CS 240: Data Structures and Data Management

Winter 2025

Tutorial 01: Jan 17

1. Θ -notation and Little-o

- (a) Prove from first principles that $n^3 \in \Theta(4n^3 3n^2 + 2n 1)$.
- (b) Prove from first principles that $2000n^2 \in o(n^n)$.

2. Fraction between Big-O and Little-Omega

Prove or disprove the following claim. If $f(n) \in O(h_1(n))$ and $g(n) \in \omega(h_2(n))$, then $\frac{f(n)}{g(n)} \in o\left(\frac{h_1(n)}{h_2(n)}\right)$, assuming $f(n), g(n), h_1(n), h_2(n)$ are all positive $\forall n \geq 0$. You should prove the statement from first principles or provide a counter example.

3. Loop Analysis - Iteration

Provide a tight Θ bound on the following pseudocode as a function of n:

Algorithm 1: Iterative Pseudocode