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Different levels of memory
Recall the RAM model of a computer: Any access to a memory location
takes the same (constant) time.

This is not at all realistic!

A typical current computer architecture includes
registers (very fast, very small)
cache L1, L2 (still fast, less small)
main memory
disk or cloud (slow, very large)

General question: how to adapt our algorithms to take the memory
hierarchy into account, avoiding transfers as much as possible?

Define a new computer model that models one such ‘gap’ across which we
must transfer.
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The External-Memory Model (EMM)

CPU

random access (fast)

transfer in blocks of B cells (slow)

internal memory – size M

. . .
external memory – size unbounded. Store input (size n) here.

Assumption: During a transfer , we automatically load a whole block (or
“page”). This is quite realistic.
New objective: revisit all algorithms/data structures with the objective of
minimizing block transfers (“probes”, “disk transfers”, “page loads”)
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The External-Memory model

Main objective: minimize the number of block transfers.
We completely ignore all operations done in internal memory.
(Since these are orders of magnitude faster, this is not unrealistic.)

Our results now depend on three parameters:
▶ n—the input size

(“typical”: n = 250)

▶ M—the internal memory size

(“typical”: M = 230)

▶ B—the block size

(“typical”: B = 215)

The actual values of n, M, B depend much on the application, but we
sometimes use “typical” numbers to get a better feel for the bounds.
For example, how much worse is n log n compared to n

B logM/B( n
M )?

Some results will assume that we know M, B. This is unrealistic, and
“cache-oblivious” results are preferred.
Some results will also be interesting for the “standard” (RAM)
computer model where we do count operations in internal memory.
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Streams and external memory
Stream-based algorithms (with O(1) resets) use Θ( n

B ) block transfers.

transfer when fulltransfer when empty

external
memory

internal memory
∗ ∗ ∗ ∗ ∗

↑
tail

↑
top work on

. . .∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
next block of input

∗∗∗∗∗
for next block of input

So can do the following with Θ( n
B ) block transfers:

Text compression: Huffman, Lempel-Ziv-Welch (but not BWT)
Pattern matching: Karp-Rabin, Knuth-Morris-Pratt, Boyer-Moore
(This assumes internal memory has O(|P|) space.)
Sorting: merge can be implemented with streams
⇝ merge-sort uses O( n

B log n) block transfers (can be improved)
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Dictionaries in external memory

Recall: Dictionaries store n KVPs and support search, insert and delete.

Recall: AVL-trees were optimal in time and space in RAM model
Θ(log n) run-time ⇒ O(log n) block transfers per operation
But: Inserts happen at varying locations of the tree.
⇝ nearby nodes are unlikely to be on the same block
⇝ typically Θ(log n) block transfers per operation

We would like to have fewer block transfers.
▶ Goal: O(logB n) block transfers.
▶ Does this really make a difference?
▶ Consider ‘typical’ values: n ≈ 250, B ≈ 215.

What is log n vs. logB n?

Better solution: design a tree-structure that guarantees that many nodes
on search-paths are within one block.

O.Veksler (CS-UW) CS240 – Module 11 Winter 2025 6 / 35



Dictionaries in external memory

Recall: Dictionaries store n KVPs and support search, insert and delete.

Recall: AVL-trees were optimal in time and space in RAM model
Θ(log n) run-time ⇒ O(log n) block transfers per operation
But: Inserts happen at varying locations of the tree.
⇝ nearby nodes are unlikely to be on the same block
⇝ typically Θ(log n) block transfers per operation

We would like to have fewer block transfers.
▶ Goal: O(logB n) block transfers.
▶ Does this really make a difference?
▶ Consider ‘typical’ values: n ≈ 250, B ≈ 215.

What is log n vs. logB n?

Better solution: design a tree-structure that guarantees that many nodes
on search-paths are within one block.

O.Veksler (CS-UW) CS240 – Module 11 Winter 2025 6 / 35



Dictionaries in external memory

Recall: Dictionaries store n KVPs and support search, insert and delete.

Recall: AVL-trees were optimal in time and space in RAM model
Θ(log n) run-time ⇒ O(log n) block transfers per operation
But: Inserts happen at varying locations of the tree.
⇝ nearby nodes are unlikely to be on the same block
⇝ typically Θ(log n) block transfers per operation

We would like to have fewer block transfers.
▶ Goal: O(logB n) block transfers.
▶ Does this really make a difference?
▶ Consider ‘typical’ values: n ≈ 250, B ≈ 215.

What is log n vs. logB n?

Better solution: design a tree-structure that guarantees that many nodes
on search-paths are within one block.

O.Veksler (CS-UW) CS240 – Module 11 Winter 2025 6 / 35



Idealized structure
block of external memory

Idea: Store complete subtrees with log b levels in one block of memory.
(b ∈ Θ(B) is maximal so that these fit into one block.)

Each block/subtree then covers height log b
⇒ Search-path hits log n

log b blocks ⇒ logb n block-transfers
Since b ∈ Θ(B), we have logb n ∈ Θ(logB n) (why?)

Idea: View the entire content of a block as one node.
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Towards a-b-trees

Define multiway-tree: A node can store multiple keys.

Definition: A d-node stores d keys, has d+1 subtrees, and stored keys
are between the keys in the subtrees.

• key k1 • key k2 • key k3 •

keys <k1 k1< keys <k2 k2< keys <k3 k3< keys

We always have one more subtree than keys (but subtrees may be empty).

To allow insert/delete, we permit a varying numbers of keys in nodes
(within limits)
We also rigidly restrict where empty subtrees may be.
This gives much smaller height than for AVL-trees
⇒ fewer block transfers
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a-b-trees
Definition: An a-b-tree (for some b ≥ 3 and 2 ≤ a ≤ ⌈b

2⌉) satisfies
1 Every non-root is a d-node for some a−1 ≤ d ≤ b−1.

▶ Between a and b subtrees, between a−1 and b−1 keys.
2 The root is a d-node for 1 ≤ d ≤ b−1.

▶ Between 2 and b subtrees, between 1 and b−1 keys.
3 All empty subtrees are at the same level.

Example: A 2-4-tree of height 1.

5 9 12

3 4

∅ ∅ ∅

6 8

∅ ∅ ∅

11

∅ ∅

13 14 16

∅ ∅ ∅ ∅

For 2-4-trees, every node has between 1 and 3 keys.
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a-b-tree Example

Example: A 3-5-tree of height 2.

25

14 20 26

10 12

∅ ∅ ∅

16 18

∅ ∅ ∅

22 24

∅ ∅ ∅

28 30 32

∅ ∅ ∅ ∅

38 44 50 56

34 36

∅ ∅ ∅

40 42

∅ ∅ ∅

46 48

∅ ∅ ∅

52 54

∅ ∅ ∅

58 60

∅ ∅ ∅

Typically we will specify the order b and then set a = ⌈b
2⌉.
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a-b-tree Example

Example: A 3-6-tree of height 2.

38

14 20 26 32

10 12

∅ ∅ ∅

16 18

∅ ∅ ∅

22 24

∅ ∅ ∅

28 30

∅ ∅ ∅

34 36

∅ ∅ ∅

44 50 62

40 42

∅ ∅ ∅

46 48

∅ ∅ ∅

52 54 56 58 60

∅ ∅ ∅ ∅ ∅ ∅

64 66

∅ ∅ ∅

Note: With small height we can store many keys.
A 3-6-tree of height 2 can store up to (1 + 6 + 36) · 5 = 215 keys.
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a-b-tree Height
Theorem: An a-b-tree with n keys has O(loga(n)) height.
Proof: How many keys must an a-b-tree of height h have?

Level Nodes
1 ≥ 2
2 ≥ 2a
3 ≥ 2a2
...

...
h ≥ 2ah−1

∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅ ∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅∅

Here a = 3

# non-root nodes ≥
h∑

i=1
2ai−1 = 2

h−1∑
j=0

aj = 2ah − 1
a − 1

n = # KVPs ≥ 1︸︷︷︸
root

+ (a − 1)︸ ︷︷ ︸
≥a−1 KVPs at non-root

2ah − 1
a − 1 = 2ah − 1

Therefore h ≤ loga
(n+1

2
)
.
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a-b-tree Operations
Search is similar to BST:

Compare search-key to keys at node
If not found, continue in appropriate subtree until empty

Example: search(15)

5 9 12

3 4

∅ ∅ ∅

6 8

∅ ∅ ∅

11

∅ ∅

13 14 16

∅ ∅ ∅ ∅
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a-b-tree Operations
Search is similar to BST:

Compare search-key to keys at node
If not found, continue in appropriate subtree until empty

Example: search(15) not found

5 9 12

3 4

∅ ∅ ∅

6 8

∅ ∅ ∅

11

∅ ∅

13 14 16

∅ ∅ ∅ ∅

O.Veksler (CS-UW) CS240 – Module 11 Winter 2025 13 / 35



a-b-tree search

abTree::search(k)
1. z ← root, p ← NULL // p: parent of z
2. while z is not NULL
3. let ⟨T0, k1, . . . , kd , Td⟩ be key-subtree list at z
4. if k ≥ k1
5. i ← maximal index such that ki ≤ k
6. if ki = k then return KVP at ki
7. else p ← z , z ← root of Ti
8. else p ← z , z ← root of T0
9. return “not found, would be in p”

# visited nodes: O(loga n) (one per level)
Note: Finding i is not constant time (depending on b)
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a-b tree insert
Do abTree::search and add key and empty subtree at leaf.

If the leaf had room then we are done.
Else overflow: More keys/subtrees than permitted.
Resolve overflow by node splitting.

Example (2-4-tree): insert(10)

5 9 12

3 4

∅ ∅ ∅

6 8

∅ ∅ ∅

11

∅ ∅

13 14 16

∅ ∅ ∅ ∅
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a-b tree insert
Do abTree::search and add key and empty subtree at leaf.
If the leaf had room then we are done.
Else overflow: More keys/subtrees than permitted.
Resolve overflow by node splitting.

Example (2-4-tree): insert(17)

5 9 12

3 4

∅ ∅ ∅

6 8

∅ ∅ ∅

10 11

∅ ∅ ∅

13 14 16 17

∅ ∅ ∅ ∅ ∅
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a-b tree insert
Do abTree::search and add key and empty subtree at leaf.
If the leaf had room then we are done.
Else overflow: More keys/subtrees than permitted.
Resolve overflow by node splitting.

Example (2-4-tree): insert(17)

12

5 9

3 4

∅ ∅ ∅

6 8

∅ ∅ ∅

10 11

∅ ∅ ∅

16

13 14

∅ ∅ ∅

17

∅ ∅
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a-b-tree insert

abTree::insert(k)
1. z ← abTree::search(k) // z: leaf where k should be
2. Add k and an empty subtree in key-subtree-list of z
3. while z has b keys (overflow ⇝ node split)
4. Let ⟨T0, k1, . . . , kb, Tb⟩ be key-subtree list at v
5. if (z has no parent) create a parent of z without KVPs
6. move upper median km of keys to parent p of z
7. z ′ ← new node with ⟨T0, k1, . . . , km−1, Tm−1⟩
8. z ′′ ← new node with ⟨Tm, km+1, . . . , kb, Tb⟩
9. Replace ⟨z⟩ by ⟨z ′, km, z ′′⟩ in key-subtree-list of p
10. z ← p

k ′ k ′′

k1 k2 k3 k4

T0 T1 T2 T3 T4

p

z −→
k ′ k3 k ′′

k1 k2

T0 T1 T2

k4

T3 T4

p

z ′ z ′′
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a-b-tree insert
Example: insert(55) in a 3-6-tree:

38

14 20 26 32

10 12

∅ ∅ ∅

16 18

∅ ∅ ∅

22 24

∅ ∅ ∅

28 30

∅ ∅ ∅

34 36

∅ ∅ ∅

44 50 62

40 42

∅ ∅ ∅

46 48

∅ ∅ ∅

52 54 55 56 58 60

∅ ∅ ∅ ∅ ∅ ∅ ∅

64 66

∅ ∅ ∅

Node split ⇒ new nodes have ≥ ⌊(b−1)/2⌋ = ⌈b/2⌉ − 1 keys
Since we know a ≤ ⌈b/2⌉, this is ≥ a−1 keys as required.
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a-b-tree Summary

An a-b tree has height O(loga n)
If a ≈ b/2, then this height-bound is tight.

▶ Level i contains at most bi nodes
▶ Each node contains at most b − 1 KVPs
▶ So n ≤ bh+1 − 1 and h ∈ Ω(logb n).

search and insert visit O(loga n) nodes.
delete can also be implemented with O(loga n) node-visits.
But usually use lazy deletion—space is cheap in external memory.

How do we choose the order b? (Recall: a is usually ⌈b
2⌉.)

▶ Option 1: b small, e.g. b = 4
⇝ a new balanced BST, competetive with AVL-trees.

▶ Option 2: b big (but one node still fits into one block of memory)
⇝ a realization of ADT Dictionary for external memory
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2-4-trees
Consider the special case of b = 4 (hence a = 2):

5 9 12

3 4

∅ ∅ ∅

6 8

∅ ∅ ∅

11

∅ ∅

13 14 16

∅ ∅ ∅ ∅

We analyze here the runtime in the RAM-model
(include cost of operations in internal memory)
Height is O(log n), operations visit O(log n) nodes.
Each node stores O(1) keys and subtrees, so O(1) time spent at node.

⇒ All operations take O(log n) worst-case time.

This is the same as AVL-trees in theory.
But we can make them even better in practice.
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Towards red-black-trees
Problems with 2-4-trees:

5 9 12

3 4

∅ ∅ ∅

6 8

∅ ∅ ∅

11

∅ ∅

13 14 16

∅ ∅ ∅ ∅

Recall: We have three kinds of nodes (1-node, 2-node, 3-node)
so up to 7 items (keys and subtree-references) at a node.
insert can change the number of keys and subtrees at a node.
How should we store key-subtree list?

▶ Array? Then we must use length 7. This wastes space.
▶ Linked list? We have overhead for list-nodes. This wastes space.

It does not matter for the theoretical bound, but matters in practice.

Better idea: Design a class of binary search trees that mirrors 2-4-trees!
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2-4-tree to red-black-tree

5 12

3 4
∅ ∅ ∅

11
∅ ∅

13 14 15
∅ ∅ ∅ ∅

→

12
5

4
3

∅ ∅

∅

11
∅ ∅

14
13

∅ ∅

15
∅ ∅

Converting a 2-4-tree:
A d-node becomes a black node with d−1 red children
(Assembled so that they form a BST of height at most 1.)

Resulting properties:
Any red node has a black parent.
Any empty subtree T has the same black-depth
(number of black nodes on path from root to T )
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Red-black-trees

12

5

4

3

∅ ∅

∅

11

∅ ∅

14

13

∅ ∅

15

∅ ∅

Black depth: 2

Definition: A red-black tree is a binary search tree such that
every node has a color (red or black),
every red node has a black parent
(in particular the root is black),
any empty subtree T has the same black-depth
(number of black nodes on path from root to T )

Note: Can store this with only one bit overhead per node.
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Red-black tree to 2-4-tree
Rather than proving properties or describing operations directly, we
convert back to 2-4-trees.

Lemma: Any red-black tree T can be converted into a 2-4-tree T ′.

13

8

1

∅ ∅

11

9

∅ ∅

∅

25

22

∅ ∅

27

∅ ∅

→

8 13

1
∅ ∅

9 11
∅ ∅ ∅

22 25 27
∅ ∅ ∅ ∅

Proof:
Black node with 0 ≤ d ≤ 2 red children becomes a (d+1)-node
This covers all nodes (no red node has a red child)
Empty subtrees on same level due to the same blackdepth
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Red-black tree summary

Red-black trees have height O(log n).
▶ Each level of the 2-4-tree creates at most 2 levels in the red-black tree.

insert can be done in O(log n) worst-case time.
▶ Convert relevant part to 2-4-tree.
▶ Do insertion in the 2-4-tree.
▶ Convert relevant parts back to red-black tree.

It can actually be done in the red-black tree directly, using only
rotations and recoloring (no details).
delete can also be done in O(log n) worst-case time (no details)

Experiments show that red-black tree use fewer rotations than
AVL-trees.
This is a very popular balanced binary search tree (std::map)

O.Veksler (CS-UW) CS240 – Module 11 Winter 2025 24 / 35



Red-black tree summary

Red-black trees have height O(log n).
▶ Each level of the 2-4-tree creates at most 2 levels in the red-black tree.

insert can be done in O(log n) worst-case time.
▶ Convert relevant part to 2-4-tree.
▶ Do insertion in the 2-4-tree.
▶ Convert relevant parts back to red-black tree.

It can actually be done in the red-black tree directly, using only
rotations and recoloring (no details).
delete can also be done in O(log n) worst-case time (no details)

Experiments show that red-black tree use fewer rotations than
AVL-trees.
This is a very popular balanced binary search tree (std::map)

O.Veksler (CS-UW) CS240 – Module 11 Winter 2025 24 / 35



Red-black tree summary

Red-black trees have height O(log n).
▶ Each level of the 2-4-tree creates at most 2 levels in the red-black tree.

insert can be done in O(log n) worst-case time.
▶ Convert relevant part to 2-4-tree.
▶ Do insertion in the 2-4-tree.
▶ Convert relevant parts back to red-black tree.

It can actually be done in the red-black tree directly, using only
rotations and recoloring (no details).
delete can also be done in O(log n) worst-case time (no details)

Experiments show that red-black tree use fewer rotations than
AVL-trees.
This is a very popular balanced binary search tree (std::map)

O.Veksler (CS-UW) CS240 – Module 11 Winter 2025 24 / 35



B-trees
A B-tree is an a-b-tree tailored to the external memory model.

Every node is one block of memory (of size B).
The order b is chosen maximally such that (b − 1)-node fits into a
block of memory. Typically b ∈ Θ(B).
a is set to be ⌈b/2⌉ as before.

• 32 v • 58 v • • NULL

• 14 v • 20 v • 26 v • •

x
•
10
v
•
12
v
•

•
•

↰

•
16
v
•
18
v
•

•
•

↰

•
22
v
•
24
v
•

•
•

↰

•
28
v
•
30
v
•

•
•

↰

• 38 v • 44 v • 50 v • •

x
•
34
v
•
36
v
•

•
•

↰

•
40
v
•
42
v
•

•
•

↰

•
46
v
•
48
v
•

•
•

↰
•
52
v
•
54
v
•
56
v
•
•

↰
• 64 v • 70 v • • •

x
•
60
v
•
62
v
•

•
•

↰

•
66
v
•
68
v
•

•
•

↰

•
72
v
•
74
v
•

•
•

↰

(‘v’ indicates the value or value-reference associated with the key next to it)
(arrows indicate references to the parent)
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B-tree Close-up
To see how to choose the order b, inspect a (b−1)-node:

Stoe b−1 keys and b−1 values
Store b references to subtrees
Store parent-reference

transfer
if T1
needed internal memory

external memory
. . .

• • • • • • •
parent T0

k1 v1

T1

k2 v2

T2

k3 v3

T3

k4 v4

T4

k5 v5

T5

unused (node not full)

In this example: B = 17 memory cells fit into one block, so we would
choose order b = 6.
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B-tree analysis

• 32 v • 58 v • • NULL

• 14 v • 20 v • 26 v • •

x
•
10
v
•
12
v
•

•
•

↰

•
16
v
•
18
v
•

•
•

↰

•
22
v
•
24
v
•

•
•

↰

•
28
v
•
30
v
•

•
•

↰

• 38 v • 44 v • 50 v • •

x
•
34
v
•
36
v
•

•
•

↰

•
40
v
•
42
v
•

•
•

↰

•
46
v
•
48
v
•

•
•

↰

•
52
v
•
54
v
•
56
v
•
•

↰

• 64 v • 70 v • • •

x
•
60
v
•
62
v
•

•
•

↰

•
66
v
•
68
v
•

•
•

↰
•
72
v
•
74
v
•

•
•

↰

search, insert, and delete each requires visiting Θ(height) nodes
Work within a node is done in internal memory ⇒ no block-transfer.
The height is Θ

(
loga n

)
= Θ

(
logB n

)
(since a = ⌈b/2⌉ ∈ Θ(B))

So all operations require Θ(logB n) block transfers.

O.Veksler (CS-UW) CS240 – Module 11 Winter 2025 27 / 35



B-tree summary

All operations require Θ(logB n) block transfers.
▶ This is asymptotically optimal.
▶ Can show: Searching among n items requires Ω(logB n) block

transfers.

In practice, height is a small constant.
▶ Say n = 250, and B = 215. So roughly b = 1

3 215, a = 1
3 214.

▶ B-tree of height 4 would have ≥ 2a4 − 1 > 250 KVPs.
▶ So height is 3.

There are some variations that are even better in practice.

B-trees are hugely important for storing data bases (⇝ cs448)
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Pre-emptive splitting/merging
• 32 v • 58 v • •

• 14 v • 20 v • 26 v •

•
10
v
•
12
v
•

•

•
16
v
•
18
v
•

•

•
22
v
•
24
v
•

•

•
28
v
•
30
v
•

•

• 38 v • 44 v • 50 v •

•
34
v
•
36
v
•

•

•
40
v
•
42
v
•

•

•
46
v
•
48
v
•

•

•
52
v
•
54
v
•
56
v
•

• 64 v • 70 v • •

•
60
v
•
62
v
•

•

•
66
v
•
68
v
•

•

•
72
v
•
74
v
•

•

Observe: BTree::insert(k, v) traverses tree twice:
▶ Search down on a path to the leaf where we add (k, v).
▶ Go back up on the path to fix overflow, if needed.

So the number of block-transfers could be twice the height.
How can we avoid this?

Idea: During the search, always split if the node is full.
Then a node split at the leaf does not create an overfull parent.
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Pre-emptive splitting/merging example
PreemptiveBTree::insert(49):

• 32 v • 58 v • •

• 14 v • 20 v • 26 v •

•
10
v
•
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v
•

•

•
16
v
•
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v
•

•

•
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v
•
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v
•

•

•
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v
•
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v
•

•

• 38 v • 44 v • 50 v •

•
34
v
•
36
v
•

•

•
40
v
•
42
v
•

•

•
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v
•
48
v
•

•

•
52
v
•
54
v
•
56
v
•

• 64 v • 70 v • •

•
60
v
•
62
v
•

•

•
66
v
•
68
v
•

•

•
72
v
•
74
v
•

•

If node is not full, keep searching.

If node is full, immediately split.
Then keep searching in appropriate new node.
We may have split unnecessarily. (But space is cheap.)

With this, we no longer need parent-references.
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Pre-emptive splitting/merging example
PreemptiveBTree::insert(49):

• 32 v • 44 v • 58 v •

• 14 v • 20 v • 26 v •

•
10
v
•
12
v
•

•

•
16
v
•
18
v
•

•

•
22
v
•
24
v
•

•

•
28
v
•
30
v
•

•

• 38 v • • •

•
34
v
•
36
v
•

•

•
40
v
•
42
v
•

•

• 50 v • • •

•
46
v
•
48
v
•
49
v
•

•
52
v
•
54
v
•
56
v
•

• 64 v • 70 v • •

•
60
v
•
62
v
•

•

•
66
v
•
68
v
•

•

•
72
v
•
74
v
•

•

If node is not full, keep searching.
If node is full, immediately split.
Then keep searching in appropriate new node.
We may have split unnecessarily. (But space is cheap.)

With this, we no longer need parent-references.
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•
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Then keep searching in appropriate new node.
We may have split unnecessarily. (But space is cheap.)
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Towards B+-trees
In a B-tree, each node is one block of memory. In this example, up to 10
keys/references fit into one block, so the order is 4.

• 32 v • 58 v • •

• 14 v • 20 v • 26 v •

•
10
v
•
12
v
•

•

•
16
v
•
18
v
•

•

•
22
v
•
24
v
•

•

•
28
v
•
30
v
•

•

• 38 v • 44 v • 50 v •

•
34
v
•
36
v
•

•

•
40
v
•
42
v
•

•

•
46
v
•
48
v
•

•

•
52
v
•
54
v
•
56
v
•

• 64 v • 70 v • •

•
60
v
•
62
v
•

•

•
66
v
•
68
v
•

•

•
72
v
•
74
v
•

•

This B-tree could store up to 63 KVPs with height 2.

Two ideas to achieve smaller height:
1 The leaves are wasting space for references that will never be used.
2 Use a decision-tree version ⇒ inner nodes can have more children.
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B+-trees

Each node is one block of memory.
All KVPs are stored at leaves. Each leaf is at least half full.
Interior nodes store only keys for comparison during search.
Interior (non-root) nodes have at least half of the possible subtrees.
Use pre-emptive splitting.

• <46? • • • •

• <16? • <24? • <32? • <40? •

10
v

12
v

14
v

16
v

18
v

20
v

22
v

24
v

26
v

28
v

30
v

32
v

34
v

36
v

38
v

40
v

42
v

44
v

• <54? • <60? • <70? • •

46
v

48
v

50
v

52
v

54
v

56
v

58
v

60
v

62
v

64
v

66
v

68
v

70
v

72
v

74
v

This B+-tree could store up to 125 KVPs with height 2.
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Towards LSM-trees

• 32 v • 58 v • • • 32 v • 58 v • •
•
14v•
20v•
26v•

•
38v•
44v•
50v•

•
64v•
70v•

•

One block: B-tree:

Internal External

Internal memory only requires 1-2 blocks at a time.
Roughly M − 2B space free.
How can we use this to increase speed for updates?
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Log-structured Memory trees

• 32 v • 58 v • • • 32 v • 58 v • •
•
14v•
20v•
26v•

•
38v•
44v•
50v•

•
64v•
70v•

•

30
inserted

20
deleted

47
inserted

One block: C1 (B-tree):

C0 (log of the changes):

Internal External
Store dictionary in internal memory that logs all changes
To search: first search in C0, then (if needed) in C1

If internal memory full: do lots of updates in C1 at once
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Summary

The RAM model is convenient for algorithm analysis.
Many of its assumptions are unrealistic, for example

▶ not all memory cells are equally quick to access,
▶ not all numbers take equal space, and
▶ not all primitive operations take equal time.

Also, modern computer architectures permit more, for example
▶ multi-threading
▶ distributed computing

There are other computer models that take these into account.
▶ We saw here the EMM for different types of memory.

The models get complicated (many parameters!) and the bounds are
less helpful (tradeoffs between them).
The main goal is to get the program-designer to think in the
appropriate way.
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