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Course objectives: What is this course about?

@ Much of Computer Science is problem solving: Write a program that
converts the given input to the expected output.

@ When first learning to program, we emphasize correctness: does your
program output the expected results?

@ Starting with this course, we will also be concerned with efficiency: is
your program using the computer’s resources (typically processor
time) efficiently?

@ We will study efficient methods of storing, accessing, and organizing
large collections of data.

Motivating examples: Digital Music Collection, English Dictionary

Typical operations include: inserting new data items, deleting data
items, searching for specific data items, sorting.
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Course objectives: What is this course about?

e We will consider various abstract data types (ADTs) and how to
realize them efficiently using appropriate data structures.

e We will some problems in data management (sorting, pattern
matching, compression) and how to solve them with efficient
algorithms.

@ There is a strong emphasis on mathematical analysis in the course.

@ Algorithms are presented using pseudo-code and analyzed using order
notation (big-Oh, etc.).
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background, big-Oh analysis
priority queues and heaps
efficient sorting, selection
binary search trees, AVL trees
skip lists

tries

hashing

quadtrees, kd-trees, range search
string matching

data compression

external memory

odule = 1 week per topic.
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Required CS background

Topics covered in previous courses:

arrays, linked lists
strings

stacks, queues
abstract data types
recursive algorithms
binary trees

basic sorting

binary search
@ binary search trees

Most are briefly reviewed in course notes, or consult any textbook
(e.g. [Sedgewick,CLRS]).
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Useful math facts

Logarithms:
o y = log,(x) means b¥ = x. e.g. n=2"°%e"
@ log(x) (in this course) means log,(x)
o log(x - y) = log(x)+ log(y), log(x") = y log(x), log(x) < x

_ logca _ 1 log,c _ log,a
e log,(a) = og b — Tog,(B)" ? =c

o In(x) = natural log = log(x), & Inx=1
Factorial:

e n:=nln—1)(n—-2)----2-1= F ways to permute n elements

o log(n!) =logn—+log(n—1)+---+log2+logl € ©(nlog n)

(We will define © soon.)

Probability:

e E[X] is the expected value of X.

o E[aX] = aE[X], E[X + Y] = E[X] + E[Y] (linearity of expectation)
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Useful sums

Arithmetic sequence:
Si=177

Geometric sequence:

n—1nj __
Y2 =117
Harmonic sequence:
n 1 _ 977
i=17 L

A few more:

n i
g =10

n ok _
n k=777
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Useful sums

Arithmetic sequence:

st = (sl S0 da+ di) = na+ 2D c o(n?) if d #0.
Geometric sequence:
arr"_—ll cO(r ) ifr>1
27:_01 o —on _ 1 E?:_ol ari=1{ na € O(n) ifr=1
all__’rn co(l) if0<r<l.
Harmonic sequence:
ri7=7177 Hp =301 % =Inn+~+o(1) € ©(log n)
A few more:
iy =777 i1 € O(1)
S k=777 P, ikeo(nktl)  for k>0
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Algorithms and problems: Review

Let us clarify a few more terms:

Problem: Description of possible input and desired output. Example:
Sorting problem.

Problem Instance: One possible input for the specified problem.

Algorithm: Step-by-step process (can be described in finite length) for
carrying out a series of computations, given an arbitrary instance /.

Solving a problem: An Algorithm A solves a problem [T if, for every
instance / of 1, A computes a valid output for the instance / in finite
time.

Program: A program is an implementation of an algorithm using a
specified computer language.

In this course, our emphasis is on algorithms (as opposed to programs or
programming). We do not use any particular computer language to
describe them.
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Algorithms and programs

Pseudocode: communicate an algorithm to another person.

In contrast, a program communicates an algorithm to a computer.

insertion-sort(A, n)

A: array of size n

1. for (i < 1;i < n;i++) do

2. for (j < i;j > 0 and A[j—1] > A[j];j--) do
3. swap A[j] and A[j — 1]

@ sometimes uses English descriptions, e.g. ‘swap’,

@ omits obvious details, e.g. i is usually an integer

@ has limited if any error detection, e.g. A is assumed initialized
@ should be precise about exit-conditions, e.g. in loops

@ should use good indentation and variable-names
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Algorithms and programs

From problem I1 to program that solves it:

@ Design an algorithm A that solves 1. — Algorithm Design
A problem I1 may have several algorithms. Design many!

@ Assess correctness and efficiency of each A. — Algorithm Analysis
Correctness — CS245 (here informal arguments are enough).
Efficiency — later

@ If acceptable (correct and efficient), implement algorithm(s).
For each algorithm, we can have several implementations.

© If multiple acceptable algorithms/implementations, run experiments
to determine best solution.

(CS240 focuses on the first two steps.
The main point is to avoid implementing obviously-bad algorithms.
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Efficiency of algorithms

What do we mean by ‘efficiency’?

In this course, we are primarily concerned with the amount of time a
program takes to run. — Running Time

We also may be interested in the amount of additional memory the
program requires. — Auxiliary space

The amount of time and/or memory required by a program will
usually depend on the given problem instance.

So we express the time or memory requirements as a mathematical
function of the instances (e.g. T(/))

But then aggregate over all instances Z, of size n (e.g. T(n)).

Do we take max, min, avg? (— later)
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Measuring efficiency of algorithms

What do we count as running time/space usage of an algorithm?
First option: experimental studies

@ Write a program implementing the algorithm.

@ Run the program with inputs of varying size and composition and
measure time and space.

e Plot/compare the results.

There are numerous shortcomings:
@ Implementation may be complicated/costly.

@ Outcomes are affected by many factors: hardware (processor,
memory), software environment (OS, compiler, programming
language), and human factors (programmer).

@ We cannot test all instances; what are good sample inputs?
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Running time of algorithms

Better: theoretical analysis:

@ Does not require implementing the algorithm (we work on
pseudo-code).

e Is independent of the hardware/software environment (we work on an
idealized computer model).

@ Takes into account all input instances.

This is the approach taken in C5240.

We use experimental results only if theoretical analysis yields no useful
results for deciding between multiple algorithms.
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Random access machine (RAM) model

(LTI I I T I T I rr ey
memory cells — size unbounded

random access (equally fast to all cells)

Central processing unit (CPU)

e Each memory cell stores one (finite-length) datum, typically a
number, character, or reference.
Assumption: cells are big enough to hold the items that we store.

@ Any access to a memory location takes constant time.
(We will revisit this assumption late in the course.)

o Any primitive operation takes constant time.
(Add, subtract, multiply, divide, follow a reference, ...)

Not primitive: /n, anything involving irrational numbers

These assumptions may not be valid for a “real” computer.
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Running time and space

With this computer model, we can now formally define:

@ The running time is the number of memory accesses plus the
number of primitive operations.

@ The space is the maximum number of memory cells ever in use.
e Size(/) of instance / is the number of memory cells that / occupies.
The real-life time and space is proportional to this.

We compare algorithms by considering the growth rate: What is the
behaviour of algorithms as size n gets large?

o Example 1: What is larger, 100n or 10n°?
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Running time and space

With this computer model, we can now formally define:

@ The running time is the number of memory accesses plus the
number of primitive operations.

@ The space is the maximum number of memory cells ever in use.
e Size(/) of instance / is the number of memory cells that / occupies.
The real-life time and space is proportional to this.

We compare algorithms by considering the growth rate: What is the
behaviour of algorithms as size n gets large?

o Example 1: What is larger, 100n or 10n°?

e Example 2 (Matrix multiplication, approximately): What is
larger: 4n3, 30002807 or 109723737
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Running time and space

With this computer model, we can now formally define:

@ The running time is the number of memory accesses plus the
number of primitive operations.

@ The space is the maximum number of memory cells ever in use.
e Size(/) of instance / is the number of memory cells that / occupies.
The real-life time and space is proportional to this.

We compare algorithms by considering the growth rate: What is the
behaviour of algorithms as size n gets large?

o Example 1: What is larger, 100n or 10n°?

e Example 2 (Matrix multiplication, approximately): What is
larger: 4n3, 30002807 or 109723737

To simplify comparisons, use order notation (big-O and friends).
Informally: ignore constants and lower order terms
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Order notation

Study relationships between functions.

Example: f(x) = 75x + 500 and g(x) = x? (e.g. ¢ =5, ng = 20)

y c-g(x) = 5x2
3000 -
2000 L ,,/—"’/ f(X):75X+500
1 e - — x2
0001 — g(x) = x
5 10 15 20 25 30 X
no

O-notation: f(x) € O(g(x)) (f is asymptotically upper-bounded by g) if
there exist constants ¢ > 0 and ng > 0 s.t. |f(x)| < c|g(x)]| for all x > no.

In CS240: Parameter is usually an integer (write n rather than x).
f(n), g(n) usually positive for sufficiently big n (omit absolute value signs).
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Order Notation: Example 1

In order to prove that 2n? + 3n + 11 € O(n?) from first principles (i.e.,
directly from the definition), we need to find ¢ and ng such that the

following condition is satisfied:

2n° +3n+11 < cn? forall n > ng.

Many, but not all, choices of ¢ and ng will work.
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Asymptotic lower bound

o We have 2n% +3n + 11 € O(n?).
o But we also have 2n? +3n + 11 € O(n'9).
o We want a tight asymptotic bound.

Q-notation: f(x) € Q(g(x)) (f is asymptotically lower-bounded by g) if
there exist constants ¢ > 0 and ngp > 0 s.t. ¢ |g(x)| < |f(x)]| for all x > ng.

Example: f(x) = {5x% — x and g(x) = 5x (e.g. ¢ = £, ng = 20)
y

40

20
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Asymptotic lower bound

Example: Prove that f(n) = 2n% +3n + 11 € Q(n?) from first principles.

Example: Prove that %nz —5n € Q(n?) from first principles.
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Asymptotic tight bound
©-notation: f(x) € ©(g(x)) (f is asymptotically tightly-bounded by g) if

there exist constants c1, ¢ > 0 and ng > 0 such that
a1 lg(x)] < |f(x)] < a2 lg(x)| for all x > ng.

Equivalently: f(n) € ©(g(n)) < f(n) € O(g(n)) and f(n) € Q(g(n))

We also say that the growth rates of f and g are the same. Typically, f(x)
may be “complicated” and g(x) is chosen to be a very simple function.

Example: Prove that log,(n) € ©(log n) for all b > 1 from first principles.
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Common growth rates

Commonly encountered growth rates in analysis of algorithms include the
following:

° @(1) (constant),
log n) (logarithmic),

©(n) (linear),

©(nlog n) (linearithmic),

°
(D

%) (quadratic),
O(n®) (cubic),
2") (exponential).

o(
(n
(
©(nlogk n), for some constant k (quasi-linear),
(n
(
o(

These are sorted in increasing order of growth rate.

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 21 /45



Common growth rates

Commonly encountered growth rates in analysis of algorithms include the
following:

e O(1) (constant),
e O(log n) (logarithmic),
e O(n) (linear),

e O(nlogn) (linearithmic),

e o
® O

n?) (quadratic),
e O(n%) (cubic),

(
(
(
(nlogk n), for some constant k (quasi-linear),
(
(
e O(2") (exponential).

These are sorted in increasing order of growth rate.

How do we define ‘increasing order of growth rate'?
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Growth rates and running time

It is interesting to see how the running time is affected when the size of
the problem instance doubles (i.e., n — 2n).

@ constant complexity: T(n) =c

logarithmic complexity: T(n) = clogn

@ linear complexity: T(n) = cn

linearithmic ©(nlog n): T(n) = cnlogn
2

quadratic complexity: T(n) =cn
e cubic complexity: T(n) = cn®

@ exponential complexity: T(n) = c2"
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Growth rates and running time

It is interesting to see how the running time is affected when the size of
the problem instance doubles (i.e., n — 2n).

@ constant complexity: T(n) =c ~» T(2n) = c.

logarithmic complexity: T(n) = clogn

@ linear complexity: T(n) = cn

linearithmic ©(nlog n): T(n) = cnlogn
2

quadratic complexity: T(n) =cn
e cubic complexity: T(n) = cn®

@ exponential complexity: T(n) = c2"
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Growth rates and running time

It is interesting to see how the running time is affected when the size of
the problem instance doubles (i.e., n — 2n).

@ constant complexity: T(n) =c ~» T(2n) = c.

logarithmic complexity: T(n) = clogn  ~» T(2n) = T(n)+ c.

@ linear complexity: T(n) = cn

linearithmic ©(nlog n): T(n) = cnlogn
2

quadratic complexity: T(n) =cn
e cubic complexity: T(n) = cn®

@ exponential complexity: T(n) = c2"
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Growth rates and running time

It is interesting to see how the running time is affected when the size of
the problem instance doubles (i.e., n — 2n).

@ constant complexity: T(n) =c ~» T(2n) = c.

o logarithmic complexity: T(n) =clogn  ~» T(2n) = T(n)+ c.
@ linear complexity: T(n) = cn ~» T(2n) = 2T(n).

o linearithmic ©(nlogn): T(n) = cnlogn

2

quadratic complexity: T(n) =cn
e cubic complexity: T(n) = cn®

@ exponential complexity: T(n) = c2"
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Growth rates and running time

It is interesting to see how the running time is affected when the size of
the problem instance doubles (i.e., n — 2n).

@ constant complexity: T(n) =c ~» T(2n) = c.

o logarithmic complexity: T(n) =clogn  ~» T(2n)= T(n)+c¢

@ linear complexity: T(n) = cn ~» T(2n) =2T(n)

o linearithmic ©(nlogn): T(n) =cnlogn ~» T(2n)=2T(n)+ 2cn
e quadratic complexity: T(n) = c n?

e cubic complexity: T(n) = cn®

@ exponential complexity: T(n) = c2"
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Growth rates and running time

It is interesting to see how the running time is affected when the size of
the problem instance doubles (i.e., n — 2n).

@ constant complexity: T(n) =c ~» T(2n) = c.

o logarithmic complexity: T(n) =clogn  ~» T(2n)= T(n)+c¢

@ linear complexity: T(n) = cn ~» T(2n) = 2T(n).

o linearithmic ©(nlogn): T(n) =cnlogn ~» T(2n)=2T(n)+ 2cn
e quadratic complexity: T(n) = c n? ~» T(2n) = 4T(n).

e cubic complexity: T(n) = cn®

@ exponential complexity: T(n) = c2"
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Growth rates and running time

It is interesting to see how the running time is affected when the size of
the problem instance doubles (i.e., n — 2n).

@ constant complexity: T(n) =c ~» T(2n) = c.

o logarithmic complexity: T(n) =clogn  ~» T(2n)= T(n)+c¢

@ linear complexity: T(n) = cn ~» T(2n) = 2T(n).

o linearithmic ©(nlogn): T(n) =cnlogn ~» T(2n)=2T(n)+ 2cn
e quadratic complexity: T(n) = c n? ~» T(2n) = 4T(n).

e cubic complexity: T(n) = cn® ~ T(2n) = 8T (n).

@ exponential complexity: T(n) = c2"
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Growth rates and running time

It is interesting to see how the running time is affected when the size of
the problem instance doubles (i.e., n — 2n).

@ constant complexity: T(n) =c ~» T(2n) = c.

o logarithmic complexity: T(n) =clogn  ~» T(2n)= T(n)+c¢

@ linear complexity: T(n) = cn ~» T(2n) = 2T(n).

o linearithmic ©(nlogn): T(n) =cnlogn ~» T(2n)=2T(n)+ 2cn
e quadratic complexity: T(n) = c n? ~» T(2n) = 4T(n).

e cubic complexity: T(n) = cn® ~ T(2n) = 8T (n).

@ exponential complexity: T(n) = c2" ~ T(2n) = (T(n))?/c
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Strictly smaller asymptotic bounds

e We have f(n) = n € ©(n).
@ How to express that f(n) grows slower than n®?

y g(x) =x

o-notation: f(x) € o(g(x)) (f is asymptotically strictly smaller than g) if
for all constants ¢ > 0, there exists a constant ng > 0 such that

|f(x)] < c|g(x)] for all x > no.
M. Petrick, O.Veksler (CS-UW)
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Strictly smaller/larger asymptotic bounds

Example: Prove that n € o(n2) from first principles.
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Strictly smaller/larger asymptotic bounds

Example: Prove that n € o(n2) from first principles.

@ Main difference between o and O is the quantifier for c.

@ ng will depend on c, so it is really a function ng(c).

@ We also say ‘the growth rate of f is less than the growth rate of g’.
o Rarely proved from first principles (instead use limit-rule ~~ later).

w-notation: f(x) € w(g(x)) (f is asymptotically strictly larger than g) if
for all constants ¢ > 0, there exists a constant ng > 0 such that
[f(x)| > c|g(x)| for all x > ng.

@ Symmetric, the growth rate of f is more than the growth rate of g.
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Order notation: Summary

O-notation: f(x) € O(g(x)) if there exist constants ¢ > 0 and ng > 0
such that |f(x)| < c|g(x)] for all x > np.

Q-notation: f(x

)
) € Q(g(x)) if there exist constants ¢ > 0 and ng > 0
such that ¢ |g(x)| < )|
) €

|f(x)| for all x > no.

f(
©-notation: f(x) € ©(g(x)) if there exist constants c;, ¢ > 0 and
no > 0 such that ¢ |g(x)| < |f(x)| < ¢ |g(x)]| for all x > ng.

o-notation: f(x) € o(g(x)) if for all constants ¢ > 0, there exists a
constant ng > 0 such that |f(x)| < ¢ |g(x)]| for all x > ng.

w-notation: f(x) € w(g(x)) if for all constants ¢ > 0, there exists a
constant ng > 0 such that c|g(x)| < |f(x)]| for all x > ng.
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Outline

@ Introduction and Asymptotic Analysis

@ Rules for asymptotic notation
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The limit rule

Suppose that f(x) > 0 and g(x) > 0 for all x > ng. Suppose that

= |lim f(X)

(in particular, the limit exists).

Then
o(g(x)) ifL=0
flx) € {@(g(x)) if0< L < oo

If the fraction tends to infinity then f(x) € w(g(x)).

The required limit can often be computed using I'Hépital’s rule. Note that

this result gives sufficient (but not necessary) conditions for the stated
conclusion to hold.
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Application 1: Logarithms vs. polynomials

Compare the growth rates of f(n) = logn and g(n) = n.

Now compare the growth rates of f(n) = (logn)¢ and g(n) = n9 (where
¢ > 0 and d > 0 are arbitrary numbers).
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Application 2: Polynomials
Let f(n) be a polynomial of degree d > 0:

f(n) = cdnd + Cd_lnd_l +---t+cn+

for some ¢4 > 0.

Then f(n) € ©(n9):
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Example: Oscillating functions

Consider two oscillating functions fi, f» for which lim,_ @ does not
exist. Are they in ©(n)?

y fi(x) =x(1+sinxm/2) y f(x) :x(2+sin3x7r/2)
X
2x
‘\/, A ‘\V \ X

So no limit ~~» must use other methods to prove asymptotic bounds.
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Algebra of order notations

Many rules are easily proved from first principle (exercise).
Identity rule: f(n) € ©(f(n))

Transitivity:

o If f(n) € O(g(n)) and g(n) € O(h(n)) then f(n) € O(h(n)).

o If f(n) € Q(g(n)) and g(n) € Q(h(n)) then f(n) € Q(h(n)).

o If f(n) € O(g(n)) and g(n) € o(h(n)) then f(n) € o(h(n)).
Maximum rules: Suppose that f(n) > 0 and g(n) > 0 for all n > ng.
Then:

o f(n)+g(n) € O(max{f(n),g(n)})

o f(n)+ g(n) € Q(max{f(n),g(n)})

Key proof-ingredient: max{f(n),g(n)} < f(n)+g(n) < 2max{f(n),g(n)}
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Relationships between order notations

o f(n) € ©(g(n)) < g(n) € O(f(n))
o f(n) € O(g(n)) < g(n) € Q(f(n))
o f(n) € o(g(n)) < g(n) € w(f(n))
o f(n) € ©(g(n)) < f(n) € O(g(n)) and f(n) € Q(g(n))
e f(n) € o(g(n f(n) € O(g(n))
o f(n) € o(g(n)) = f(n) & Qg(n))
e f(n) € w(g(n f(n) € Q(g(
o f(n) € w(g(n)) = f(n) & O(g(n

Example: Fill the following table with TRUE or FALSE:

~— —

n

n

) =
) =
) =
) =

~— ~—

)
)

Is f(n) €...(g(n))?
mlem] o | o0 [ 9 | w

[logn | vn || | | |
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Asymptotic notation and arithmetic

o Normally, we say f(n) € ©(g(n)) because ©(g(n)) is a set.

@ Avoid doing arithmetic with asymptotic notations.
Do not write O(n) + O(n) = O(n).
(CS136 allowed you to be sloppy here. CS240 does not,
mostly because it can go badly wrong with recursions.)

@ Instead, when you do arithmetic, replace ‘©(f(n))’ by ‘c - f(n) for

some constant ¢ > 0’
(That's still a bit sloppy (why?), but less dangerous.)
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Asymptotic notation and arithmetic

o Normally, we say f(n) € ©(g(n)) because ©(g(n)) is a set.

@ Avoid doing arithmetic with asymptotic notations.
Do not write O(n) + O(n) = O(n).
(CS136 allowed you to be sloppy here. CS240 does not,
mostly because it can go badly wrong with recursions.)

@ Instead, when you do arithmetic, replace ‘©(f(n))’ by ‘c - f(n) for
some constant ¢ > 0’
(That's still a bit sloppy (why?), but less dangerous.)

@ There are some (very limited) exceptions:
» f(n) = n? + ©(n) means “f(n) is n? plus a linear term”
* nicer to read than “n® 4+ n+ logn"
* more precise about constants than “©(n?)"

» But use this very sparingly (typically only for stating the final result)
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Asymptotic notation and arithmetic

o Normally, we say f(n) € ©(g(n)) because ©(g(n)) is a set.

@ Avoid doing arithmetic with asymptotic notations.
Do not write O(n) + O(n) = O(n).
(CS136 allowed you to be sloppy here. CS240 does not,
mostly because it can go badly wrong with recursions.)

@ Instead, when you do arithmetic, replace ‘©(f(n))’ by ‘c - f(n) for
some constant ¢ > 0’
(That's still a bit sloppy (why?), but less dangerous.)

@ There are some (very limited) exceptions:
» f(n) = n? + ©(n) means “f(n) is n? plus a linear term”
* nicer to read than “n® 4+ n+ logn"
* more precise about constants than “©(n?)"

» But use this very sparingly (typically only for stating the final result)
» Similarly f(n) = n? + o(1) means “n? plus a vanishing term.”
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Outline

@ Introduction and Asymptotic Analysis

@ Analysis of Algorithms Revisited
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Techniques for run-time analysis

@ Goal: Use asymptotic notation to simplify run-time analysis.

@ Running time of an algorithm depends on the input size n.
print-pairs(A, n)
1. fori+ O0Oton—1do
2. forj<0toi—1do
3. print ‘the next pair is {A[i], Aj]}'
e Identify primitive operations that require ©(1) time.

(For doing arithmetic, assume they require ¢ time for some ¢ > 0.)

@ The complexity of a loop is expressed as the sum of the complexities
of each iteration of the loop.

Nested loops: start with the innermost loop and proceed outwards.
This gives nested summations.
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Techniques for run-time analysis

@ Goal: Use asymptotic notation to simplify run-time analysis.

@ Running time of an algorithm depends on the input size n.
print-pairs(A, n)
1. fori+ O0Oton—1do
2. forj<0toi—1do
3. print ‘the next pair is {A[i], Aj]}'
e Identify primitive operations that require ©(1) time.

(For doing arithmetic, assume they require ¢ time for some ¢ > 0.)

@ The complexity of a loop is expressed as the sum of the complexities
of each iteration of the loop.

Nested loops: start with the innermost loop and proceed outwards.
This gives nested summations.

For print-pairs: The run-time is Z,’-':_& Zj’:;é c.
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Techniques for run-time analysis
Two general strategies are as follows.

Strategy I: Use ©-bounds throughout the analysis and obtain a ©-bound
for the complexity of the algorithm.
For print-pairs:

Strategy Il: Prove a O-bound and a matching Q-bound separately.
Use upper bounds (for O) and lower bounds (for Q) early and frequently.

This may be easier because upper/lower bounds are easier to sum.
For print-pairs:
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Complexity of algorithms

@ Algorithm can have different running times on two instances of the
same size.

insertion-sort(A, n)

A: array of size n

1. for (i + 1;i < n;i++) do

2. for (j < i;j > 0 and A[j—1] > A[j];j--) do
3. swap A[j] and A[j — 1]

Let T 4(/) denote the running time of an algorithm A on instance /.

Study this value for the worst-possible, best-possible and ‘typical’
(average) instance /.
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Complexity of algorithms
Worst-case (best-case) complexity of an algorithm: The
worst-case (best-case) running time of an algorithm A is a function

T : Z" — R mapping n (the input size) to the longest (shortest) running
time for any input instance of size n:

T () = max{ Ta()}

TA™(n) = min{ Ta(/)}

To prove a lower bound on the worst-case run-time: Pick one especially
bad example, and bound its run-time (using Q2-notation).

Average-case complexity of an algorithm: The average-case running
time of an algorithm A is a function T : Z* — R mapping n (the input
size) to the average running time of A over all instances of size n:

T28(n) = > Ta(l) - (relative frequency of /)
1€Z,
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O-notation and complexity of algorithms

Goal in ¢s240: For a problem, find an algorithm that solves it and whose
tight bound on the worst-case running time has the smallest growth rate.

There are various pitfalls.

M. Petrick, O.Veksler (CS-UW) CS240 — Module 1 Winter 2026 37 /45



O-notation and complexity of algorithms

Goal in ¢s240: For a problem, find an algorithm that solves it and whose
tight bound on the worst-case running time has the smallest growth rate.

There are various pitfalls.

o Example: Suppose algorithm A; has worst-case run-time O(n%) and

algorithm A, has worst-case run-time O(n?), and both solve the same
problem. Is A, more efficient?
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O-notation and complexity of algorithms

Goal in ¢s240: For a problem, find an algorithm that solves it and whose
tight bound on the worst-case running time has the smallest growth rate.
There are various pitfalls.

o Example: Suppose algorithm A; has worst-case run-time O(n%) and
algorithm A, has worst-case run-time O(n?), and both solve the same
problem. Is A, more efficient?

No! O-notation is an upper bound. A; may well have worst-case
run-time O(n). We should always give ©-bounds.
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O-notation and complexity of algorithms

Goal in ¢s240: For a problem, find an algorithm that solves it and whose
tight bound on the worst-case running time has the smallest growth rate.

There are various pitfalls.

o Example: Suppose algorithm A; has worst-case run-time O(n%) and
algorithm A, has worst-case run-time O(n?), and both solve the same
problem. Is A, more efficient?

No! O-notation is an upper bound. A; may well have worst-case
run-time O(n). We should always give ©-bounds.

e Example: Suppose the run-times are ©(n®) and ©(n?), respectively.
We consider A5 to be better. But is it always more efficient?
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O-notation and complexity of algorithms

Goal in ¢s240: For a problem, find an algorithm that solves it and whose
tight bound on the worst-case running time has the smallest growth rate.
There are various pitfalls.

o Example: Suppose algorithm A; has worst-case run-time O(n%) and
algorithm A, has worst-case run-time O(n?), and both solve the same
problem. Is A, more efficient?

No! O-notation is an upper bound. A; may well have worst-case
run-time O(n). We should always give ©-bounds.

e Example: Suppose the run-times are ©(n®) and ©(n?), respectively.
We consider A5 to be better. But is it always more efficient?

No! The worst-case run-time of .4; may only be achieved on some
instances. Possibly A7 is better on most instances.
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O-notation and complexity of algorithms

Goal in ¢s240: For a problem, find an algorithm that solves it and whose
tight bound on the worst-case running time has the smallest growth rate.
There are various pitfalls.

o Example: Suppose algorithm A; has worst-case run-time O(n%) and
algorithm A, has worst-case run-time O(n?), and both solve the same
problem. Is A, more efficient?

No! O-notation is an upper bound. A; may well have worst-case
run-time O(n). We should always give ©-bounds.

e Example: Suppose the run-times are ©(n®) and ©(n?), respectively.
We consider A5 to be better. But is it always more efficient?

No! The worst-case run-time of .4; may only be achieved on some
instances. Possibly A7 is better on most instances.

Also, the hidden constants may be so large that A; is better on all
but unrealistically big n.
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Outline

@ Introduction and Asymptotic Analysis

@ Example: Design and Analysis of merge-sort
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Explaining the solution of a problem

To give an algorithm that ‘solves a problem’, we usually do four steps.
We illustrate this here on merge-sort.
Step 1: Describe the overall idea

Input: Array A of n integers

@ We split A into two subarrays
Ap and Ag that are roughly half | ‘

as blg / split into halves \

9 Recursive/y sort AI_ and AR sort recursively sort recursively
\\\ / e
© After A; and Agr have been Gerge
sorted, use a function merge to
merge them into a single sorted sorted
array.
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Explaining the solution of a problem

Step 2: Give pseudo-code or detailed description.
Idea for merging: Always extract from each sub-array the value that is
smaller and append it to the output.

merge(A, £, m,r,S + NULL)
A'is an array, A[¢..m] is sorted, A{[m + 1..r] is sorted

if S is NULL then initialize it with same size as A // tmp-array
copy A[l..r] into S[{..r]

(iL,ir) + (£, m+1); // start-indices of subarrays
for (k < £; k < r; k++) do // fill-index for result

if (i > m) A[k] < S[ir++]

else if (ir > r) A[k] < S[iL++]

else if (S[it] < S[ig]) A[k] < S[iL++]
else A[k] <— S[ir++]

©® NSO AN
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Explaining the solution of a problem

Step 2: Give pseudo-code or detailed description.

merge-sort(A, n)
A: array of size n
1. if (n < 1) then return
2. else
3. m=|(n—1)/2]
4. merge-sort(A[0..m], m + 1)
5 merge-sort(A[m + 1..n—1],n—m—1)
6 merge(A, 0, m, n—1)
Winter 2026
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Explaining the solution of a problem

Step 2: Give pseudo-code or detailed description.

merge-sort(A, n)
A: array of size n
if (n < 1) then return

1
2. else

3. m=|(n—1)/2]

4. merge-sort(A[0..m], m + 1)

5 merge-sort(A[m + 1..n—1],n—m—1)
6 merge(A, 0, m, n—1)

Two tricks to reduce constant in the run-time and auxiliary space:

@ Do not pass array A by value, instead indicate the range of the array
that needs to be sorted.

@ merge needs an auxiliary array S. Allocate this only once.
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Explaining the solution of a problem

Step 2: Give pseudo-code or detailed description.

merge-sort(A,n,{ < 0,r < n— 1,5 < NULL)

A: array of size n, 0 </ <r<n-1

1. if S is NULL then initialize it as array S[0..n — 1]
2. if (r <) then

3 return

4. else

5. m=|(r+1¢)/2]
6 merge-sort(A, n, £, m, S)

7 merge-sort(A,n,m+1,r,S)
8 merge(A, £, m, r,S)

@ This would be much better for an efficient implementation.
@ But the idea is much harder to understand.

@ (S240 pseudocode will often prefer clarity over improved constants.
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Analysis of merge-sort

Step 3: Argue correctness.

o Typically state loop-invariants, or other key-ingredients, but no need
for a formal (CS245-style) proof by induction.

@ Sometimes obvious enough from idea-description and comments.

Step 4: Analyze the run-time.
o First analyze work done outside recursions.
o If applicable, analyze subroutines separately.

@ If there are recursions: how big are the subproblems?
The run-time then becomes a recursive function.

Let T(n) denote the time to run merge-sort on an array of length n.
O (initialize array) takes time ©(n)
Q@ (recursively call merge-sort) takes time T([51]) + T([5])
@ (call merge) takes time ©(n)
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The run-time of merge-sort

@ The recurrence relation for T(n) is as follows (constant factor ¢
replaces ©):

T(n):{:(wnﬂ(m)wn fn-1

@ The following is the corresponding sloppy recurrence
(it has floors and ceilings removed):

T(n) = 2T(§)+cn ifn>1
c if n=1.

@ When n is a power of 2, then the exact and sloppy recurrences are
identical and can easily be solved by various methods.
E.g. prove by induction that T(n) = cnlog(2n) € ©(nlog n).

@ It is possible to show that T(n) € ©(nlogn) for all n
by analyzing the exact recurrence.
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Order notation and arithmetic revisited

Recall: You should not intermix order notation and arithmetic.

e Writing O(n) + O(n) = O(n) is very bad style.
@ It even occasionally leads to incorrect results.

@ Example: What is wrong with the following proof?
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Order notation and arithmetic revisited

Recall: You should not intermix order notation and arithmetic.
e Writing O(n) + O(n) = O(n) is very bad style.
@ It even occasionally leads to incorrect results.
@ Example: What is wrong with the following proof?

2T(5) +cn ifn>1

_ then T(n) € O(n).
c if n=1.

Claim (false!): If T(n) = {

“Proof"”: Use induction on n.
@ In the base case (n = 1) we have T(n) = c € O(1) = O(n).
@ Assume the claim holds for all n’ with n’ < n.

o Step: We have

T(n) = 2T(Z) + cn € 20(2) + O(n) = O(n) + O(n) = O(n)
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Some recurrence relations

] Recursion \ resolves to \ example
T(n) < T(n/2)+ O(1) T(n) € O(log n) binary-search
T(n) <2T(n/2)+ O(n) T(n) € O(nlogn) | merge-sort
T(n) <2T(n/2)+ O(logn) | T(n) € O(n) heapify (*)
T(n) < cT(n—1)+ O(1) T(n) € O(1) avg-case analysis (*)
for some c <1
T(n) <2T(n/4)+ O(1) T(n) € O(+v/n) range-search (¥*)
T(n) < T(yv/n)+ O(v/n) T(n) € O(v/n) interpol. search (*)
T(n) < T(v/n)+ O(1) T(n) € O(loglogn) | interpol. search (*)

@ Once you know the result, it is (usually) easy to prove by induction.
@ These bounds are tight if the upper bounds are tight.

@ Many more recursions, and some methods to find the result, in CS341.

(*) These may or may not get used later in the course.
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