

D (ASCII . . . 97

98

а

b . . . 101

e . . . 110

n . . . 114

r

Lempel-Ziv-Welch discussion

- Encoding and decoding take O(|S|) time (assuming constant alphabet)
- Encoding and decoding need to go through the string only once
 ⇒ can do compression while streaming the text
- So far, we encoded with numbers. How to convert to bitstring? Use width-12 fixed-width encoding, e.g. 129 = 000010000001. (Stop adding to *D* once we are at code-number 2¹²-1 = 4095.)
- Compresses quite well ($\approx 45\%$ on English text).

Brief history:

LZ77 Original version ("sliding window") Derivatives: LZSS, LZFG, LZRW, LZP, DEFLATE, ... DEFLATE used in (pk)zip, gzip, PNG

LZ78 Second (slightly improved) version Derivatives: LZW, LZMW, LZAP, LZY, ... LZW used in compress, GIF (patent issues!)

Outline

10 Data Compression

- Background
- Single-Character Encodings
- Huffman's Encoding Trie
- Lempel-Ziv-Welch

• Combining Compression Schemes: bzip2

Burrows-Wheeler Transform

bzip2 overview

Idea: Combine multiple compression schemes!

Example: bzip2. Key ingredient is to us *text transforms*: Change input into a different text that compresses better.

```
T_0
                                T_1 is a permutation.
  Burrows-Wheeler transform
                                If T_0 has repeated substrings, then T_1 has
                                long runs of repeated characters.
T_1
                                T_2 uses ASCII-numbers. If T_1
                                                                    has
  Move-to-front transform
                                long runs of characters, then T_2 has
                                long runs of 0 and skewed frequencies.
T_2
                                If T_2 has long runs of zeroes, then T_3 is
     0-runs encoding
                                shorter. Skewed frequencies remain.
T_3
                                Compresses well since frequencies are
     Huffman encoding
                                skewed
T₄
```

bzip2 — the easy steps

- Move-to-front transform:
 - Dictionary $D: \{0, .., 127\} \rightarrow ASCII$ is unordered array with MTF.
 - Character c gets mapped to index i with D[i] = c

- A character in S repeats k times \Leftrightarrow C has run of k-1 zeroes
- We would expect lots of small numbers in the output.

bzip2 — the easy steps

- Move-to-front transform:
 - Dictionary $D: \{0, ..., 127\} \rightarrow ASCII$ is unordered array with MTF.
 - Character c gets mapped to index i with D[i] = c

- A character in S repeats k times \Leftrightarrow C has run of k-1 zeroes
- We would expect lots of small numbers in the output.
- 0-runs encoding:
 - ▶ Input consists of 'characters' in $\{0, \dots, 127\}$ with long runs of zeroes
 - Idea: replace k consecutive zeroes by (k)₂ (≈ log k bits) using two new characters A, B.

(We actually use "bijective binary encoding" to save a bit.)

'65' '0' '0' '0' '0' '67' '0' '72' becomes '65' A B '67' B '72'

bzip2 — the easy steps

- Move-to-front transform:
 - Dictionary $D: \{0, ..., 127\} \rightarrow ASCII$ is unordered array with MTF.
 - Character c gets mapped to index i with D[i] = c

- A character in S repeats k times \Leftrightarrow C has run of k-1 zeroes
- We would expect lots of small numbers in the output.
- 0-runs encoding:
 - Input consists of 'characters' in $\{0, \ldots, 127\}$ with long runs of zeroes
 - Idea: replace k consecutive zeroes by (k)₂ (≈ log k bits) using two new characters A, B.

(We actually use "bijective binary encoding" to save a bit.)

'65' '0' '0' '0' '0' '67' '0' '0' '72' becomes '65' A B '67' B '72'

• Huffman encoding: exactly as seen before.

Outline

10 Data Compression

- Background
- Single-Character Encodings
- Huffman's Encoding Trie
- Lempel-Ziv-Welch
- Combining Compression Schemes: bzip2
- Burrows-Wheeler Transform

Given: Source text S as an *array* with end-sentinel.

Step 1: Write down cyclic shifts.

- *i*th cyclic shift: move *i* characters from front to back.
- We treat (exceptionally) end-sentinel \$ like any other character

123456789 10

start-index

```
alfueatsualfalfa$
    lf⊔eats⊔alfalfa$a
    fueatsual fal fa$al
    ⊔eats⊔alfalfa$alf
eats⊔alfalfa$alf
    ats⊔alfalfa$alf⊔e
    tsualfalfa$alfuea
    sualfalfa$alfueat
    ⊔alfalfa$alf⊔eats
alfalfa$alf⊔eats⊔
    lfalfa$alf⊔eats⊔a
11
    falfa$alfueatsual
12
    alfa$alfueatsualf
13
    lfa$alf⊔eats⊔alfa
    fa$alfueatsualfal
14
15
    a$alfueatsualfalf
    $alfueatsualfalfa
16
```

Given: Source text *S* as an *array* with end-sentinel.

Step 1: Write down cyclic shifts.

- *i*th cyclic shift: move *i* characters from front to back.
- We treat (exceptionally) end-sentinel \$ like any other character

(We do not need to write cyclic shifts explicitly; they can be read via start-index from S.)

start-index

```
alfueatsualfalfa$
    lf⊔eats⊔alfalfa$a
1234567890
10
    fueatsual fal fa$al
    ⊔eats⊔alfalfa$alf
eats⊔alfalfa$alf
    ats⊔alfalfa$alf⊔e
    tsualfalfa$alfuea
    s⊔alfalfa$alf⊔eat
    ⊔alfalfa$alf⊔eats
    alfalfa$alfueatsu
    lfalfa$alf⊔eats⊔a
11
    falfa$alfueatsual
12
    alfa$alfueatsualf
13
    lfa$alfueatsualfa
    fa$alfueatsualfal
14
15
    a$alfueatsualfalf
16
    $alfueatsualfalfa
```

CS240 - Module 10

Given: Source text *S* as an *array* with end-sentinel.

Step 1: Write down cyclic shifts.

- *i*th cyclic shift: move *i* characters from front to back.
- We treat (exceptionally) end-sentinel \$ like any other character

(We do not need to write cyclic shifts explicitly; they can be read via start-index from S.)

Observe: Every column contains a permutation of *S*.

start-index

```
alfueatsualfalfa$
     lf⊔eats⊔alfalfa$a
1234567890
10
     fueatsualfalfa$a1
    ⊔eats⊔alfalfa$alf
eats⊔alfalfa$alf
    atsualfalfa$alfue
    tsualfalfa$alfuea
    s⊔alfalfa$alf⊔eat
    ualfalfa$alfueats
    alfalfa$alfueatsu
     lfalfa$alf⊔eats⊔a
11
     falfa$alfueatsual
12
    alfa$alfueatsualf
13
     lfa$alf⊔eats⊔alfa
14
     fa$alfueatsualfal
15
    a$alfı eats⊔alfalf
16
    $alfueatsualfalfa
```

O.Veksler (CS-UW)

CS240 - Module 10

Given: Source text *S* as an *array* with end-sentinel.

start-index

- Step 1: Write down cyclic shifts.
- Step 2: Sort lexicographically.
 - Use MSD-radix-sort.
 - $\Theta(n)$ strings of length $\Theta(n)$ $\Rightarrow \Theta(n^2)$ worst-case time
 - But usually much faster.

\$alf⊔eats⊔alfalfa ⊔alfalfa\$alf⊔eats 16 8 15 12 9 5 4 2 14 _eats_alfalfa\$alf asalfueatsualfalf alfueatsualfalf alfueatsualfalfas alfa\$alf_eats_alf alfalfa\$alfueatsu ats⊔alfalfa\$alfue eatsualfalfa\$a!fu fueatsualfalfa\$a] fa\$alf_eats_alfal falfa\$alfueatsual 11 1 13 10 lf⊔eats⊔alfalfa\$a lfa\$alf_eats_alfa lfalfa\$alfueatsua sualfalfa\$alfueat 6 tsualfalfa\$alfuea

Given: Source text *S* as an *array* with end-sentinel.

start-index

- Step 1: Write down cyclic shifts.
- Step 2: Sort lexicographically.
 - Use MSD-radix-sort.
 - $\Theta(n)$ strings of length $\Theta(n)$ $\Rightarrow \Theta(n^2)$ worst-case time
 - But usually much faster.

Observe: Every column continues to contain a permutation of *S*.

\$alf⊔eats⊔alfalfa ⊔alfalfa\$alf⊔eats 16 8 15 12 9 5 4 2 14 _eats_alfalfa\$alf asalfueatsualfalf alfueatsualfalf alfueatsualfalfas alfa\$alf_eats_alf alfalfa\$alfueatsu ats⊔alfalfa\$alf⊔e eats⊔alfalfa\$alfu fueatsualfalfa\$a] fa\$alf_eats_alfal falfa\$alfueatsual 11 1 13 10 lf⊔eats⊔alfalfa\$a lfa\$alf_eats_alfa lfalfa\$alfueatsua 7 sualfalfa\$alfueat 6 tsualfalfa\$alfuea

CS240 - Module 10

Given: Source text *S* as an *array* with end-sentinel.

Step 1: Write down cyclic shifts.Step 2: Sort lexicographically.Step 3: Extract rightmost column.

The **Burrows-Wheeler transform** consists of the last characters of the cyclic shifts of *S* after sorting them lexicographically.

start-index

16 \$alfueatsualfalfa 8 3 15 12 9 5 4 2 14 ⊔alfalfa\$alf⊔eats leatsualfalfa\$alf alfa\$alf_eats_alf alfalfa\$alfueatsu ats⊔alfalfa\$alf⊔<mark>e</mark> eats⊔alfalfa\$alfu fueatsualfalfa\$a] fa\$alf_eats_alfal 11 falfa\$alfueatsual 1 lfueatsuaTfalfa\$a $1\overline{3}$ 10lfa\$alf_eats_alfa lfalfa\$alfueatsua 7 sualfalfa\$alfueat 6 tsualfalfa\$alfuea

Given: Source text *S* as an *array* with end-sentinel.

Step 1: Write down cyclic shifts.Step 2: Sort lexicographically.Step 3: Extract rightmost column.

The **Burrows-Wheeler transform** consists of the last characters of the cyclic shifts of *S* after sorting them lexicographically.

Observe: *C* is a permutation of *S*.

Observe: Substring alf occurs three times in S and causes runs lll and aaa in C (why?)

start-index

16 \$alfueatsualfalfa 8 15 12 9 5 4 2 14 ualfalfa\$alfueats leatsualfalfa\$alf asalfueatsualfalf alfueatsualfalfalf alfa\$alf_eats_alf alfalfa\$alfueatsu ats⊔alfalfa\$alf⊔<mark>e</mark> eats⊔alfalfa\$a!f⊔ fueatsualfalfa\$a] fa\$alf_eats_alfal 11 falfa\$alfueatsual 1 lfueatsualfalfa\$a $1\overline{3}$ 10lfa\$alf_eats_alfa lfalfa\$alfueatsua 7 sualfalfa\$alfueat 6 tsualfalfa\$alfuea

Fast Burrows-Wheeler Encoding

 $S = alf_{\sqcup}eats_{\sqcup}alfalfa$

• Observe: Same sorting permutation for cyclic shifts and suffixes.

Fast Burrows-Wheeler Encoding

 $S = alf_{\sqcup}eats_{\sqcup}alfalfa$

- Observe: Same sorting permutation for cyclic shifts and suffixes.
- That's the suffix array A^{s} ! Can compute this in $O(n \log n)$ time.
- Read BWT encoding from it: $C[i] = \begin{cases} S[A^{s}[i]-1] & \text{if } A^{s}[i] > 0 \\ \$ & \text{otherwise} \end{cases}$

Given: String C = ard cobtained from a BWT encoding).

We can reconstruct the *first* and *last column* of the matrix of cyclic shifts.

Last column: C	a
First column: C sorted	r
It was a permutation of S.	d
It was in sorted order.	\$
 C was also a permutation of S. 	r
	C
	a
	a
	a
	a
	b
	b

Given: String C = ard cobtained from a BWT encoding).

We can reconstruct the *first* and *last column* of the matrix of cyclic shifts.

Last column: C	\$a
Pirst column: C sorted	ar
It was a permutation of S.	ad
It was in sorted order.	a\$
 C was also a permutation of S. 	ar
• What was the first character of <i>S</i> ?	ac
	ba
	ba
	ca
	da

r....b r....b

Given: String C = ard cobtained from a BWT encoding).

We can reconstruct the *first* and *last column* of the matrix of cyclic shifts.

Last column: C	\$a
Pirst column: C sorted	ar
It was a permutation of S.	ad
It was in sorted order.	a\$
► <i>C</i> was also a permutation of <i>S</i> .	ar
	ac
What was the first character of S?	ba
Presume you know which a of C this is:	ba
What is the next character of <i>S</i> ?	ca
What is the next character of 5.	da
Question: Which character on the left corre-	rb
sponds to which character on the right?	rb

Idea: Attach row-index at each character of C.

- Two cyclic shifts end in b, call them w₁₀(b,10) and w₁₁(b,11)
- Without knowing w_{10}, w_{11} , we know w_{10} (b,10) $<_{lex} w_{11}$ (b,11) (why?)

\$ (a,0)
a(r,1)
a (d,2)
a(\$,3)
a(r,4)
a(c,5)
b (a,6)
b (a,7)
c (a,8)
d (a,9)
r(b,10)
r(b,11)

Idea: Attach row-index at each character of C.

- Two cyclic shifts end in b, call them w₁₀(b,10) and w₁₁(b,11)
- *Without* knowing w_{10} , w_{11} , we know w_{10} (b,10) $<_{\text{lex}} w_{11}$ (b,11) (why?)
- Therefore $w_{10} <_{\text{lex}} w_{11}$
- Two cyclic shifts start with b: (b,10) w₁₀ and (b,11) w₁₁.

\$(a,0)
a(r,1)
a (d,2)
a(\$,3)
a(r,4)
a(c,5)
b (a,6)
b (a,7)
c (a,8)
d(a,9)
r(b,10)
r(b,11)

Idea: Attach row-index at each character of C.

- Two cyclic shifts end in b, call them w₁₀(b,10) and w₁₁(b,11)
- Without knowing w_{10}, w_{11} , we know w_{10} (b,10) $<_{\text{lex}} w_{11}$ (b,11) (why?)
- Therefore $w_{10} <_{\text{lex}} w_{11}$
- Two cyclic shifts start with b: (b,10) w₁₀ and (b,11) w₁₁.
- We know (b,10) $w_{10} <_{\text{lex}} (b,11)w_{11}$.

\$ (a,0)
a(r,1)
a (d,2)
a(\$,3)
a(r,4)
a(c,5)
b (a,6)
b(a,7)
c(a,8)
d(a,9)
r(b,10)
r(b,11)

Idea: Attach row-index at each character of C.

- Two cyclic shifts end in b, call them w₁₀(b,10) and w₁₁(b,11)
- Without knowing w_{10}, w_{11} , we know w_{10} (b,10) $<_{lex} w_{11}$ (b,11) (why?)
- Therefore $w_{10} <_{\text{lex}} w_{11}$
- Two cyclic shifts start with b: (b,10) w₁₀ and (b,11) w₁₁.
- We know (b,10) $w_{10} <_{\text{lex}} (b,11) w_{11}$.
- Therefore (b,10) comes *before* (b,11) in first column.

Result: Equal characters are in the same order in the first and last column.

\$ (a,0)
a(r,1)
a (d,2)
a(\$,3)
a(r,4)
a(c,5)
b (a,6)
b(a,7)
c (a,8)
d(a,9)
r(b,10)
r(b,11)

Given: String C = ard cobalance from a BWT encoding).

Last column: C

- Disambiguate by row-index.
- First column A: C sorted stably

(\$,3)	 (a,0)
(a,0)	 ···(r,1)
(a,6)	 (d,2)
(a,7)	 (\$,3)
(a,8)	 ···(r,4)
(a,9)	 (c,5)
(b,10)	 (a,6)
(b,11)	 (a,7)
(c,5)··	 (a,8)
(d,2)	 (a,9)
(r, 1)	 (b,10)
(r,4)	 (b,11)

Given: String C = ard cobalance from a BWT encoding).

- Last column: C
 - Disambiguate by row-index.
- First column A: C sorted stably
- Find index j of end-sentinel \$ in C

(\$,3) (a,0)
(a,0) (r,1)
(a,6) (d,2)
(a,7) (\$,3)
(a,8) (r,4)
(a,9) (c,5)
(b,10) (a,6)
(b,11) (a,7)
(c,5) (a,8)
(d,2) (a,9)
(r,1) (b,10)
(r,4) (b,11)

Given: String C = ard cobalance from a BWT encoding).

- Last column: C
 - Disambiguate by row-index.
- First column A: C sorted stably
- Solution Find index j of end-sentinel \$ in C
- Starting from A[j], recover S by looking up next character and next index.

 $\mathsf{S} = \mathtt{a}$

(\$,3)	(a,0)
(a,0)	(r,1)
(a,6)	(d,2)
(a,7) ←	(\$,3)
(a,8)	······(r,4)
(a,9)	······(c,5)
(b,10)	(a,6)
(b,11)	·····(a,7)
(c,5)	····· (a,8)
(d,2)	····· (a,9)
(r,1)	····· (b,10)
(r,4)	(b,11)

Given: String C = ard cobalance from a BWT encoding).

- Last column: C
 - Disambiguate by row-index.
- First column A: C sorted stably
- Find index j of end-sentinel \$ in C
- Starting from A[j], recover S by looking up next character and next index.

S = a

Given: String C = ard cobalance from a BWT encoding).

- Last column: C
 - Disambiguate by row-index.
- First column A: C sorted stably
- Find index j of end-sentinel \$ in C
- Starting from A[j], recover S by looking up next character and next index.

$$S = ab$$

41 / 44

Given: String C = ard cobalance from a BWT encoding).

- Last column: C
 - Disambiguate by row-index.
- First column A: C sorted stably
- Find index j of end-sentinel \$ in C
- Starting from A[j], recover S by looking up next character and next index.

 $\mathsf{S} = \mathtt{abr}$

Given: String C = ard cobalance from a BWT encoding).

- Last column: C
 - Disambiguate by row-index.
- First column A: C sorted stably
- Find index j of end-sentinel \$ in C
- Starting from A[j], recover S by looking up next character and next index.
- ${\sf S} = {\tt abracadabra} \$$


```
BWT::decoding(C, S)
C: string of characters, one of which (not necessarily last one) is $
S: output-stream
1. Initialize array A // leftmost column
2. for all indices i of C
3. A[i] \leftarrow (C[i], i) // store character and index
4. Stably sort A by first aspect
5. for all indices j of C // where is the $-char?
        if C[j] = $ break
6
7. do
                           // extract source text
8. S. append(character stored in A[i])
        i \leftarrow \text{index stored in } A[i]
9.
10. while appended character is not $
```

What sorting-algorithm would you use?

BWT and bzip2 Discussion

BWT encoding cost: O(n log n)
Read encoding from the suffix array.
BWT decoding cost: O(n + |Σ_S|) (faster than encoding)

Encoding and decoding both use O(n) space.

They need *all* of the text (no streaming possible). BWT (hence bzip2) is a **block compression method** that compresses one block at a time.

bzip2 encoding cost: $O(n(\log n + |\Sigma|))$ with a big constant. bzip2 decoding cost: $O(n|\Sigma|)$ with a big constant.

bzip2 tends to be slower than other methods, but gives better compression.

Compression summary

Huffman	Lempel-Ziv-Welch	bzip2 (uses Burrows-Wheeler)
variable-length	fixed-width	multi-step
single-character	multi-character	multi-step
2-pass, must send dictio- nary	1-pass	not streamable
optimal 01-prefix-code	good on English text	better on English text
requires uneven frequencies	requires repeated substrings	requires repeated substrings
rarely used directly	frequently used	used but slow
part of pkzip, JPEG, MP3	GIF, some variants of PDF, compress	bzip2 and variants

Modern compression techniques (using Markov chains and probabilistic modelling) compress even better, but are beyond the scope of the course.

O.Veksler (CS-UW)

CS240 - Module 10