CS 240 — Data Structures and Data Management

Module 1: Introduction and Asymptotic Analysis

Mark Petrick, Olga Veksler

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2026

version 2026-01-05 22:18

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 1/45

Outline

@ Introduction and Asymptotic Analysis
@ CS240 Overview
@ Algorithm Design
@ Analysis of Algorithms |
@ Asymptotic Notation
@ Rules for asymptotic notation
@ Analysis of Algorithms Revisited
@ Example: Design and Analysis of merge-sort

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026

Outline

@ Introduction and Asymptotic Analysis
@ CS240 Overview

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1

Course objectives: What is this course about?

@ Much of Computer Science is problem solving: Write a program that
converts the given input to the expected output.

@ When first learning to program, we emphasize correctness: does your
program output the expected results?

@ Starting with this course, we will also be concerned with efficiency: is
your program using the computer’s resources (typically processor
time) efficiently?

@ We will study efficient methods of storing, accessing, and organizing
large collections of data.

Motivating examples: Digital Music Collection, English Dictionary

Typical operations include: inserting new data items, deleting data
items, searching for specific data items, sorting.

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 2 /45

Course objectives: What is this course about?

e We will consider various abstract data types (ADTs) and how to
realize them efficiently using appropriate data structures.

e We will some problems in data management (sorting, pattern
matching, compression) and how to solve them with efficient
algorithms.

@ There is a strong emphasis on mathematical analysis in the course.

@ Algorithms are presented using pseudo-code and analyzed using order
notation (big-Oh, etc.).

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 3 /45

Course topics

1

o
2]
o
o
o
o
o
o
o
10
@

m

background, big-Oh analysis
priority queues and heaps
efficient sorting, selection
binary search trees, AVL trees
skip lists

tries

hashing

quadtrees, kd-trees, range search
string matching

data compression

external memory

odule = 1 week per topic.

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026

4/ 45

Required CS background

Topics covered in previous courses:

arrays, linked lists
strings

stacks, queues
abstract data types
recursive algorithms
binary trees

basic sorting

binary search
@ binary search trees

Most are briefly reviewed in course notes, or consult any textbook
(e.g. [Sedgewick,CLRS]).

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 5 /45

Useful math facts

Logarithms:
o y = log,(x) means b¥ = x. e.g. n=2"°%e"
@ log(x) (in this course) means log,(x)
o log(x - y) = log(x)+ log(y), log(x") = y log(x), log(x) < x

_ logca _ 1 log,c _ log,a
e log,(a) = og b — Tog,(B)" ? =c

o In(x) = natural log = log(x), & Inx=1
Factorial:

e n:=nln—1)(n—-2)----2-1= F ways to permute n elements

o log(n!) =logn—+log(n—1)+---+log2+logl € ©(nlog n)

(We will define © soon.)

Probability:

e E[X] is the expected value of X.

o E[aX] = aE[X], E[X + Y] = E[X] + E[Y] (linearity of expectation)

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 6 /45

Useful sums

Arithmetic sequence:
Si=177

Geometric sequence:

n—1nj __
Y2 =117
Harmonic sequence:
n 1 _ 977
i=17 L

A few more:

n i
g =10

n ok _
n k=777

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 7 /45

Useful sums

Arithmetic sequence:

st = (sl S0 da+ di) = na+ 2D c o(n?) if d #0.
Geometric sequence:
arr"_—ll cO(r) ifr>1
27:_01 o —on _ 1 E?:_ol ari=1{ na € O(n) ifr=1
all__’rn co(l) if0<r<l.
Harmonic sequence:
ri7=7177 Hp =301 % =Inn+~+o(1) € ©(log n)
A few more:
iy =777 i1 € O(1)
S k=777 P, ikeo(nktl) for k>0

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 7 /45

Outline

@ Introduction and Asymptotic Analysis

@ Algorithm Design

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1

Algorithms and problems: Review

Let us clarify a few more terms:

Problem: Description of possible input and desired output. Example:
Sorting problem.

Problem Instance: One possible input for the specified problem.

Algorithm: Step-by-step process (can be described in finite length) for
carrying out a series of computations, given an arbitrary instance /.

Solving a problem: An Algorithm A solves a problem [T if, for every
instance / of 1, A computes a valid output for the instance / in finite
time.

Program: A program is an implementation of an algorithm using a
specified computer language.

In this course, our emphasis is on algorithms (as opposed to programs or
programming). We do not use any particular computer language to
describe them.

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 8 /45

Algorithms and programs

Pseudocode: communicate an algorithm to another person.

In contrast, a program communicates an algorithm to a computer.

insertion-sort(A, n)

A: array of size n

1. for (i < 1;i < n;i++) do

2. for (j < i;j > 0 and A[j—1] > A[j];j--) do
3. swap A[j] and A[j — 1]

@ sometimes uses English descriptions, e.g. ‘swap’,

@ omits obvious details, e.g. i is usually an integer

@ has limited if any error detection, e.g. A is assumed initialized
@ should be precise about exit-conditions, e.g. in loops

@ should use good indentation and variable-names

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026

9/45

Algorithms and programs

From problem I1 to program that solves it:

@ Design an algorithm A that solves 1. — Algorithm Design
A problem I1 may have several algorithms. Design many!

@ Assess correctness and efficiency of each A. — Algorithm Analysis
Correctness — CS245 (here informal arguments are enough).
Efficiency — later

@ If acceptable (correct and efficient), implement algorithm(s).
For each algorithm, we can have several implementations.

© If multiple acceptable algorithms/implementations, run experiments
to determine best solution.

(CS240 focuses on the first two steps.
The main point is to avoid implementing obviously-bad algorithms.

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 10 / 45

Outline

@ Introduction and Asymptotic Analysis

@ Analysis of Algorithms |

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1

Efficiency of algorithms

What do we mean by ‘efficiency’?

In this course, we are primarily concerned with the amount of time a
program takes to run. — Running Time

We also may be interested in the amount of additional memory the
program requires. — Auxiliary space

The amount of time and/or memory required by a program will
usually depend on the given problem instance.

So we express the time or memory requirements as a mathematical
function of the instances (e.g. T(/))

But then aggregate over all instances Z, of size n (e.g. T(n)).

Do we take max, min, avg? (— later)

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 11 / 45

Measuring efficiency of algorithms

What do we count as running time/space usage of an algorithm?
First option: experimental studies

@ Write a program implementing the algorithm.

@ Run the program with inputs of varying size and composition and
measure time and space.

e Plot/compare the results.

There are numerous shortcomings:
@ Implementation may be complicated/costly.

@ Outcomes are affected by many factors: hardware (processor,
memory), software environment (OS, compiler, programming
language), and human factors (programmer).

@ We cannot test all instances; what are good sample inputs?

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 12 / 45

Running time of algorithms

Better: theoretical analysis:

@ Does not require implementing the algorithm (we work on
pseudo-code).

e Is independent of the hardware/software environment (we work on an
idealized computer model).

@ Takes into account all input instances.

This is the approach taken in C5240.

We use experimental results only if theoretical analysis yields no useful
results for deciding between multiple algorithms.

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 13 / 45

Random access machine (RAM) model

(LTI I I T I T I rr ey
memory cells — size unbounded

random access (equally fast to all cells)

Central processing unit (CPU)

e Each memory cell stores one (finite-length) datum, typically a
number, character, or reference.
Assumption: cells are big enough to hold the items that we store.

@ Any access to a memory location takes constant time.
(We will revisit this assumption late in the course.)

o Any primitive operation takes constant time.
(Add, subtract, multiply, divide, follow a reference, ...)

Not primitive: /n, anything involving irrational numbers

These assumptions may not be valid for a “real” computer.
M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 14 / 45

Running time and space

With this computer model, we can now formally define:

@ The running time is the number of memory accesses plus the
number of primitive operations.

@ The space is the maximum number of memory cells ever in use.
e Size(/) of instance / is the number of memory cells that / occupies.
The real-life time and space is proportional to this.

We compare algorithms by considering the growth rate: What is the
behaviour of algorithms as size n gets large?

o Example 1: What is larger, 100n or 10n°?

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 15 / 45

Running time and space

With this computer model, we can now formally define:

@ The running time is the number of memory accesses plus the
number of primitive operations.

@ The space is the maximum number of memory cells ever in use.
e Size(/) of instance / is the number of memory cells that / occupies.
The real-life time and space is proportional to this.

We compare algorithms by considering the growth rate: What is the
behaviour of algorithms as size n gets large?

o Example 1: What is larger, 100n or 10n°?

e Example 2 (Matrix multiplication, approximately): What is
larger: 4n3, 30002807 or 109723737

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 15 / 45

Running time and space

With this computer model, we can now formally define:

@ The running time is the number of memory accesses plus the
number of primitive operations.

@ The space is the maximum number of memory cells ever in use.
e Size(/) of instance / is the number of memory cells that / occupies.
The real-life time and space is proportional to this.

We compare algorithms by considering the growth rate: What is the
behaviour of algorithms as size n gets large?

o Example 1: What is larger, 100n or 10n°?

e Example 2 (Matrix multiplication, approximately): What is
larger: 4n3, 30002807 or 109723737

To simplify comparisons, use order notation (big-O and friends).
Informally: ignore constants and lower order terms

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 15 / 45

Outline

@ Introduction and Asymptotic Analysis

@ Asymptotic Notation

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1

Order notation

Study relationships between functions.

Example: f(x) = 75x + 500 and g(x) = x? (e.g. ¢ =5, ng = 20)

y c-g(x) = 5x2
3000 -
2000 L ,,/—"’/ f(X):75X+500
1 e - — x2
0001 — g(x) = x
5 10 15 20 25 30 X
no

O-notation: f(x) € O(g(x)) (f is asymptotically upper-bounded by g) if
there exist constants ¢ > 0 and ng > 0 s.t. |f(x)| < c|g(x)]| for all x > no.

In CS240: Parameter is usually an integer (write n rather than x).
f(n), g(n) usually positive for sufficiently big n (omit absolute value signs).

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 16 / 45

Order Notation: Example 1

In order to prove that 2n? + 3n + 11 € O(n?) from first principles (i.e.,
directly from the definition), we need to find ¢ and ng such that the

following condition is satisfied:

2n° +3n+11 < cn? forall n > ng.

Many, but not all, choices of ¢ and ng will work.

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 17 / 45

Asymptotic lower bound

o We have 2n% +3n + 11 € O(n?).
o But we also have 2n? +3n + 11 € O(n'9).
o We want a tight asymptotic bound.

Q-notation: f(x) € Q(g(x)) (f is asymptotically lower-bounded by g) if
there exist constants ¢ > 0 and ngp > 0 s.t. ¢ |g(x)| < |f(x)]| for all x > ng.

Example: f(x) = {5x% — x and g(x) = 5x (e.g. ¢ = £, ng = 20)
y

40

20

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 18 / 45

Asymptotic lower bound

Example: Prove that f(n) = 2n% +3n + 11 € Q(n?) from first principles.

Example: Prove that %nz —5n € Q(n?) from first principles.

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 19 / 45

Asymptotic tight bound
©-notation: f(x) € ©(g(x)) (f is asymptotically tightly-bounded by g) if

there exist constants c1, ¢ > 0 and ng > 0 such that
a1 lg(x)] < |f(x)] < a2 lg(x)| for all x > ng.

Equivalently: f(n) € ©(g(n)) < f(n) € O(g(n)) and f(n) € Q(g(n))

We also say that the growth rates of f and g are the same. Typically, f(x)
may be “complicated” and g(x) is chosen to be a very simple function.

Example: Prove that log,(n) € ©(log n) for all b > 1 from first principles.

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 20 / 45

Common growth rates

Commonly encountered growth rates in analysis of algorithms include the
following:

° @(1) (constant),
log n) (logarithmic),

©(n) (linear),

©(nlog n) (linearithmic),

°
(D

%) (quadratic),
O(n®) (cubic),
2") (exponential).

o(
(n
(
©(nlogk n), for some constant k (quasi-linear),
(n
(
o(

These are sorted in increasing order of growth rate.

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 21 /45

Common growth rates

Commonly encountered growth rates in analysis of algorithms include the
following:

e O(1) (constant),
e O(log n) (logarithmic),
e O(n) (linear),

e O(nlogn) (linearithmic),

e o
® O

n?) (quadratic),
e O(n%) (cubic),

(
(
(
(nlogk n), for some constant k (quasi-linear),
(
(
e O(2") (exponential).

These are sorted in increasing order of growth rate.

How do we define ‘increasing order of growth rate'?

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 21 /45

Growth rates and running time

It is interesting to see how the running time is affected when the size of
the problem instance doubles (i.e., n — 2n).

@ constant complexity: T(n) =c

logarithmic complexity: T(n) = clogn

@ linear complexity: T(n) = cn

linearithmic ©(nlog n): T(n) = cnlogn
2

quadratic complexity: T(n) =cn
e cubic complexity: T(n) = cn®

@ exponential complexity: T(n) = c2"

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 22 /45

Growth rates and running time

It is interesting to see how the running time is affected when the size of
the problem instance doubles (i.e., n — 2n).

@ constant complexity: T(n) =c ~» T(2n) = c.

logarithmic complexity: T(n) = clogn

@ linear complexity: T(n) = cn

linearithmic ©(nlog n): T(n) = cnlogn
2

quadratic complexity: T(n) =cn
e cubic complexity: T(n) = cn®

@ exponential complexity: T(n) = c2"

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 22 /45

Growth rates and running time

It is interesting to see how the running time is affected when the size of
the problem instance doubles (i.e., n — 2n).

@ constant complexity: T(n) =c ~» T(2n) = c.

logarithmic complexity: T(n) = clogn ~» T(2n) = T(n)+ c.

@ linear complexity: T(n) = cn

linearithmic ©(nlog n): T(n) = cnlogn
2

quadratic complexity: T(n) =cn
e cubic complexity: T(n) = cn®

@ exponential complexity: T(n) = c2"

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 22 /45

Growth rates and running time

It is interesting to see how the running time is affected when the size of
the problem instance doubles (i.e., n — 2n).

@ constant complexity: T(n) =c ~» T(2n) = c.

o logarithmic complexity: T(n) =clogn ~» T(2n) = T(n)+ c.
@ linear complexity: T(n) = cn ~» T(2n) = 2T(n).

o linearithmic ©(nlogn): T(n) = cnlogn

2

quadratic complexity: T(n) =cn
e cubic complexity: T(n) = cn®

@ exponential complexity: T(n) = c2"

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 22 /45

Growth rates and running time

It is interesting to see how the running time is affected when the size of
the problem instance doubles (i.e., n — 2n).

@ constant complexity: T(n) =c ~» T(2n) = c.

o logarithmic complexity: T(n) =clogn ~» T(2n)= T(n)+c¢

@ linear complexity: T(n) = cn ~» T(2n) =2T(n)

o linearithmic ©(nlogn): T(n) =cnlogn ~» T(2n)=2T(n)+ 2cn
e quadratic complexity: T(n) = c n?

e cubic complexity: T(n) = cn®

@ exponential complexity: T(n) = c2"

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 22 /45

Growth rates and running time

It is interesting to see how the running time is affected when the size of
the problem instance doubles (i.e., n — 2n).

@ constant complexity: T(n) =c ~» T(2n) = c.

o logarithmic complexity: T(n) =clogn ~» T(2n)= T(n)+c¢

@ linear complexity: T(n) = cn ~» T(2n) = 2T(n).

o linearithmic ©(nlogn): T(n) =cnlogn ~» T(2n)=2T(n)+ 2cn
e quadratic complexity: T(n) = c n? ~» T(2n) = 4T(n).

e cubic complexity: T(n) = cn®

@ exponential complexity: T(n) = c2"

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 22 /45

Growth rates and running time

It is interesting to see how the running time is affected when the size of
the problem instance doubles (i.e., n — 2n).

@ constant complexity: T(n) =c ~» T(2n) = c.

o logarithmic complexity: T(n) =clogn ~» T(2n)= T(n)+c¢

@ linear complexity: T(n) = cn ~» T(2n) = 2T(n).

o linearithmic ©(nlogn): T(n) =cnlogn ~» T(2n)=2T(n)+ 2cn
e quadratic complexity: T(n) = c n? ~» T(2n) = 4T(n).

e cubic complexity: T(n) = cn® ~ T(2n) = 8T (n).

@ exponential complexity: T(n) = c2"

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 22 /45

Growth rates and running time

It is interesting to see how the running time is affected when the size of
the problem instance doubles (i.e., n — 2n).

@ constant complexity: T(n) =c ~» T(2n) = c.

o logarithmic complexity: T(n) =clogn ~» T(2n)= T(n)+c¢

@ linear complexity: T(n) = cn ~» T(2n) = 2T(n).

o linearithmic ©(nlogn): T(n) =cnlogn ~» T(2n)=2T(n)+ 2cn
e quadratic complexity: T(n) = c n? ~» T(2n) = 4T(n).

e cubic complexity: T(n) = cn® ~ T(2n) = 8T (n).

@ exponential complexity: T(n) = c2" ~ T(2n) = (T(n))?/c

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 22 /45

Strictly smaller asymptotic bounds

e We have f(n) = n € ©(n).
@ How to express that f(n) grows slower than n®?

y g(x) =x

o-notation: f(x) € o(g(x)) (f is asymptotically strictly smaller than g) if
for all constants ¢ > 0, there exists a constant ng > 0 such that

|f(x)] < c|g(x)] for all x > no.
M. Petrick, O.Veksler (CS-UW)

CS240 — Module 1 Winter 2026 23 /45

Strictly smaller/larger asymptotic bounds

Example: Prove that n € o(n2) from first principles.

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1

Strictly smaller/larger asymptotic bounds

Example: Prove that n € o(n2) from first principles.

@ Main difference between o and O is the quantifier for c.

@ ng will depend on c, so it is really a function ng(c).

@ We also say ‘the growth rate of f is less than the growth rate of g’.
o Rarely proved from first principles (instead use limit-rule ~~ later).

w-notation: f(x) € w(g(x)) (f is asymptotically strictly larger than g) if
for all constants ¢ > 0, there exists a constant ng > 0 such that
[f(x)| > c|g(x)| for all x > ng.

@ Symmetric, the growth rate of f is more than the growth rate of g.

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 24 / 45

Order notation: Summary

O-notation: f(x) € O(g(x)) if there exist constants ¢ > 0 and ng > 0
such that |f(x)| < c|g(x)] for all x > np.

Q-notation: f(x

)
) € Q(g(x)) if there exist constants ¢ > 0 and ng > 0
such that ¢ |g(x)| <)|
) €

|f(x)| for all x > no.

f(
©-notation: f(x) € ©(g(x)) if there exist constants c;, ¢ > 0 and
no > 0 such that ¢ |g(x)| < |f(x)| < ¢ |g(x)]| for all x > ng.

o-notation: f(x) € o(g(x)) if for all constants ¢ > 0, there exists a
constant ng > 0 such that |f(x)| < ¢ |g(x)]| for all x > ng.

w-notation: f(x) € w(g(x)) if for all constants ¢ > 0, there exists a
constant ng > 0 such that c|g(x)| < |f(x)]| for all x > ng.

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 25/ 45

Outline

@ Introduction and Asymptotic Analysis

@ Rules for asymptotic notation

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1

The limit rule

Suppose that f(x) > 0 and g(x) > 0 for all x > ng. Suppose that

= |lim f(X)

(in particular, the limit exists).

Then
o(g(x)) ifL=0
flx) € {@(g(x)) if0< L < oo

If the fraction tends to infinity then f(x) € w(g(x)).

The required limit can often be computed using I'Hépital’s rule. Note that

this result gives sufficient (but not necessary) conditions for the stated
conclusion to hold.

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 26 / 45

Application 1: Logarithms vs. polynomials

Compare the growth rates of f(n) = logn and g(n) = n.

Now compare the growth rates of f(n) = (logn)¢ and g(n) = n9 (where
¢ > 0 and d > 0 are arbitrary numbers).

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 27 / 45

Application 2: Polynomials
Let f(n) be a polynomial of degree d > 0:

f(n) = cdnd + Cd_lnd_l +---t+cn+

for some ¢4 > 0.

Then f(n) € ©(n9):

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 28 / 45

Example: Oscillating functions

Consider two oscillating functions fi, f» for which lim,_ @ does not
exist. Are they in ©(n)?

y fi(x) =x(1+sinxm/2) y f(x) :x(2+sin3x7r/2)
X
2x
‘\/, A ‘\V \ X

So no limit ~~» must use other methods to prove asymptotic bounds.

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 29 / 45

Algebra of order notations

Many rules are easily proved from first principle (exercise).
Identity rule: f(n) € ©(f(n))

Transitivity:

o If f(n) € O(g(n)) and g(n) € O(h(n)) then f(n) € O(h(n)).

o If f(n) € Q(g(n)) and g(n) € Q(h(n)) then f(n) € Q(h(n)).

o If f(n) € O(g(n)) and g(n) € o(h(n)) then f(n) € o(h(n)).
Maximum rules: Suppose that f(n) > 0 and g(n) > 0 for all n > ng.
Then:

o f(n)+g(n) € O(max{f(n),g(n)})

o f(n)+ g(n) € Q(max{f(n),g(n)})

Key proof-ingredient: max{f(n),g(n)} < f(n)+g(n) < 2max{f(n),g(n)}

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 30/ 45

Relationships between order notations

o f(n) € ©(g(n)) < g(n) € O(f(n))
o f(n) € O(g(n)) < g(n) € Q(f(n))
o f(n) € o(g(n)) < g(n) € w(f(n))
o f(n) € ©(g(n)) < f(n) € O(g(n)) and f(n) € Q(g(n))
e f(n) € o(g(n f(n) € O(g(n))
o f(n) € o(g(n)) = f(n) & Qg(n))
e f(n) € w(g(n f(n) € Q(g(
o f(n) € w(g(n)) = f(n) & O(g(n

Example: Fill the following table with TRUE or FALSE:

~— —

n

n

) =
) =
) =
) =

~— ~—

)
)

Is f(n) €...(g(n))?
mlem] o | o0 [9 | w

[logn | vn || | | |

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 31 /45

Asymptotic notation and arithmetic

o Normally, we say f(n) € ©(g(n)) because ©(g(n)) is a set.

@ Avoid doing arithmetic with asymptotic notations.
Do not write O(n) + O(n) = O(n).
(CS136 allowed you to be sloppy here. CS240 does not,
mostly because it can go badly wrong with recursions.)

@ Instead, when you do arithmetic, replace ‘©(f(n))’ by ‘c - f(n) for

some constant ¢ > 0’
(That's still a bit sloppy (why?), but less dangerous.)

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 32 /45

Asymptotic notation and arithmetic

o Normally, we say f(n) € ©(g(n)) because ©(g(n)) is a set.

@ Avoid doing arithmetic with asymptotic notations.
Do not write O(n) + O(n) = O(n).
(CS136 allowed you to be sloppy here. CS240 does not,
mostly because it can go badly wrong with recursions.)

@ Instead, when you do arithmetic, replace ‘©(f(n))’ by ‘c - f(n) for
some constant ¢ > 0’
(That's still a bit sloppy (why?), but less dangerous.)

@ There are some (very limited) exceptions:
» f(n) = n? + ©(n) means “f(n) is n? plus a linear term”
* nicer to read than “n® 4+ n+ logn"
* more precise about constants than “©(n?)"

» But use this very sparingly (typically only for stating the final result)

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 32 /45

Asymptotic notation and arithmetic

o Normally, we say f(n) € ©(g(n)) because ©(g(n)) is a set.

@ Avoid doing arithmetic with asymptotic notations.
Do not write O(n) + O(n) = O(n).
(CS136 allowed you to be sloppy here. CS240 does not,
mostly because it can go badly wrong with recursions.)

@ Instead, when you do arithmetic, replace ‘©(f(n))’ by ‘c - f(n) for
some constant ¢ > 0’
(That's still a bit sloppy (why?), but less dangerous.)

@ There are some (very limited) exceptions:
» f(n) = n? + ©(n) means “f(n) is n? plus a linear term”
* nicer to read than “n® 4+ n+ logn"
* more precise about constants than “©(n?)"

» But use this very sparingly (typically only for stating the final result)
» Similarly f(n) = n? + o(1) means “n? plus a vanishing term.”

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 32 /45

Outline

@ Introduction and Asymptotic Analysis

@ Analysis of Algorithms Revisited

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1

Techniques for run-time analysis

@ Goal: Use asymptotic notation to simplify run-time analysis.

@ Running time of an algorithm depends on the input size n.
print-pairs(A, n)
1. fori+ O0Oton—1do
2. forj<0toi—1do
3. print ‘the next pair is {A[i], Aj]}'
e Identify primitive operations that require ©(1) time.

(For doing arithmetic, assume they require ¢ time for some ¢ > 0.)

@ The complexity of a loop is expressed as the sum of the complexities
of each iteration of the loop.

Nested loops: start with the innermost loop and proceed outwards.
This gives nested summations.

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 33 /45

Techniques for run-time analysis

@ Goal: Use asymptotic notation to simplify run-time analysis.

@ Running time of an algorithm depends on the input size n.
print-pairs(A, n)
1. fori+ O0Oton—1do
2. forj<0toi—1do
3. print ‘the next pair is {A[i], Aj]}'
e Identify primitive operations that require ©(1) time.

(For doing arithmetic, assume they require ¢ time for some ¢ > 0.)

@ The complexity of a loop is expressed as the sum of the complexities
of each iteration of the loop.

Nested loops: start with the innermost loop and proceed outwards.
This gives nested summations.

For print-pairs: The run-time is Z,’-':_& Zj’:;é c.

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 33 /45

Techniques for run-time analysis
Two general strategies are as follows.

Strategy I: Use ©-bounds throughout the analysis and obtain a ©-bound
for the complexity of the algorithm.
For print-pairs:

Strategy Il: Prove a O-bound and a matching Q-bound separately.
Use upper bounds (for O) and lower bounds (for Q) early and frequently.

This may be easier because upper/lower bounds are easier to sum.
For print-pairs:

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 34 /45

Complexity of algorithms

@ Algorithm can have different running times on two instances of the
same size.

insertion-sort(A, n)

A: array of size n

1. for (i + 1;i < n;i++) do

2. for (j < i;j > 0 and A[j—1] > A[j];j--) do
3. swap A[j] and A[j — 1]

Let T 4(/) denote the running time of an algorithm A on instance /.

Study this value for the worst-possible, best-possible and ‘typical’
(average) instance /.

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 35/ 45

Complexity of algorithms
Worst-case (best-case) complexity of an algorithm: The
worst-case (best-case) running time of an algorithm A is a function

T : Z" — R mapping n (the input size) to the longest (shortest) running
time for any input instance of size n:

T () = max{ Ta()}

TA™(n) = min{ Ta(/)}

To prove a lower bound on the worst-case run-time: Pick one especially
bad example, and bound its run-time (using Q2-notation).

Average-case complexity of an algorithm: The average-case running
time of an algorithm A is a function T : Z* — R mapping n (the input
size) to the average running time of A over all instances of size n:

T28(n) = > Ta(l) - (relative frequency of /)
1€Z,

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 36 / 45

O-notation and complexity of algorithms

Goal in ¢s240: For a problem, find an algorithm that solves it and whose
tight bound on the worst-case running time has the smallest growth rate.

There are various pitfalls.

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 37 /45

O-notation and complexity of algorithms

Goal in ¢s240: For a problem, find an algorithm that solves it and whose
tight bound on the worst-case running time has the smallest growth rate.

There are various pitfalls.

o Example: Suppose algorithm A; has worst-case run-time O(n%) and

algorithm A, has worst-case run-time O(n?), and both solve the same
problem. Is A, more efficient?

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 37 /45

O-notation and complexity of algorithms

Goal in ¢s240: For a problem, find an algorithm that solves it and whose
tight bound on the worst-case running time has the smallest growth rate.
There are various pitfalls.

o Example: Suppose algorithm A; has worst-case run-time O(n%) and
algorithm A, has worst-case run-time O(n?), and both solve the same
problem. Is A, more efficient?

No! O-notation is an upper bound. A; may well have worst-case
run-time O(n). We should always give ©-bounds.

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 37 /45

O-notation and complexity of algorithms

Goal in ¢s240: For a problem, find an algorithm that solves it and whose
tight bound on the worst-case running time has the smallest growth rate.

There are various pitfalls.

o Example: Suppose algorithm A; has worst-case run-time O(n%) and
algorithm A, has worst-case run-time O(n?), and both solve the same
problem. Is A, more efficient?

No! O-notation is an upper bound. A; may well have worst-case
run-time O(n). We should always give ©-bounds.

e Example: Suppose the run-times are ©(n®) and ©(n?), respectively.
We consider A5 to be better. But is it always more efficient?

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 37 /45

O-notation and complexity of algorithms

Goal in ¢s240: For a problem, find an algorithm that solves it and whose
tight bound on the worst-case running time has the smallest growth rate.
There are various pitfalls.

o Example: Suppose algorithm A; has worst-case run-time O(n%) and
algorithm A, has worst-case run-time O(n?), and both solve the same
problem. Is A, more efficient?

No! O-notation is an upper bound. A; may well have worst-case
run-time O(n). We should always give ©-bounds.

e Example: Suppose the run-times are ©(n®) and ©(n?), respectively.
We consider A5 to be better. But is it always more efficient?

No! The worst-case run-time of .4; may only be achieved on some
instances. Possibly A7 is better on most instances.

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 37 /45

O-notation and complexity of algorithms

Goal in ¢s240: For a problem, find an algorithm that solves it and whose
tight bound on the worst-case running time has the smallest growth rate.
There are various pitfalls.

o Example: Suppose algorithm A; has worst-case run-time O(n%) and
algorithm A, has worst-case run-time O(n?), and both solve the same
problem. Is A, more efficient?

No! O-notation is an upper bound. A; may well have worst-case
run-time O(n). We should always give ©-bounds.

e Example: Suppose the run-times are ©(n®) and ©(n?), respectively.
We consider A5 to be better. But is it always more efficient?

No! The worst-case run-time of .4; may only be achieved on some
instances. Possibly A7 is better on most instances.

Also, the hidden constants may be so large that A; is better on all
but unrealistically big n.

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 37 /45

Outline

@ Introduction and Asymptotic Analysis

@ Example: Design and Analysis of merge-sort

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1

Explaining the solution of a problem

To give an algorithm that ‘solves a problem’, we usually do four steps.
We illustrate this here on merge-sort.
Step 1: Describe the overall idea

Input: Array A of n integers

@ We split A into two subarrays
Ap and Ag that are roughly half | ‘

as blg / split into halves \

9 Recursive/y sort AI_ and AR sort recursively sort recursively
\\\ / e
© After A; and Agr have been Gerge
sorted, use a function merge to
merge them into a single sorted sorted
array.

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 38 /45

Explaining the solution of a problem

Step 2: Give pseudo-code or detailed description.
Idea for merging: Always extract from each sub-array the value that is
smaller and append it to the output.

merge(A, £, m,r,S + NULL)
A'is an array, A[¢..m] is sorted, A{[m + 1..r] is sorted

if S is NULL then initialize it with same size as A // tmp-array
copy A[l..r] into S[{..r]

(iL,ir) + (£, m+1); // start-indices of subarrays
for (k < £; k < r; k++) do // fill-index for result

if (i > m) A[k] < S[ir++]

else if (ir > r) A[k] < S[iL++]

else if (S[it] < S[ig]) A[k] < S[iL++]
else A[k] <— S[ir++]

©® NSO AN

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 39 /45

Explaining the solution of a problem

Step 2: Give pseudo-code or detailed description.

merge-sort(A, n)
A: array of size n
1. if (n < 1) then return
2. else
3. m=|(n—1)/2]
4. merge-sort(A[0..m], m + 1)
5 merge-sort(A[m + 1..n—1],n—m—1)
6 merge(A, 0, m, n—1)
Winter 2026

40 / 45

Explaining the solution of a problem

Step 2: Give pseudo-code or detailed description.

merge-sort(A, n)
A: array of size n
if (n < 1) then return

1
2. else

3. m=|(n—1)/2]

4. merge-sort(A[0..m], m + 1)

5 merge-sort(A[m + 1..n—1],n—m—1)
6 merge(A, 0, m, n—1)

Two tricks to reduce constant in the run-time and auxiliary space:

@ Do not pass array A by value, instead indicate the range of the array
that needs to be sorted.

@ merge needs an auxiliary array S. Allocate this only once.

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 40 / 45

Explaining the solution of a problem

Step 2: Give pseudo-code or detailed description.

merge-sort(A,n,{ < 0,r < n— 1,5 < NULL)

A: array of size n, 0 </ <r<n-1

1. if S is NULL then initialize it as array S[0..n — 1]
2. if (r <) then

3 return

4. else

5. m=|(r+1¢)/2]
6 merge-sort(A, n, £, m, S)

7 merge-sort(A,n,m+1,r,S)
8 merge(A, £, m, r,S)

@ This would be much better for an efficient implementation.
@ But the idea is much harder to understand.

@ (S240 pseudocode will often prefer clarity over improved constants.

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 41/ 45

Analysis of merge-sort

Step 3: Argue correctness.

o Typically state loop-invariants, or other key-ingredients, but no need
for a formal (CS245-style) proof by induction.

@ Sometimes obvious enough from idea-description and comments.

Step 4: Analyze the run-time.
o First analyze work done outside recursions.
o If applicable, analyze subroutines separately.

@ If there are recursions: how big are the subproblems?
The run-time then becomes a recursive function.

Let T(n) denote the time to run merge-sort on an array of length n.
O (initialize array) takes time ©(n)
Q@ (recursively call merge-sort) takes time T([51]) + T([5])
@ (call merge) takes time ©(n)

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 42 / 45

The run-time of merge-sort

@ The recurrence relation for T(n) is as follows (constant factor ¢
replaces ©):

T(n):{:(wnﬂ(m)wn fn-1

@ The following is the corresponding sloppy recurrence
(it has floors and ceilings removed):

T(n) = 2T(§)+cn ifn>1
c if n=1.

@ When n is a power of 2, then the exact and sloppy recurrences are
identical and can easily be solved by various methods.
E.g. prove by induction that T(n) = cnlog(2n) € ©(nlog n).

@ It is possible to show that T(n) € ©(nlogn) for all n
by analyzing the exact recurrence.

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 43 / 45

Order notation and arithmetic revisited

Recall: You should not intermix order notation and arithmetic.

e Writing O(n) + O(n) = O(n) is very bad style.
@ It even occasionally leads to incorrect results.

@ Example: What is wrong with the following proof?

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026

44 | 45

Order notation and arithmetic revisited

Recall: You should not intermix order notation and arithmetic.
e Writing O(n) + O(n) = O(n) is very bad style.
@ It even occasionally leads to incorrect results.
@ Example: What is wrong with the following proof?

2T(5) +cn ifn>1

_ then T(n) € O(n).
c if n=1.

Claim (false!): If T(n) = {

“Proof"”: Use induction on n.
@ In the base case (n = 1) we have T(n) = c € O(1) = O(n).
@ Assume the claim holds for all n’ with n’ < n.

o Step: We have

T(n) = 2T(Z) + cn € 20(2) + O(n) = O(n) + O(n) = O(n)

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 44 / 45

Some recurrence relations

] Recursion \ resolves to \ example
T(n) < T(n/2)+ O(1) T(n) € O(log n) binary-search
T(n) <2T(n/2)+ O(n) T(n) € O(nlogn) | merge-sort
T(n) <2T(n/2)+ O(logn) | T(n) € O(n) heapify (*)
T(n) < cT(n—1)+ O(1) T(n) € O(1) avg-case analysis (*)
for some c <1
T(n) <2T(n/4)+ O(1) T(n) € O(+v/n) range-search (¥*)
T(n) < T(yv/n)+ O(v/n) T(n) € O(v/n) interpol. search (*)
T(n) < T(v/n)+ O(1) T(n) € O(loglogn) | interpol. search (*)

@ Once you know the result, it is (usually) easy to prove by induction.
@ These bounds are tight if the upper bounds are tight.

@ Many more recursions, and some methods to find the result, in CS341.

(*) These may or may not get used later in the course.
M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 45 / 45

	Introduction and Asymptotic Analysis
	CS240 Overview
	Course objectives: What is this course about?
	Course objectives: What is this course about?
	Course topics
	Required CS background
	Useful math facts
	Useful sums

	Algorithm Design
	Algorithms and problems: Review
	Algorithms and programs
	Algorithms and programs

	Analysis of Algorithms I
	Efficiency of algorithms
	Measuring efficiency of algorithms
	Running time of algorithms
	Random access machine (RAM) model
	Running time and space

	Asymptotic Notation
	Order notation
	Order Notation: Example 1
	Asymptotic lower bound
	Asymptotic lower bound
	Asymptotic tight bound
	Common growth rates
	Growth rates and running time
	Strictly smaller asymptotic bounds
	Strictly smaller/larger asymptotic bounds
	Order notation: Summary

	Rules for asymptotic notation
	The limit rule
	Application 1: Logarithms vs. polynomials
	Application 2: Polynomials
	Example: Oscillating functions
	Algebra of order notations
	Relationships between order notations
	Asymptotic notation and arithmetic

	Analysis of Algorithms Revisited
	Techniques for run-time analysis
	Techniques for run-time analysis
	Complexity of algorithms
	Complexity of algorithms
	O-notation and complexity of algorithms

	Example: Design and Analysis of merge-sort
	Explaining the solution of a problem
	Explaining the solution of a problem
	Explaining the solution of a problem
	Explaining the solution of a problem
	Analysis of merge-sort
	The run-time of merge-sort
	Order notation and arithmetic revisited
	Some recurrence relations

