CS 240 – Data Structures and Data Management

Module 11: External Memory

Olga Veksler

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2025

version 2025-04-01 15:50

Outline

1 External Memory

- Motivation
- Stream-based algorithms
- External Dictionaries
 - a-b-trees
 - 2-4-trees and Red-Black Trees
 - B-trees
 - Further improvement ideas

Outline

11 External Memory

Motivation

- Stream-based algorithms
- External Dictionaries
 - a-b-trees
 - 2-4-trees and Red-Black Trees
 - B-trees
 - Further improvement ideas

Recall the RAM model of a computer: Any access to a memory location takes the same (constant) time.

This is not at all realistic!

Recall the RAM model of a computer: Any access to a memory location takes the same (constant) time.

This is not at all realistic!

A typical current computer architecture includes

- registers (very fast, very small)
- cache L1, L2 (still fast, less small)
- main memory
- disk or cloud (slow, very large)

Recall the RAM model of a computer: Any access to a memory location takes the same (constant) time.

This is not at all realistic!

A typical current computer architecture includes

- registers (very fast, very small)
- cache L1, L2 (still fast, less small)
- main memory
- disk or cloud (slow, very large)

General question: how to adapt our algorithms to take the memory hierarchy into account, avoiding transfers as much as possible?

Recall the RAM model of a computer: Any access to a memory location takes the same (constant) time.

This is not at all realistic!

A typical current computer architecture includes

- registers (very fast, very small)
- cache L1, L2 (still fast, less small)
- main memory
- disk or cloud (slow, very large)

General question: how to adapt our algorithms to take the memory hierarchy into account, avoiding transfers as much as possible?

Define a new computer model that models one such 'gap' across which we must transfer.

The External-Memory Model (EMM)

The External-Memory Model (EMM)

Assumption: During a *transfer*, we automatically load a whole **block** (or "page"). This is quite realistic.

New objective: revisit all algorithms/data structures with the objective of minimizing **block transfers** ("probes", "disk transfers", "page loads")

O.Veksler (CS-UW)

CS240 - Module 11

Main objective: minimize the number of block transfers.

• We *completely* ignore all operations done in internal memory. (Since these are orders of magnitude faster, this is not unrealistic.)

Main objective: minimize the number of block transfers.

- We *completely* ignore all operations done in internal memory. (Since these are orders of magnitude faster, this is not unrealistic.)
- Our results now depend on three parameters:
 - *n*—the input size
 - M—the internal memory size
 - B—the block size

Main objective: minimize the number of block transfers.

- We *completely* ignore all operations done in internal memory. (Since these are orders of magnitude faster, this is not unrealistic.)
- Our results now depend on three parameters:
 - *n*—the input size
 - *M*—the internal memory size
 - B—the block size

("typical": $n = 2^{50}$) ("typical": $M = 2^{30}$) ("typical": $B = 2^{15}$)

The actual values of n, M, B depend much on the application, but we sometimes use "typical" numbers to get a better feel for the bounds.
 For example, how much worse is n log n compared to n/B log_{M/B}(n/M)?

Main objective: minimize the number of block transfers.

- We *completely* ignore all operations done in internal memory. (Since these are orders of magnitude faster, this is not unrealistic.)
- Our results now depend on three parameters:
 - *n*—the input size
 - *M*—the internal memory size
 - B—the block size

- ("typical": $n = 2^{50}$) ("typical": $M = 2^{30}$) ("typical": $B = 2^{15}$)
- The actual values of n, M, B depend much on the application, but we sometimes use "typical" numbers to get a better feel for the bounds.
 For example, how much worse is n log n compared to n/B log_{M/B}(n/M)?
- Some results will assume that we *know M*, *B*. This is unrealistic, and "cache-oblivious" results are preferred.
- Some results will also be interesting for the "standard" (RAM) computer model where we do count operations in internal memory.

Outline

11 External Memory

Motivation

• Stream-based algorithms

- External Dictionaries
 - a-b-trees
 - 2-4-trees and Red-Black Trees
 - B-trees
 - Further improvement ideas

Streams and external memory

Stream-based algorithms (with O(1) resets) use $\Theta(\frac{n}{B})$ block transfers.

Streams and external memory

Stream-based algorithms (with O(1) resets) use $\Theta(\frac{n}{B})$ block transfers.

So can do the following with $\Theta(\frac{n}{B})$ block transfers:

- Text compression: Huffman, Lempel-Ziv-Welch (but not BWT)
- Pattern matching: Karp-Rabin, Knuth-Morris-Pratt, Boyer-Moore (This assumes internal memory has O(|P|) space.)
- Sorting: merge can be implemented with streams
 → merge-sort uses O(ⁿ/_B log n) block transfers (can be improved)

Outline

11 External Memory

- Motivation
- Stream-based algorithms

External Dictionaries

- a-b-trees
- 2-4-trees and Red-Black Trees
- B-trees
- Further improvement ideas

Dictionaries in external memory

Recall: Dictionaries store *n* KVPs and support *search*, *insert* and *delete*.

- Recall: AVL-trees were optimal in time and space in RAM model
- $\Theta(\log n)$ run-time $\Rightarrow O(\log n)$ block transfers per operation
- But: Inserts happen at varying locations of the tree.
 → nearby nodes are unlikely to be on the same block
 → typically Θ(log n) block transfers per operation

Dictionaries in external memory

Recall: Dictionaries store *n* KVPs and support *search*, *insert* and *delete*.

- Recall: AVL-trees were optimal in time and space in RAM model
- $\Theta(\log n)$ run-time $\Rightarrow O(\log n)$ block transfers per operation
- But: Inserts happen at varying locations of the tree.
 →→ nearby nodes are unlikely to be on the same block
 →→ typically Θ(log n) block transfers per operation
- We would like to have *fewer* block transfers.
 - Goal: $O(\log_B n)$ block transfers.
 - Does this really make a difference?
 - Consider 'typical' values: $n \approx 2^{50}, B \approx 2^{15}$. What is log *n* vs. log_{*B*} *n*?

Dictionaries in external memory

Recall: Dictionaries store *n* KVPs and support *search*, *insert* and *delete*.

- Recall: AVL-trees were optimal in time and space in RAM model
- $\Theta(\log n)$ run-time $\Rightarrow O(\log n)$ block transfers per operation
- But: Inserts happen at varying locations of the tree.
 →→ nearby nodes are unlikely to be on the same block
 →→ typically Θ(log n) block transfers per operation
- We would like to have *fewer* block transfers.
 - Goal: $O(\log_B n)$ block transfers.
 - Does this really make a difference?
 - Consider 'typical' values: $n \approx 2^{50}, B \approx 2^{15}$. What is log *n* vs. log_{*B*} *n*?

Better solution: design a tree-structure that *guarantees* that many nodes on search-paths are within one block.

Idealized structure

Idea: Store complete subtrees with log *b* levels in one block of memory. $(b \in \Theta(B) \text{ is maximal so that these fit into one block.})$

- Each block/subtree then covers height log b
- $\Rightarrow \text{ Search-path hits } \frac{\log n}{\log b} \text{ blocks} \Rightarrow \log_b n \text{ block-transfers}$
 - Since $b \in \Theta(B)$, we have $\log_b n \in \Theta(\log_B n)$ (why?)

Idealized structure

Idea: Store complete subtrees with log *b* levels in one block of memory. $(b \in \Theta(B) \text{ is maximal so that these fit into one block.})$

- Each block/subtree then covers height log b
- \Rightarrow Search-path hits $\frac{\log n}{\log b}$ blocks $\Rightarrow \log_b n$ block-transfers
 - Since $b \in \Theta(B)$, we have $\log_b n \in \Theta(\log_B n)$ (why?)

Idea: View the entire content of a block as one node.

Towards *a-b*-trees

Define *multiway-tree*: A node can store multiple keys.

Definition: A *d*-node stores *d* keys, has d+1 subtrees, and stored keys are between the keys in the subtrees.

We *always* have one more subtree than keys (but subtrees may be empty).

Towards *a-b*-trees

Define *multiway-tree*: A node can store multiple keys.

Definition: A *d*-node stores *d* keys, has d+1 subtrees, and stored keys are between the keys in the subtrees.

We *always* have one more subtree than keys (but subtrees may be empty).

- To allow *insert/delete*, we permit a varying numbers of keys in nodes (within limits)
- We also rigidly restrict where empty subtrees may be.
- This gives much smaller height than for AVL-trees
 ⇒ fewer block transfers

a-b-trees

Definition: An *a*-*b*-tree (for some $b \ge 3$ and $2 \le a \le \lceil \frac{b}{2} \rceil$) satisfies

- Every non-root is a *d*-node for some $a-1 \le d \le b-1$.
 - Between a and b subtrees, between a-1 and b-1 keys.
- 2 The root is a *d*-node for $1 \le d \le b-1$.
 - Between 2 and b subtrees, between 1 and b-1 keys.
- Il empty subtrees are at the same level.

Example: A 2-4-tree of height 1.

For 2-4-trees, every node has between 1 and 3 keys.

O.Veksler (CS-UW)

a-b-tree Example

Example: A 3-5-tree of height 2.

Typically we will specify the **order** *b* and then set $a = \lceil \frac{b}{2} \rceil$.

a-b-tree Example

Example: A 3-6-tree of height 2.

a-b-tree Example

Example: A 3-6-tree of height 2.

Note: With small height we can store *many* keys. A 3-6-tree of height 2 can store up to $(1 + 6 + 36) \cdot 5 = 215$ keys.

			Here <i>a</i> = 3
Level	Nodes		
1	≥ 2		
2	$\geq 2a$		
3	$\geq 2a^2$		Ш Ц Ц
	:		
ĥ	$\geq 2a^{h-1}$		ЩЩЩЩЩЩЩЩ
		·	

a-b-tree Operations

Search is similar to BST:

- Compare search-key to keys at node
- If not found, continue in appropriate subtree until empty

Example: search(15)

a-b-tree Operations

Search is similar to BST:

- Compare search-key to keys at node
- If not found, continue in appropriate subtree until empty

Example: search(15)

a-b-tree Operations

Search is similar to BST:

- Compare search-key to keys at node
- If not found, continue in appropriate subtree until empty

Example: *search*(15) *not found*

a-b-tree search

```
abTree::search(k)
1. z \leftarrow root, p \leftarrow \text{NULL} // p: parent of z
     while z is not NULL.
2
           let \langle T_0, k_1, \ldots, k_d, T_d \rangle be key-subtree list at z
3.
    if k > k_1
4.
5.
                 i \leftarrow maximal index such that k_i < k
      if k_i = k then return KVP at k_i
6
7.
               else p \leftarrow z, z \leftarrow root of T_i
8
           else p \leftarrow z, z \leftarrow \text{root of } T_0
9
     return "not found, would be in p"
```

- # visited nodes: $O(\log_a n)$ (one per level)
- Note: Finding *i* is not constant time (depending on *b*)
• Do *abTree::search* and add key and empty subtree at leaf.

- Do *abTree::search* and add key and empty subtree at leaf.
- If the leaf had room then we are done.

- Do *abTree::search* and add key and empty subtree at leaf.
- If the leaf had room then we are done.
- Else overflow: More keys/subtrees than permitted.
- Resolve overflow by node splitting.

- Do *abTree::search* and add key and empty subtree at leaf.
- If the leaf had room then we are done.
- Else overflow: More keys/subtrees than permitted.
- Resolve overflow by node splitting.

- Do *abTree::search* and add key and empty subtree at leaf.
- If the leaf had room then we are done.
- Else overflow: More keys/subtrees than permitted.
- Resolve overflow by node splitting.

- Do *abTree::search* and add key and empty subtree at leaf.
- If the leaf had room then we are done.
- Else overflow: More keys/subtrees than permitted.
- Resolve overflow by node splitting.

abTree::insert(k) 1. $z \leftarrow abTree::search(k) // z$: leaf where k should be 2 Add k and an empty subtree in key-subtree-list of z3. while z has b keys (overflow \rightsquigarrow node split) Let $\langle T_0, k_1, \ldots, k_b, T_b \rangle$ be key-subtree list at v 4. 5. if (z has no parent) create a parent of z without KVPs move upper median k_m of keys to parent p of z 6 7. $z' \leftarrow$ new node with $\langle T_0, k_1, \ldots, k_{m-1}, T_{m-1} \rangle$ $z'' \leftarrow$ new node with $\langle T_m, k_{m+1}, \ldots, k_b, T_b \rangle$ 8. Replace $\langle z \rangle$ by $\langle z', k_m, z'' \rangle$ in key-subtree-list of p 9. 10. $z \leftarrow p$

O.Veksler (CS-UW)

CS240 – Module 11

Example: *insert*(55) in a 3-6-tree:

Example: *insert*(55) in a 3-6-tree:

- Node split \Rightarrow new nodes have $\geq \lfloor (b-1)/2
 floor = \lceil b/2
 ceil 1$ keys
- Since we know $a \leq \lceil b/2 \rceil$, this is $\geq a-1$ keys as required.

a-b-tree Summary

- An *a-b* tree has height $O(\log_a n)$
- If $a \approx b/2$, then this height-bound is tight.
 - Level i contains at most bⁱ nodes
 - Each node contains at most b 1 KVPs
 - So $n \leq b^{h+1} 1$ and $h \in \Omega(\log_b n)$.

a-b-tree Summary

- An *a-b* tree has height $O(\log_a n)$
- If $a \approx b/2$, then this height-bound is tight.
 - Level i contains at most bⁱ nodes
 - Each node contains at most b 1 KVPs
 - So $n \leq b^{h+1} 1$ and $h \in \Omega(\log_b n)$.
- search and insert visit $O(\log_a n)$ nodes.
- delete can also be implemented with O(log_a n) node-visits.
 But usually use *lazy deletion*—space is cheap in external memory.

a-b-tree Summary

- An *a-b* tree has height $O(\log_a n)$
- If $a \approx b/2$, then this height-bound is tight.
 - Level i contains at most bⁱ nodes
 - Each node contains at most b 1 KVPs
 - So $n \leq b^{h+1} 1$ and $h \in \Omega(\log_b n)$.
- search and insert visit O(log_a n) nodes.
- delete can also be implemented with O(log_a n) node-visits.
 But usually use *lazy deletion*—space is cheap in external memory.
- How do we choose the order b? (Recall: a is usually $\lfloor \frac{b}{2} \rfloor$.)
 - ▶ Option 1: b small, e.g. b = 4 → a new balanced BST, competetive with AVL-trees.
 - Option 2: b big (but one node still fits into one block of memory) ~ a realization of ADT Dictionary for external memory

2-4-trees

Consider the special case of b = 4 (hence a = 2):

- We analyze here the runtime in the RAM-model (include cost of operations in internal memory)
- Height is $O(\log n)$, operations visit $O(\log n)$ nodes.
- Each node stores O(1) keys and subtrees, so O(1) time spent at node.
- \Rightarrow All operations take $O(\log n)$ worst-case time.

2-4-trees

Consider the special case of b = 4 (hence a = 2):

- We analyze here the runtime in the RAM-model (include cost of operations in internal memory)
- Height is $O(\log n)$, operations visit $O(\log n)$ nodes.
- Each node stores O(1) keys and subtrees, so O(1) time spent at node.
- \Rightarrow All operations take $O(\log n)$ worst-case time.

This is the same as AVL-trees in theory. But we can make them even better in practice.

Problems with 2-4-trees:

- Recall: We have three kinds of nodes (1-node, 2-node, 3-node) so up to 7 items (keys and subtree-references) at a node.
- *insert* can change the number of keys and subtrees at a node.
- How should we store key-subtree list?

Problems with 2-4-trees:

- Recall: We have three kinds of nodes (1-node, 2-node, 3-node) so up to 7 items (keys and subtree-references) at a node.
- *insert* can change the number of keys and subtrees at a node.
- How should we store key-subtree list?
 - Array? Then we must use length 7. This wastes space.

Problems with 2-4-trees:

- Recall: We have three kinds of nodes (1-node, 2-node, 3-node) so up to 7 items (keys and subtree-references) at a node.
- *insert* can change the number of keys and subtrees at a node.
- How should we store key-subtree list?
 - Array? Then we must use length 7. This wastes space.
 - Linked list? We have overhead for list-nodes. This wastes space.

Problems with 2-4-trees:

- Recall: We have three kinds of nodes (1-node, 2-node, 3-node) so up to 7 items (keys and subtree-references) at a node.
- *insert* can change the number of keys and subtrees at a node.
- How should we store key-subtree list?
 - Array? Then we must use length 7. This wastes space.
 - Linked list? We have overhead for list-nodes. This wastes space.

It does not matter for the theoretical bound, but matters in practice.

Better idea: Design a class of binary search trees that mirrors 2-4-trees!

2-4-tree to red-black-tree

Converting a 2-4-tree:

 A *d*-node becomes a black node with *d*-1 red children (Assembled so that they form a BST of height at most 1.)

2-4-tree to red-black-tree

Converting a 2-4-tree:

 A *d*-node becomes a black node with *d*-1 red children (Assembled so that they form a BST of height at most 1.)

Resulting properties:

- Any red node has a black parent.
- Any empty subtree T has the same black-depth (number of black nodes on path from root to T)

Red-black-trees

Definition: A red-black tree is a binary search tree such that

- every node has a color (red or black),
- every red node has a black parent (in particular the root is black),
- any empty subtree T has the same black-depth (number of black nodes on path from root to T)

Note: Can store this with only *one bit* overhead per node.

O.Veksler (CS-UW)

CS240 – Module 1

Red-black tree to 2-4-tree

Rather than proving properties or describing operations directly, we convert back to 2-4-trees.

Lemma: Any red-black tree T can be converted into a 2-4-tree T'.

Red-black tree to 2-4-tree

Rather than proving properties or describing operations directly, we convert back to 2-4-trees.

Lemma: Any red-black tree T can be converted into a 2-4-tree T'.

Proof:

- Black node with $0 \le d \le 2$ red children becomes a (d+1)-node
- This covers all nodes (no red node has a red child)
- Empty subtrees on same level due to the same blackdepth

O.Veksler (CS-UW)

CS240 - Module 11

Red-black tree summary

- Red-black trees have height $O(\log n)$.
 - ▶ Each level of the 2-4-tree creates at most 2 levels in the red-black tree.

Red-black tree summary

- Red-black trees have height $O(\log n)$.
 - ► Each level of the 2-4-tree creates at most 2 levels in the red-black tree.
- *insert* can be done in $O(\log n)$ worst-case time.
 - Convert relevant part to 2-4-tree.
 - Do insertion in the 2-4-tree.
 - Convert relevant parts back to red-black tree.
 - It can actually be done in the red-black tree directly, using only rotations and recoloring (no details).
- *delete* can also be done in $O(\log n)$ worst-case time (no details)

Red-black tree summary

- Red-black trees have height $O(\log n)$.
 - ► Each level of the 2-4-tree creates at most 2 levels in the red-black tree.
- *insert* can be done in $O(\log n)$ worst-case time.
 - Convert relevant part to 2-4-tree.
 - Do insertion in the 2-4-tree.
 - Convert relevant parts back to red-black tree.
 - It can actually be done in the red-black tree directly, using only rotations and recoloring (no details).
- *delete* can also be done in $O(\log n)$ worst-case time (no details)
- Experiments show that red-black tree use fewer rotations than AVL-trees.
- This is a very popular balanced binary search tree (std::map)

B-trees

A **B-tree** is an *a-b*-tree tailored to the external memory model.

- Every node is one block of memory (of size *B*).
- The order b is chosen maximally such that (b − 1)-node fits into a block of memory. Typically b ∈ Θ(B).
- *a* is set to be $\lceil b/2 \rceil$ as before.

('v' indicates the value or value-reference associated with the key next to it)

(arrows indicate references to the parent)

25 / 35

B-tree Close-up

To see how to choose the order b, inspect a (b-1)-node:

- Stoe b-1 keys and b-1 values
- Store *b* references to subtrees
- Store parent-reference

In this example: B = 17 memory cells fit into one block, so we would choose order b = 6.

O.Veksler (CS-UW)

B-tree analysis

• search, insert, and delete each requires visiting $\Theta(height)$ nodes

- Work within a node is done in internal memory \Rightarrow no block-transfer.
- The height is $\Theta(\log_a n) = \Theta(\log_B n)$ (since $a = \lceil b/2 \rceil \in \Theta(B)$)

So all operations require $\Theta(\log_B n)$ block transfers.

B-tree summary

- All operations require $\Theta(\log_B n)$ block transfers.
 - This is asymptotically optimal.
 - **Can show:** Searching among *n* items requires $\Omega(\log_B n)$ block transfers.
- In practice, height is a small constant.
 - Say n = 2⁵⁰, and B = 2¹⁵. So roughly b = ¹/₃2¹⁵, a = ¹/₃2¹⁴.
 B-tree of height 4 would have ≥ 2a⁴ − 1 > 2⁵⁰ KVPs.

 - So height is 3.
- There are some variations that are even better in practice.
- *B*-trees are hugely important for storing data bases (\rightarrow cs448)

Pre-emptive splitting/merging

• Observe: *BTree::insert*(*k*, *v*) traverses tree twice:

- Search down on a path to the leaf where we add (k, v).
- Go back up on the path to fix overflow, if needed.
- So the number of block-transfers could be twice the height.
- How can we avoid this?

Pre-emptive splitting/merging

• Observe: *BTree::insert*(*k*, *v*) traverses tree twice:

- Search down on a path to the leaf where we add (k, v).
- Go back up on the path to fix overflow, if needed.
- So the number of block-transfers could be twice the height.
- How can we avoid this?
- Idea: During the search, *always* split if the node is full.
- Then a node split at the leaf does not create an overfull parent.

PreemptiveBTree::insert(49):

• If node is not full, keep searching.

PreemptiveBTree::insert(49):

- If node is not full, keep searching.
- If node is full, immediately split.

PreemptiveBTree::insert(49):

- If node is not full, keep searching.
- If node is full, immediately split.
- Then keep searching in appropriate new node.

PreemptiveBTree::insert(49):

- If node is not full, keep searching.
- If node is full, immediately split.
- Then keep searching in appropriate new node.
- We may have split unnecessarily. (But space is cheap.)
Pre-emptive splitting/merging example

PreemptiveBTree::insert(49):

- If node is not full, keep searching.
- If node is full, immediately split.
- Then keep searching in appropriate new node.
- We may have split unnecessarily. (But space is cheap.)

Pre-emptive splitting/merging example

PreemptiveBTree::insert(49):

- If node is not full, keep searching.
- If node is full, immediately split.
- Then keep searching in appropriate new node.
- We may have split unnecessarily. (But space is cheap.)
- With this, we no longer need parent-references.

Towards B^+ -trees

In a B-tree, each node is one block of memory. In this example, up to 10 keys/references fit into one block, so the order is 4.

This *B*-tree could store up to 63 KVPs with height 2.

Two ideas to achieve smaller height:

- The leaves are wasting space for references that will never be used.
- **2** Use a *decision-tree version* \Rightarrow inner nodes can have more children.

B^+ -trees

- Each node is one block of memory.
- All KVPs are stored at *leaves*. Each leaf is at least half full.
- Interior nodes store only keys for comparison during search.
- Interior (non-root) nodes have at least half of the possible subtrees.
- Use pre-emptive splitting.

This B^+ -tree could store up to 125 KVPs with height 2.

Towards LSM-trees

One block:

- Internal memory only requires 1-2 blocks at a time.
- Roughly M 2B space free.

Internal

• How can we use this to increase speed for updates?

Log-structured Memory trees

- Store dictionary in internal memory that logs all changes
- To search: first search in C_0 , then (if needed) in C_1
- If internal memory full: do lots of updates in C_1 at once

Summary

- The RAM model is convenient for algorithm analysis.
- Many of its assumptions are unrealistic, for example
 - not all memory cells are equally quick to access,
 - not all numbers take equal space, and
 - not all primitive operations take equal time.
- Also, modern computer architectures permit more, for example
 - multi-threading
 - distributed computing
- There are other computer models that take these into account.
 - ▶ We saw here the EMM for different types of memory.
- The models get complicated (many parameters!) and the bounds are less helpful (tradeoffs between them).
- The main goal is to get the program-designer to think in the appropriate way.